WO2021124424A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2021124424A1
WO2021124424A1 PCT/JP2019/049262 JP2019049262W WO2021124424A1 WO 2021124424 A1 WO2021124424 A1 WO 2021124424A1 JP 2019049262 W JP2019049262 W JP 2019049262W WO 2021124424 A1 WO2021124424 A1 WO 2021124424A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
swivel
scroll
oil
scroll compressor
Prior art date
Application number
PCT/JP2019/049262
Other languages
English (en)
French (fr)
Inventor
柳瀬 裕一
近野 雅嗣
遼太 飯島
小山田 具永
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2021565185A priority Critical patent/JP7263554B2/ja
Priority to CN201980102091.0A priority patent/CN114651128B/zh
Priority to PCT/JP2019/049262 priority patent/WO2021124424A1/ja
Publication of WO2021124424A1 publication Critical patent/WO2021124424A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a scroll compressor that handles HFC-based refrigerants, natural refrigerants such as air, carbon dioxide, and other compressible gases, and in particular, is mainly provided on a plain bearing and a frame provided on the back surface of a swivel scroll.
  • the present invention relates to a scroll compressor that uses a plain bearing as a bearing.
  • scroll compressors are required to have a wide range of variable discharge capacity.
  • scroll compressors there is an increasing need for scroll compressors to have higher speeds and larger capacities.
  • a swivel bearing that supports the swivel motion of the swivel scroll and a main bearing that supports the crankshaft that transmits the rotation of the motor are used.
  • a double slide bearing (double slide bearing) structure that can shorten the axial distance is effective.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 62-23595
  • the configuration of the scroll compressor described in Patent Document 1 is such that a swivel shaft is provided on the back side of the swivel scroll, and a main bearing (bearing bush) that supports the crankshaft on the outer peripheral side of the swivel bearing (bearing bush) that slides on the swivel shaft Bearing sliding part) is arranged. Further, the lubricating oil supplied from the lubrication holes provided inside the crankshaft is distributed and lubricated to the swing bearing and the main bearing.
  • a main bearing bearing that supports the crankshaft on the outer peripheral side of the swivel bearing (bearing bush) that slides on the swivel shaft Bearing sliding part
  • Patent Document 1 an annular ring inserted into the swivel shaft to close the upper part of the clearance portion on the outer circumference of the swivel bearing is provided on the upper surface of the swivel bearing so that both the swivel bearing and the main bearing are lubricated. It is configured in.
  • the amount of lubricating oil supplied to slide bearings is adjusted by controlling the bearing clearance.
  • the diameter of the slide bearing and the set ratio of the bearing clearance (“clearance / diameter”) are adjusted. It is set to about 0.001.
  • the bearing clearance increases, the bearing clearance also increases, and the amount of oil supplied to the back pressure chamber also increases. Since the amount of lubrication is proportional to the cube of the bearing clearance, there is a limit to adjusting the appropriate amount of lubrication by the bearing clearance.
  • An object of the present invention is to provide a double slide bearing structure in which the axial distance between a swivel bearing that supports the swivel motion of a swivel scroll and a main bearing that supports a crankshaft that transmits the rotation of an electric motor is shortened.
  • An object of the present invention is to obtain a scroll compressor capable of reliably supplying a sufficient amount of lubricating oil to the main bearing and the swing bearing.
  • the present invention has a closed container, a frame fixed to the closed container, and a fixing provided in the closed container and having an end plate and a spiral wrap standing on the end plate.
  • a scroll compressor having a scroll, an end plate and a spiral wrap erected on the end plate, a swivel scroll that meshes with the fixed scroll to form a compression chamber, and a crankshaft that swivels the swivel scroll.
  • the swivel shaft provided so as to project on the opposite side of the swivel scroll, the spindle portion provided at the swivel scroll side end portion of the crankshaft, and the swivel shaft portion provided at the end portion of the spindle portion.
  • the eccentric hole into which the shaft is inserted the swivel bearing provided between the swivel shaft and the eccentric hole, between the main shaft portion of the crankshaft and the frame, and substantially the same in the axial direction as the swivel bearing.
  • the oil supply passage on the upper end side of the main shaft formed between the upper end surface of the main shaft portion of the crankshaft and the back surface of the swivel scroll, and the frame and the back surface of the end plate of the swivel scroll.
  • a seal member provided on the outer peripheral side of the main bearing, a crankshaft oil supply passage formed on the crankshaft and communicating with the bottom of the eccentric hole, and an oil sump formed on the bottom of the closed container.
  • the lubricating oil of the oil sump is supplied to the eccentric hole through the crankshaft oil supply passage, and the lubricating oil flows in one direction from the lower end to the upper end of the swivel bearing and swivels. After passing through the oil supply passage on the upper end side of the main shaft portion, almost all of the oil lubricating the bearing flows downward from the upper end portion of the main bearing in one direction.
  • a double slide bearing structure having a shortened axial distance between a swivel bearing that supports the swivel motion of a swivel scroll and a main bearing that supports a crankshaft that transmits the rotation of an electric motor is provided.
  • Example 1 of the scroll compressor of this invention It is a vertical sectional view which shows Example 1 of the scroll compressor of this invention. It is sectional drawing of the main part which shows the vicinity of the compression mechanism part shown in FIG. 1 in an enlarged manner. It is a perspective view which shows the upper end side of the crankshaft shown in FIG. 2 in an enlarged manner. It is a figure which shows Example 2 of the scroll compressor of this invention, and is the figure which corresponds to FIG. It is a figure which shows Example 3 of the scroll compressor of this invention, and is the figure which corresponds to FIG. It is a figure which shows Example 4 of the scroll compressor of this invention, and is the figure which corresponds to FIG. It is a vertical sectional view which shows Example 5 of the scroll compressor of this invention. It is sectional drawing of the main part which shows the vicinity of the compression mechanism part shown in FIG. 7 enlarged.
  • FIG. 1 is a vertical sectional view showing the scroll compressor of the first embodiment
  • FIG. 2 is an enlarged sectional view of a main part showing the vicinity of the compression mechanism portion shown in FIG. 1
  • FIG. 3 is an upper end portion of the crankshaft shown in FIG. It is a perspective view which shows the side enlarged.
  • the scroll compressor of the first embodiment shown in FIG. 1 supplies the lubricating oil of the oil sump to the bottom of the eccentric hole by a differential pressure lubrication method utilizing the pressure difference in the closed container, and the lubricating oil swirls from here. It is configured as a differential pressure lubrication type scroll compressor that flows through the bearings, flows through the main bearings in series, and then flows out into the back pressure chamber.
  • the scroll compressor 1 is configured by housing the compression mechanism unit 2 and the drive unit 3 in a closed container 4.
  • the compression mechanism unit 2 is composed of a fixed scroll 21, a swivel scroll 22, a frame 23 fixed to the closed container 4, an old dam joint 24 and the like that constitute a rotation prevention mechanism of the swivel scroll 22.
  • the fixed scroll 21 has an end plate 21a and a spiral wrap (fixed wrap) 21b erected perpendicularly to the end plate 21a, and a discharge port 21c is formed at the center of the wrap 21b. It is fixed to the frame 23 by a plurality of bolts 25.
  • the swivel scroll 22 has an end plate 22a and a spiral wrap (swivel wrap) 22b that stands perpendicular to the end plate 22a, and is located at the center of the end plate 22a on the opposite side (rear side).
  • a substantially cylindrical swirl shaft 22c is provided so as to project.
  • the compression chamber 26 is formed by engaging the fixed scroll 21 and the swivel scroll 22, and the swirl scroll 22 swivels to reduce the volume of the compression chamber 26 and perform a compression operation.
  • working fluid such as refrigerant gas is sucked into the compression chamber 26 from the suction port 5 along with the turning motion of the swirling scroll 22, and the sucked working fluid passes through the compression stroke and is discharged from the fixed scroll 21 at the discharge port 21c. Is discharged into the discharge space 6 in the closed container 4.
  • the working fluid discharged into the discharge space 6 then passes through flow paths (not shown) formed on the outer peripheral surface of the end plate 21a of the fixed scroll 21 and the outer peripheral surface of the frame 23, respectively, and the drive unit 3 Flows into the space 7 in which the fluid is arranged, and is further discharged from the closed container 4 to the refrigeration cycle or the like via the discharge pipe 8.
  • the space inside the closed container 4 is maintained at a substantially discharge pressure.
  • the drive unit 3 for rotating the swivel scroll 22 is fixed to the center of the motor 31 including the stator 31a and the rotor 31b fixed to the closed container 4 and the rotor 31b and rotates integrally, and the swivel scroll 22 is rotated. It is composed of a crankshaft 32 and the like for driving the above.
  • a main bearing 27 that supports the end of the crankshaft 32 is provided on the inner peripheral surface of the frame 23. Further, an eccentric hole 32b into which the swivel shaft 22c of the swivel scroll 22 is inserted is provided at the end of the crankshaft 32, and a swivel bearing 28 is provided between the swivel shaft 22c and the eccentric hole 32b. It is provided.
  • the swivel bearing 28 is inserted into the swivel shaft 22c, and is movable and rotatably arranged in the direction of the rotation axis with respect to the swivel shaft 22c and the eccentric hole 32b.
  • the scroll compressor 1 of this embodiment has a double slide bearing structure in which the main bearing 27 and the swing bearing 28 are provided at substantially the same positions in the axial direction.
  • the upper end side of the crankshaft 32 is configured as a large-diameter spindle portion 32a, and the spindle portion 32a is rotationally supported by the spindle bearing 27.
