WO2021120748A1 - 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件 - Google Patents

一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件 Download PDF

Info

Publication number
WO2021120748A1
WO2021120748A1 PCT/CN2020/116733 CN2020116733W WO2021120748A1 WO 2021120748 A1 WO2021120748 A1 WO 2021120748A1 CN 2020116733 W CN2020116733 W CN 2020116733W WO 2021120748 A1 WO2021120748 A1 WO 2021120748A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
element according
liquid storage
skin layer
cooling
Prior art date
Application number
PCT/CN2020/116733
Other languages
English (en)
French (fr)
Inventor
王立平
周兴夫
沈鼎
Original Assignee
浙江迈博高分子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江迈博高分子材料有限公司 filed Critical 浙江迈博高分子材料有限公司
Publication of WO2021120748A1 publication Critical patent/WO2021120748A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M13/00Fumigators; Apparatus for distributing gases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M13/00Fumigators; Apparatus for distributing gases
    • A01M13/003Enclosures for fumigation, e.g. containers, bags or housings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/12Scaring or repelling devices, e.g. bird-scaring apparatus using odoriferous substances, e.g. aromas, pheromones or chemical agents
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/02Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air by heating or combustion
    • A61L9/03Apparatus therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/02Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air by heating or combustion
    • A61L9/03Apparatus therefor
    • A61L9/037Apparatus therefor comprising a wick
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the invention relates to a liquid storage element, a liquid guide element, a cooling element, a condensate absorption element and a supporting element, and particularly relates to a liquid storage element and a conductive liquid for storing and releasing liquid in an aerosol dispersing device that vaporizes or atomizes liquid
  • e-cigarettes When using traditional tobacco, inhaling harmful substances such as tar produced when burning tobacco will affect your health.
  • heating and vaporizing or heating and atomizing effective ingredients are usually used instead of burning traditional tobacco.
  • the liquid In a common method of heating liquid e-liquid atomization, the liquid is stored in an oil tank, and the atomized aerosol is led out from the oil tank.
  • the e-cigarette liquid with this structure is easy to leak.
  • Some e-cigarettes use cotton or non-woven cloth wrapped around a glass fiber or ceramic tube, and then the e-cigarette liquid is injected on the cotton or non-woven cloth.
  • a common structure is to install an atomizing core in the aerosol emitting device, such as porous ceramics with embedded heating wires.
  • an atomizing core is heated, and the liquid is atomized and carried out by the airflow.
  • the surface of the atomization core is usually covered with a non-woven fabric and fixed in the aerosol dispersing device.
  • the non-woven fabric is soft, lacks strength, and is easy to wrinkle, it is difficult to make a stable quality aerosol dispersing device, and liquid leakage is likely to occur when the wrinkles are severe.
  • the method of covering the surface of the atomization core with a non-woven fabric requires a lot of labor, is difficult to automate, has high cost and low efficiency.
  • the temperature of traditional cigarettes when burning is around 800°C.
  • This high temperature causes most of the water in the tobacco to be evaporated when forming aerosols.
  • the aerosols are relatively dry, and the user feels a higher temperature when inhaling the aerosols. low.
  • the aerosol or aerosol generated by heating the aerosol matrix without burning may contain high moisture and aerosols vaporized from the aerosol matrix, such as propylene glycol, glycerin, etc. When the user inhales the aerosol The perceived temperature is higher. Heating non-combustible mist without proper cooling can even make users feel hot. When using heat-not-burn traditional Chinese medicine, smokers will encounter the same problem.
  • a cooling element can be used downstream of the aerosol matrix to absorb the heat in the aerosol to cool the aerosol.
  • the aerosol transfers its own heat to the cooling element through heat exchange to reduce the temperature.
  • the cooling element absorbs the heat in the aerosol and the temperature rises. If the substance in the cooling element undergoes a phase change process such as melting after absorbing the heat, it can be more Absorb the heat in the aerosol more, so that the cooling effect of the aerosol is more significant.
  • the cooling element needs to have a large surface area in contact with the aerosol.
  • the cooling element can be made of sheet-like materials.
  • CN104203015A discloses a method for making cooling elements from sheet materials to cool and heat non-combustion aerosols. But from the point of view of the heat exchange contact area, the sheet is a two-dimensional structure with a small specific surface area.
  • cooling elements made of thin sheets cannot be adjacent to the aerosol substrate, and need to be separated by other elements in the middle. Obviously, cooling elements made of thin sheets cannot efficiently absorb small droplets in the aerosol.
  • the cooling element made of thin sheets in the aerosol dispersing device has many limitations. A similar problem also exists in aerosol dispersing devices that heat and vaporize liquids, such as medicine inhalation devices.
  • a suitable absorbing substance can be used to contact the condensate to remove the condensate.
  • the condensate will settle to the bottom of the atomizer.
  • a condensate absorber can be installed at the bottom of the atomizer to prevent the condensate from infiltrating into the host.
  • the more common condensate absorbing element is stacked by multiple layers of non-woven fabric and die-cut into the required size and shape.
  • the non-woven fabric is soft and lacks a fixed three-dimensional shape, it is installed in a narrow electronic atomization aerosol channel Or fixation is difficult.
  • Another common condensate absorption element is compressed into flakes by fiber or wood pulp, cut into required size and shape according to needs, or punched to form air flow channels according to needs.
  • This kind of condensate absorption element is commonly known as high-pressure cotton.
  • the advantage is that it can be made into a three-dimensional shape and is easy to install.
  • the disadvantage of high-pressure cotton is that it expands significantly after absorbing condensate, and the air resistance of the aerosol channel is unstable during use, which affects the use experience.
  • a similar problem also exists in a dispersing device that vaporizes or atomizes a liquid, such as a medicine atomized inhalation device.
  • the present invention proposes a liquid storage element for storing and releasing liquid in an aerosol dispersing device.
  • the liquid storage element is composed of two-component fibers that are thermally bonded to form a three-dimensional network.
  • the bicomponent fiber has a skin layer and a core layer.
  • the liquid storage element with a three-dimensional network and three-dimensional structure made of bicomponent fibers through thermal bonding can be easily assembled in the aerosol emitting device.
  • This kind of liquid storage element has lower density and higher porosity, so it can store more liquid per unit volume and can release the liquid more efficiently. Because the liquid is stored in the capillary voids of the liquid storage element, it can be stored and transported. And it is not easy to leak during use.
  • the liquid storage element of the present invention can be used not only in electronic cigarettes, but also in electric mosquito coils, electric aromatherapy and medicine atomization devices with atomizers.
  • the present invention also provides a liquid guiding element used for conducting liquid in an aerosol dispersing device.
  • the liquid guiding element is formed by a three-dimensional network of bicomponent fibers through thermal bonding.
  • the bicomponent fibers have a skin layer and a core layer.
  • the liquid guiding element made of bi-component fiber bonding has high strength and toughness, is not easy to fold or break during installation, can be easily assembled in the aerosol emission device, easy to achieve assembly automation, improve efficiency, and save costs. It is especially suitable for manufacturing large-scale consumer products, such as electronic cigarettes. Because the bi-component fibers are bonded to form a three-dimensional network structure, a large number of interconnected capillary pores are formed in the liquid guiding element. This capillary pore is conducive to the rapid and smooth conduction of liquid in it, and improves the replenishment of liquid for the atomizing core. Stability, thereby improving the stability of atomization. By selecting the fiber size and setting the density of the liquid guiding element, the size of the capillary pores and capillary force can be controlled, so that the liquid guiding element is suitable for the requirements of different aerosol emitting devices.
  • the liquid guiding element of the present invention can be applied to the atomization of various electronic cigarette liquids, and is also suitable for the atomization of electric mosquito coil liquid and air freshener.
  • the present invention also provides a cooling element for cooling the aerosol generated in the aerosol dispersing device.
  • the cooling element is formed by thermal bonding of bicomponent fibers to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers have a skin layer and a core layer. .
  • the cooling element made of bi-component fiber bonding has a large number of capillary pores, which has a good absorption effect on the condensate generated when the aerosol is cooled, and makes the aerosol dry, which is beneficial to the user to feel the lower temperature.
  • the cooling element made of bi-component fiber bonding can be made into a hollow structure and a non-hollow structure, and the two can be used alone or in combination as needed to achieve proper cooling effect and air resistance.
  • the cooling element made of bicomponent fiber bonding has a large specific surface area, which is beneficial to improve the heat exchange efficiency with the aerosol.
  • the melting point of the core layer of the bicomponent fiber is more than 25°C higher than the melting point of the skin layer.
  • the skin layer is partially melted by contacting the high-temperature aerosol and absorbs a large amount of heat, causing the aerosol temperature to drop rapidly.
  • the high melting point core layer in the bicomponent fiber acts as the skeleton, and the melted skin layer becomes viscous and adheres to the core layer, thereby maintaining the integrity of the cooling element.
  • the cooling element made of bi-component fiber bonding can be made into different porosity according to requirements, so that the cooling element has the required radial and axial rigidity, and it is convenient to assemble with other elements such as aerosol matrix to form an aerosol dispersing device. , It is easy to realize efficient automatic assembly.
  • the cooling element of the present invention can be applied to various aerosol emitting devices, such as flavor-containing aerosol emitting devices, nicotine-containing aerosol emitting devices, caffeine or theophylline-containing aerosol emitting devices, and gasified traditional Chinese medicine components.
  • aerosol emitting device such as flavor-containing aerosol emitting devices, nicotine-containing aerosol emitting devices, caffeine or theophylline-containing aerosol emitting devices, and gasified traditional Chinese medicine components.
  • the aerosol emitting device and so on.
  • the present invention also proposes a condensate absorbing element for absorbing condensate in an aerosol dispersing device.
  • the condensate absorbing element is formed by thermal bonding of bicomponent fibers to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers have a skin layer and Core layer
  • the condensate absorption element with the three-dimensional structure of the three-dimensional network made of bicomponent fibers by thermal bonding can be customized according to the structure of the aerosol emitting device, so as to be easily assembled in the precise aerosol emitting device.
