JP6832769B2 - 分散型電源システム - Google Patents

分散型電源システム Download PDF

Info

Publication number
JP6832769B2
JP6832769B2 JP2017063469A JP2017063469A JP6832769B2 JP 6832769 B2 JP6832769 B2 JP 6832769B2 JP 2017063469 A JP2017063469 A JP 2017063469A JP 2017063469 A JP2017063469 A JP 2017063469A JP 6832769 B2 JP6832769 B2 JP 6832769B2
Authority
JP
Japan
Prior art keywords
power
facility
load
power supply
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017063469A
Other languages
English (en)
Other versions
JP2018166379A (ja
Inventor
岳明 松尾
岳明 松尾
尚克 秋岡
尚克 秋岡
鈴木 智之
智之 鈴木
将輝 ▲高▼溝
将輝 ▲高▼溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2017063469A priority Critical patent/JP6832769B2/ja
Publication of JP2018166379A publication Critical patent/JP2018166379A/ja
Application granted granted Critical
Publication of JP6832769B2 publication Critical patent/JP6832769B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力系統に接続される電力線と、その電力線に接続される太陽光発電装置及び電源装置及び電力負荷装置を備える分散型電源システムに関する。
特許文献1には、受電電力の削減を行うことと目的とした分散型電源システムが記載されている。具体的には、この分散型電源システムは、電力系統(1)に接続される電力線(2)と、その電力線(2)に接続される太陽光発電装置(5)及び電源装置(G)及び電力負荷装置(L)を備えている。そして、例えば30分間での受電電力が目標デマンドを超えそうになると、負荷遮断や電源装置などを用いたデマンド調整を行って、30分間での受電電力が目標デマンド以下になるような制御が行われる。
特開2009−247188号公報
太陽光発電装置の発電電力は、例えば雲による日射量の増減に伴って急激に増減することがある。そして、太陽光発電装置の発電電力が急激に増減すると、電力系統から電力線への受電電力も急激に増減するため、電力系統での電力の需給バランスが崩れる可能性がある。
特に、今後は、ZEH(ゼロ・エネルギー・ハウス)の推進に伴い、太陽光発電装置の普及率が更に向上することが考えられる。その場合、ある地域での日射量の増減に伴って、その地域に設置された数多くの太陽光発電装置の発電電力は同期して増減するため、その地域での電力系統の電力の需給バランスが大きく崩れる可能性があるという問題がある。
ところが、従来の分散型電源システムでは、太陽光発電装置の発電電力が変動することに伴って受電電力が急激に変動することへの対処がなされていない。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、太陽光発電装置の発電電力が変動することに伴って受電電力が急激に変動することへの対処がなされた分散型電源システムを提供する点にある。
上記目的を達成するための本発明に係る分散型電源システムの特徴構成は、電力系統に接続される複数の電力線のそれぞれが引き込まれる複数の施設にまたがって設置される分散型電源システムであって、
複数の前記施設は、引き込まれる前記電力線に接続される太陽光発電装置及び電源装置及び電力負荷装置を備える一つ以上の第1施設と、引き込まれる前記電力線に接続される前記電力負荷装置を備え且つ前記電源装置を備えない一つ以上の第2施設とで構成され、
前記電源装置の動作を制御する制御装置を備え、
