WO2021120857A1 - 高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜 - Google Patents

高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜 Download PDF

Info

Publication number
WO2021120857A1
WO2021120857A1 PCT/CN2020/123942 CN2020123942W WO2021120857A1 WO 2021120857 A1 WO2021120857 A1 WO 2021120857A1 CN 2020123942 W CN2020123942 W CN 2020123942W WO 2021120857 A1 WO2021120857 A1 WO 2021120857A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating slurry
peae
lithium battery
coating
dispersant
Prior art date
Application number
PCT/CN2020/123942
Other languages
English (en)
French (fr)
Inventor
王成豪
李正林
尚文滨
张立斌
Original Assignee
江苏厚生新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏厚生新能源科技有限公司 filed Critical 江苏厚生新能源科技有限公司
Priority to JP2021560747A priority Critical patent/JP7147082B2/ja
Priority to KR1020217027420A priority patent/KR20210122281A/ko
Priority to US17/441,703 priority patent/US11367926B2/en
Publication of WO2021120857A1 publication Critical patent/WO2021120857A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of lithium battery diaphragms, and in particular relates to a coating slurry with high adhesion and high ion conductivity, a preparation method and a lithium battery diaphragm.
  • this application studies a coating slurry with high adhesion and high ion conductivity, which is made of PEAE as the main body and added dispersant, wetting agent, and solvent. , It has the characteristics of high adhesion and high ion conductivity.
  • the purpose of the present invention is to provide a coating slurry with high adhesion and high ion conductivity, a preparation method and a lithium battery diaphragm.
  • the present invention provides a coating slurry, comprising: PEAE: 1-60 parts; dispersant: 0.01-10 parts; wetting agent: 0.01-15 parts; and solvent: 100 parts.
  • the PEAE is prepared by using PEDOT, PEO, and PAA using an in-situ polymerization method.
  • the in-situ polymerization method includes: dissolving PEDOT in the PSS aqueous dispersion, adding PEO powder, and stirring at room temperature until it is completely dissolved; adding solid sodium bisulfite, stirring and dissolving the temperature to 70°C; and simultaneously under the protection of nitrogen The ammonium persulfate aqueous solution and acrylic acid monomer were added dropwise to react.
  • the ratio of the parts by mass of the PEDOT, PEO, and PAA is 1:0.5-0.9:0.6-1.0.
  • the dispersant includes an organic dispersant and/or an inorganic dispersant; wherein the organic dispersant includes: triethylhexyl phosphoric acid, sodium lauryl sulfate, methylpentanol, cellulose derivatives, polypropylene One or more of amide, Guer gum, and fatty acid polyethylene glycol ester; and the inorganic dispersant includes at least one of silicates and alkali metal phosphates.
  • alkali metal phosphates include: at least one of sodium tripolyphosphate, sodium hexametaphosphate, and sodium pyrophosphate.
  • the wetting agent includes: one or more of anionic, nonionic, and neutral surfactants.
  • the present invention also provides a method for preparing a coating slurry, that is, mixing PEAE, a dispersant, a wetting agent, and a solvent, and dispersing the coating slurry to prepare the coating slurry.
  • the dispersion method includes at least one of agitating with a mixer, sanding with a sand mill, and ultrasonic vibration.
  • the present invention also provides a lithium battery separator, including: a base film and a coating layer on the base film; wherein the coating layer is suitable for being formed by coating the coating slurry as described above.
  • the beneficial effect of the present invention is that the coating slurry of the present invention, the preparation method thereof, and the lithium battery separator of the present invention take PEAE as the main body, add a dispersant, a wetting agent, and a solvent to make a coating slurry, which can ensure that PEAE is evenly coated On the base film, a lithium battery separator is formed, which can not only solve the problem that pure PEAE cannot be directly uniformly coated on the separator, but also can use the high adhesion and high ion conductivity of PEAE to improve the adhesion and adhesion of the lithium battery separator. Ionic conductivity, so that PEAE is coated on the base film for the first time to prepare lithium battery separators to ensure that the lithium battery separators have the characteristics of high adhesion and high ionic conductivity.
  • Figure 1 is a comparison diagram of the test results of the internal resistance of a lithium battery
  • Figure 2 is a comparison chart of the test results of the lithium battery capacity retention rate.
  • the coating slurry of Example 1 includes the following raw materials in parts by mass: PEAE: 1-60 parts; dispersant: 0.01-10 parts; wetting agent: 0.01-15 parts; and solvent: 100 parts.
  • the solvent such as but not limited to water
  • the solvent can provide a carrier for PEAE.
  • the PEAE Under the action of a wetting agent and a dispersing agent, the PEAE can be evenly dispersed in the water to ensure the uniformity of the coating slurry, thereby ensuring the base
  • the coating effect of the film is the stability of the electrical performance of the lithium battery.
  • the coating slurry comprises the following raw materials in parts by mass: PEAE: 25 parts; dispersant: 1 part; wetting agent: 6 parts; and solvent: 100 parts.
  • the coating slurry is composed of the following raw materials in parts by mass: PEAE: 45 parts; dispersant: 8 parts; wetting agent: 12 parts; and solvent: 100 parts.
  • the coating slurry comprises the following raw materials in parts by mass: PEAE: 10 parts; dispersant: 0.1 parts; wetting agent: 0.5 parts; and solvent: 100 parts.
  • PEAE Due to the essential characteristics of PEAE, it is powdery and hardly soluble in water or other solvents, so it cannot be directly and uniformly coated on the base film. As a result, PEAE cannot be applied to lithium batteries even though it has high adhesion and ionic conductivity. In the diaphragm. Even if the coating is completed, the stability of the lithium battery separator will be poor due to the unevenness of PEAE, which is difficult to apply to actual production. Therefore, how to solve the uniformity of PEAE distribution at the battery interface is one of the innovations of the present invention, that is, the dispersant, wetting agent, solvent and PEAE in this case need to be used in proportion.