  • the manufacturing process can be controlled so that the condensate absorption element has greater rigidity in the axial direction than the radial direction, which facilitates the use of force in the axial direction during assembly and improves assembly efficiency.
  • it uses its radial self-adaptive deformation to make the condensate absorption element more convenient Fixed in the aerosol emitting device.
  • the condensate absorbing element of the present invention is made of bi-component fiber bonding and has a three-dimensional network structure, which can quickly absorb the condensate around the aerosol when it comes into contact with the aerosol, and conduct it to various parts of the condensate absorbing element.
  • the removal efficiency of the condensate in the aerosol is high, and the user experience is good.
  • the condensate absorption element of the present invention has lower density and higher porosity, and has a large absorption capacity per unit volume, which is suitable for the compact space of the aerosol dispersing device.
  • the condensate absorption element of the present invention has a three-dimensional network three-dimensional structure made of bi-component fiber bonding, which does not expand or deform after absorbing the condensate, so that the aerosol channel has a stable airflow resistance, which is beneficial to maintain the aerosol emitting device
  • the air resistance stability during use improves the user experience.
  • the skin layer of the bi-component fiber made of the condensate absorbing element of the present invention can be polylactic acid, which is a biodegradable material, which can reduce environmental pollution caused when the condensate absorbing element is discarded.
  • the core layer of the bicomponent fiber is also polylactic acid, the discarded condensate absorption element can be completely degraded by microorganisms in nature to generate carbon dioxide and water.
  • the present invention also provides a supporting element for supporting the flavor conversion component in an aerosol emitting device.
  • the supporting element is formed by thermal bonding of bicomponent fibers to form a three-dimensional network three-dimensional structure.
  • the bicomponent fiber has a skin layer and a core. Floor.
  • the support element with a three-dimensional network structure made of bicomponent fibers by thermal bonding can be easily assembled in the aerosol emitting device.
  • the supporting element of the present invention can be used not only in electronic cigarettes, but also in a drug atomization device, and the supporting element can also be used in a separate suction nozzle, which is used in conjunction with the aerosol dispersing device.
  • Figure 1a is a longitudinal sectional view of the liquid storage element of the first embodiment disclosed in the present invention.
  • Figure 1b is a cross-sectional view of the liquid storage element of the first embodiment disclosed in the present invention.
  • Figure 1c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figures 1a and 1b;
  • Figure 1d is another enlarged schematic cross-sectional view of the bicomponent fiber in Figures 1a and 1b;
  • Figure 2a is a longitudinal sectional view of a liquid storage element according to a second embodiment disclosed in the present invention.
  • FIG. 2b is a cross-sectional view of the liquid storage element of the second embodiment disclosed in the present invention.
  • Figure 3a is a longitudinal sectional view of a liquid storage element according to a third embodiment disclosed in the present invention.
  • Figure 3b is a cross-sectional view of the liquid storage element of the third embodiment disclosed in the present invention.
  • FIG. 4a is a longitudinal sectional view of the liquid storage element of the fourth embodiment disclosed in the present invention.
  • 4b is a cross-sectional view of the liquid storage element of the fourth embodiment disclosed in the present invention.
  • Figure 5a is a longitudinal sectional view of a liquid storage element according to a fifth embodiment disclosed in the present invention.
  • Figure 5b is a cross-sectional view of the liquid storage element of the fifth embodiment disclosed in the present invention.
  • Figure 6a is a longitudinal sectional view of a liquid storage element according to a sixth embodiment disclosed in the present invention.
  • Figure 6b is a cross-sectional view of the liquid storage element of the sixth embodiment disclosed in the present invention.
  • Fig. 7a is a longitudinal sectional view of the liquid storage element of the seventh embodiment disclosed in the present invention.
  • Figure 7b is a cross-sectional view of the liquid storage element of the seventh embodiment disclosed in the present invention.
  • Fig. 8a is a longitudinal sectional view of the liquid guiding element of the eighth embodiment disclosed in the present invention.
  • Figure 8b is a cross-sectional view of the liquid guiding element of the eighth embodiment disclosed in the present invention.
  • Figure 8c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figures 8a and 8b;
  • Figure 8d is another cross-sectional enlarged schematic view of the bicomponent fiber in Figures 8a and 8b;
  • Figure 9a is a longitudinal cross-sectional view of the liquid guiding element of the ninth embodiment disclosed in the present invention.
  • Figure 9b is a cross-sectional view of the ninth embodiment disclosed in the present invention when the liquid guiding element is a cylinder;
  • 9c is a cross-sectional view of the liquid guiding element of the ninth embodiment disclosed in the present invention when it is a rectangular parallelepiped;
  • 9d is a cross-sectional view of the liquid guiding element of the ninth embodiment disclosed in the present invention when it is an elliptical cylinder;
  • Figure 10a is a longitudinal cross-sectional view of the liquid guiding element of the tenth embodiment disclosed in the present invention.
  • 10b is a cross-sectional view of the liquid guiding element of the tenth embodiment disclosed in the present invention when it is a cylinder;
  • 10c is a cross-sectional view of the liquid guiding element of the tenth embodiment disclosed in the present invention when it is a rectangular parallelepiped;
  • 10d is a cross-sectional view of the liquid guiding element of the tenth embodiment disclosed in the present invention when it is an elliptical cylinder;
  • Figure 11a is a longitudinal sectional view of a cooling element according to an eleventh embodiment of the present invention.
  • Figure 11b is a cross-sectional view of a cooling element according to an eleventh embodiment of the present invention.
  • Figure 11c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figures 11a and 11b;
  • Figure 11d is another cross-sectional enlarged schematic view of the bicomponent fiber in Figures 11a and 11b;
  • Figure 11e is another cross-sectional view of the cooling element according to the eleventh embodiment of the present invention.
  • Figure 12a is a longitudinal sectional view of a cooling element according to a twelfth embodiment of the present invention.
  • Figure 12b is a cross-sectional view of a cooling element according to a twelfth embodiment of the present invention.
  • Figure 13a is a longitudinal sectional view of a cooling element according to a thirteenth embodiment of the present invention.
  • Figure 13b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a thirteenth embodiment of the present invention.
  • Figure 13c is another cross-sectional view of the high-temperature cooling section of the cooling element according to the thirteenth embodiment of the present invention.
  • Figure 13d is a cross-sectional view of a low-temperature cooling section of a cooling element according to a thirteenth embodiment of the present invention.
  • Figure 14a is a longitudinal sectional view of a cooling element according to a fourteenth embodiment of the present invention.
  • Figure 14b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a fourteenth embodiment of the present invention.
  • Figure 14c is a cross-sectional view of the low-temperature cooling section of the cooling element according to the fourteenth embodiment of the present invention.
  • Figure 14d is another cross-sectional view of the low-temperature cooling section of the cooling element according to the fourteenth embodiment of the present invention.
  • Figure 15a is a longitudinal sectional view of a cooling element according to a fifteenth embodiment of the present invention.
  • Figure 15b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a fifteenth embodiment of the present invention.
  • Figure 15c is a cross-sectional view of a low-temperature cooling section of a cooling element according to a fifteenth embodiment of the present invention.
  • Figure 16a is a longitudinal sectional view of a cooling element according to a sixteenth embodiment of the present invention.
  • Figure 16b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a sixteenth embodiment of the present invention.
  • Figure 16c is a cross-sectional view of a low-temperature cooling section of a cooling element according to a sixteenth embodiment of the present invention.
  • Figure 17a is a longitudinal sectional view of a cooling element according to a seventeenth embodiment of the present invention.
  • Figure 17b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a seventeenth embodiment of the present invention.
  • Figure 17c is a cross-sectional view of a low-temperature cooling section of a cooling element according to a seventeenth embodiment of the present invention.
  • Figure 18a is a longitudinal sectional view of a cooling element according to an eighteenth embodiment of the present invention.
  • Figure 18b is a cross-sectional view of a cooling element according to an eighteenth embodiment of the present invention.
  • Figure 19a is a longitudinal cross-sectional view of a condensate absorbing element according to a nineteenth embodiment disclosed in the present invention.
  • 19b is a cross-sectional view of the condensate absorption element of the nineteenth embodiment disclosed in the present invention.
  • Figure 19c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figures 1a and 1b;
  • Figure 19d is another cross-sectional enlarged schematic view of the bicomponent fiber in Figures 1a and 1b;
  • 20a is a longitudinal sectional view of the condensate absorption element of the twentieth embodiment disclosed in the present invention.
  • 20b is a cross-sectional view of the condensate absorption element of the twentieth embodiment disclosed in the present invention.
  • 21a is a longitudinal sectional view of the condensate absorption element of the twenty-first embodiment disclosed in the present invention.
  • 21b is a cross-sectional view of the condensate absorption element of the twenty-first embodiment disclosed in the present invention.
  • Figure 22a is a longitudinal sectional view of a condensate absorbing element according to a twenty-second embodiment disclosed in the present invention.
  • Figure 22b is a cross-sectional view of the condensate absorption element of the twenty-second embodiment disclosed in the present invention.
  • Figure 23a is a longitudinal sectional view of the condensate absorption element of the twenty-third embodiment disclosed in the present invention before installation;
  • Figure 23b is a cross-sectional view of the condensate absorption element of the twenty-third embodiment disclosed in the present invention.
  • Figure 23c is a longitudinal cross-sectional view of the condensate absorption element of the twenty-third embodiment disclosed in the present invention after installation;
  • Figure 24a is a longitudinal sectional view of a condensate absorbing element according to a twenty-fourth embodiment disclosed in the present invention.
  • 24b is a cross-sectional view of the condensate absorption element of the twenty-fourth embodiment disclosed in the present invention.
  • Figure 25a is a longitudinal sectional view of a supporting element of the twenty-fifth embodiment disclosed in the present invention.
  • Figure 25b is a cross-sectional view of the supporting element of the twenty-fifth embodiment disclosed in the present invention.