  • the sub-shaft portion 32c on the lower end side of the crankshaft 32 is rotationally supported by the sub-bearing 9.
  • the sub-bearing 9 is provided in the sub-bearing housing 10, and the sub-bearing housing 10 is fixed to the sub-frame 11 fixed to the closed container 4.
  • the main bearing 27 and the sub-bearing 9 that rotatably support the crankshaft 32 are on the compression mechanism portion 2 side and the oil sump portion 12 side provided on the bottom of the closed container 4 with respect to the motor 31. It is arranged in and respectively.
  • the eccentric hole 32b is formed in the spindle portion 32a and is open to the swivel scroll 22 side.
  • the swivel shaft 22c of the swivel scroll 22 is inserted into the eccentric hole 32b via the swivel bearing 28.
  • the swivel shaft 22c is axially movable and rotatably engaged with the eccentric hole 32b.
  • the oldham joint 24 is arranged in a back pressure chamber 29 formed by the swivel scroll 22 and the frame 23, and engages with the swivel scroll 22 and the key groove provided in the frame 23 to rotate the swivel scroll 22. It plays the role of a prevention mechanism. That is, the Oldham joint 24 is provided with two sets of orthogonal keys, one set slides on the key groove formed on the frame 23, and the remaining one set provides the key groove formed on the back surface of the swivel scroll 22. It is configured to slide.
  • An oil supply pipe 32d is provided at the lower end of the crankshaft 32 so that the oil in the oil sump portion 12 is pumped up by a differential pressure and supplied to the crankshaft oil supply passage 32e formed at the center of the crankshaft 32. ing.
  • FIG. 2 is an enlarged cross-sectional view of a main part showing the vicinity of the compression mechanism portion shown in FIG. 1, and as shown in FIG. 2, the spindle portion 32a of the crankshaft 32 is a main bearing provided on the inner peripheral side of the frame 23. It is rotatably supported by 27 and slides.
  • An eccentric hole 32b that opens to the upper part is formed on the inner peripheral side of the spindle portion 32a at a position eccentric with respect to the center of the spindle portion 32a (the center of the crankshaft 32), and the eccentric hole 32b has a swivel scroll.
  • the swivel shaft 22c of 22 and the swivel bearing 28 are inserted, and they slide and rotatably engage with each other.
  • the swivel scroll 22 is configured to swivel as the crankshaft 32 rotates.
  • the back pressure chamber 29 formed by the fixed scroll 21 and the like is provided.
  • the high pressure chamber 30 and the back pressure chamber 29 are separated from each other by a seal member 40 provided between the frame 23 and the back surface of the end plate of the swivel scroll 22 and on the outer peripheral side of the main bearing 27. There is.
  • the seal member 40 is arranged in a ring-shaped groove 41 formed on the end surface of the frame 23 facing the back surface of the end plate 22a of the swivel scroll 22. The seal member 40 pressureally separates the high pressure chamber 30 and the back pressure chamber 29.
  • the lubricating oil of the oil sump portion 12 at the inner bottom of the closed container 4 which is the discharge pressure is guided to the high pressure chamber 30 via the lubrication pipe 32d and the crankshaft oil supply passage 32e. Therefore, the high pressure chamber 30 has almost the discharge pressure.
  • the back pressure chamber 29 the swivel bearing 28, the main shaft portion upper end side oil supply passage 42 formed between the upper end surface of the main shaft portion 32a of the crankshaft 32 and the back surface of the swivel scroll 22, and the main bearing 27 are provided. Lubricating oil after passing through is guided through an oil hole 27a formed in the lower part of the main bearing 27 and a discharge passage 23a formed in the frame 23.
  • the pressure of the back pressure chamber 29 is the difference between the discharge pressure and the suction pressure. It is the pressure between (intermediate pressure).
  • the scroll compressor 1 of the present embodiment is configured to allow the lubricating oil of the oil sump portion 12 to flow to each sliding portion by the differential pressure between the discharge pressure and the intermediate pressure.
  • the flow of lubricating oil will be described in more detail.
  • the lubricating oil at the discharge pressure of the oil sump portion 12 flows into the eccentric hole 32b via the crankshaft oil supply passage 32e, then lubricates the swivel bearing 28, and flows into the oil supply passage 42 on the upper end side of the spindle portion.
  • the high pressure chamber 30 is pressure-separated from the back pressure chamber 29 by the seal member 40. Therefore, the oil supply passage 42 on the upper end side of the main shaft portion is maintained in the pressure space of the discharge pressure.
  • the lubricating oil in the oil supply passage 42 on the upper end side of the main shaft portion then flows to the main bearing 27 to lubricate it, and then passes through the discharge passage 23a provided in the frame 23 and flows into the back pressure chamber 29.
  • the lubricating oil is depressurized by the passage resistance due to the passage area and length and flows into the back pressure chamber 29.
  • a differential pressure is formed between the back pressure chamber 29 and the back pressure chamber 29. Due to this differential pressure, almost all of the lubricating oil that has flowed into the oil supply passage 42 on the upper end side of the main shaft portion flows into the main bearing 27 to lubricate the main bearing 27.
  • the swivel bearing 28 and the main bearing 27 are always lubricated in the same amount regardless of their bearing gaps.
  • the lubricating oil in this embodiment passes through the crankshaft oil supply passage 32e and flows into the eccentric hole 32b, lubricates the swivel bearing 28, and then enters the main shaft portion upper end side oil supply passage 42. It flows and flows from here into the main bearing 27 to lubricate it. After that, the lubricating oil is configured to flow to the back pressure chamber 29 through the discharge passage 23a of the frame 23.
  • the lubricating oil that has flowed into the back pressure chamber 29 lubricates the sliding portions such as the Oldham joint 24 provided in the back pressure chamber 29, and then flows to the suction side of the scroll compressor 1 or the compression chamber 26.
  • the sliding surface of the fixed scroll 21 and the swivel scroll 22 is lubricated.
  • a part of the lubricating oil supplied from the oil sump portion 12 to the crankshaft oil supply passage 32e is provided on the auxiliary shaft portion 32c below the crankshaft 32. This is done by supplying the oil through the oil supply hole 32f.
  • FIG. 3 is an enlarged perspective view of the spindle portion 32a on the upper end side of the crankshaft 32 shown in FIG.
  • a U-shaped concave groove 32g which serves as a lubricating oil supply path, is machined inside the spindle portion 32a, and the lubricating oil is formed by the bearing clearance of the swivel bearing 28 and the concave groove 32g. Consists of the refueling route through which Further, a flat surface cut portion 32h is processed on the outer peripheral surface of the spindle portion 32a, and the bearing clearance of the main bearing 27 and the flat surface cut portion 32h form a lubrication path through which lubricating oil flows.
  • the swivel bearing 28 and the main bearing 27 can be reliably and sufficiently lubricated, and the amount of lubrication can be easily adjusted. ..
  • the amount of refueling is proportional to the cube of the bearing clearance, so it is difficult to adjust the appropriate amount of refueling only by the bearing clearance.
  • the recessed groove 32g and the flat surface cut portion 32h are provided in a part of the crankshaft which is a sliding surface between the swing bearing 28 and the main bearing 27. The amount of oil supplied to the swivel bearing 28 and the main bearing 27 can be easily adjusted.
  • the amount of refueling is proportional to the cross-sectional area of the refueling path, it is better to adjust the amount of refueling by adjusting the cross-sectional area of the concave groove 32g and the flat surface cut portion 32h rather than adjusting the amount of refueling only by the bearing clearance.
  • the amount of refueling can be easily adjusted.
  • the high pressure chamber 30 and the back pressure chamber 29 are separated by the seal member 40, and the oil supply passage 42 on the upper end side of the spindle portion is maintained in the pressure space of substantially the discharge pressure.
  • a series lubrication method is used in which almost all of the lubricating oil that has flowed into the eccentric hole 32b through the crankshaft lubrication passage 32e flows in the order of the swivel bearing 28, the main shaft upper end side lubrication passage 42, and the main bearing 27.
  • the axial distance between the swing bearing 28 that supports the swing motion of the swing scroll 22 and the main bearing 27 that supports the crankshaft 32 that transmits the rotation of the electric motor 31 is shortened. It is possible to obtain a scroll compressor having a double slide bearing structure and capable of reliably supplying a sufficient amount of lubricating oil to the main bearing 27 and the swing bearing 28.
  • the swivel bearing 28 since almost all of the lubricating oil that lubricates the swivel bearing 28 flows to the main bearing 27 in a series lubrication system, the swivel bearing 28 is lubricated and flows into the oil supply passage 42 on the upper end side of the main shaft portion. Since the lubricating oil is slightly depressurized after passing through the swivel bearing 28, a part of the liquid refrigerant contained in the lubricating oil is depressurized and evaporated. Due to the evaporative action of the liquid refrigerant, the lubricating oil is cooled and the temperature is lowered, and the cooled lubricating oil flows to the main bearing 27. Therefore, according to this embodiment, the effect of improving the reliability of the main bearing 27 can also be obtained.
  • FIG. 4 is a diagram showing the scroll compressor of the second embodiment, and is a diagram corresponding to FIG.
  • the parts different from the first embodiment described above will be mainly described, and the parts having the same reference numerals as the drawings of the first embodiment described above are the same or corresponding parts, and the overlapping parts. The description of is omitted.
  • the discharge passage 23a for flowing the lubricating oil flowing downward from the upper end portion of the main bearing to the back pressure chamber 29 is provided on the lower end side of the main bearing 27 and the back pressure chamber.
  • the frame 23 is formed diagonally so as to communicate with the 29.
  • the discharge passage 23a is located between the outer peripheral surface of the main bearing 27 and the frame 23, and is formed upward from the lower end side of the main bearing 27. It is composed of a vertical groove 23aa and a horizontal hole 23ab provided in the frame 23 in the horizontal direction (horizontal direction) so as to connect the upper end side of the vertical groove 23aa and the back pressure chamber 29. ..