前記制御装置は、前記第1施設において、設定期間毎に目標受電電力を決定して、前記電力系統から当該第1施設の前記電力線への受電電力が前記目標受電電力となるように、当該第1施設が備える前記電源装置から前記電力線への出力電力を調節するように構成され、前記第1施設において、過去の所定期間での、当該第1施設の前記電力負荷装置の負荷電力から当該第1施設の前記太陽光発電装置が前記電力線に供給する太陽光発電電力を減算した差分電力の平均値がゼロ以上のとき、前記第2施設が備える前記電力負荷装置の前記過去の所定期間での負荷電力の平均値を一つ以上の前記第1施設の数で割ることで導出された調整電力値をゼロから減算した値を前記目標受電電力に決定し、及び、前記過去の所定期間での、前記差分電力の平均値がゼロ未満のとき、当該差分電力の平均値から前記調整電力値を減算した値を前記目標受電電力に決定する点にある。
上記特徴構成によれば、第1施設において、過去の所定期間での差分電力の平均値がゼロ以上のとき、その所定期間では電力負荷装置の負荷電力が太陽光発電装置の太陽光発電電力に比べて相対的に大きい傾向にあり、その第1施設の電力線から電力系統へ太陽光発電電力を供給できない状態(売電不可能状態)であったと判定できる。この場合、本特徴構成では、第2施設が備える電力負荷装置の上記過去の所定期間での負荷電力の平均値を一つ以上の第1施設の数で割ることで導出された調整電力値をゼロから減算した値を目標受電電力に決定して、電力系統から電力線への受電電力がその目標受電電力となるように、電源装置から電力線への出力電力を調節する。つまり、太陽光発電装置の発電電力が急激に増減したとしても、第1施設での受電電力は、上記調整電力値をゼロから減算した値(目標受電電力)で安定する。加えて、第2施設では、一つ以上の第1施設から電力系統へと供給される電力の合計が、その第2施設の受電電力(即ち、電力負荷装置の負荷電力)に充当される。その結果、分散型電源システムは、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスを悪化させることを回避しながら、各施設での電力系統からの購入電力を安定して少なくさせることができる。
それに対して、第1施設において、過去の所定期間での差分電力の平均値がゼロ未満のとき、その所定期間では電力負荷装置の負荷電力が太陽光発電装置の太陽光発電電力に比べて相対的に小さい傾向にあり、余剰電力が発生していた、即ち、その第1施設の電力線から電力系統へ太陽光発電電力の少なくとも一部を供給(逆潮流)できる状態(売電可能状態)であったと判定できる。この場合、本特徴構成では、上記差分電力の平均値から上記調整電力値を減算した値を目標受電電力に決定して、その目標受電電力と同じ大きさの電力が電力線から電力系統へと供給されるように、電源装置から電力線への出力電力を調節する。つまり、太陽光発電装置の発電電力が急激に増減したとしても、第1施設での受電電力は、上記差分電力の平均値から上記調整電力値を減算した値(目標受電電力)で安定する。加えて、第2施設では、一つ以上の第1施設から電力系統へと供給される電力の合計が、その第2施設の受電電力(即ち、電力負荷装置の負荷電力)に充当される。その結果、分散型電源システムは、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスを悪化させることを回避しながら、電力系統へと太陽光発電電力の少なくとも一部を安定して供給できる。
従って、太陽光発電装置の発電電力が変動することに伴って受電電力が急激に変動することへの対処がなされた分散型電源システムを提供できる。
本発明に係る分散型電源システムの別の特徴構成は、前記電源装置は充放電装置を有し、その充電電力及び放電電力を調節することで前記出力電力を調節する点にある。
上記特徴構成によれば、電源装置としての充放電装置を用いて、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスが悪化することを回避できる。
本発明に係る分散型電源システムの更に別の特徴構成は、前記電源装置は発電装置を有し、その発電電力を増減することで前記出力電力を調節する点にある。
上記特徴構成によれば、電源装置としての発電装置を用いて、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスが悪化することを回避できる。
第1実施形態の分散型電源システムの構成を示す図である。 第1実施形態の電源装置の出力制御を説明するフローチャートである。 第2実施形態の分散型電源システムの構成を示す図である。 第2実施形態の電源装置の出力制御を説明するフローチャートである。
<第1実施形態>
以下に図面を参照して本発明の第1実施形態に係る分散型電源システムについて説明する。