  • Figure 25c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figures 25a and 25b;
  • Figure 25d is another cross-sectional enlarged schematic view of the bicomponent fiber in Figures 25a and 25b;
  • Fig. 26a is a longitudinal sectional view of the supporting element of the twenty-sixth embodiment disclosed in the present invention.
  • Figure 26b is a cross-sectional view of the supporting element of the twenty-sixth embodiment disclosed in the present invention.
  • Figure 27a is a longitudinal sectional view of the supporting element of the twenty-seventh embodiment disclosed in the present invention.
  • Fig. 27b is a cross-sectional view of the supporting element of the twenty-seventh embodiment disclosed in the present invention.
  • the poly-L-lactic acid refers to a polylactic acid made from monomer L-lactic acid, but a small amount of D-lactic acid may be randomly copolymerized in it, and the melting point is between 145°C and 180°C.
  • the poly-D-lactic acid refers to a polylactic acid made from monomer D-lactic acid, but a small amount of L-lactic acid may be randomly copolymerized therein, and the melting point is between 145°C and 180°C.
  • the poly-D, L-lactic acid, or PDLLA for short in the present invention refers to polylactic acid made from monomers D-lactic acid and L-lactic acid and having a melting point of less than 145°C, including amorphous PDLLA, which has no melting point.
  • the melting point in the present invention is measured according to ASTM D3418-2015.
  • phenol refers to a class of compounds composed of a hydroxyl group directly bonded to an aromatic hydrocarbon group. Phenols include phenol, catechol, o-phenol, m-cresol and p-cresol.
  • Fig. 1a is a longitudinal cross-sectional view of the liquid storage element according to the first embodiment disclosed in the present invention
  • Fig. 1b is a cross-sectional view of the liquid storage element according to the first embodiment disclosed in the present invention.
  • the liquid storage element according to the first embodiment of the present invention is used for storing and releasing liquid in an aerosol dispersing device.
  • the liquid storage element 100 is formed by thermally bonding bicomponent fibers 2 to form a three-dimensional network. Three-dimensional structure, the bicomponent fiber 2 has a skin layer 21 and a core layer 22.
  • the liquid storage element 100 may have a liquid storage element through hole 130 that axially penetrates the liquid storage element 100.
  • the liquid storage element through hole 130 may be used as an aerosol channel in the aerosol emitting device.
  • the liquid storage element 100 of this embodiment can be made into a suitable geometric shape according to the internal space of the aerosol emitting device, such as a cylindrical liquid storage element 100 suitable for a cylindrical aerosol emitting device; a method suitable for a flat aerosol emitting device Cylindrical liquid storage element 100; an elliptical cylindrical liquid storage element 100 suitable for an elliptical cylindrical aerosol emitting device, etc.
  • the liquid storage element 100 has a liquid storage element through hole 130 that axially penetrates the liquid storage element 100.
  • An aerosol tube such as a metal tube, a glass fiber tube, or a plastic tube, can be inserted into the through hole 130 of the liquid storage element, and the aerosol can be led out from the aerosol tube.
  • the provision of the aerosol tube can better fix the liquid storage element 100 and prevent the liquid from leaking from the atomizer (not shown) when the liquid storage element 100 is filled with liquid.
  • the contact part of the liquid storage element 100 and the atomizer can be compressed to a higher density, so that the liquid is enriched in the higher density part during the release process, thereby improving the uniformity of the liquid release and further reducing the residual liquid after use.
  • the density of the liquid storage element 100 in this embodiment is 0.03-0.25 g/cm 3 , such as 0.03 g/cm 3 , 0.04 g/cm 3 , 0.050 g/cm 3 , 0.055 g/cm 3 , 0.065 g/cm 3 , 0.08 G/cm 3 , 0.10 g/cm 3 , 0.12 g/cm 3 , 0.15 g/cm 3 , 0.18 g/cm 3 , 0.21 g/cm 3 , 0.25 g/cm 3 , preferably 0.04-0.12 g/cm 3 .
  • the reservoir element 100 When the density is less than 0.03 g / cm 3, the reservoir element 100 is difficult to manufacture and insufficient strength reservoir element 100, easily assembled in the apparatus for distributing an aerosol; when the density of 0.03-0.04 g / cm 3, disposed axially channel intensity reservoir element 100 inadequacies, not easy to assemble; when the density greater than 0.15 g / cm 3, using late release of the liquid reservoir element 100 is slightly worse efficiency, high residual liquid after use; when the density when more than 0.25 g / cm 3, per unit volume of the liquid storage reservoir element 100 is too small, and post-use liquid reservoir element 100 releasing efficiency is poor, high liquid remaining after use in the narrow space is not conducive to the aerosol dissemination Used in the device.
  • the volume of liquid loaded into the liquid storage element 100 should preferably not exceed 90% of the capillary void volume in the liquid storage element 100.
  • the liquid storage element 100 of different densities is manufactured and the corresponding aerosol emitting device is assembled for suction test.
  • the atomizing core is a glass fiber bundle wrapped around an electric heating wire.
  • the liquid storage element 100 is made of 3 denier bicomponent staple fiber thermally bonded, the skin layer 21 is polyethylene, and the core layer 22 is polypropylene.
  • the height of the liquid storage element 100 is 29 mm and the volume is 1.91 cm 3 .
  • the density of the liquid storage element 100 is 0.04 g/cm 3 , 0.055 g/cm 3 , 0.08 g/cm 3 , 0.12 g/cm 3 , 0.15 g/cm 3 , and 0.20 g/cm 3 , the liquid being atomized It is a mixture of propylene glycol and glycerin, and the injection volume is 1.62 grams.
  • Test with a smoke machine the test conditions are: inhale for 3 seconds, stop for 27 seconds, inhale 2 times per minute, inhale 55ml each time, collect the atomization volume per 50 puffs, and repeat the test 20 times for each product ,
  • the design capacity of the lithium battery is 400 ports (the battery is exhausted during the actual test of 405-436 ports).
  • the average value (unit mg), coefficient of variation (CV) of the amount of atomization per mouth, as well as the residual rate and coefficient of variation of the liquid after pumping 400 mouths are obtained. The results are as follows:
  • the suction rate of the liquid 400 is less than the residual between 16.5% -24.2%; when the density of the reservoir member 100 is 0.15 g / cm 3 after the suction rate of the liquid 400 remaining close to 30%; when the reservoir 100 element density of 0.20 g / cm 3, the suction of the liquid remaining after 400 exceeds 35%, the utilization efficiency of the liquid is less than 65% , The waste is more serious.
  • the present invention determines that the preferred density range of the liquid storage element 100 is 0.03-0.15 g/cm 3 , and the most preferred is 0.04-0.12 g / cm 3.
  • the liquid storage element 100 is bonded by the bicomponent fiber 2 to form a three-dimensional network three-dimensional structure.
  • the bicomponent fiber 2 has a skin layer 21 and a core layer 22. Adhesives, plasticizers or heat may be used to bond the fibers, and heat is preferably used to bond the fibers to avoid introducing impurities in the process of manufacturing the liquid storage element 100.
  • the fiber component in the present invention refers to the polymer that makes the fiber. Additives used on the fiber surface, such as surfactants, are not considered to be components of the fiber.
  • the liquid storage element 100 of this embodiment can be infiltrated by the stored liquid, and a surfactant can be added to change the ability of the liquid storage element 100 to be infiltrated by the liquid.
  • Fig. 1c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 1a and 1b. As shown in Fig. 1c, the skin layer 21 and the core layer 22 have a concentric structure. The bicomponent fiber 2 with a concentric structure is more rigid, convenient to produce, and less expensive.
  • Fig. 1d is another enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 1a and 1b.
  • the skin layer 21 and the core layer 22 have an eccentric structure.
  • the bi-component fiber 2 with an eccentric structure is relatively soft and fluffy, and it is easy to manufacture a liquid storage element 100 with a lower density.
  • bicomponent fibers with a side-by-side structure can also be used to make the liquid storage element 100, but it is difficult to thermally bond.
  • a three-component skin-core structure fiber can also be used to manufacture the liquid storage element 100, but the three-component skin-core structure fiber is difficult to manufacture, high in cost, and poor in cost performance.
  • the bicomponent fibers 2 are filaments or staple fibers.
  • the liquid storage element 100 made of filaments has higher strength, and the liquid storage element 100 made of short fibers has better elasticity.
  • the manufacturer can select a suitable bi-component fiber according to the performance requirements of the liquid storage element 100 to make the liquid storage element 100 with a suitable density and a suitable shape.
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by 25° C. or more.
  • the liquid storage element 100 of this embodiment is made by thermal bonding of the bicomponent fiber 2 with a sheath-core structure.
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by more than 25° C., so that the core layer 22 can maintain a certain rigidity when the fibers are thermally bonded, which is convenient for making the liquid storage element 100 with a lower density.
  • the skin layer 21 is polyethylene, polypropylene, polyolefin, or copolyester, and the core layer 22 is polymer.
  • the skin layer 21 is polylactic acid
  • the core layer 22 is polylactic acid whose melting point is higher than that of the skin layer 21 by 25° C. or more.
  • the skin layer 21 of the bicomponent fiber 2 may be common polymers such as polyethylene, polypropylene, polyethylene terephthalate copolyester, polyamide-6, and polylactic acid, or other polyolefins.
  • Polyolefin is a polymer of olefins, and is usually a general term for a class of thermoplastic resins obtained by single polymerization or copolymerization of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, and 1-hexene.
  • Polyolefin has an inert molecular structure, does not contain active groups on the molecular chain, and hardly reacts with liquid components in the application field of the present invention, so it has unique advantages.
  • the core layer 22 may be a polymer such as polypropylene or polyethylene terephthalate.
  • the core layer 22 may be polyethylene terephthalate (abbreviated as PET), polytrimethylene terephthalate (abbreviated as PTT) or polybutylene terephthalate (Referred to as PBT), polyamide and so on.
  • PET polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • the skin layer 21 of the bicomponent fiber 2 has a low melting temperature, which is beneficial to improve production efficiency and reduce energy consumption in the manufacturing process.