  • the lubricating oil supplied from the crankshaft oil supply passage 32e of the crankshaft 32 to the eccentric hole 32b passes through the bearing clearance of the portion of the swivel bearing 28 inserted into the swivel shaft 22c. After lubricating the main bearing 27, it flows to the main bearing 27 via the oil supply passage 42 on the upper end side of the main shaft portion to lubricate the sliding portion of the main bearing 27. After that, the lubricating oil passes through the oil hole 27a formed on the lower end side of the main bearing 27, enters the vertical groove 23aa, rises from the vertical groove 23aa, and then passes through the horizontal hole 23ab. It flows out to the back pressure chamber 29.
  • the vertical groove 23aa may be formed on the outer peripheral surface of the main bearing 27, but it is easier to process it on the inner peripheral surface of the frame 23 facing the outer peripheral surface of the main bearing 27.
  • the same effect as that of the first embodiment can be obtained. That is, the lubricating oil supplied to the eccentric hole 32b flows into the oil supply passage 42 on the upper end side of the spindle portion after lubricating the swivel bearing 28, and this portion can be maintained at a high discharge pressure. Therefore, the lubricating oil of the oil supply passage 42 on the upper end side of the main shaft portion can be a series lubrication system in which almost all of the lubricating oil flows through the main bearing 27, and the oil that lubricates the main bearing 27 is the vertical groove 23aa formed in the frame 23. And the discharge passage 23a composed of the lateral hole 23ab is depressurized and flows out to the back pressure chamber 29.
  • the vertical groove 23aa can be easily processed by forming it as a U-shaped groove or an arc-shaped groove on the inner peripheral surface of the frame 23.
  • the horizontal hole 23ab is a hole in the horizontal direction, it can be easily machined with a drill or the like. Therefore, since the discharge passage can be easily processed as compared with the case of the first embodiment in which the discharge passage 23a is formed obliquely, there is an effect that the productivity can be improved and the manufacturing cost can be reduced.
  • Other configurations are the same as in the first embodiment.
  • FIG. 5 is a diagram showing the scroll compressor of the third embodiment, and is a diagram corresponding to FIG.
  • the parts different from the first embodiment described above will be mainly described, and the parts having the same reference numerals as the drawings of the first embodiment described above are the same or corresponding parts, and the overlapping parts. The description of is omitted.
  • the discharge passage 23a communicating the lower part of the main bearing 27 and the back pressure chamber 29 is diagonally formed in the frame 23.
  • a narrowing means (drawing member) 23ac having a passage cross-sectional area smaller than the passage cross-sectional area of the discharge passage 23a is provided in a part of the discharge passage 23a by press-fitting or the like. It is that you are.
  • the diameter of the discharge passage 23a can be increased, and it is not necessary to adjust the amount of lubricating oil by the cross-sectional area of the passage, so that the discharge passage 23a is processed with high accuracy. You don't have to. Further, since the passage cross-sectional area may be adjusted by the drawing means 23ac, the manufacturing cost can be reduced and the flow rate can be adjusted with high accuracy.
  • the amount of discharge to the back pressure chamber 29 can be easily adjusted by the drawing means 23ac, the concave groove 32g and the flat surface cut portion 32h formed in the main shaft portion 32a shown in FIG. 3 are formed to have a large cross-sectional area. Even so, the amount of lubricating oil discharged to the back pressure chamber 29 can be adjusted to the minimum required amount. When the amount of lubricating oil discharged to the back pressure chamber 29 becomes excessive, a large amount of high-temperature lubricating oil flows to the compression chamber 26 side, resulting in an increase in heating loss and a decrease in performance. On the other hand, according to the configuration of the third embodiment, the amount of lubricating oil discharged to the back pressure chamber 29 can be appropriately adjusted, so that a scroll compressor having good performance with suppressed heat loss can be realized.
  • the swing bearing 28 and the main bearing 27 can be lubricated by the same series lubrication method as in the first embodiment, so that the same effect as in the first embodiment can be obtained.
  • Other configurations are the same as in the first embodiment.
  • FIG. 6 is a diagram showing the scroll compressor of the fourth embodiment, and is a diagram corresponding to FIG.
  • the parts different from the first embodiment described above will be mainly described, and the parts having the same reference numerals as the drawings of the first embodiment described above are the same or corresponding parts, and the overlapping parts. The description of is omitted.
  • the fourth embodiment is the same as that of the first embodiment in that substantially the entire amount of the oil that lubricates the swivel bearing 28 flows to the main bearing 27 via the upper end side lubrication passage 42 of the spindle portion. The effect of is obtained.
  • a horizontal hole lubrication passage 32i that connects the crankshaft lubrication passage 32e and the lower end side of the main bearing 27 is provided on the lower side of the main shaft portion 32a of the crankshaft 32, and the crankshaft.
  • a part of the lubricating oil flowing through the oil supply passage 32e is configured to flow to the lower end portion of the main bearing 27.
  • the discharge passage 23a formed in the frame 23 and the oil hole 27a formed in the main bearing 27 are arranged on the upper side of the intermediate portion in the vertical direction of the main bearing 27. Further, the discharge passage 23a is formed in the horizontal direction (lateral direction) and communicates with the back pressure chamber 29.
  • the lubricating oil supplied from the crankshaft oil supply passage 32e to the swivel bearing 28 is depressurized in the oil supply passage 42 on the upper end side of the spindle portion after passing through the swivel bearing 28, and the liquid refrigerant contained in the lubricating oil evaporates. May become a gas lubricant. Therefore, a gas refrigerant may be involved in the lubricating oil supplied from the oil supply passage 42 on the upper end side of the main shaft to the main bearing 27, and when the refrigerant gas is involved in the main bearing 27, the oil film pressure generated in the main bearing 27 decreases. There is a risk of
  • the side hole oil supply passage 32i is provided, and a part of the lubricating oil flowing through the crankshaft oil supply passage 32e is supplied to the lower end portion of the main bearing 27.
  • High-pressure lubricating oil is supplied from the lower end side of the bearing 27 and flows upward of the main bearing 27, and flows out to the back pressure chamber 29 from the oil hole 27a and the discharge passage 23a. Therefore, even when the gas refrigerant is involved in the lubricating oil supplied from the oil supply passage 42 on the upper end side of the main shaft portion, it is possible to sufficiently secure the oil film pressure in the main bearing 27 and improve the bearing reliability. can do.
  • Other configurations are the same as in the first embodiment.
  • Example 5 of the scroll compressor of the present invention will be described with reference to FIGS. 7 and 8.
  • FIG. 7 is a vertical sectional view showing Example 5 of the scroll compressor of the present invention
  • FIG. 8 is an enlarged sectional view of a main part showing the vicinity of the compression mechanism portion shown in FIG.
  • the parts different from the first embodiment described above will be mainly described, and the parts having the same reference numerals as the drawings of the first embodiment described above are the same or corresponding parts, and the overlapping parts. The description of is omitted.
  • the refueling pump 13 may be composed of a positive displacement pump such as a trochoid pump, a centrifugal pump, or the like.
  • a trochoid pump is adopted as shown in FIG.
  • the refueling pump 13 is provided with an extension portion 10a by extending the auxiliary bearing housing 10 downward, and is attached to the lower end portion of the extension portion 10a.
  • a series refueling system is used in which the pressure of the refueling passage 42 on the upper end side of the spindle is maintained at a high pressure of the discharge pressure.
  • Other configurations are the same as in the first embodiment.
  • the flow of the lubricating oil in the fifth embodiment will be described.
  • the rotation of the crankshaft 32 drives the lubrication pump 13 to supply the lubricating oil of the oil sump portion 12 to the crankshaft oil supply passage 32e.
  • the lubricating oil supplied to the crankshaft oil supply passage 32e flows into the eccentric hole 32b to lubricate the swivel bearing 28, and then flows to the main bearing 27 via the main shaft portion upper end side oil supply passage 42 to lubricate the main bearing 27. After that, it is returned to the oil sump portion 12 via the oil drain pipe 14.
  • the lubricating oil that flows from the swivel bearing 28 to the oil supply passage 42 on the upper end side of the spindle portion flows to the main bearing, but some of the lubricating oil leaks from the sealing member 40 and flows into the back pressure chamber 29, and the old dam.
  • the sliding parts such as the joint 24, it is configured to flow to the compression chamber 26 side.
  • the lubricating oil of the oil sump portion 12 is supplied in series to the swivel bearing 28 and the main bearing 27 by using the lubrication pump 13, so that a part of the lubricating oil is supplied from the oil passage 42 on the upper end side of the main shaft to the back pressure chamber 29. Even if the oil leaks, the amount of oil supplied to the swivel bearing 28 and the main bearing 27 can be sufficiently secured.
  • the refueling method using the refueling pump 13 can also obtain the same effect as the refueling method using the differential pressure described above, and according to the present embodiment, the refueling pump 13 is used. Therefore, it is possible to reliably lubricate the swivel bearing 28 and the main bearing 27. Therefore, the bearing reliability can be improved and the performance can be improved.
  • the present invention is not limited to the above-described examples, and includes various modifications. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, the above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