  • the coating slurry of Example 1 is based on PEAE, and a dispersant, wetting agent, and solvent are added to make a coating slurry.
  • PEAE is coated on the base film for the first time, and a uniform distribution of PEAE can be formed on the battery interface. Therefore, the high ionic conductivity and high adhesiveness of PEAE are used to improve the ionic conductivity of the lithium battery separator, and solve the problem that the pure PEAE cannot be directly coated on the separator, thereby improving the high ionic conductivity of the lithium battery separator .
  • a dispersant, wetting agent, and solvent are added to make a coating slurry.
  • the PEAE is prepared by PEDOT, PEO, and PAA using an in-situ polymerization method.
  • the in-situ polymerization method includes: dissolving PEDOT in an aqueous PSS dispersion, adding PEO powder, and stirring at room temperature until it is completely dissolved; adding solid sodium bisulfite, stirring and dissolving, and heating to 70°C; and under nitrogen protection At the same time, the aqueous solution of ammonium persulfate and the acrylic acid monomer are added dropwise to react to obtain the PEAE.
  • the mass ratio of the PEDOT, PEO, and PAA is 1:0.5-0.9:0.6-1.0, and may be 1:0.6:0.7 or 1:0.8:0.8.
  • the PEAE of this embodiment can ensure that the PEAE has a higher ionic conductivity by controlling the content ratio of PEDOT, PEO, and PAA. There is no need to consider the adhesion and dispersibility of PEAE when preparing PEAE, only a proper amount is required when using it.
  • the dispersant, wetting agent, and solvent are used to ensure that the lithium battery separator has high ionic conductivity.
  • the dispersant includes an organic dispersant and/or an inorganic dispersant; wherein the organic dispersant includes, but is not limited to: triethylhexyl phosphoric acid, sodium lauryl sulfate, methyl pentanol, cellulose derivatives, poly One or more of acrylamide, Guer gum, and fatty acid polyethylene glycol ester; and the inorganic dispersant includes, but is not limited to, at least one of silicates and alkali metal phosphates.
  • the alkali metal phosphates include but are not limited to: at least one of sodium tripolyphosphate, sodium hexametaphosphate, and sodium pyrophosphate.
  • PEAE can be uniformly dispersed in water, which solves the problem of agglomeration between PEAE particles, and facilitates the uniform distribution of PEAE in the coating slurry, and then coating on the base film On the surface, a lithium battery separator whose surface is evenly covered with PEAE is formed to ensure the stability of the lithium battery separator.
  • wetting agent As an alternative embodiment of the wetting agent.
  • the wetting agent includes, but is not limited to: one or more of anionic, nonionic, and neutral surfactants.
  • the wetting agent mainly solves the problem of excessive surface tension of the coating slurry, is beneficial to be coated on the base film to form a lithium battery separator, and can also improve the adhesion between the coating slurry and the separator.
  • this Example 2 also provides a method for preparing a coating slurry, that is, mixing PEAE, a dispersant, a wetting agent, and a solvent to prepare the coating slurry by dispersion.
  • the dispersion method includes at least one of agitator stirring, sand mill sanding, and ultrasonic vibration.
  • Example 1 Regarding the component content of the coating slurry and the specific implementation process, refer to the relevant discussion in Example 1, which will not be repeated here.
  • this embodiment 3 also provides a lithium battery separator, including: a base film and a coating on the base film; wherein the coating is suitable for coating as described above.
  • the coating slurry is formed by coating.
  • the base film is, for example, but not limited to, a PE membrane, a PP membrane, a PI membrane, a PET membrane, a non-woven membrane, and the like.
  • Figure 1 is a comparison diagram of the test results of the internal resistance of a lithium battery.
  • Figure 2 is a comparison chart of the test results of the lithium battery capacity retention rate.
  • Example 10 the relevant electrical properties (including internal resistance and capacity retention rate) of the lithium batteries prepared in Example 4 and Comparative Example were tested respectively.
  • the test results are shown in Table 2:
  • the lithium battery prepared by the coating slurry with high adhesion and high ion conductivity of the present application has an internal resistance far lower than the prior art, and has a high capacity retention rate after 20 cycles.
  • the main reason is that the coating slurry containing PEAE, dispersant, wetting agent, solvent and other components forms a uniform PEAE coating on the PE diaphragm, which utilizes the high ion conductivity of PEAE
  • the performance improves the conductivity of the lithium battery separator, and the dispersant and solvent make the PEAE uniformly distributed, which improves the stability of the lithium battery separator.
  • the wetting agent can solve the problem of excessive surface tension of the coating slurry, which is beneficial to coating On the base film, the adhesion between the coating slurry and the diaphragm is improved.
  • the coating slurry with high adhesion and high ion conductivity and the preparation method thereof, and the lithium battery separator of the present application take PEAE as the main body and add a dispersant, a wetting agent, and a solvent to make a coating slurry. It is used to coat the surface of the base film to form a lithium battery separator, so that PEAE uniformly and stably covers the surface of the lithium battery separator, which not only solves the problem that pure PEAE can not be directly evenly coated on the separator, but also improves the performance of the lithium battery separator. Adhesion and ionic conductivity, low battery internal resistance and high capacity retention rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜,涉及锂电池隔膜技术领域。其中高粘接和高离子导电的涂覆浆料包括:PEAE:1-60份;分散剂:0.01-10份;润湿剂:0.01-15份;以及溶剂:100份。可以保证PEAE均匀涂覆在基膜上,形成锂电池隔膜,解决了单纯的PEAE无法直接均匀到涂覆到隔膜上的问题,从而首次将PEAE涂覆在基膜上,用于制备锂电池隔膜,保证锂电池隔膜具有高粘接和高离子导电性的特性。