図1は第1実施形態の分散型電源システムの構成を示す図である。図示するように、分散型電源システムは、電力系統1に接続される電力線15が引き込まれている施設10に設置されている。そして、分散型電源システムは、電力系統1に接続される電力線15と、電力線15に接続される太陽光発電装置11及び電源装置13及び電力負荷装置12を備える。また、分散型電源システムは、電源装置13の動作を制御する制御装置14を備える。
電力系統1から電力線15に供給される受電電力P0は、電力系統1から電力線15に向かう方向を正としている。よって、電力線15から電力系統1へ電力が向かう場合(即ち、逆潮流の場合)には、受電電力P0は負の電力となる。また、電力計測器(図示せず)などによって測定される受電電力P0の値は制御装置14に伝達される。
太陽光発電装置11で発電された電力はインバータなどの電力変換器(図示せず)を介して電力線15に供給される。太陽光発電装置11が電力線15に供給する太陽光発電電力P1は、太陽光発電装置11から電力線15に向かう方向を正としている。また、電力計測器(図示せず)などによって測定される太陽光発電電力P1の値は制御装置14に伝達される。
電源装置13は、電力線15への出力電力Pxを自在に調節できる充放電装置や発電装置などを有する。例えば、充放電装置としては、リチウムイオン電池、ニッケル水素電池、鉛電池などの蓄電池(化学電池)や、キャパシタ、フライホイールなどの様々な装置を用いることができる。発電装置としては、燃料電池を備える装置や、エンジンとそのエンジンによって駆動される発電機とを備える装置などの様々な装置を用いることができる。電源装置13から電力線15への出力電力Pxは、電源装置13から電力線15へ向かう方向を正としている。電源装置13が充放電装置を有する場合、電力線15から電源装置13への充電電力及び電源装置13から電力線15への放電電力を調節することで出力電力Pxを調節できる。電源装置13が発電装置を有する場合、電力線15へ供給する発電電力を増減することで出力電力Pxを調節できる。
電力負荷装置12は、施設10に設置される照明機器、空調機器、情報機器など、電力を消費して動作する様々な機器である。電力負荷装置12の負荷電力P2は、電力線15から電力負荷装置12へ向かう方向を正としている。また、電力計測器(図示せず)などによって測定される負荷電力P2の値は制御装置14に伝達される。
このような分散型電源システムにおいて、制御装置14は、設定期間毎に目標受電電力を決定して、電力系統1から電力線15への受電電力P0が目標受電電力となるように、電源装置13から電力線15への出力電力Pxを調節するように構成されている。
以下に、制御装置14が行う電源装置13の出力制御について説明する。
図2は第1実施形態の電源装置13の出力制御を説明するフローチャートである。
工程#10において制御装置14は、目標受電電力の決定タイミングであるか否かを判定する。例えば、制御装置14が、15分毎などのタイミングで目標受電電力を更新するように構成されている場合、15分毎に目標受電電力の決定タイミングであると判定して、工程#11に移行する。それに対して、制御装置14は、目標受電電力を更新してから次の決定タイミングまでの15分間は、目標受電電力の決定タイミングではないと判定して、先に決定されている目標受電電力の値を維持し、受電電力P0がその目標受電電力となるように電源装置13の出力電力Pxを調節し続ける(工程#15)。よって、その15分間の間は、太陽光発電装置11の発電電力が急激に増減するようなときにも、受電電力P0がその目標受電電力で安定することになる。
制御装置14は、目標受電電力の決定タイミングであると判定した場合、工程#11において、過去の所定期間(例えば10分間など)での、電力負荷装置12の負荷電力P2から太陽光発電装置11が電力線15に供給する太陽光発電電力P1を減算した差分電力:「P2−P1」の平均値を計算する。この差分電力により、施設10内で太陽光発電電力P1を負荷電力P2に充当した場合に余剰電力が発生するか否かを判定できる。例えば、過去の所定期間での差分電力の平均値がゼロ未満のとき、その所定期間では負荷電力P2が太陽光発電電力P1に比べて相対的に小さい傾向にあり、余剰電力が発生していた、即ち、施設10の電力線15から電力系統1へ太陽光発電電力P1の少なくとも一部を供給(逆潮流)できる状態(売電可能状態)であったと判定できる。それに対して、過去の所定期間での差分電力の平均値がゼロ以上のとき、その所定期間では負荷電力P2が太陽光発電電力P1に比べて相対的に大きい傾向にあり、施設10の電力線15から電力系統1へ太陽光発電電力P1を供給できない状態(売電不可能状態)であったと判定できる。