スクロール圧縮機は、密閉容器と、フレームと、固定スクロールと、旋回スクロールと、クランク軸を備える。また、前記旋回スクロールの反ラップ側に設けられた旋回軸と、クランク軸に設けられた主軸部と、旋回軸が挿入される偏心穴と、旋回軸と偏心穴との間に設けられた旋回軸受と、クランク軸の主軸部とフレームとの間で且つ旋回軸受と軸方向にほぼ同位置に設けられた主軸受と、主軸部上端面と旋回スクロール背面との間に形成された主軸部上端側給油路と、フレームと旋回スクロールの端板背面との間であって主軸受よりも外周側に設けられたシール部材と、クランク軸に形成され、偏心穴の底部と連通するクランク軸給油路と、油溜り部を備える。油溜り部の潤滑油を、クランク軸給油路を介して偏心穴に供給し、旋回軸受を潤滑した油のほぼ全量が主軸部上端側給油路を通過後、主軸受の上端部から下方に一方向に流れる。

Description

スクロール圧縮機
 本発明は、HFC系の冷媒、自然系の冷媒である空気や二酸化炭素、その他の圧縮性ガスを取扱うスクロール圧縮機に係り、特に、旋回スクロールの背面に設けた旋回軸受とフレームに設けた主軸受にすべり軸受を用いるスクロール圧縮機に関する。
 空調機器等の性能向上及び省エネルギー消費化のため、スクロール圧縮機には吐出能力を広範囲に可変可能であることが求められている。また、スクロール圧縮機には高速化・大容量化のニーズも高まっている。
 吐出能力を広範囲に可変可能とするためには、スクロール圧縮機の運転速度範囲を拡大することが有効である。特に、最高運転速度を高めることにより、大容量化を図ることができ、また圧縮機の寸法を拡大せずに最大吐出能力を高めることも可能となる。これにより、小型で高能力のスクロール圧縮機を実現することが可能となる。
 スクロール圧縮機の最高運転速度を高める、即ち圧縮機の高速化を実現するためには、旋回スクロールの旋回運動を支持する旋回軸受と、電動機の回転を伝達するクランク軸を支持する主軸受との軸方向の距離を短縮できる二重すべり軸受(ダブルスライドベアリング)構造が有効である。この二重すべり軸受構造とすることにより、旋回軸受と主軸受のスパンを短くできることから、主軸受に作用する荷重を低減できると共にクランク軸の変形を小さくできるため、シャフトの傾きを小さくできる。これにより、すべり軸受の信頼性を向上させることが可能となる。
 この二重すべり軸受構造を有する従来のスクロール圧縮機としては、例えば特開昭62-23595号(特許文献1)に記載されたものがある。この特許文献1に記載のスクロール圧縮機の構成は、旋回スクロールの背面側に旋回軸を設け、この旋回軸と摺動する旋回軸受(軸受ブッシュ)の外周側にクランク軸を支持する主軸受(軸受摺動部)が配置されている。また、前記クランク軸の内部に設けられた給油穴から供給された潤滑油は前記旋回軸受と前記主軸受に分配給油されている。
 このため、前記旋回軸受と前記主軸受の軸受クリアランス(軸受隙間)設定によっては、ほとんどの潤滑油が主軸受へ供給され、旋回軸受への給油が不足する。なお、特許文献1のものでは、前記旋回軸に挿入した旋回軸受外周のクリアランス部分の上部を塞ぐ円環状リングを、前記旋回軸受の上面に設けて旋回軸受と主軸受の双方に給油されるように構成している。
特開昭62-23595号公報
 上述した特許文献1のものでは、旋回軸受及び主軸受への給油は、軸受クリアランスによる分配給油(パラレル給油)のため、旋回軸受と主軸受の軸受クリアランスの差異により各軸受部への分配給油量が決まる。例えば、主軸受の通路断面積(軸受クリアランス)を旋回軸受の通路断面積よりも大きく設定すると、旋回軸受への給油量が少なくなり、旋回軸受が焼付いてしまうという課題がある。
 また、旋回軸受や主軸受などのすべり軸受への潤滑油の給油量調節は軸受クリアランスを管理して行われ、一般には、すべり軸受の直径と軸受クリアランスの設定比(「クリアランス/直径」)を0.001程度としている。しかし、軸受直径が大きくなるほど、軸受クリアランスも広くなり、背圧室へ供給される給油量も増加する。給油量は、軸受クリアランスの3乗に比例するので、適正な給油量を軸受クリアランスで調節することには限界がある。
 本発明の目的は、旋回スクロールの旋回運動を支持する旋回軸受と、電動機の回転を伝達するクランク軸を支持する主軸受との軸方向の距離を短縮した二重すべり軸受構造を備え、且つ前記主軸受と前記旋回軸受に充分な量の潤滑油を確実に供給することのできるスクロール圧縮機を得ることにある。
 上記目的を達成するため、本発明は、密閉容器と、前記密閉容器に固定されたフレームと、前記密閉容器内に設けられ、端板と該端板に立設する渦巻状のラップを有する固定スクロールと、端板と該端板に立設する渦巻状のラップを有し、前記固定スクロールと噛み合って圧縮室を形成する旋回スクロールと、前記旋回スクロールを旋回運動させるクランク軸を備えるスクロール圧縮機であって、前記旋回スクロールの反ラップ側に突出して設けられた旋回軸と、前記クランク軸の前記旋回スクロール側端部に設けられた主軸部と、該主軸部の端部に設けられ前記旋回軸が挿入される偏心穴と、前記旋回軸と前記偏心穴との間に設けられた旋回軸受と、前記クランク軸の主軸部と前記フレームとの間で且つ前記旋回軸受と軸方向にほぼ同位置に設けられた主軸受と、前記クランク軸の主軸部上端面と旋回スクロール背面との間に形成された主軸部上端側給油路と、前記フレームと前記旋回スクロールの端板背面との間であって前記主軸受よりも外周側に設けられたシール部材と、前記クランク軸に形成され、前記偏心穴の底部と連通するクランク軸給油路と、前記密閉容器の底部に形成された油溜り部を備え、前記油溜り部の潤滑油を、前記クランク軸給油路を介して前記偏心穴に供給し、この潤滑油は前記旋回軸受の下端部から上端部に向かって一方向に流れ、前記旋回軸受を潤滑した油のほぼ全量が前記主軸部上端側給油路を通過後、前記主軸受の上端部から下方に向かって一方向に流れる構成としていることを特徴とする。
 本発明によれば、旋回スクロールの旋回運動を支持する旋回軸受と、電動機の回転を伝達するクランク軸を支持する主軸受との軸方向の距離を短縮した二重すべり軸受構造を備え、且つ前記主軸受と前記旋回軸受に充分な量の潤滑油を確実に供給することのできるスクロール圧縮機が得られる効果がある。
本発明のスクロール圧縮機の実施例1を示す縦断面図である。 図1に示す圧縮機構部付近を拡大して示す要部断面図である。 図2に示すクランク軸の上端部側を拡大して示す斜視図である。 本発明のスクロール圧縮機の実施例2を示す図で、図2に相当する図である。 本発明のスクロール圧縮機の実施例3を示す図で、図2に相当する図である。 本発明のスクロール圧縮機の実施例4を示す図で、図2に相当する図である。 本発明のスクロール圧縮機の実施例5を示す縦断面図である。 図7に示す圧縮機構部付近を拡大して示す要部断面図である。
 以下、本発明のスクロール圧縮機の具体的実施例を図面に基づいて説明する。各図において、同一符号を付した部分は同一或いは相当する部分を示している。
 本発明のスクロール圧縮機の実施例1を、図1~図3を用いて説明する。図1は本実施例1のスクロール圧縮機を示す縦断面図、図2は図1に示す圧縮機構部付近を拡大して示す要部断面図、図3は図2に示すクランク軸の上端部側を拡大して示す斜視図である。
  図1に示す本実施例1のスクロール圧縮機は、油溜り部の潤滑油を、密閉容器内の圧力差を利用した差圧給油方式で偏心穴の底部に供給し、ここから潤滑油は旋回軸受に流れた後、主軸受にシリーズで流れ、その後背圧室へ流出される差圧給油方式のスクロール圧縮機として構成されている。