  • the core layer 22 can be polypropylene, polyethylene terephthalate, and a melting point of about 170°C. Polylactic acid, etc.
  • the core layer 22 may be polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, nylon, polyamide, etc. .
  • Polylactic acid is a biodegradable material, which can reduce environmental pollution caused when the liquid storage element 100 is discarded.
  • the manufactured liquid storage element 100 is a biodegradable material.
  • the denier of the bicomponent fiber 2 used to make the liquid storage element 100 of the present invention ranges from 1 to 30 deniers, preferably 1 to 15 deniers, and most preferably 1.5 to 10 deniers. It is difficult to manufacture the bicomponent fiber 2 with a core-sheath structure of less than 1 denier, and the cost is high.
  • the liquid storage element 100 made of fibers higher than 30 denier has insufficient capillary force and is easy to leak.
  • the sheath-core bicomponent fiber 2 between 1-15 denier is easily thermally bonded into a liquid storage element 100 with a low density and a three-dimensional structure with suitable capillary force, 1.5-10 denier sheath-core bicomponent fiber 2 is particularly suitable, and the cost is low.
  • Bicomponent fibers of different deniers can be mixed to form the liquid storage element 100 to optimize the performance of liquid storage and release or reduce costs. It is also possible to incorporate some single-component fibers such as polypropylene fibers into the bicomponent fibers without affecting the processing and performance of the liquid storage element 100 to reduce costs.
  • the denier of the bicomponent fiber 2 is preferably 1.5 denier, 2 denier, 3 denier or 6 denier
  • the skin layer 21 is polyethylene with a melting point of about 130°C
  • the core layer 22 is polypropylene with a melting point of about 165°C.
  • the density of the liquid element 100 is between 0.04-0.12 g/cm 3
  • the liquid storage element 100 has the advantages of large liquid storage capacity, resistance to leakage, and high release efficiency.
  • liquid storage element 100 can also be made of single-component fibers, such as polypropylene fibers, bonded with a binder, the use of a binder usually makes it difficult for the liquid storage element 100 to comply with relevant food or drug regulations.
  • This liquid storage element 100 is not suitable for use in aerosol dispersing devices such as electronic cigarettes and drug atomization.
  • the liquid storage element 100 is formed by thermal bonding of bicomponent fibers 2 with a concentric structure or an eccentric structure to form a three-dimensional network three-dimensional structure.
  • the liquid storage element 100 is cylindrical in shape with an outer diameter of 9mm, and an axial through hole with a diameter of 3.5mm is set as the liquid storage element through hole 130. One end of the through hole is connected to the atomizer and conducts the liquid to the atomizer. .
  • the shape and size of the liquid storage element 100 are suitable for use in an electronic cigarette that simulates the shape of a cigarette, and also suitable for use in a mini-type electric mosquito coil and aromatherapy.
  • the skin layer 21 of the bicomponent fiber 2 can be replaced by polylactic acid with a melting point of about 130° C., and the liquid storage element 100 made has similar performance.
  • Fig. 2a is a longitudinal cross-sectional view of the liquid storage element according to the second embodiment disclosed in the present invention
  • Fig. 2b is a cross-sectional view of the liquid storage element according to the second embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the liquid storage element 100 is formed by thermal bonding of concentric bicomponent filaments to form a three-dimensional network three-dimensional structure.
  • the denier of the bicomponent fiber 2 is 6 denier, and the skin layer 21 It is polypropylene with a melting point of about 165°C, and the core layer 22 is polybutylene terephthalate with a melting point of about 230°C.
  • This liquid storage element 100 has higher temperature resistance, and the made liquid storage element 100 has a density of medium at 0.1-0.2 g / cm 3, having a greater rigidity, suitable for high speed automated assembly.
  • the cross-sectional view of the liquid storage element 100 shows a rectangular parallelepiped shape.
  • An axial through hole with a diameter of 3 mm is set as the liquid storage element through hole 130.
  • One end of the through hole is connected to the atomizer, and the aerosol generated during atomization passes through the liquid storage element.
  • the through hole 130 escapes.
  • the shape of the liquid storage element 100 is suitable for use in rectangular flat cigarettes, and also suitable for use in electric mosquito coils and electric heating aromatherapy.
  • the skin layer 21 of the bicomponent fiber 2 can be replaced by polylactic acid with a melting point of about 170° C., and the liquid storage element 100 made has similar performance.
  • Fig. 3a is a longitudinal cross-sectional view of the liquid storage element 100 according to the third embodiment disclosed in the present invention
  • Fig. 3b is a cross-sectional view of the liquid storage element 100 according to the third embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the liquid storage element 100 is formed by thermally bonding bicomponent fibers 2 with a concentric structure to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers 2 are staple fibers, and their denier is 2. denier, 21 melting point 130 °C cortex polylactic acid, a core layer 22 having a melting point 155-185 °C polylactic acid, the reservoir element 100 made of a density of between 0.08-0.12 g / cm 3.
  • the cross-sectional view of the liquid storage element 100 shows an elliptical shape, and an axial through hole with a diameter of 4 mm is set as the liquid storage element through hole 130.
  • the shape of the liquid storage element 100 is suitable for use in elliptical cylindrical flat cigarettes, and can also be used for electric mosquito coils of similar shapes And electric aromatherapy.
  • the liquid storage element 100 in this embodiment is completely made of polylactic acid, which can be completely biodegraded, and is of great significance for reducing environmental pollution.
  • Fig. 4a is a longitudinal cross-sectional view of the liquid storage element 100 according to the fourth embodiment disclosed in the present invention
  • Fig. 4b is a cross-sectional view of the liquid storage element 100 according to the fourth embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the liquid storage element 100 is formed by thermally bonding bicomponent fibers 2 with an eccentric structure to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers 2 are short fibers with a fineness of 3. Denier, the skin layer 21 is polylactic acid with a melting point of about 130°C, and the core layer 22 is polyethylene terephthalate.
  • the density of the prepared liquid storage element 100 is between 0.03-0.06 g/cm 3 , and it has the characteristics of large liquid absorption capacity and low release residue.
  • the liquid storage element 100 is cylindrical, an axial through hole with a diameter of 4.5 mm is set as the liquid storage element through hole 130, one end of the through hole is connected to the atomizer, and the aerosol generated during atomization passes through the liquid storage element through hole 130 Escape.
  • the liquid storage element 100 at the connection part of the atomizer is compressed to form a higher density, and the liquid is enriched in the higher density part in the process of consumption, thereby improving the uniformity of liquid release and further reducing the liquid after use. Residue.
  • the liquid storage element 100 is compressed to form a low-density portion 123 and a high-density portion 124 and a density increasing portion 125 provided between the low-density portion 123 and the high-density portion 124. Therefore, the liquid can be better concentrated in the high-density portion 124, which can improve the smoothness of liquid conduction, and reduce the liquid residue in the liquid storage element 100 after use.
  • the shape of the liquid storage element 100 is suitable for use in cylindrical electronic cigarettes, and also suitable for electric mosquito coils and electric aromatherapy.
  • the skin layer 21 of the bicomponent fiber 2 can be replaced by polyolefin or a copolyester of polyethylene terephthalate with a melting point of about 110° C., and the resulting liquid storage element 100 has similar performance.
  • Fig. 5a is a longitudinal cross-sectional view of the liquid storage element 100 according to the fifth embodiment disclosed in the present invention
  • Fig. 5b is a cross-sectional view of the liquid storage element 100 according to the fifth embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the liquid storage element 100 is formed by thermally bonding bicomponent fibers 2 with a concentric structure to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers 2 are filaments with a fineness of 30. Denier, the skin layer 21 is a copolyester of polyethylene terephthalate with a melting point of about 200°C, and the core layer 22 is a polyethylene terephthalate with a melting point of about 270°C.
  • This liquid storage element 100 has a relatively high high temperature resistance
  • the reservoir member 100 is made of a density of between 0.15-0.25 g / cm 3
  • the reservoir 100 is a cylindrical member, disposed axial through bore of 5mm diameter for the accumulator member through-hole 130, the through-hole One end of the electric heating atomizer or ultrasonic atomizer is connected, and the aerosol generated during atomization escapes through the liquid storage element through hole 130.
  • This liquid storage element 100 is suitable for use in portable electric mosquito coils or aromatherapy. Used for electronic cigarettes.
  • the skin layer 21 of the bicomponent fiber 2 can be replaced by polylactic acid with a melting point of about 170° C., and the liquid storage element 100 made has similar performance.
  • Fig. 6a is a longitudinal cross-sectional view of the liquid storage element 100 according to the sixth embodiment disclosed in the present invention
  • Fig. 6b is a cross-sectional view of the liquid storage element 100 according to the sixth embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the liquid storage element 100 includes a liquid storage portion 121 and a liquid collection portion 122 with an upper and lower structure. Both the liquid storage portion 121 and the liquid collection portion 122 have a liquid storage element through hole 130 penetrating axially.
  • the liquid storage part 121 is formed by thermally bonding bicomponent fibers 2 with an eccentric structure to form a three-dimensional network three-dimensional structure.
  • the denier of the bicomponent fibers 2 is 3 denier
  • the skin layer 21 is polyethylene with a melting point of about 130°C
  • the core layer 22 is For polypropylene with a melting point of about 165°C
  • the density of the liquid storage part 121 is between 0.04-0.08 g/cm 3
  • the liquid storage part 121 is cylindrical.
  • the bicomponent fiber 2 made into the liquid collection part 122 is the same as the fiber made into the liquid storage part.
  • Both the liquid storage part 121 and the liquid collection part 122 are provided with an axial through hole with a diameter of 4 mm as the liquid storage element through hole 130.
  • One end of the electric heating atomizer or ultrasonic atomizer is connected, and the aerosol generated during atomization escapes through the liquid storage element through hole 130.
  • This liquid storage element 100 is suitable for use in portable electric mosquito coils or aromatherapy. Used for electronic cigarettes.