そして、制御装置14は、工程#12において過去の所定期間での差分電力の平均値がゼロ未満であると判定したとき、工程#13に移行して目標受電電力を差分電力の平均値と同じに決定し、受電電力P0がその目標受電電力となるように電源装置13の出力電力Pxを調節する(工程#15)。つまり、過去の所定期間での差分電力:「P2−P1」の平均値がゼロ未満というのは、負荷電力P2が太陽光発電電力P1に比べて相対的に小さいため売電が可能(売電可能状態)であり、電力系統1への電力の逆潮流を行える状態であると言える。このような状態のときは、売電電力が一定になるように(即ち、目標受電電力=過去の所定期間の差分電力:「P2−P1」の平均値となるように)、電源装置13の出力電力Pxを増減調節する。これにより、電力系統1への売電を行っている間に太陽光発電電力P1が天候に応じて変化しても、その売電電力が大きく変動することを回避できる。
それに対して、制御装置14は、工程#12において過去の所定期間での差分電力の平均値がゼロ以上であると判定したとき、工程#14に移行して目標受電電力をゼロに決定し、受電電力P0がその目標受電電力となるように電源装置13の出力電力Pxを調節する(工程#15)。つまり、過去の所定期間での差分電力:「P2−P1」の平均値がゼロ以上というのは、負荷電力P2が太陽光発電電力P1に比べて相対的に大きいため売電が不可能(売電不可能状態)であり、電力系統1から電力を買っている状態であると言える。このような状態のときは、買電電力が一定且つ小さくなるように(即ち、目標受電電力=0となるように)、電源装置13の出力電力Pxを増減調節する。これにより、電力系統1からの買電を行っている間に太陽光発電電力P1が天候に応じて変化しても、その買電電力が大きく変動することを回避できる。
<第2実施形態>
第2実施形態の分散型電源システムは、複数の施設10にまたがって設置される点で上記実施形態と異なっている。以下に第2実施形態の分散型電源システムについて説明するが、上記実施形態と同様の構成については説明を省略する。
図3は第2実施形態の分散型電源システムの構成を示す図である。図示するように、分散型電源システムは、電力系統1に接続される複数の電力線15のそれぞれが引き込まれる複数の施設10にまたがって設置されている。複数の施設10は、一つ以上の第1施設と、一つ以上の第2施設とで構成される。第1施設は、引き込まれる電力線15に接続される太陽光発電装置11及び電源装置13及び電力負荷装置12を備える。第2施設は、引き込まれる電力線15に接続される電力負荷装置12を備え且つ電源装置13を備えない。尚、第2施設は、太陽光発電装置11を備えていてもよい。
図3に示す例では、施設10A及び施設10Bは第1施設であり、施設10Cは第2施設である。つまり、施設10A及び施設10Bのそれぞれは電源装置13を備えているため、その電源装置13の出力電力を調節して電力系統1からの受電電力を変化させることができる。つまり、上記第1実施形態と同様に、本実施形態でも、施設10A及び施設10Bに設けられる制御装置14は、設定期間毎に目標受電電力を決定して、電力系統1からそれ自身の電力線15への受電電力P0a,P0bが目標受電電力となるように、その電源装置13から電力線15への出力電力Pxa,Pxbを調節するように構成される。
第1施設としての施設10Aには、電力系統1に接続される電力線15と、電力線15に接続される太陽光発電装置11及び電源装置13及び電力負荷装置12が設けられる。また、施設10Aには、電源装置13の動作を制御する制御装置14が設けられる。施設10Aにおいて、電力計測器(図示せず)などによって測定される受電電力P0aの値、及び、電力計測器(図示せず)などによって測定される太陽光発電電力P1aの値、及び、電力計測器(図示せず)などによって測定される負荷電力P2aの値は、制御装置14に伝達される。
第1施設としての施設10Bには、電力系統1に接続される電力線15と、電力線15に接続される太陽光発電装置11及び電源装置13及び電力負荷装置12が設けられる。また、施設10Bには、電源装置13の動作を制御する制御装置14が設けられる。施設10Bにおいて、電力計測器(図示せず)などによって測定される受電電力P0bの値、及び、電力計測器(図示せず)などによって測定される太陽光発電電力P1bの値、及び、電力計測器(図示せず)などによって測定される負荷電力P2bの値は、制御装置14に伝達される。
第2施設としての施設10Bには、電力系統1に接続される電力線15と、電力線15に接続される電力負荷装置12が設けられる。電力計測器(図示せず)などによって測定される受電電力P0cの値は中央制御装置20に伝達される。中央制御装置20は、施設10A及び施設10B及び施設10Cとの間で通信回線を介して接続されるサーバー装置などを用いて構成される。