 まず、図1を用いて、本実施例1のスクロール圧縮機の全体構成を説明する。
  スクロール圧縮機1は、圧縮機構部2と駆動部3を密閉容器4内に収納して構成されている。前記圧縮機構部2は、固定スクロール21、旋回スクロール22、前記密閉容器4に固定されたフレーム23及び前記旋回スクロール22の自転防止機構を構成するオルダム継手24等から構成されている。
 前記固定スクロール21は、端板21aと該端板21aに垂直に立設された渦巻状のラップ(固定ラップ)21bを有し、且つ前記ラップ21bの中央部には吐出口21cが形成され、前記フレーム23に複数のボルト25により固定されている。
 前記旋回スクロール22は、端板22aと、該端板22aに垂直に立設する渦巻状のラップ(旋回ラップ)22bを有し、前記端板22aの反ラップ側(背面側)の中央には概略円筒状の旋回軸22cが突出して設けられている。
 前記固定スクロール21と前記旋回スクロール22を噛合わせることにより圧縮室26が形成され、旋回スクロール22が旋回運動することにより前記圧縮室26の容積が減少して圧縮動作が行なわれる。この圧縮動作では、旋回スクロール22の旋回運動に伴って、冷媒ガス等の作動流体が吸込口5から圧縮室26へ吸込まれ、吸込まれた作動流体は圧縮行程を経て固定スクロール21の吐出口21cから密閉容器4内の吐出空間6に吐出される。
 吐出空間6に吐出された作動流体は、その後前記固定スクロール21の端板21a外周面及び前記フレーム23の外周面にそれぞれ形成されている流路(図示せず)を通過して前記駆動部3が配置されている空間7に流入し、更に吐出管8を介して密閉容器4内から冷凍サイクル等に吐出される。このように構成されていることにより、密閉容器4内の空間は概略吐出圧力に保たれている。
 前記旋回スクロール22を旋回運動させる前記駆動部3は、密閉容器4に固定されているステータ31a及びロータ31bを備える電動機31、前記ロータ31bの中心に固定されて一体で回転し、前記旋回スクロール22を駆動するクランク軸32等により構成されている。
 前記クランク軸32の端部を支持する主軸受27が前記フレーム23の内周面に設けられている。また、前記クランク軸32の端部には前記旋回スクロール22の旋回軸22cが挿入される偏心穴32bが設けられており、前記旋回軸22cと前記偏心穴32bとの間には旋回軸受28が設けられている。前記旋回軸受28は前記旋回軸22cに挿入され、該旋回軸22cと前記偏心穴32bに対して回転軸方向に移動可能で且つ回転自在に配置されている。
  本実施例のスクロール圧縮機1は、前記主軸受27と前記旋回軸受28とが軸方向にほぼ同位置に設けられている二重すべり軸受構造に構成されている。
 また、本実施例では、前記クランク軸32の上端部側は大径の主軸部32aに構成されており、この主軸部32aを前記主軸受27で回転支持している。また、前記クランク軸32の下端部側の副軸部32cは副軸受9により回転支持されている。前記副軸受9は副軸受ハウジング10に設けられ、前記副軸受ハウジング10は密閉容器4に固定された副フレーム11に固定されている。
 前記クランク軸32を回転自在に支持している前記主軸受27と前記副軸受9は、前記電動機31に対し、圧縮機構部2側と、密閉容器4の底部に設けられた油溜り部12側とにそれぞれ配置されている。
 前記偏心穴32bは、前記主軸部32aに形成され、前記旋回スクロール22側に開口している。この偏心穴32bに前記旋回スクロール22の旋回軸22cが前記旋回軸受28を介して挿入されている。前記クランク軸32が回転すると前記偏心穴32bが旋回運動し、これに伴い旋回スクロール22がオルダム継手24の働きで自転することなく旋回運動を行う。前記旋回軸22cは前記偏心穴32bに対し、軸方向に移動可能で且つ回転自在に係合している。
 前記オルダム継手24は、旋回スクロール22とフレーム23などにより形成される背圧室29に配設され、旋回スクロール22とフレーム23に設けられているキー溝に係合して、旋回スクロール22の自転防止機構の役割を果たしている。即ち、前記オルダム継手24には直交する2組のキーが設けられており、1組がフレーム23に形成したキー溝を滑動し、残りの1組が旋回スクロール22の背面に形成したキー溝を滑動するように構成されている。
 前記クランク軸32の下端部には給油パイプ32dが設けられ、油溜り部12の油を差圧で汲み上げてクランク軸32の中心に形成されているクランク軸給油路32eに供給するように構成されている。
 次に、本実施例1のスクロール圧縮機における圧縮機構部2付近の構成を図2により詳細に説明する。
  図2は図1に示す圧縮機構部付近を拡大して示す要部断面図であり、この図2に示すように、クランク軸32の主軸部32aはフレーム23の内周側に設けた主軸受27に回転自在に支持されて摺動する。前記主軸部32aの内周側には上部に開口する偏心穴32bが主軸部32aの中心(クランク軸32の中心)に対して偏心した位置に形成されており、この偏心穴32bには旋回スクロール22の旋回軸22cと旋回軸受28が挿入され、それらが摺動して回転自在に係合している。これにより、クランク軸32の回転運動に伴い、旋回スクロール22が旋回運動するように構成されている。
 前記旋回スクロール22の背面側の中央側には、旋回スクロール22とクランク軸32の主軸部32a等で形成される高圧室30と、この高圧室30の外周側で、前記旋回スクロール22とフレーム23と固定スクロール21等により形成される前記背圧室29が設けられている。
 前記高圧室30と前記背圧室29とは、前記フレーム23と前記旋回スクロール22の端板背面との間であって前記主軸受27よりも外周側に設けられたシール部材40により分離されている。前記シール部材40は、旋回スクロール22の端板22a背面と対面するフレーム23の端面に形成されたリング状溝41に配設されている。前記シール部材40は、前記高圧室30と前記背圧室29とを圧力的に分離している。
 即ち、前記高圧室30には、図1に示すように、吐出圧力となっている密閉容器4内底部の油溜り部12の潤滑油が給油パイプ32d及びクランク軸給油路32eを介して導かれるので、前記高圧室30はほぼ吐出圧力となっている。一方、前記背圧室29には、前記旋回軸受28、前記クランク軸32の主軸部32a上端面と旋回スクロール22背面との間に形成された主軸部上端側給油路42及び前記主軸受27を通った後の潤滑油が、主軸受27の下部に形成された油孔27a及びフレーム23に形成された排出通路23aを介して導かれる。前記背圧室29に導かれた潤滑油は、スクロール圧縮機1の吸入側または圧縮室26側に流れるように構成されているため、前記背圧室29の圧力は吐出圧力と吸込圧力との間の圧力(中間圧力)となっている。
 このように本実施例のスクロール圧縮機1は、前記吐出圧力と前記中間圧力との差圧で、油溜り部12の潤滑油を各摺動部に流すように構成されている。
  潤滑油の流れを更に詳しく説明する。油溜り部12の吐出圧力の潤滑油は、クランク軸給油路32eを介して偏心穴32bに流入した後、旋回軸受28を潤滑し、主軸部上端側給油路42に流入する。前記高圧室30は、前記シール部材40により前記背圧室29に対し圧力的に分離されている。従って、前記主軸部上端側給油路42は、ほぼ吐出圧力の圧力空間に維持される。