  • the skin layer 21 of the bicomponent fiber 2 can be replaced by polylactic acid with a melting point of about 130° C., and the liquid storage element 100 made has similar performance.
  • the density of the liquid collection part 122 is higher than that of the liquid storage part 121. Since the density of the liquid collecting part 122 is higher than that of the liquid storing part 121, the liquid is enriched in the higher density liquid collecting part 122 during consumption, thereby improving the uniformity of liquid release and further reducing the residual liquid after use.
  • FIG. 7a is a longitudinal cross-sectional view of the liquid storage element 100 according to the seventh embodiment disclosed in the present invention
  • FIG. 7b is a cross-sectional view of the liquid storage element 100 according to the seventh embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the liquid storage element 100 includes a liquid collecting part 122 and a liquid storage part 121 covering the outer peripheral wall of the liquid collecting part 122 with a lower density than the liquid collecting part 122.
  • the liquid collecting portion 122 has a liquid storage element through hole 130 that axially penetrates the liquid collecting portion 122.
  • the liquid storage part 121 is formed by thermally bonding bicomponent fibers 2 with a concentric structure to form a three-dimensional network three-dimensional structure.
  • the denier of the bicomponent fibers 2 is 3 denier
  • the skin layer 21 is polylactic acid with a melting point of about 130°C
  • the core layer 22 is For polyethylene terephthalate with a melting point of about 270°C
  • the density of the liquid storage part 121 is between 0.1-0.15 g/cm 3
  • the liquid storage part 121 is cylindrical.
  • the liquid collecting part 122 is formed by thermally bonding bicomponent fibers 2 with a concentric structure to form a three-dimensional network three-dimensional structure.
  • the denier of the bicomponent fibers 2 is 2 deniers
  • the skin layer is polylactic acid with a melting point of about 170°C
  • the core layer has a melting point of 270.
  • an axial through hole with a diameter of 5 mm is set as a gas mist channel.
  • One end of the through hole is connected with an electric heating atomizer or an ultrasonic atomizer.
  • the liquid storage element through hole 130 escapes.
  • This liquid storage element 100 is suitable for use in portable electric mosquito coils or aromatherapy, and is also suitable for use in electronic cigarettes.
  • the density of the liquid collection part 122 is higher than that of the liquid storage part 121. Since the density of the liquid collecting part 122 is higher than that of the liquid storing part 121, the liquid is enriched in the higher density liquid collecting part 122 during consumption, thereby improving the uniformity of liquid release and further reducing the residual liquid after use.
  • the liquid storage element 100 for the aerosol dispersing device of the present invention is made of bicomponent fibers with a skin-core structure and an aerosol channel is arranged in the axial direction.
  • the aerosol channel is formed by the storage element 100 in the liquid storage element 100.
  • the liquid element through hole 130 is formed.
  • the liquid storage element 100 of the present invention can be widely used in various types of aerosol dispersing devices that vaporize or atomize liquids to store and release liquids. While simplifying the structure of the aerosol dispersing device, it cleverly has the function of deriving aerosols. Improve user experience.
  • the liquid storage element 100 can be made into the required three-dimensional structure size and shape during the thermal bonding process according to application requirements, so that it is suitable for high-speed automated assembly to reduce the emission of aerosols such as electronic cigarettes, drug atomization, electric mosquito coils, and electric aromatherapy.
  • the manufacturing cost of the device The above-mentioned embodiments only exemplify the principles and effects of the present invention, but are not used to limit the present invention. Any person skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical idea disclosed by the present invention should still be covered by the claims of the present invention.
  • Fig. 8a is a longitudinal sectional view of the liquid guiding element of the eighth embodiment disclosed in the present invention
  • Fig. 8b is a cross-sectional view of the liquid guiding element of the eighth embodiment disclosed in the present invention
  • Fig. 8c is a view of Figs. 8a and 8b
  • Fig. 8d is another schematic cross-sectional enlarged schematic view of the bi-component fiber in Figs. 8a and 8b.
  • the liquid guiding element 200 is used to conduct liquid in an aerosol emitting device.
  • the liquid guiding element 200 is formed by thermal bonding of bicomponent fibers 2 to form a three-dimensional network. Structure, the bicomponent fiber 2 has a skin layer 21 and a core layer 22.
  • the liquid guiding element 200 may have a liquid guiding element through hole 230 that axially penetrates the liquid guiding element 200.
  • the liquid guiding element 200 of this embodiment can be designed as a sheet or tube. As shown in Fig. 1a and Fig. 1b, the liquid guiding element 200 in this embodiment is configured in a tubular shape.
  • the liquid guiding element 200 can also be designed in a sheet shape.
  • the sheet-shaped liquid guiding element 200 may also be provided with a liquid guiding element through hole 230.
  • the cross section of the liquid guiding element 200 can be made into a circular ring, an elliptical ring or other desired shapes.
  • the axial direction herein is defined as its thickness direction, and the radial direction is defined as the direction perpendicular to the thickness.
  • the fibers can have more axial alignment orientations in the liquid guiding element 200.
  • the axial rigidity of the sheet-shaped liquid guiding element 200 is greater than its radial rigidity.
  • the speed of liquid permeating in the axial direction is greater than the speed of liquid permeating in the radial direction; it is also possible to make the fibers in the liquid guiding element 200 have more radial alignments.
  • the radial direction of the sheet-shaped liquid guiding element 200 The rigidity is greater than the axial rigidity, and the liquid permeating velocity in the liquid guiding element 200 in the radial direction is greater than the liquid permeating velocity in the axial direction.
  • the axial direction herein is defined as the direction of the central axis of the liquid guiding element through hole 230
  • the radial direction is defined as the direction perpendicular to the central axis of the liquid guiding element through hole 230.
  • the fibers in the tubular liquid guiding element 200 have more axial alignments.
  • the axial rigidity of the liquid guiding element 200 is greater than its radial rigidity.
  • the liquid permeating speed in the liquid guiding element 200 in the axial direction is greater than the liquid permeating speed in the radial direction. .
  • the rigid comparison method in this article is to place the liquid guide element 200 in the axial or radial direction, clamp it between two parallel plates, and measure the axial height or radial height of the liquid guide element 200 before compression. ; Under the condition of applying the same force, measure the axial or radial height of the two plates after axially or radially compressing the liquid guiding element 200, and calculate the amount of compression deformation, the amount of compression before compression. The difference between the axial height or the radial height after subtracting the compressed axial height or the radial height; the compressed deformation is divided by the axial height or radial height of the liquid guiding element 200 before compression to obtain Compression ratio. The smaller the compression ratio, the greater the rigidity, and the larger the compression ratio, the lower the rigidity.
  • the thickness of the liquid guiding element 200 refers to the shortest distance for liquid to be conducted from one side of the liquid guiding element 200 to the other side.
  • the thickness of the tubular liquid guiding element 200 is the thickness of the tube wall, and the thickness of the sheet-shaped liquid guiding element 200 is in its thickness direction. On the thickness.
  • the thickness of the liquid guiding element 200 is 0.3mm-3mm, preferably 0.6mm, 0.9mm, 1.2mm, 1.5mm, 2mm.
  • the thickness of the liquid guiding element 200 is less than 0.3 mm, it is difficult to make a uniform liquid guiding element 200, and it is inconvenient to install.
  • the thickness of the liquid guiding element 200 is greater than 3mm, the liquid guiding element 200 occupies too much space in the aerosol emitting device, especially for the tubular liquid guiding element 200, when the thickness is greater than 3mm, it is usually difficult to install in a small aerosol emitting device. .
  • the liquid guiding element 200 absorbs too much liquid, which affects the utilization efficiency of the liquid.
  • the density of the liquid guiding element 200 in this embodiment is 0.05-0.35 g/cm 3 , preferably 0.1-0.3 g/cm 3 .
  • the density is less than 0.05 g / cm 3, insufficient strength catheter element 200, the tubular member 200 and the aerosol catheter is easily deformed even when the device is assembled for distributing wrinkle, affect the stability of atomization, even cause serious leakage.
  • the density is greater than 0.35 g / cm 3, catheter slow, influence atomization efficiency, and the hardness of the high density fluid conducting element is too high, insufficient radial elasticity of the tubular catheter member and the aerosol device matching sporadic decline.
  • Fig. 8c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 8a and 8b. As shown in Fig. 8c, the skin layer 21 and the core layer 22 have a concentric structure.
  • Fig. 8d is another enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 8a and 8b. As shown in Fig. 8d, the skin layer 21 and the core layer 22 have an eccentric structure.
  • the liquid guiding element made of the bi-component fiber 2 with a concentric structure is more rigid, and the liquid guiding element 200 made of the bi-component fiber 2 with an eccentric structure is more elastic.
  • the bicomponent fibers 2 are filaments or staple fibers.
  • the liquid guiding element 200 made of filaments is more rigid, and the liquid guiding element 200 made of short fibers is more elastic. According to the performance requirements of the liquid guiding element 200, bi-component fibers can be selected to make a suitable liquid guiding element 200.
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by more than 20°C.
  • the liquid guiding element 200 of this embodiment is made by thermal bonding of the bicomponent fiber 2 with a sheath-core structure.
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by more than 20° C., which can maintain a certain rigidity of the core layer 22 when the fibers are thermally bonded, so as to facilitate the formation of a liquid guiding element 200 with uniform gaps.
  • the skin layer 21 of the bicomponent fiber 2 may be polyolefin, copolyester of polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polylactic acid or polyamide.
  • Polyolefin is a polymer of olefins, and is usually a general term for a type of thermoplastic resin obtained by the independent polymerization or copolymerization of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, and 1-hexene. It can also be a common polymer such as polyester or low melting point copolyester.
  • the core layer 22 may be a polymer such as polypropylene or polyethylene terephthalate (abbreviated as PET).
  • PET polyethylene terephthalate
  • the core layer 22 may be PET, polyamide, or the like.
  • the skin layer 21 of the bicomponent fiber 2 has a lower melting point, which is beneficial to improve production efficiency and reduce manufacturing costs.