中央制御装置20は、第2施設としての施設10Cから、過去の所定期間での負荷電力の平均値の伝達を受けており、及び、第1施設の数を把握している。そして、中央制御装置20は、第2施設が備える電力負荷装置12の過去の所定期間での負荷電力の平均値を第1施設の数で割ることで導出した調整電力値を導出し、その導出した調整電力値を第1施設としての施設10A,10Bのそれぞれに対して伝達する。尚、第2施設が複数存在している場合には、それら第2施設の負荷電力の平均値の合計を第1施設の数で割ることで上記調整電力値を導出すればよい。
第2実施形態において、本発明に係る分散型電源システムの制御装置の機能は、第1施設10A,10Bの夫々に設けられる制御装置14と、中央制御装置20とで実現される。
本実施形態において、施設10A及び施設10Bに設けられている各制御装置14は、過去の所定期間での、それ自身の第1施設(施設10A又は10B)の電力負荷装置12の負荷電力P2(P2a又はP2b)からその第1施設の太陽光発電装置11が電力線15に供給する太陽光発電電力P1(P1a又はP1b)を減算した差分電力:「P2−P1」の平均値がゼロ以上のとき、第2施設(施設10C)が備える電力負荷装置12の上記過去の所定期間での負荷電力P2(P2c)の平均値を一つ以上の第1施設の数で割ることで導出された調整電力値をゼロから減算した値を目標受電電力に決定する。
図4は第2実施形態の電源装置13の出力制御を説明するフローチャートである。施設10Aの制御装置14が行う処理と、施設10Bの制御装置14が行う処理とは同様であるので、以下の説明では施設10Aの制御装置14が行う処理のみを説明する。
工程#20において制御装置14は、目標受電電力の決定タイミングであるか否かを判定する。例えば、制御装置14が、15分毎などのタイミングで目標受電電力を更新するように構成されている場合、15分毎に目標受電電力の決定タイミングであると判定して、工程#21に移行する。それに対して、制御装置14は、目標受電電力を更新してから次の決定タイミングまでの15分間は、目標受電電力の決定タイミングではないと判定して、先に決定されている目標受電電力の値を維持し、受電電力P0がその目標受電電力となるように電源装置13の出力電力Pxaを調節する(工程#27)。
制御装置14は、目標受電電力の決定タイミングであると判定した場合、工程#21において、過去の所定期間での、自身の施設10Aの電力負荷装置12の負荷電力P2aから自身の施設10Aの太陽光発電装置11が電力線15に供給する太陽光発電電力P1aを減算した差分電力:「P2a−P1a」の平均値を計算する。この差分電力により、施設10A内で太陽光発電電力P1aを負荷電力P2aに充当した場合に余剰電力が発生するか否かを判定できる。例えば、過去の所定期間での差分電力の平均値がゼロ未満のとき、その所定期間では負荷電力P2aが太陽光発電電力P1aに比べて相対的に小さい傾向にあり、余剰電力が発生していた、即ち、施設10Aの電力線15から電力系統1へ太陽光発電電力P1aの少なくとも一部を供給(逆潮流)できる状態(売電可能状態)であったと判定できる。それに対して、過去の所定期間での差分電力の平均値がゼロ以上のとき、その所定期間では負荷電力P2aが太陽光発電電力P1aに比べて相対的に大きい傾向にあり、施設10Aの電力線15から電力系統1へ太陽光発電電力を供給できない状態(売電不可能状態)であったと判定できる。
そして、制御装置14は、工程#22において過去の所定期間での差分電力の平均値がゼロ未満であると判定したとき、工程#23及び工程#24において、導出した差分電力から、第2施設(施設10C)が備える電力負荷装置12の過去の所定期間での負荷電力(受電電力P0c)の平均値を第1施設の数で割ることで導出した調整電力値を減算した値を目標受電電力に決定する。具体的には、工程#23において制御装置14は、仮の目標受電電力を上記差分電力の平均値と同じに決定する。そして、工程#24において制御装置14は、仮の目標受電電力(差分電力の平均値)から、電源装置13なしの第2施設(施設10C)への託送分を減算した値を、目標受電電力に設定する。この場合、一つの第1施設から第2施設(施設10C)への託送分となる上記調整電力値は、第2施設(施設10C)が備える電力負荷装置12の過去の所定期間での負荷電力の平均値である「P0c」を第1施設(施設10A,10B)の数である「2」で割ることで導出される「P0c/2」となる。その後、工程#27において制御装置14は、受電電力P0aがその目標受電電力となるように電源装置13の出力電力Pxaを調節する。