Description

高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜 技术领域
本发明属于锂电池隔膜技术领域,具体涉及一种高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜。
背景技术
随着锂离子电池在动力行业的不断使用,锂离子电池的能量密度和体积越来越大,导致了锂电池在使用过程中出现的电池变形的情况,目前市场上的解决方案主要是对锂电池隔膜进行涂胶,其中涂胶的主体成分主要是以PVDF、PVA、丙烯酸类的粘结剂为主,但是这些胶的离子导电率普遍较低,粘接能力一般的缺点;锂电池隔膜涂覆使用后,导致锂电池的内阻增长较大,严重影响了锂电池的倍率性能和循环性能。
为了解决锂电池涂胶隔膜在应用中带来的负面影响,本申请研究一种高粘接和高离子导电的涂覆浆料,以PEAE为主体,添加分散剂、润湿剂、溶剂制成,具有高粘接和高离子导电性的特性。
发明内容
本发明的目的是提供一种高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜。
为了解决上述技术问题,本发明提供了一种涂覆浆料,包括:PEAE:1-60份;分散剂:0.01-10份;润湿剂:0.01-15份;以及溶剂:100份。
进一步,通过PEDOT、PEO、PAA采用原位聚合法制备所述PEAE。
进一步,所述原位聚合法包括:取PEDOT溶于PSS水性分散液,加入PEO粉末,室温下搅拌至完全溶解;加入亚硫酸氢钠固体,搅拌溶解升温至70℃; 以及在氮气保护下同时滴加过硫酸铵水溶液和丙烯酸单体,进行反应。
进一步,所述PEDOT、PEO、PAA的质量份比值为1:0.5-0.9:0.6-1.0。
进一步,所述分散剂包括有机分散剂和\或无机分散剂;其中所述有机分散剂包括:三乙基己基磷酸、十二烷基硫酸钠、甲基戊醇、纤维素衍生物、聚丙烯酰胺、古尔胶、脂肪酸聚乙二醇酯中的一种或几种;以及所述无机分散剂包括硅酸盐类、碱金属磷酸盐类中的至少一种。
进一步,所述碱金属磷酸盐类包括:三聚磷酸钠、六偏磷酸钠、焦磷酸钠中的至少一种。
进一步,所述润湿剂包括:阴离子型、非离子型表面活性剂、中性的表面活性剂中的一种或几种。
又一方面,本发明还提供了一种涂覆浆料的制备方法,即将PEAE、分散剂、润湿剂、溶剂混合,分散制备所述涂覆浆料。
进一步,所述分散的方式包括搅拌机搅拌、砂磨机砂磨、超声振动中的至少一种。
另一方面,本发明还提供了一种锂电池隔膜,包括:基膜、位于基膜上的涂层;其中所述涂层适于通过如前所述的涂覆浆料涂覆形成。
本发明的有益效果是,本发明的涂覆浆料及其制备方法、锂电池隔膜,以PEAE为主体,添加分散剂、润湿剂、溶剂制成涂覆浆料,可以保证PEAE均匀涂覆在基膜上,形成锂电池隔膜,既可以解决单纯的PEAE无法直接均匀到涂覆到隔膜上的问题,又可以利用PEAE的高粘接和高离子导电性提高锂电池隔膜的粘接性和离子导电性,从而首次将PEAE涂覆在基膜上,用于制备锂电池隔膜,保证锂电池隔膜具有高粘接和高离子导电性的特性。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明 书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是锂电池内阻的测试结果对比图;
图2是锂电池容量保持率的测试结果对比图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现对本申请中出现的专有名词或英文缩写进行定义或解释,如表1所示:
表1 名词解释对应表
名词或缩写 中文定义
PVDF 聚偏氟乙烯
PVA 聚乙烯醇
PEAE 三元复合导电粘结剂
PEDOT 3,4-乙烯二氧噻吩单体的聚合物
PEO 聚环氧乙烷
PAA 丙烯酸单体聚合物
PE 聚乙烯