  • the skin layer 21 of the bicomponent fiber 2 has a higher melting point, and the liquid guiding element has higher temperature resistance, which is beneficial to increase the working temperature of the atomizing core.
  • L-lactic acid is the skin layer 21, and the core layer 22 can be polypropylene, polyethylene terephthalate, Poly-L-lactic acid or poly-D-lactic acid with a melting point of 155-180°C.
  • the core layer 22 can be polyethylene terephthalate, polybutylene terephthalate (abbreviated as PBT), Polytrimethylene terephthalate (PTT), polyamide, etc.
  • Polylactic acid is a biodegradable material, which can reduce environmental pollution caused when the liquid guiding element is discarded.
  • a suitable core layer 22 can be selected according to the melting point of the skin layer 21.
  • the skin layer 21 can use PBT or PTT with a melting point of 225-235°C
  • the core layer 22 can use PET with a melting point of 255-265°C.
  • the skin layer is a polyethylene terephthalate copolyester (Co-PET) with a melting point of 110-120°C or 160-200°C
  • the core layer can be PET, PBT or PTT.
  • the fineness of the bicomponent fiber 2 used to make the liquid guiding element 200 of the present invention is 1-30 denier, preferably 1.5-10 denier. It is difficult to manufacture the bicomponent fiber 2 with a core-sheath structure of less than 1 denier, and the cost is high.
  • the liquid guiding element 200 made of fibers higher than 30 denier has insufficient capillary force and poor liquid guiding.
  • the sheath-core bicomponent fiber 2 of 1-30 denier is easy to manufacture the liquid guiding element 200, and the sheath-core bicomponent fiber 2 of 1.5-10 denier is particularly suitable and has a lower cost.
  • the viscosity of the atomized liquid is low, it is advisable to use fibers with smaller denier to make the liquid guiding element, such as 1 denier, 1.5 denier, 2 denier, and 3 denier fibers.
  • fibers with larger denier to make the liquid guiding element such as 6 denier, 10 denier, and 30 denier fibers.
  • the liquid guiding element 200 is formed by thermal bonding of two-component short-dimensional concentric structure 2 into a three-dimensional network tubular three-dimensional structure.
  • the liquid guiding element 200 can be used for the atomization of e-cigarette liquid, and is also suitable for use in mini-type electric mosquito coils and aromatherapy.
  • the core layer of the bicomponent fiber 2 can be made of PET, PBT, PTT, polyamide, etc., to make a liquid guiding element 200 has high temperature resistance. It is also possible to use PBT or PTT as the skin layer and PET as the core layer to make the liquid guiding element 200 with higher temperature resistance.
  • the liquid guiding element 200 is formed by thermal bonding of bicomponent fibers with an eccentric structure to form a three-dimensional network tubular structure.
  • the skin layer 21 of the liquid guiding element 200 is polyethylene, and the core layer 22 is polypropylene or PET.
  • the thickness of the liquid guiding element 200 is 0.3-0.8 mm and the density is 0.1-0.3 g/cm 3 .
  • Fig. 9a is a longitudinal sectional view of the liquid guiding element of the ninth embodiment disclosed in the present invention
  • Fig. 9b is a cross-sectional view of the liquid guiding element of the ninth embodiment disclosed in the present invention when it is a cylinder
  • Fig. 9c is The cross-sectional view of the liquid guiding element of the ninth embodiment disclosed in the present invention is a cuboid
  • FIG. 9d is a cross-sectional view of the liquid guiding element of the ninth embodiment disclosed in the present invention being an elliptical cylinder.
  • the structure of this embodiment is similar to that of the eighth embodiment, and the same parts as those of the eighth embodiment will not be repeated in the description of this embodiment.
  • the liquid guiding element 200 has a sheet shape, and a three-dimensional network sheet structure is formed by thermal bonding of the bicomponent fibers 2 with a concentric structure.
  • the thickness of the liquid guiding element 200 is 0.8-1.5 mm, and a liquid guiding element through hole 230 is provided in the center.
  • the skin layer 21 of the liquid guiding element 200 is poly-D,L-lactic acid with a melting point of 125-135°C
  • the core layer 22 is poly-L-lactic acid or poly-D-lactic acid with a melting point of 155-180°C. at 0.2-0.3 g / cm 3
  • the fluid conducting member 200 is a biodegradable material, it can reduce environmental pollution caused by discarded 200 of fluid conducting elements.
  • the radial rigidity of the sheet-shaped liquid guiding element 200 is greater than its axial rigidity, and the liquid permeating speed in the liquid guiding element 200 in the radial direction is greater than the liquid permeating speed in the axial direction.
  • the liquid guiding element 200 can be designed as a cylinder, a square cylinder and an elliptical cylinder, and the corresponding cross-sections are respectively a circular ring and a square ring. Shape, oval ring. It can also be designed into other shapes as required.
  • Fig. 10a is a longitudinal sectional view of the liquid guiding element of the tenth embodiment disclosed in the present invention
  • Fig. 10b is a cross-sectional view of the liquid guiding element of the tenth embodiment disclosed in the present invention when it is a cylinder
  • Fig. 10c is a cross-sectional view of the liquid guiding element of the tenth embodiment disclosed in the present invention
  • the cross-sectional view of the liquid guiding element of the tenth embodiment disclosed in the present invention is a cuboid
  • FIG. 10d is a cross-sectional view of the liquid guiding element of the tenth embodiment disclosed in the present invention being an elliptical cylinder.
  • the structure of this embodiment is similar to that of the eighth embodiment, and the same parts as those of the eighth embodiment will not be repeated in the description of this embodiment.
  • the liquid guiding element 200 is sheet-shaped, the liquid guiding element through hole 230 is not provided in the center, and the eccentric structure of the bicomponent fiber 2 is thermally bonded to form a three-dimensional network structure.
  • This liquid guiding element 200 has a relatively high liquid guiding speed.
  • the skin layer of the bicomponent fiber can be replaced with Co-PET to reduce cost, or replaced with PBT or PTT, so that the liquid guiding element 200 has better temperature resistance.
  • the axial rigidity of the liquid guiding element 200 is greater than its radial rigidity, and the liquid permeating speed in the axial direction of the liquid guiding element 200 is greater than the liquid permeating speed in the radial direction.
  • the liquid guiding element 200 is formed of a three-dimensional network sheet structure formed by thermal bonding of bicomponent fibers with a concentric structure, with a thickness of 1.5-2 mm.
  • the skin layer 21 of the liquid guiding element is PBT or PTT, and the core layer 22 is PET.
  • the density of the made liquid guiding element 200 is between 0.25-0.35 g/cm 3 .
  • the radial rigidity of the sheet-like liquid guiding element is greater than its axial rigidity, and the liquid permeating speed in the liquid guiding element in the radial direction is greater than the liquid permeating speed in the axial direction.
  • the liquid guiding element 200 can be designed as a cylinder, a square cylinder and an elliptical cylinder, and the corresponding cross-sections are respectively a circle, a rectangle and an ellipse. shape. It can also be designed into other shapes as required.
  • the liquid guiding element used in the aerosol dispersing device of the present invention is made of bi-component fiber bonding, and can be widely used in various aerosol dispersing devices.
  • the liquid guiding element has good strength, is suitable for automatic assembly, and greatly improves the production efficiency of the aerosol emitting device.
  • the liquid guiding element can smoothly and quickly transfer the liquid to the atomizing core, improving the efficiency and stability of atomization.
  • Figure 11a is a longitudinal cross-sectional view of a cooling element according to an eleventh embodiment of the present invention
  • Figure 11b is a cross-sectional view of a cooling element according to an eleventh embodiment of the present invention
  • Figure 11c is a double view of Figures 11a and 11b
  • Fig. 11d is another enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 11a and 11b
  • Fig. 11e is another cross-sectional view of the cooling element according to the eleventh embodiment of the present invention Sectional view.
  • the cooling element according to the eleventh embodiment of the present invention is used to cool the aerosol generated in the aerosol dispersing device.
  • the cooling element 300 is formed by thermally bonding bicomponent fibers 2 to form a three-dimensional network
  • the three-dimensional structure of the bicomponent fiber material 2 has a skin layer 21 and a core layer 22.
  • the aerosol emitting device includes an aerosol matrix, and the aerosol matrix contains aerosols, such as propylene glycol, glycerin, and water.
  • the aerosol matrix may also include a carrier, such as tobacco, Chinese herbal medicine, fiber, paper scraps, and so on.
  • a carrier such as tobacco, Chinese herbal medicine, fiber, paper scraps, and so on.
  • the generated aerosol may contain higher moisture and vaporized aerosols, such as propylene glycol, glycerin, etc., users
  • the temperature perceived when inhaling this aerosol is higher. Therefore, cooling the aerosol to a temperature that the user feels comfortable and removing the condensate is an important consideration for the aerosol dispersing device.
  • the aerosol matrix can also be a liquid storage element loaded with aerosol.
  • the aerosol in the aerosol base 891 is heated by a heating element (not shown) and then atomized and cooled by the cooling element 300 to escape.
  • the cooling element 300 also has the function of absorbing the condensate in the aerosol, so that the user feels a moderate temperature when inhaling the aerosol, and basically does not contain the condensate, improving the taste and experience.
  • the cooling element 300 is made by thermal bonding of bicomponent fibers and can be made with different porosities.
  • the porosity of the cooling element 300 can be set to 65%-95%, preferably the porosity is 75-85%.
  • the cooling element 300 When the porosity is greater than 95%, the cooling element 300 is difficult to form and has insufficient hardness. When the porosity is less than 65%, the hardness of the cooling element 300 is too large, or the cost is too high, and it is not suitable for use in an aerosol dispersing device.
  • the cooling element 300 can be configured as a hollow structure, that is, the cooling element 300 can have a cooling element that penetrates the cooling element 300 axially. Component through hole 330.
  • the cooling element 300 may be configured as a hollow structure with a circular cross-section of the cooling element through hole 330, and the cross-sectional shape of the cooling element 300 is a circular ring.