工程#23及び工程#24及び工程#27で説明したような出力電力Pxaの調節を行うことで、太陽光発電装置11の発電電力が急激に増減したとしても、第1施設(施設10A)での受電電力P0aは、上記差分電力の平均値から上記調整電力値を減算した値(目標受電電力)で安定する。加えて、第2施設(施設10C)では、一つ以上の第1施設(施設10A,10B)のそれぞれから電力系統1へと供給される電力の合計(=「P0c/2」+「P0c/2」)が、電力系統1で託送されてその施設10Cの受電電力(即ち、電力負荷装置12の負荷電力)に充当される。その結果、分散型電源システムは、太陽光発電装置11の発電電力が急激に増減するようなときにも、電力系統1での電力の需給バランスを悪化せることを回避しながら、電力系統1へと太陽光発電電力P1aの少なくとも一部を安定して供給できる。
それに対して、制御装置14は、工程#22において過去の所定期間での差分電力の平均値がゼロ以上であると判定したとき、工程#25及び工程#26において、第2施設(施設10C)が備える電力負荷装置12の過去の所定期間での負荷電力の平均値を第1施設(施設10A,10B)の数で割ることで導出した調整電力値をゼロから減算した値を目標受電電力に決定する。具体的には、工程#25において制御装置14は、仮の目標受電電力をゼロに設定する。そして、工程#26において制御装置14は、仮の目標受電電力(ゼロ)から、電源装置13なしの第2施設(施設10C)への託送分を減算した値を、目標受電電力に設定する。その後、工程#27において制御装置14は、受電電力P0aがその目標受電電力となるように電源装置13の出力電力Pxaを調節する。
工程#25及び工程#26及び工程#27で説明したような出力電力Pxaの調節を行うことで、太陽光発電装置11の発電電力が急激に増減したとしても、第1施設(施設10A)での受電電力は、上記調整電力値をゼロから減算した値(目標受電電力)で安定する。加えて、第2施設(施設10C)では、一つ以上の第1施設(施設10A,10B)のそれぞれから電力系統1へと供給される電力の合計(=「P0c/2」+「P0c/2」)が、電力系統1で託送されてその施設10Cの受電電力(即ち、電力負荷装置12の負荷電力)に充当される。その結果、分散型電源システムは、太陽光発電装置11の発電電力が急激に増減するようなときにも、電力系統1での電力の需給バランスを悪化させることを回避しながら、各施設10での電力系統1からの購入電力を安定して少なくさせることができる。
<別実施形態>
<1>
上記実施形態では、分散型電源システムの構成について具体例を挙げて説明したが、その構成については適宜変更可能である。
例えば、上記実施形態では、電源装置13が充放電装置や発電装置などである例を説明したが、電源装置13は複数の装置の組み合わせであってもよい。例えば、電源装置13が充放電装置と発電装置との組み合わせによって実現されてもよい。
他にも、図3には、2つの第1施設10A,10Bと1つの第2施設10Cとを描いたが、それらの数は適宜変更可能である。
また、図3には、本発明の制御装置が、第1施設10A,10Bの夫々に設けられる制御装置14と、中央制御装置20とで構成される例を記載したが、本発明はそのような構成に限定されない。例えば、分散型電源システムが例えばサーバー装置などの一つの制御装置を備え、その制御装置が、一つ以上の第1施設の電源装置13への動作指令や、一つ以上の第2施設での過去の所定期間での負荷電力に関する情報の収集などを行ってもよい。
<2>
上記第1実施形態において、電源装置13の出力電力が電力系統1へ逆潮流することを禁止してもよい。その場合、電源装置13の出力電力Pxが電力負荷装置12の負荷電力P2以下となるようにその出力電力Pxを調節すればよい。
<3>
上記第2実施形態では、施設10Cの所定期間の受電電力P0cがリアルタイムで中央制御装置20に伝達される例を説明したが、その受電電力P0cはリアルタイムの値でなくてもよい。例えば、中央制御装置20は、所定期間での施設10Cの受電電力P0cの予測値を導出し、その受電電力P0cの予測値に基づいて上記調整電力値を決定してもよい。具体的には、中央制御装置20は、電気事業者等によって検針された施設10Cでの過去の受電電力の情報を入手し、その所定期間と同曜日且つ同時間帯の過去の受電電力の平均値と同じ値を、上記所定期間での受電電力P0cの平均値(即ち、予測値)として決定してもよい。
<4>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
本発明は、太陽光発電装置の発電電力が変動することに伴って受電電力が急激に変動することへの対処がなされた分散型電源システムに利用できる。
1 電力系統
10(10A,10B,10C) 施設
11 太陽光発電装置
12 電力負荷装置
13 電源装置
14 制御装置
15 電力線
20 中央制御装置