PSS 聚苯乙烯磺酸钠
实施例1
本实施例1的涂覆浆料按质量份组成包括以下原料:PEAE:1-60份;分散剂:0.01-10份;润湿剂:0.01-15份;以及溶剂:100份。
可选的,所述溶剂例如但不限于水,可以为PEAE提供载体,在润湿剂和分散剂的作用下,使PEAE均匀分散在水中,以保证涂覆浆料的均匀度,从而保证基膜的涂覆效果,即锂电池电性能的稳定性。
可选的,所述涂覆浆料按质量份组成包括以下原料:PEAE:25份;分散剂:1份;润湿剂:6份;以及溶剂:100份。
可选的,所述涂覆浆料按质量份组成包括以下原料:PEAE:45份;分散剂:8份;润湿剂:12份;以及溶剂:100份。
可选的,所述涂覆浆料按质量份组成包括以下原料:PEAE:10份;分散剂:0.1份;润湿剂:0.5份;以及溶剂:100份。
由于PEAE的本质特性,粉末状,难溶于水或其他溶剂,因此无法直接均匀的涂覆在基膜上,导致PEAE虽然具有较高的粘接性和离子电导率,也无法应用于锂电池隔膜中。即便完成涂覆,也会由于PEAE的不均匀导致锂电池隔膜的稳定性很差,难以应用于实际生产。因此,如何解决PEAE在电池界面的分布均一性,是本发明的创新点之一,即需要本案中的分散剂、润湿剂、溶剂与PEAE配比使用。
本实施例1的涂覆浆料以PEAE为主体,添加分散剂、润湿剂、溶剂制成涂覆浆料,首次将PEAE涂覆在基膜上,可以在电池界面形成分布均一的PEAE,从而利用PEAE的高离子导电性和高粘接性,提高锂电池隔膜的离子导电性,解决了单纯的PEAE无法直接均匀到涂覆到隔膜上的问题,从而提高锂电池隔膜的高 离子导电性。作为PEAE的一种可选的实施方式。
通过PEDOT、PEO、PAA采用原位聚合法制备所述PEAE。具体的,所述原位聚合法包括:取PEDOT溶于PSS水性分散液,加入PEO粉末,室温下搅拌至完全溶解;加入亚硫酸氢钠固体,搅拌溶解升温至70℃;以及在氮气保护下同时滴加过硫酸铵水溶液和丙烯酸单体,进行反应,得到所述PEAE。
可选的,所述PEDOT、PEO、PAA的质量份比值为1:0.5-0.9:0.6-1.0,可选为1:0.6:0.7或1:0.8:0.8。
本实施方式的PEAE通过控制PEDOT、PEO、PAA的含量配比,可以保证PEAE具有较高的离子电导率,不用在制备PEAE时考虑其粘结性和分散性问题,只需在使用时配合适量分散剂、润湿剂、溶剂使用,从而保证锂电池隔膜具有高离子导电性。
作为分散剂的一种可选的实施方式。
所述分散剂包括有机分散剂和\或无机分散剂;其中所述有机分散剂包括但不限于:三乙基己基磷酸、十二烷基硫酸钠、甲基戊醇、纤维素衍生物、聚丙烯酰胺、古尔胶、脂肪酸聚乙二醇酯中的一种或几种;以及所述无机分散剂包括但不限于硅酸盐类、碱金属磷酸盐类中的至少一种。
可选的,所述碱金属磷酸盐类包括但不限于:三聚磷酸钠、六偏磷酸钠、焦磷酸钠中的至少一种。
本实施方式的分散剂与常规分散剂的不同之处是,可以将PEAE在水中均匀分散,解决了PEAE颗粒之间的团聚问题,利于PEAE在涂覆浆料均匀分布,然后涂覆在基膜表面,形成表面均匀覆盖PEAE的锂电池隔膜,从而保证锂电池隔膜的稳定性。
作为润湿剂的一种可选的实施方式。
所述润湿剂包括但不限于:阴离子型、非离子型表面活性剂、中性的表面活性剂中的一种或几种。润湿剂主要是解决涂覆浆料的表面张力过大的问题,利于涂覆在基膜上,形成锂电池隔膜,也可以提高涂覆浆料与隔膜之间的粘接性。
实施例2
在实施例1的基础上,本实施例2还提供了一种涂覆浆料的制备方法,即将PEAE、分散剂、润湿剂、溶剂混合,分散制备所述涂覆浆料。
可选的,所述分散的方式包括搅拌机搅拌、砂磨机砂磨、超声振动中的至少一种。
关于涂覆浆料的组分含量和具体实施过程参见实施例1中的相关论述,在此不再赘述。
实施例3
在实施例1或2的基础上,本实施例3还提供了一种锂电池隔膜,包括:基膜、位于基膜上的涂层;其中所述涂层适于通过如前所述的涂覆浆料涂覆形成。