  • the cooling element 300 may be configured as a hollow structure with a star-shaped cross-section of the cooling element through hole 330, the cross-sectional shape of the cooling element 300 is a star ring, and the cross-section of the cooling element through hole 330 may be a five-pointed star. Shape, six-pointed star, etc.
  • the hollow cooling element 300 and the non-hollow cooling element 300 can be used alone or in combination to achieve a proper cooling effect and control a proper air resistance.
  • the hollow structure of the cooling element 300 can reduce the resistance of the aerosol to pass through the cooling element 300, so that the high-temperature aerosol can pass through the hollow channel with low gas resistance.
  • the skin layer 21 of the bicomponent fiber 2 absorbs a large amount of heat from the high-temperature aerosol and melts, so that the temperature of the aerosol is rapidly reduced.
  • the outer periphery of the cooling element 300 is far away from the high-temperature aerosol.
  • the temperature is transferred to the outer periphery, the temperature has dropped to a lower temperature, so as to prevent the outer peripheral wall of the cooling element 300 from being deformed or deformed due to the high temperature. Damage to the structure and performance of the aerosol emitting device.
  • the cooling element 300 of the present invention is formed by thermal bonding of bicomponent fibers 2 to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers 2 have a skin layer 21 and a core layer 22.
  • Fig. 11c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 11a and 11b. As shown in Fig. 11c, the skin layer 21 and the core layer 22 have a concentric structure.
  • Fig. 11d is another enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 11a and 11b. As shown in Fig. 11d, the skin layer 21 and the core layer 22 are eccentric structures. When the density is the same, the cooling element 300 made of the bi-component fiber 2 of the concentric structure is more rigid, and the cooling element 300 made of the bi-component fiber 2 of the eccentric structure is more elastic.
  • the bicomponent fibers 2 are filaments or staple fibers.
  • the cooling element 300 made of filaments has greater axial rigidity, and the cooling element 300 made of short fibers has better radial elasticity.
  • the bi-component fiber can be selected to make a suitable cooling element 300 according to the performance requirements of the cooling element 300.
  • the skin layer 21 of the bicomponent fiber 2 may be polyolefin such as polyethylene, polypropylene, or copolyester of ethylene terephthalate, polytrimethylene terephthalate, or polybutylene terephthalate. , Poly D-lactic acid, poly L-lactic acid, poly D, L-lactic acid, or polyamide-6, etc.
  • Polyolefin is a polymer of olefins, and is usually a general term for a type of thermoplastic resin obtained by the independent polymerization or copolymerization of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, and 1-hexene.
  • Polyolefin has an inert molecular structure, does not contain active groups on the molecular chain, and hardly reacts with liquid components in the application field of the present invention, so it has unique advantages.
  • the core layer 22 may be a polymer such as polypropylene and polyethylene terephthalate.
  • the core layer 22 may be polyethylene terephthalate, polyamide, or the like.
  • the skin layer 21 of the bicomponent fiber 2 has a lower melting point, which is beneficial to improve production efficiency and reduce manufacturing costs.
  • the skin layer 21 of the bicomponent fiber 2 has a higher melting point, and at the same time, the core layer 22 with a higher melting point is used, and the high temperature cooling section produced can withstand higher temperature aerosol.
  • the core layer 22 can be polypropylene, polyethylene terephthalate, or polylactic acid with a melting point of about 170°C. Lactic acid etc.
  • the core layer 22 may be polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyamide, or the like.
  • Polylactic acid is a biodegradable material, which can reduce environmental pollution caused when the cooling element 300 is discarded.
  • the bicomponent fiber 2 used to make the cooling element 300 of the present invention has a fineness of 1-30 denier, preferably 1.5-10 denier.
  • the bicomponent fiber of 1.5-10 denier is convenient to manufacture and has low cost, and the finished cooling element has The larger capillary force can better absorb and remove the condensate in the aerosol to form a dry aerosol, which is helpful for the user to perceive a lower temperature.
  • the bicomponent fiber 2 is a filament or staple fiber, a skin layer 21 and a core layer 22 having a concentric structure, the skin layer 21 is a copolyester of polyethylene terephthalate, and the core layer 22 is Polyethylene terephthalate.
  • the skin layer 21 of the bicomponent fiber 2 has a higher melting point and can withstand higher aerosol temperature.
  • some traditional Chinese medicine aerosol emitting devices have a heating element temperature of 400°C or above during operation. If the working temperature of the aerosol dispersing device is low, such as atomized electronic cigarette or heat-not-burn electronic cigarette, a polymer with a lower melting point such as polypropylene or poly-L-lactic acid can be used as the skin layer of the bicomponent fiber 2. twenty one.
  • the cooling element 300 is used to cool the aerosol generated in the aerosol dispersing device.
  • the aerosol generated by the aerosol dispersing device is appropriately cooled by the cooling element 300.
  • the aerosol transfers its own heat to the cooling element 300 through heat exchange to reduce the temperature.
  • the cooling element 300 absorbs the heat in the aerosol and then the temperature rises.
  • the substance in the cooling element 300 partially melts after absorbing the heat, so it can absorb the aerosol
  • the large amount of heat in the aerosol significantly reduces the temperature of the aerosol.
  • the cooling element 300 in this embodiment is made by bonding bicomponent fibers 2.
  • the skin layer 21 and the core layer 22 of the bicomponent fibers 2 are both polymers.
  • the polymers can absorb heat when they undergo some phase change, such as polymerization. When the material melts, the crystalline area is destroyed and changes from a solid state to a viscous fluid state. This phase change process requires a large amount of heat to be absorbed from the outside world.
  • the temperature of the aerosol generated in the aerosol dispersing device is higher than the melting point of the skin layer of the bicomponent fiber.
  • the high-temperature aerosol flows in from one end of the cooling element 300 and escapes from the other end.
  • the skin layer of the bi-component fiber of the cooling element 300 melts when it contacts the high-temperature aerosol, thereby absorbing a large amount of heat in the aerosol to make the temperature of the high-temperature aerosol Decrease quickly.
  • the melting point of the core layer 22 of the bicomponent fiber 2 of the cooling element 300 is higher than the melting point of the skin layer 21 by more than 25°C.
  • the high melting point core layer 22 in the bicomponent fiber 2 serves as the skeleton, and the melted skin layer 21 It becomes a viscous fluid state and adheres to the core layer 22 so as to maintain the integrity of the cooling element 300.
  • the cooling element 300 is designed according to the application requirements, so that the temperature of the aerosol when it escapes from the other end of the cooling element 300 can be reduced to below 65° C., so as to be suitable for the mouthfeel of the smoker.
  • the cooling element 300 made by bonding bicomponent fibers 2 has a large number of pores.
  • the pores can absorb the condensate generated when the aerosol is cooled, so that the aerosol becomes dry, which is helpful for the user to perceive a lower temperature.
  • the condensate can absorb part of the phenols and aldehydes, so the pores of the cooling element 300 can absorb the condensate while reducing harmful substances such as phenols and aldehydes in the aerosol.
  • Additives to reduce phenolic substances can be added to the cooling element, such as glycerol acetate, triethyl citrate, low molecular weight ethylene glycol, and a mixture of glycerol acetate and cellulose acetate fiber.
  • Flavoring agents such as mint, natural or synthetic flavors, etc. can also be added to the cooling element, so that users can inhale aerosols with different flavors.
  • Fig. 12a is a longitudinal cross-sectional view of a cooling element according to a twelfth embodiment of the present invention
  • Fig. 12b is a cross-sectional view of a cooling element according to the twelfth embodiment of the present invention.
  • the structure of this embodiment is similar to that of the eleventh embodiment, and the same parts as the eleventh embodiment will not be repeated in the description of this embodiment.
  • the cooling element 300 includes a cooling element through hole 330 penetrating the cooling element 300 in the axial direction.
  • the cross section of the cooling element through hole 330 is set in a star shape, and, as shown in FIG. 2b, an inner core 331 is inserted into the cooling element through hole 330.
  • the inner core 331 preferably has a cylindrical structure. Since a plurality of airflow channels are formed between the star-shaped hollow structure and the inner core 331 of the cylinder, the aerosol is divided into several small airflows when passing through the cooling element 300, so as to more fully interact with the cooling element 300. Contact and heat exchange.
  • Figure 13a is a longitudinal cross-sectional view of a cooling element according to a thirteenth embodiment of the present invention
  • Figure 13b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a thirteenth embodiment of the present invention
  • Figure 13c is according to the present invention
  • FIG. 13d is a cross-sectional view of the low-temperature cooling section of the cooling element according to the thirteenth embodiment of the present invention.
  • the structure of this embodiment is similar to that of the eleventh embodiment, and the same parts as the eleventh embodiment will not be repeated in the description of this embodiment.
  • the cooling element 300 includes a high temperature cooling section 324 and a low temperature cooling section 323.
  • the aerosol generated in the aerosol dispersing device flows in from the end of the high-temperature cooling section 324 of the cooling element 300 and from the end of the low-temperature cooling section 323 Department escaped.
  • the high temperature cooling section 324 of the cooling element 300 has a cooling element through hole 330 penetrating the high temperature cooling section 324 in the axial direction.
  • the high-temperature cooling section 324 is preferably arranged as a hollow structure with a circular cross-section of the through-hole 330 of the cooling element, and the cross-sectional shape of the through-hole 330 is a circular ring.
  • the high-temperature cooling section 324 of the cooling element 300 may be configured as a hollow structure with a star-shaped cross-section through the cooling element through hole 330, and its cross-sectional shape is a star-shaped ring, that is, the cross-sectional shape of the inner hole of the hollow structure.
  • the high-temperature cooling section 324 adopts a hollow structure, which can reduce the resistance of the aerosol to pass through the high-temperature cooling section 324, so that the high-temperature aerosol can pass through the hollow channel with low gas resistance.
  • the bicomponent fiber The skin layer 21 of 2 absorbs a large amount of heat from the high-temperature aerosol and melts, so that the temperature of the aerosol is rapidly reduced.