Claims (3)

  1. 電力系統に接続される複数の電力線のそれぞれが引き込まれる複数の施設にまたがって設置される分散型電源システムであって、
    複数の前記施設は、引き込まれる前記電力線に接続される太陽光発電装置及び電源装置及び電力負荷装置を備える一つ以上の第1施設と、引き込まれる前記電力線に接続される前記電力負荷装置を備え且つ前記電源装置を備えない一つ以上の第2施設とで構成され、
    前記電源装置の動作を制御する制御装置を備え、
    前記制御装置は、
    前記第1施設において、設定期間毎に目標受電電力を決定して、前記電力系統から当該第1施設の前記電力線への受電電力が前記目標受電電力となるように、当該第1施設が備える前記電源装置から前記電力線への出力電力を調節するように構成され、
    前記第1施設において、過去の所定期間での、当該第1施設の前記電力負荷装置の負荷電力から当該第1施設の前記太陽光発電装置が前記電力線に供給する太陽光発電電力を減算した差分電力の平均値がゼロ以上のとき、前記第2施設が備える前記電力負荷装置の前記過去の所定期間での負荷電力の平均値を一つ以上の前記第1施設の数で割ることで導出された調整電力値をゼロから減算した値を前記目標受電電力に決定し、及び、前記過去の所定期間での、前記差分電力の平均値がゼロ未満のとき、当該差分電力の平均値から前記調整電力値を減算した値を前記目標受電電力に決定する分散型電源システム。
  2. 前記電源装置は充放電装置を有し、その充電電力及び放電電力を調節することで前記出力電力を調節する請求項1に記載の分散型電源システム。
  3. 前記電源装置は発電装置を有し、その発電電力を増減することで前記出力電力を調節する請求項1に記載の分散型電源システム。
JP2017063469A 2017-03-28 2017-03-28 分散型電源システム Active JP6832769B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017063469A JP6832769B2 (ja) 2017-03-28 2017-03-28 分散型電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017063469A JP6832769B2 (ja) 2017-03-28 2017-03-28 分散型電源システム