可选的,所述基膜例如但不限于PE隔膜、PP隔膜、PI隔膜、PET隔膜、无纺布隔膜等。
关于涂覆浆料的组分含量和具体实施过程参见实施例1和2中的相关论述,在此不再赘述。
实施例4
(1)称取PEDOT、PEO、PAA的质量份比值为1:0.5:0.6,采用原位聚合法制备PEAE;
(2)将40wt%的PEAE、3wt%的分散剂、0.3wt%的润湿剂和适量水混合, 并通过砂磨机进行分散,形成涂覆浆料。
(3)将(2)中制备的涂覆浆料涂覆在PE隔膜上,厚度为2μm,然后制成锂电池。
实施例5
(1)称取PEDOT、PEO、PAA的质量份比值为1:0.9:0.8,采用原位聚合法制备PEAE;
(2)将1wt%的PEAE、0.01wt%的分散剂、0.01wt%的润湿剂和适量水混合,并通过砂磨机进行分散,形成涂覆浆料。
(3)将(2)中制备的涂覆浆料涂覆在PE隔膜上,厚度为2μm,然后制成锂电池。
实施例6
(1)称取PEDOT、PEO、PAA的质量份比值为1:0.6:1.0,采用原位聚合法制备PEAE;
(2)将60wt%的PEAE、10wt%的分散剂、15wt%的润湿剂和适量水混合,并通过砂磨机进行分散,形成涂覆浆料。
(3)将(2)中制备的涂覆浆料涂覆在PE隔膜上,厚度为2μm,然后制成锂电池。
实施例7
(1)称取PEDOT、PEO、PAA的质量份比值为1:0.7:0.8,采用原位聚合法制备PEAE;
(2)将30wt%的PEAE、2wt%的分散剂、8wt%的润湿剂和适量水混合,并通过砂磨机进行分散,形成涂覆浆料。
(3)将(2)中制备的涂覆浆料涂覆在PE隔膜上,厚度为2μm,然后制成 锂电池。
实施例8
(1)称取PEDOT、PEO、PAA的质量份比值为1:0.8:0.9,采用原位聚合法制备PEAE;
(2)将5wt%的PEAE、0.05wt%的分散剂、0.1wt%的润湿剂和适量水混合,并通过砂磨机进行分散,形成涂覆浆料。
(3)将(2)中制备的涂覆浆料涂覆在PE隔膜上,厚度为2μm,然后制成锂电池。
实施例9
(1)称取PEDOT、PEO、PAA的质量份比值为1:0.6:0.7,通过原位聚合法制备PEAE;
(2)将15wt%的PEAE、5wt%的分散剂、9wt%的润湿剂和适量水混合,并通过砂磨机进行分散,形成涂覆浆料。
(3)将(2)中制备的涂覆浆料涂覆在PE隔膜上,厚度为2μm,然后制成锂电池。
对比例
(1)将5wt%的PVDF、0.05wt%的分散剂、0.1wt%的润湿剂和适量水混合,并通过砂磨机进行分散,形成现有的PVDF涂覆浆料。
(2)将现有的PVDF涂覆浆料涂覆在PE隔膜上,厚度为2μm,然后制成锂电池。
实施例10
图1是锂电池内阻的测试结果对比图。
图2是锂电池容量保持率的测试结果对比图。
在本实施例10中,分别对实施例4和对比例中制备的锂电池测试相关电性能(包括内阻和容量保持率)。其测试结果如表2所示:
表2 锂电池的相关电性能对比
Figure PCTCN2020123942-appb-000001
根据图1、图2的测试结果,即本申请的高粘接和高离子导电的涂覆浆料制备的锂电池,其内阻远低于现有技术,在循环20次后容量保持率高于现有的PVDF涂覆浆料,主要是由于含有PEAE、分散剂、润湿剂、溶剂等组分的涂覆浆料在PE隔膜上形成了均匀的PEAE涂层,利用PEAE的高离子导电性提高了锂电池隔膜的导电性,通过分散剂和溶剂使PEAE均匀分布,提高了锂电池隔膜的稳定性,通过润湿剂可以解决涂覆浆料的表面张力过大的问题,利于涂覆在基膜上,提高了涂覆浆料与隔膜之间的粘接性。
综上所述,本申请的高粘接和高离子导电的涂覆浆料及其制备方法、锂电池隔膜,以PEAE为主体,添加分散剂、润湿剂、溶剂制成涂覆浆料,用于涂覆在基膜表面,形成锂电池隔膜,使PEAE均匀稳定的覆盖锂电池隔膜表面,既解决了单纯的PEAE无法直接均匀到涂覆到隔膜上的问题,又提高了锂电池隔膜的粘接性和离子导电性,具备较低的电池内阻和较高的容量保持率。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种涂覆浆料,其特征在于,按质量份组成包括原料:
    PEAE:1-60份;
    分散剂:0.01-10份;
    润湿剂:0.01-15份;以及
    溶剂:100份。
  2. 根据权利要求1所述的涂覆浆料,其特征在于,
    通过PEDOT、PEO、PAA采用原位聚合法制备所述PEAE。
  3. 根据权利要求1所述的涂覆浆料,其特征在于,
    所述原位聚合法包括:
    取PEDOT溶于PSS水性分散液,加入PEO粉末,室温下搅拌至完全溶解;
    加入亚硫酸氢钠固体,搅拌溶解升温至70℃;以及
    在氮气保护下同时滴加过硫酸铵水溶液和丙烯酸单体,进行反应。
  4. 根据权利要求2或3所述的涂覆浆料,其特征在于,
    所述PEDOT、PEO、PAA的质量份比值为1:0.5-0.9:0.6-1.0。
  5. 根据权利要求1所述的涂覆浆料,其特征在于,
    所述分散剂包括有机分散剂和\或无机分散剂;其中
    所述有机分散剂包括:三乙基己基磷酸、十二烷基硫酸钠、甲基戊醇、纤维素衍生物、聚丙烯酰胺、古尔胶、脂肪酸聚乙二醇酯中的一种或几种;以及
    所述无机分散剂包括硅酸盐类、碱金属磷酸盐类中的至少一种。
  6. 根据权利要求1所述的涂覆浆料,其特征在于,
    所述碱金属磷酸盐类包括:三聚磷酸钠、六偏磷酸钠、焦磷酸钠中的至少一种。
  7. 根据权利要求1所述的涂覆浆料,其特征在于,
    所述润湿剂包括:阴离子型、非离子型表面活性剂、中性的表面活性剂中的一种或几种。
  8. 一种涂覆浆料的制备方法,其特征在于,
    将PEAE、分散剂、润湿剂、溶剂混合,分散制备所述涂覆浆料。
  9. 根据权利要求8所述的制备方法,其特征在于,
    所述分散的方式包括搅拌机搅拌、砂磨机砂磨、超声振动中的至少一种。
  10. 一种锂电池隔膜,其特征在于,包括:
    基膜、位于基膜上的涂层;其中
    所述涂层适于通过如权利要求1所述的涂覆浆料涂覆形成。
PCT/CN2020/123942 2019-12-18 2020-10-27 高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜 WO2021120857A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021560747A JP7147082B2 (ja) 2019-12-18 2020-10-27 高接着性及び高イオン導電性のリチウム電池セパレータ用塗布スラリー、その調製方法並びにリチウム電池セパレータ
KR1020217027420A KR20210122281A (ko) 2019-12-18 2020-10-27 고접착성 및 고이온전도도의 코팅 슬러리 및 제조 방법, 리튬 배터리 분리막
US17/441,703 US11367926B2 (en) 2019-12-18 2020-10-27 Coating slurry with high adhesion and high ionic conductivity, preparation method thereof, and lithium battery separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911307324.9 2019-12-18
CN201911307324.9A CN110970591B (zh) 2019-12-18 2019-12-18 高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜

Publications (1)

Publication Number Publication Date
WO2021120857A1 true WO2021120857A1 (zh) 2021-06-24

Family

ID=70034765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123942 WO2021120857A1 (zh) 2019-12-18 2020-10-27 高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜

Country Status (5)

Country Link
US (1) US11367926B2 (zh)
JP (1) JP7147082B2 (zh)
KR (1) KR20210122281A (zh)
CN (1) CN110970591B (zh)
WO (1) WO2021120857A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028691A1 (en) * 2021-08-31 2023-03-09 University Of Manitoba Conducting polymer-based electrode matrices for lithium-ion batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970591B (zh) 2019-12-18 2021-05-04 江苏厚生新能源科技有限公司 高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815740A (zh) * 2007-07-09 2010-08-25 帝国创新有限公司 高度导电且稳定的透明导电聚合物膜
CN105742562A (zh) * 2014-12-30 2016-07-06 现代自动车株式会社 导电和液体保持结构
CN109065803A (zh) * 2018-07-18 2018-12-21 湖南烁普新材料有限公司 高粘接性水性聚合物涂覆隔膜及其制备方法和应用
CN110970591A (zh) * 2019-12-18 2020-04-07 江苏厚生新能源科技有限公司 高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281487A1 (en) 2008-12-26 2011-11-17 Kao Corporation Gas barrier molded article and method for producing the same
CN101997144A (zh) * 2009-08-11 2011-03-30 翁文桂 一种串联电池组制备方法
JP5723618B2 (ja) * 2011-02-04 2015-05-27 日東電工株式会社 粘着シートおよび表面保護フィルム
US9379368B2 (en) * 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
CN104882187A (zh) * 2015-03-23 2015-09-02 江西九鹏科技股份有限公司 一种聚噻吩基低密度复合导电浆料及其制备方法
CN105047935B (zh) * 2015-06-30 2018-06-26 深圳清华大学研究院 复合粘结剂及其制备方法、锂电池
KR102626915B1 (ko) * 2016-08-02 2024-01-18 삼성전자주식회사 복합막, 그 제조방법 및 이를 포함하는 리튬공기전지
WO2018038957A1 (en) * 2016-08-22 2018-03-01 Enermat Technolgies, Inc. Graphene oxide-based electrodes for secondary batteries
US11302924B2 (en) * 2016-10-17 2022-04-12 Massachusetts Institute Of Technology Dual electron-ion conductive polymer composite
CN106571232A (zh) * 2016-10-31 2017-04-19 丰宾电子(深圳)有限公司 导电高分子悬浮液及具有其的固态电解电容
WO2019135911A1 (en) * 2018-01-08 2019-07-11 Applied Materials, Inc. Piezoelectric materials and devices and methods for preparing the same
DE102018001617A1 (de) * 2018-02-27 2019-08-29 Technische Universität Dresden Kohlenstoffkompositformteil, Verfahren zu dessen Herstellung und Verwendung des Kohlenstoffkompositformteils in einem elektrochemischen Energiespeicher
CN108878751B (zh) * 2018-07-03 2021-07-30 宁德卓高新材料科技有限公司 导电陶瓷复合隔膜和固态电池
CN109167064B (zh) * 2018-08-21 2021-08-27 李国富 一种应用在锂离子电池正极材料中的复合粘结剂及其制备方法
CN109524623B (zh) 2018-11-16 2021-07-20 山东华亿比科新能源股份有限公司 一种锂电池抗弯折负极片的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815740A (zh) * 2007-07-09 2010-08-25 帝国创新有限公司 高度导电且稳定的透明导电聚合物膜
CN105742562A (zh) * 2014-12-30 2016-07-06 现代自动车株式会社 导电和液体保持结构
CN109065803A (zh) * 2018-07-18 2018-12-21 湖南烁普新材料有限公司 高粘接性水性聚合物涂覆隔膜及其制备方法和应用
CN110970591A (zh) * 2019-12-18 2020-04-07 江苏厚生新能源科技有限公司 高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU FENG, LIU JIANRUI, LI LI, ZHANG XIAOXIAO, LUO RUI, YE YUSHENG, CHEN RENJIE: "Surface Modification of Li-Rich Cathode Materials for Lithium-Ion Batteries with a PEDOT:PSS Conducting Polymer", ACS APPLIED MATERIALS & INTERFACES, vol. 8, no. 35, 19 August 2016 (2016-08-19), pages 23095 - 23104, XP055823326, ISSN: 1944-8244, DOI: 10.1021/acsami.6b07431 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028691A1 (en) * 2021-08-31 2023-03-09 University Of Manitoba Conducting polymer-based electrode matrices for lithium-ion batteries