 前記主軸部上端側給油路42の潤滑油は、その後、前記主軸受27に流れてこれを潤滑した後、フレーム23に設けた排出通路23aを通過して、前記背圧室29へ流入する。潤滑油は前記主軸受27及び前記排出通路23aを流れる過程で、その通路面積と長さによる通路抵抗により減圧されて前記背圧室29に流入するので、前記主軸部上端側給油路42と前記背圧室29との間には差圧が形成される。この差圧により、前記主軸部上端側給油路42に流入した潤滑油のほぼ全量が前記主軸受27に流れて該主軸受27を潤滑できる。即ち、前記旋回軸受28を潤滑した潤滑油のほぼ全量を主軸受に流すことができるので、前記旋回軸受28と前記主軸受27には、それらの軸受隙間に関係なく、常にほぼ同量の潤滑油を供給できる。また、前記排出通路23aを介して、潤滑油を連続的に背圧室に供給することができる。
 即ち、本実施例における潤滑油は、図2の矢印で示すように、クランク軸給油路32eを通過して偏心穴32bに流入し、旋回軸受28を潤滑後、主軸部上端側給油路42に流れ、ここから主軸受27に流入してこれを潤滑する。その後、潤滑油はフレーム23の排出通路23aを通って背圧室29に流れるように構成されている。
 前記背圧室29に流入した潤滑油は該背圧室29内に設けられている前記オルダム継手24等の摺動部を潤滑した後、スクロール圧縮機1の吸入側或いは前記圧縮室26に流れて、固定スクロール21と旋回スクロール22との摺動面等を潤滑する。
 なお、図1に示す前記副軸受9への給油は、油溜り部12からクランク軸給油路32eに供給された潤滑油の一部が、クランク軸32下部の副軸部32cに設けられた横給油穴32fを介して供給されることで行われる。
 図3は図2に示すクランク軸32上端部側の主軸部32aを拡大して示す斜視図である。この図に示すように、主軸部32aの内側には潤滑油の給油経路となるコの字形の凹溝32gが加工されており、旋回軸受28の軸受クリアランスと前記凹溝32gとにより、潤滑油が流れる給油経路を構成している。また、主軸部32aの外周面には平面カット部32hが加工されており、主軸受27の軸受クリアランスと前記平面カット部32hとにより、潤滑油が流れる給油経路が構成されている。このように、本実施例では、前記凹溝32gや前記平面カット部32hも設けているので、旋回軸受28や主軸受27への給油を確実且つ充分に行え、給油量の調節も容易に行える。
 即ち、前述したように、給油量は、軸受クリアランスの3乗に比例するので適正な給油量を軸受クリアランスだけで調節することは難しい。本実施例では、旋回軸受28及び主軸受27との摺動面となるクランク軸の一部に前記凹溝32gや平面カット部32hを設けているので、これらの大きさを調節することで、旋回軸受28及び主軸受27に流れる給油量を容易に調節することができる。つまり、給油量は給油経路の断面積に比例するので、軸受クリアランスのみで給油量を調節するよりも、前記凹溝32gや平面カット部32hの断面積も調整して給油量を調節する方が容易に給油量の調節が可能となる。
 以上説明したように、本実施例1によれば、高圧室30と背圧室29とをシール部材40により分離して、主軸部上端側給油路42をほぼ吐出圧力の圧力空間に維持し、クランク軸給油路32eを介して偏心穴32bに流入した潤滑油のほぼ全量が、旋回軸受28、主軸部上端側給油路42、主軸受27の順に流れるシリーズ給油方式としている。従って、旋回軸受28を潤滑した潤滑油のほぼ全量を主軸受27に流すことができるので、旋回軸受28と主軸受27にはほぼ同量の潤滑油を充分に供給することができ、軸受の信頼性を向上できる。
 このように、本実施例によれば、旋回スクロール22の旋回運動を支持する旋回軸受28と、電動機31の回転を伝達するクランク軸32を支持する主軸受27との軸方向の距離を短縮した二重すべり軸受構造を備え、且つ前記主軸受27と前記旋回軸受28に充分な量の潤滑油を確実に供給することのできるスクロール圧縮機を得ることができる。
 また、本実施例によれば、旋回軸受28を潤滑した潤滑油のほぼ全量が主軸受27に流れるシリーズ給油方式としているので、旋回軸受28を潤滑して主軸部上端側給油路42に流入した潤滑油は、前記旋回軸受28を通過後に僅かに減圧されるので、潤滑油中に含まれている液冷媒の一部が減圧されて蒸発する。この液冷媒の蒸発作用により、潤滑油は冷却されて温度が低下し、温度が低下した潤滑油が主軸受27に流れる。従って、本実施例によれば、主軸受27の信頼性を向上できる効果も得られる。
 本発明のスクロール圧縮機の実施例2を、図4を用いて説明する。図4は本実施例2のスクロール圧縮機を示す図で、図2に相当する図である。なお、本実施例2の説明においては上述した実施例1と異なる部分を中心に説明し、上述した実施例1の図面と同一符号を付した部分は同一或いは相当する部分であり、重複する部分についての説明は省略する。
 上述した実施例1では、前記主軸受の上端部から下方に向かって一方向に流れる潤滑油を前記背圧室29に流すための排出通路23aを、主軸受27の下端部側と背圧室29とを連通するようにフレーム23に斜めに形成している。これに対し、本実施例2では、前記排出通路23aを、前記主軸受27の外周面と前記フレーム23との間に位置して前記主軸受27の下端部側から上方に向かって形成された縦溝23aaと、この縦溝23aaの上端部側と前記背圧室29とを接続するように前記フレーム23に水平方向(横方向)に設けられた横穴23abとで構成しているものである。
 このように構成することにより、クランク軸32のクランク軸給油路32eから偏心穴32bに供給された潤滑油は、旋回軸22cに挿入されている旋回軸受28の部分の軸受クリアランスを通過してここを潤滑した後、主軸部上端側給油路42を経由して主軸受27に流れて該主軸受27の摺動部分を潤滑する。その後、潤滑油は、前記主軸受27の下端部側に形成されている油孔27aを通過して、前記縦溝23aaに入り、ここから縦溝23aaを上昇した後、前記横穴23abを通過して背圧室29へ流出する。
 なお、前記縦溝23aaは、主軸受27の外周面に形成するようにしても良いが、前記主軸受27の外周面に対面するフレーム23の内周面に形成した方が容易に加工できる。
 本実施例2のように構成しても上述した実施例1と同様の効果が得られる。即ち、偏心穴32bに供給された潤滑油は、旋回軸受28を潤滑後、主軸部上端側給油路42に流れて、この部分をほぼ吐出圧力の高圧に保持できる。従って、前記主軸部上端側給油路42の潤滑油は、そのほぼ全量が主軸受27に流れるシリーズ給油方式にすることができ、主軸受27を潤滑した油は、フレーム23に形成した縦溝23aa及び横穴23abで構成される排出通路23aを減圧しながら背圧室29へ流出する。
  更に、本実施例2によれば、前記縦溝23aaについては、フレーム23の内周面にコの字形溝若しくは円弧状溝として形成することにより容易に加工することができる。また、前記横穴23abについては水平方向の穴であるためドリル等で容易に加工することができる。従って、排出通路23aを斜めに形成する実施例1のものよりも、容易に排出通路の加工が可能となるから、生産性が向上し、製作コストを低減できる効果もある。
  他の構成は実施例1と同様である。
 本発明のスクロール圧縮機の実施例3を、図5を用いて説明する。図5は本実施例3のスクロール圧縮機を示す図で、図2に相当する図である。なお、本実施例3の説明においても上述した実施例1と異なる部分を中心に説明し、上述した実施例1の図面と同一符号を付した部分は同一或いは相当する部分であり、重複する部分についての説明は省略する。
 本実施例3においても、実施例1と同様に、主軸受27の下部と、背圧室29とを連通する排出通路23aがフレーム23に斜めに形成されている。本実施例3が実施例1と異なるところは、前記排出通路23aの一部に、該排出通路23aの通路断面積よりも小さい通路断面積の絞り手段(絞り部材)23acを圧入等により設けていることである。