Publications (2)

Publication Number Publication Date
JP2018166379A JP2018166379A (ja) 2018-10-25
JP6832769B2 true JP6832769B2 (ja) 2021-02-24

Family

ID=63922869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063469A Active JP6832769B2 (ja) 2017-03-28 2017-03-28 分散型電源システム

Country Status (1)

Country Link
JP (1) JP6832769B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218191A1 (ja) * 2019-04-26 2020-10-29 株式会社Gsユアサ 電力制御装置、電力制御装置の制御方法、分散型発電システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545069B2 (ja) * 2005-09-02 2010-09-15 大阪瓦斯株式会社 コージェネレーションシステム及び制御装置
JP5319156B2 (ja) * 2008-04-24 2013-10-16 一般財団法人電力中央研究所 電力需給制御プログラム、電力需給制御装置および電力需給制御システム
JP5394217B2 (ja) * 2009-12-14 2014-01-22 株式会社日立パワーソリューションズ 電力貯蔵装置を併設した自然エネルギー利用発電所
JP6190299B2 (ja) * 2014-03-27 2017-08-30 シャープ株式会社 電力制御装置、太陽光発電システム及び電力制御方法

Also Published As

Publication number Publication date
JP2018166379A (ja) 2018-10-25

Similar Documents

Publication Publication Date Title
JP4698718B2 (ja) 風力発電装置群の制御装置及び制御方法
US8901893B2 (en) Electricity storage device and hybrid distributed power supply system
WO2016092774A1 (ja) 電力供給システム
JP6265281B2 (ja) 太陽光発電所の制御システム
JP5576826B2 (ja) 風力発電装置群の制御システム及び制御方法
JP5104991B1 (ja) 電力安定化制御装置、電力安定化プログラム
JP6189092B2 (ja) 系統用蓄電池の複数目的制御装置
WO2022054442A1 (ja) 電力調整方法および電力調整装置
JP6832769B2 (ja) 分散型電源システム
CN112531773B (zh) 一种新能源发电系统及其能量调控方法及装置
EP3261211B1 (en) Systems and methods for controlling performance parameters of an energy storage device
US10074984B2 (en) Electric power control system
JP6892191B2 (ja) 電力システム
US10355486B2 (en) Method of controlling an electrical production station
JP7093033B2 (ja) 電力制御システム
JP2020005399A (ja) サーバ装置、制御システム、及び制御方法
JP6391958B2 (ja) 電力系統安定化装置
JP7412674B2 (ja) ネガワット取引支援装置、ネガワット取引システムおよびネガワット取引方法
US11990750B2 (en) Decentralized frequency control with packet-based energy management
JP7181036B2 (ja) 電力供給システム
US20220329069A1 (en) Method for operating an electrical storage station
WO2022071259A1 (ja) 電力制御システムおよびプログラム
JP6793617B2 (ja) 蓄電池の制御装置
JP2023013243A (ja) 電力利用設備
JP2024073813A (ja) 電力システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150