Also Published As

Publication number Publication date
US20220094016A1 (en) 2022-03-24
CN110970591A (zh) 2020-04-07
JP7147082B2 (ja) 2022-10-04
CN110970591B (zh) 2021-05-04
US11367926B2 (en) 2022-06-21
KR20210122281A (ko) 2021-10-08
JP2022523267A (ja) 2022-04-21

Similar Documents

Publication Publication Date Title
TWI629825B (zh) Electrode assembly electrode adhesive
WO2021120857A1 (zh) 高粘接和高离子导电的涂覆浆料及制备方法、锂电池隔膜
CN104795541B (zh) 一种锂离子电池负极浆料制备方法
JP6504173B2 (ja) 非水系二次電池用積層体および非水系二次電池部材の製造方法
CN106571468A (zh) 高镍三元锂离子电池正极浆料及其制备方法
CN105330751A (zh) 锂电池用羧甲基纤维素锂的连续化生产方法
US9685658B2 (en) Composite particles for electrochemical device electrode, material for electrochemical device electrode, and electrochemical device electrode
CN109244322A (zh) 一种锂离子电池隔膜用水性涂层及其制备方法、应用
JP2015018776A (ja) 電池用水系電極組成物用バインダー
CN108470884A (zh) 一种水基粘结剂制备的锂离子电池电极
CN105470464B (zh) 一种降低不可逆容量损失的锂离子电池负极制备方法
JP6314402B2 (ja) 電気化学キャパシタ用バインダー組成物、電気化学キャパシタ用スラリー組成物、電気化学キャパシタ用電極及び電気化学キャパシタ
TW201731147A (zh) 二次電池電極用水系黏合劑組成物、二次電池電極用泥漿、黏合劑、二次電池電極及二次電池
JP2014175106A (ja) リチウムイオン二次電池の電極用バインダー、電極用スラリー、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2011076910A (ja) 電極用スラリー組成物
TW202143536A (zh) 用於二次電池的陰極及陰極漿料
JP2018181487A (ja) 水系電極用塗工液およびその利用
CN105914356B (zh) 一种锂离子电池的正极三元材料的改性方法
JP2013055044A (ja) 電気化学素子電極用複合粒子、電気化学素子電極材料、及び電気化学素子電極
JP2013041819A (ja) 電気化学素子負極電極用複合粒子、電気化学素子負極電極材料、及び電気化学素子負極電極
CN110970590A (zh) 陶瓷涂覆浆料及制备方法、锂电池隔膜、锂离子电池
CN109638286A (zh) 一种羧甲基纤维素基粘结剂及其在锂电池中的应用
JP4543442B2 (ja) ポリマー粒子、ポリマー分散組成物、電池電極用スラリー、電極及び電池
CN105406029A (zh) 锂离子电池正极极片或负极极片的制备方法
JP2013041821A (ja) 電気化学素子正極電極用複合粒子、電気化学素子正極電極材料、及び電気化学素子正極電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217027420

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021560747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904115

Country of ref document: EP

Kind code of ref document: A1