 このように絞り手段23acを設けたことにより、前記排出通路23aの径を大きくすることができると共に、その通路断面積で潤滑油量を調節する必要がなくなるので、排出通路23aを高精度に加工する必要がなくなる。また、前記絞り手段23acにより通路断面積を調整すれば良いので、製作コストを低減できると共に、高精度の流量調整も可能になる効果も得られる。
 また、背圧室29への排出量を前記絞り手段23acにより容易に調節することができるので、図3に示した主軸部32aに形成する凹溝32gや平面カット部32hの断面積を大きく形成しても背圧室29への潤滑油排出量を必要最小量に調整することが可能となる。背圧室29への潤滑油排出量が過剰になると、高温の潤滑油が多量に圧縮室26側に流れて、加熱損失が増大し性能低下を引き起こす。これに対し、本実施例3の構成とすれば、背圧室29への潤滑油排出量を適切に調節できるので、加熱損失を抑制した性能の良いスクロール圧縮機を実現することもできる。
 また、本実施例3も実施例1と同様のシリーズ給油方式で旋回軸受28及び主軸受27を潤滑できるので、実施例1と同様の効果も得られる。
  他の構成は実施例1と同様である。
 本発明のスクロール圧縮機の実施例4を、図6を用いて説明する。図6は本実施例4のスクロール圧縮機を示す図で、図2に相当する図である。なお、本実施例4の説明においても上述した実施例1と異なる部分を中心に説明し、上述した実施例1の図面と同一符号を付した部分は同一或いは相当する部分であり、重複する部分についての説明は省略する。
 本実施例4においても、旋回軸受28を潤滑した油のほぼ全量が主軸部上端側給油路42を経由して主軸受27に流れるシリーズ給油方式としている点では実施例1と同様であり、同様の効果が得られるものである。
 本実施例4が実施例1と異なるところは、クランク軸32の主軸部32a下部側に、クランク軸給油路32eと主軸受27の下端部側を連通する横穴給油路32iを設けて、クランク軸給油路32eを流れる潤滑油の一部を主軸受27の下端部に流すように構成していることである。また、本実施例4では、フレーム23に形成している排出通路23aと主軸受27に形成している油孔27aを、前記主軸受27の上下方向の中間部分よりも上部側に配置し、更に前記排出通路23aについては、水平方向(横方向)に形成して背圧室29に連通させている。
 このように構成することにより、以下の効果が得られる。
  クランク軸給油路32eから旋回軸受28に供給された潤滑油は、旋回軸受28を通過した後の主軸部上端側給油路42で減圧されて潤滑油中に含まれている液冷媒が蒸発してガス冷媒になることがある。このため主軸部上端側給油路42から主軸受27に供給される潤滑油にはガス冷媒が巻き込まれることがあり、主軸受27に冷媒ガスを巻き込むと、主軸受27に発生する油膜圧力が低下するおそれがある。
 これに対し、本実施例4によれば、前記横穴給油路32iを設けて、前記主軸受27の下端部に、クランク軸給油路32eを流れる潤滑油の一部を供給しているので、主軸受27の下端部側から高圧の潤滑油が供給されて主軸受27の上方へ流れ、前記油孔27a及び前記排出通路23aから背圧室29に流出する。従って、主軸部上端側給油路42から供給される潤滑油にガス冷媒が巻き込まれるような場合であっても、主軸受27における油膜圧力を充分に確保することが可能となり、軸受信頼性を向上することができる。
  他の構成は実施例1と同様である。
 本発明のスクロール圧縮機の実施例5を、図7及び図8を用いて説明する。図7は本発明のスクロール圧縮機の実施例5を示す縦断面図、図8は図7に示す圧縮機構部付近を拡大して示す要部断面図である。なお、本実施例5の説明においても上述した実施例1と異なる部分を中心に説明し、上述した実施例1の図面と同一符号を付した部分は同一或いは相当する部分であり、重複する部分についての説明は省略する。
 上述した実施例1~4は何れも、油溜り部12の高圧圧力と、背圧室29の中間圧力との差圧を用いて、旋回軸受28と主軸受27にシリーズ給油するものについて説明した。これに対し、本実施例5のスクロール圧縮機1は、クランク軸32の下端部側に油溜り部12の潤滑油を汲み上げて前記クランク軸給油路32eに供給する給油ポンプ13と、フレーム23に取付けられ、前記主軸受27の下端部側と前記油溜り部12とを連通する排油パイプ14を設けて、給油ポンプにより給油する方式としたものである。
 前記給油ポンプ13は、トロコイドポンプ等の容積形ポンプや遠心ポンプ等で構成すると良い。本実施例では、前記給油ポンプ13として、図7に示すように、トロコイドポンプを採用している。また、前記給油ポンプ13は、副軸受ハウジング10を下方に延長して延長部10aを設け、この延長部10aの下端部に取り付けられている。
  このように構成して、主軸部上端側給油路42の圧力をほぼ吐出圧力の高圧に保持したシリーズ給油方式としている。他の構成は、実施例1と同様である。
 本実施例5における潤滑油の流れを説明する。
  スクロール圧縮機1が駆動され、クランク軸32が回転すると、このクランク軸32の回転により給油ポンプ13が駆動され、油溜り部12の潤滑油をクランク軸給油路32eに供給する。クランク軸給油路32eに供給された潤滑油は偏心穴32bに流入して旋回軸受28を潤滑し、その後、主軸部上端側給油路42を経由して主軸受27に流れ、主軸受27を潤滑後、前記排油パイプ14を介して前記油溜り部12に戻される。
 旋回軸受28から主軸部上端側給油路42に流れた潤滑油の大部分は主軸受に流れるが、一部の潤滑油はシール部材40の部分から漏出して背圧室29に流入し、オルダム継手24等の摺動部を潤滑後、圧縮室26側に流れるように構成されている。本実施例においては給油ポンプ13を用いて油溜り部12の潤滑油を旋回軸受28及び主軸受27にシリーズ給油するので、主軸部上端側給油路42から背圧室29に潤滑油の一部が漏れても、前記旋回軸受28及び前記主軸受27への給油量を充分に確保できる。
 本実施例のように、給油ポンプ13を用いた給油方式としても、上述した差圧を用いた給油方式と同様の効果を得ることができ、しかも本実施例によれば、給油ポンプ13を用いているので、旋回軸受28及び主軸受27に確実な給油を行うことが可能となる。従って、軸受信頼性を向上して性能向上を図ることができる。
 なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。
  更に、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1…スクロール圧縮機、2…圧縮機構部、3…駆動部、
4…密閉容器、5…吸込口、6…吐出空間、7…空間、
8…吐出管、9…副軸受、10…副軸受ハウジング、10a…延長部、
11…副フレーム、12…油溜り部、
13…給油ポンプ、14…排油パイプ、
21…固定スクロール、21a…端板、21b…ラップ、
21c…吐出口、
22…旋回スクロール、21a…端板、22b…ラップ、
22c…旋回軸、
23…フレーム、23a…排出通路、23aa…縦溝、23ab…横穴、
23ac…絞り手段、
24…オルダム継手、25…ボルト、26…圧縮室、
27…主軸受、27a…油孔、28…旋回軸受、
29…背圧室、30…高圧室、
31…電動機、31a…ステータ、31b…ロータ、
32…クランク軸、32a…主軸部、32b…偏心穴、
32c…副軸部、32d…給油パイプ、32e…クランク軸給油路、
32f…横給油穴、32g…凹溝、32h…平面カット部、
32i…横穴給油路、
40…シール部材、41…リング状溝、42…主軸部上端側給油路。

Claims (9)

  1.  密閉容器と、前記密閉容器に固定されたフレームと、前記密閉容器内に設けられ、端板と該端板に立設する渦巻状のラップを有する固定スクロールと、端板と該端板に立設する渦巻状のラップを有し、前記固定スクロールと噛み合って圧縮室を形成する旋回スクロールと、前記旋回スクロールを旋回運動させるクランク軸を備えるスクロール圧縮機であって、
     前記旋回スクロールの反ラップ側に突出して設けられた旋回軸と、前記クランク軸の前記旋回スクロール側端部に設けられた主軸部と、該主軸部の端部に設けられ前記旋回軸が挿入される偏心穴と、前記旋回軸と前記偏心穴との間に設けられた旋回軸受と、前記クランク軸の主軸部と前記フレームとの間で且つ前記旋回軸受と軸方向にほぼ同位置に設けられた主軸受と、
     前記クランク軸の主軸部上端面と旋回スクロール背面との間に形成された主軸部上端側給油路と、
     前記フレームと前記旋回スクロールの端板背面との間であって前記主軸受よりも外周側に設けられたシール部材と、
     前記クランク軸に形成され、前記偏心穴の底部と連通するクランク軸給油路と、
     前記密閉容器の底部に形成された油溜り部を備え、
     前記油溜り部の潤滑油を、前記クランク軸給油路を介して前記偏心穴に供給し、この潤滑油は前記旋回軸受の下端部から上端部に向かって一方向に流れ、前記旋回軸受を潤滑した油のほぼ全量が前記主軸部上端側給油路を通過後、前記主軸受の上端部から下方に向かって一方向に流れる構成としていることを特徴とするスクロール圧縮機。
  2.  請求項1に記載のスクロール圧縮機において、
     前記密閉容器内の前記油溜り部は吐出圧力の雰囲気に構成され、
     前記油溜り部の潤滑油を、前記密閉容器内の圧力差を利用した差圧給油方式で前記偏心穴の底部に供給することを特徴とするスクロール圧縮機。
  3.  請求項2に記載のスクロール圧縮機において、
     前記フレームと前記旋回スクロールの背面との間には、吐出圧力と吸込圧力の間の圧力となる背圧室が設けられ、前記主軸受の上端部から下方に向かって一方向に流れる潤滑油を前記背圧室に流すための排出通路が前記フレームに形成されていることを特徴とするスクロール圧縮機。
  4.  請求項3に記載のスクロール圧縮機において、
     前記排出通路の一端は前記主軸受の下端部側に連通していることを特徴とするスクロール圧縮機。
  5.  請求項4に記載のスクロール圧縮機において、
     前記排出通路は、前記主軸受の外周面と前記フレームとの間に位置して前記主軸受の下端部側から上方に向かって形成された縦溝と、この縦溝の上端部側と前記背圧室とを接続する横孔とを有することを特徴とするスクロール圧縮機。
  6.  請求項3に記載のスクロール圧縮機において、
     前記排出通路の一部に絞り手段が設けられていることを特徴とするスクロール圧縮機。
  7.  請求項1に記載のスクロール圧縮機において、
     前記クランク軸の主軸部下部側に、前記クランク軸給油路と前記主軸受の下端部側を連通する横穴給油路が設けられていることを特徴とするスクロール圧縮機。
  8.  請求項1に記載のスクロール圧縮機において、
     前記クランク軸の下端部側に設けられ、前記油溜り部の潤滑油を汲み上げて前記クランク軸給油路に供給する給油ポンプと、前記フレームに取付けられ、前記主軸受の下端部側と前記油溜り部とを連通する排油パイプを備えることを特徴とするスクロール圧縮機。
  9.  請求項8に記載のスクロール圧縮機において、
     前記給油ポンプは容積形ポンプ若しくは遠心ポンプであることを特徴とするスクロール圧縮機。
PCT/JP2019/049262 2019-12-17 2019-12-17 スクロール圧縮機 WO2021124424A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021565185A JP7263554B2 (ja) 2019-12-17 2019-12-17 スクロール圧縮機
CN201980102091.0A CN114651128B (zh) 2019-12-17 2019-12-17 涡旋式压缩机
PCT/JP2019/049262 WO2021124424A1 (ja) 2019-12-17 2019-12-17 スクロール圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049262 WO2021124424A1 (ja) 2019-12-17 2019-12-17 スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2021124424A1 true WO2021124424A1 (ja) 2021-06-24

Family

ID=76477250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049262 WO2021124424A1 (ja) 2019-12-17 2019-12-17 スクロール圧縮機

Country Status (3)

Country Link
JP (1) JP7263554B2 (ja)
CN (1) CN114651128B (ja)
WO (1) WO2021124424A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114922817A (zh) * 2022-06-24 2022-08-19 广东美的环境科技有限公司 曲轴用偏心滑块、涡旋压缩机及温控设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370384A (ja) * 1991-06-20 1992-12-22 Hitachi Ltd スクロール圧縮機
JPH07189963A (ja) * 1993-12-28 1995-07-28 Matsushita Electric Ind Co Ltd 密閉型電動圧縮機
JP2001329957A (ja) * 2000-05-22 2001-11-30 Hitachi Ltd 容積形流体機械

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782858B2 (ja) * 1989-10-31 1998-08-06 松下電器産業株式会社 スクロール気体圧縮機
JPH06317271A (ja) * 1993-05-06 1994-11-15 Hitachi Ltd 密閉形スクロール圧縮機
JP3925229B2 (ja) * 2002-02-14 2007-06-06 松下電器産業株式会社 密閉型スクロール圧縮機およびそれを用いた冷凍サイクルおよび冷凍装置
JP4064325B2 (ja) * 2003-09-22 2008-03-19 日立アプライアンス株式会社 スクロ−ル圧縮機
WO2013140458A1 (ja) * 2012-03-23 2013-09-26 日立アプライアンス株式会社 スクロール圧縮機
JP2016173045A (ja) * 2015-03-17 2016-09-29 株式会社日立製作所 ローリングシリンダ式容積型流体機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370384A (ja) * 1991-06-20 1992-12-22 Hitachi Ltd スクロール圧縮機
JPH07189963A (ja) * 1993-12-28 1995-07-28 Matsushita Electric Ind Co Ltd 密閉型電動圧縮機
JP2001329957A (ja) * 2000-05-22 2001-11-30 Hitachi Ltd 容積形流体機械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114922817A (zh) * 2022-06-24 2022-08-19 广东美的环境科技有限公司 曲轴用偏心滑块、涡旋压缩机及温控设备

Also Published As

Publication number Publication date
JPWO2021124424A1 (ja) 2021-06-24
JP7263554B2 (ja) 2023-04-24
CN114651128B (zh) 2022-12-06
CN114651128A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US8888475B2 (en) Scroll compressor with oil supply across a sealing part
JP2008101559A (ja) スクロール圧縮機およびそれを用いた冷凍サイクル
JP6664879B2 (ja) 開放型圧縮機
JP2008303844A (ja) スクロール流体機械
JP3893487B2 (ja) スクロール圧縮機
JP4842110B2 (ja) スクロール圧縮機
JP5511438B2 (ja) スクロール圧縮機
JP2007085297A (ja) スクロール圧縮機
WO2021124424A1 (ja) スクロール圧縮機
JP6134903B2 (ja) 容積型圧縮機
JP5771739B2 (ja) スクロール圧縮機
JP2018165502A (ja) 回転式圧縮機及び冷凍サイクル装置
JP5209279B2 (ja) スクロール圧縮機
JP4064325B2 (ja) スクロ−ル圧縮機
JP2007146864A (ja) スクロ−ル圧縮機
WO2021124500A1 (ja) スクロール圧縮機
WO2018198811A1 (ja) ローリングシリンダ式容積型圧縮機
JPH08261177A (ja) スクロ−ル圧縮機
JP4848859B2 (ja) スクロール圧縮機
JP2006161818A (ja) スクロール圧縮機
US11125233B2 (en) Compressor having oil allocation member
US11933306B2 (en) Scroll compressor and refrigeration cycle apparatus
JP2012052494A (ja) 密閉型圧縮機
CN109268272B (zh) 螺旋流体设备
JP2008121623A (ja) スクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021565185

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956519

Country of ref document: EP

Kind code of ref document: A1