  • the outer periphery of the high-temperature cooling section 324 is far away from the high-temperature aerosol, and the temperature is already lowered to a lower temperature when the temperature is transferred to the outer periphery, so as to prevent the outer peripheral wall of the high-temperature cooling section 324 from being caused by high temperature. Deform or damage the structure and performance of the aerosol emitting device.
  • the high temperature cooling section 324 of the cooling element 300 is made of bicomponent fiber thermal 2 bonding.
  • the porosity of the high temperature cooling section 324 is preferably 80%.
  • the bicomponent fiber 2 is short fiber and has a concentric structure. The skin layer 21 and the core layer 22.
  • the low-temperature cooling section 323 in this embodiment adopts a non-hollow structure, and the cross-sectional shape of the low-temperature cooling section 323 is a solid circular surface.
  • the low-temperature cooling section 323 has a porosity of 90-95% and is made by bonding bicomponent fibers 2 with an eccentric structure. Although the low-temperature cooling section 323 has a non-hollow structure, it still has a low air resistance due to the high porosity of the low-temperature cooling section 323.
  • the aerosol with a lower temperature enters the low-temperature cooling section 323.
  • the low-temperature cooling section 323 exchanges heat with the gas mist, the low-temperature cooling section 323 absorbs heat and the temperature increases, and the gas mist conducts the heat to the low-temperature cooling section 323 and then the temperature further decreases. If the temperature of the aerosol cooled by the high temperature cooling section 324 is higher than the melting point of the skin layer 21 of the bicomponent fiber 2 in the low temperature cooling section 323, the skin layer 21 of the bicomponent fiber 2 in the low temperature cooling section 323 will be partially melted, so that The temperature of the aerosol drops rapidly.
  • the cooling element 300 is designed according to application requirements, so that the temperature of the gas mist when it escapes from the end surface of the low-temperature cooling section 323 can be reduced to below 65° C., so as to suit the taste of the smoker.
  • the low-temperature cooling section 323 with a non-hollow structure is adopted, when the aerosol penetrates the low-temperature cooling section 323, it can conduct more sufficient heat exchange with the bicomponent fiber 2 and can better reduce the temperature of the aerosol.
  • the melting point of the skin layer 21 of the high temperature cooling section 324 is greater than the melting point of the skin layer 21 of the low temperature cooling section 323.
  • the skin layer 21 is poly-L-lactic acid with a melting point of about 170°C
  • the core layer 22 is polyethylene terephthalate with a melting point of about 265°C.
  • the skin layer 21 is poly-D,L-lactic acid with a melting point of about 130°C
  • the core layer 22 is poly-L-lactic acid with a melting point of about 170°C.
  • the aerosol dispersing device of the cooling element 300 of this embodiment is loaded with components such as nicotine and glycerin, when the aerosol dispersing device is heated to about 375°C, the nicotine and glycerin volatilize and produce aerosol as the user inhales. After escaping, the high-temperature mist enters the high-temperature cooling section 324 of the cooling element 300.
  • the inner wall of the hollow channel of the high-temperature cooling section 324 is in contact with high-temperature aerosol and heat exchange occurs.
  • the skin layer 21 of part of the bicomponent fiber 2 melts when contacting the high-temperature aerosol, and absorbs a large amount of heat in the aerosol at the same time, so that the temperature of the high-temperature aerosol is rapid When lowered, part of the glycerol condenses into liquid and is absorbed by the high temperature cooling section 324.
  • the high melting point core layer 22 in the bicomponent fiber 2 in the high temperature cooling section 324 serves as the skeleton, and the melted skin layer 21 becomes a viscous fluid state and adheres to the core layer 22, thereby maintaining the integrity of the cooling element 300.
  • the gas mist with a lower temperature enters the low-temperature cooling section 323 of the cooling element 300. If the temperature of the aerosol entering the low-temperature cooling section 323 is still higher than 130°C, the skin layer 21 of the bicomponent fiber 2 of the low-temperature cooling section 323 will be partially melted, causing the aerosol temperature to drop rapidly below 130°C. Subsequently, the low-temperature cooling section 323 continues to exchange heat with the aerosol, and uses the phase change of the polylactic acid in the low-temperature cooling section 323 to absorb heat between 55°C and 70°C, so that the temperature of the aerosol is further reduced to a taste suitable for the smoker.
  • the low-temperature cooling section 323 in this embodiment adopts a non-hollow structure.
  • the aerosol penetrates the low-temperature cooling section 323, it fully contacts and exchanges heat with the bicomponent fiber, so that the aerosol flows from the end of the low-temperature cooling section 323.
  • Part of the glycerin and moisture in the aerosol is condensed into a liquid in the low-temperature cooling section 323 and then absorbed by the low-temperature cooling section 323, so that the aerosol becomes dry, which is beneficial for the user to perceive a lower temperature.
  • the condensate can dissolve part of the aldehydes and phenols, the condensate is absorbed by the pores in the cooling element 300 to reduce the user's inhalation of harmful substances, aldehydes and phenols.
  • 1-3% glycerol acetate or a mixture of glycerol acetate and cellulose acetate fiber is added to reduce the content of phenolic substances in the aerosol.
  • Fig. 14a is a longitudinal sectional view of a cooling element according to a fourteenth embodiment of the present invention
  • Fig. 14b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a fourteenth embodiment of the present invention
  • Fig. 14c is a tenth according to the present invention
  • FIG. 14d is another cross-sectional view of the low-temperature cooling section of the cooling element according to the fourteenth embodiment of the present invention.
  • the structure of this embodiment is similar to that of the eleventh embodiment, and the same parts as the eleventh embodiment will not be repeated in the description of this embodiment.
  • the cooling element 300 includes a high temperature cooling section 324 and a low temperature cooling section 323.
  • the high temperature cooling section 324 has a cooling element through hole 330 axially penetrating the high temperature cooling section 324.
  • the high-temperature cooling section 324 is preferably arranged as a hollow structure with a circular cross-section of the through-hole 330 of the cooling element, and the cross-sectional shape of the through-hole 330 is a circular ring.
  • the low-temperature cooling section 323 has a cooling element through hole 330 that axially penetrates the low-temperature cooling section 323.
  • the through-hole 330 of the cooling element of the low-temperature cooling section 323 has a circular cross-section, and an inner core 331 is inserted into the through-hole 330 of the cooling element of the low-temperature cooling section 323.
  • the inner core 331 preferably has a cylindrical structure.
  • a groove 332 may be provided on the surface of the inner core 331 of the low-temperature cooling section 323 to reduce air resistance.
  • the cooling element 300 and the inner core 331 are made by bonding the bicomponent fiber 2.
  • the skin layer 21 of the bicomponent fiber 2 is polylactic acid with a melting point of about 120°C
  • the core layer 22 is a polylactic acid with a melting point of about 160°C. Polylactic acid.
  • the skin layer 21 can be replaced by polyethylene, polyolefin or copolyester with a melting point of 100-120°C
  • the core layer 22 can be replaced by polypropylene or polyethylene terephthalate.
  • the porosity of the high temperature cooling section 324 and the low temperature cooling section 323 is preferably 85%, and the porosity of the inner core 331 of the low temperature cooling section 323 is preferably 85-95%.
  • Fig. 15a is a longitudinal sectional view of a cooling element according to a fifteenth embodiment of the present invention
  • Fig. 15b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a fifteenth embodiment of the present invention
  • Fig. 15c is a tenth according to the present invention
  • the structure of this embodiment is similar to that of the eleventh embodiment, and the same parts as the eleventh embodiment will not be repeated in the description of this embodiment.
  • the cooling element 300 includes a high temperature cooling section 324 and a low temperature cooling section 323.
  • the high-temperature cooling section 324 has a cooling element through hole 330 extending axially through the high-temperature cooling section 324.
  • the high-temperature cooling section 324 is preferably configured as a hollow structure with a star-shaped cross-section of the cooling element through hole 330, and the cross-sectional shape of the through-hole 330 is a star-shaped ring.
  • the low-temperature cooling section 323 also has a cooling element through hole 330 that axially penetrates the low-temperature cooling section 323.
  • the low-temperature cooling section 323 is preferably arranged as a hollow structure with a star-shaped cross-section of the through-hole of the cooling element 330, and the cross-sectional shape is a star-shaped ring.
  • the cross-sectional area of the cooling element through hole 330 of the high-temperature cooling section 324 is larger than the cross-sectional area of the cooling element through hole 330 of the low-temperature cooling section 323.
  • the cooling element 300 is made by bonding bicomponent fibers 2.
  • the skin layer 21 of the bicomponent fiber 2 is polylactic acid with a melting point of about 130°C
  • the core layer 22 is polylactic acid with a melting point of about 170°C.
  • the skin layer 21 can be replaced by polyethylene, polyolefin or copolyester with a melting point of 100-130°C
  • the core layer 22 can be replaced by polypropylene or polyethylene terephthalate.
  • the porosity of the high-temperature cooling section 324 is preferably 75-85%, and the porosity of the low-temperature cooling section 323 is preferably 85-90%.
  • Fig. 16a is a longitudinal sectional view of a cooling element according to a sixteenth embodiment of the present invention
  • Fig. 16b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a sixteenth embodiment of the present invention
  • Fig. 16c is a tenth view according to the present invention
  • Cross-sectional view of the low-temperature cooling section of the cooling element of the sixth embodiment The structure of this embodiment is similar to that of the eleventh embodiment, and the same parts as the eleventh embodiment will not be repeated in the description of this embodiment.
  • the cooling element 300 includes a high temperature cooling section 324 and a low temperature cooling section 323.
  • the high-temperature cooling section 324 has a cooling element through hole 330 that axially penetrates the high-temperature cooling section 324.
  • the high-temperature cooling section 324 is preferably configured as a hollow structure with a star-shaped cross-section of the cooling element through hole 330, and the cross-sectional shape of the through-hole 330 is a star-shaped ring.
  • the low-temperature cooling section 323 also has a cooling element through hole 330 that axially penetrates the low-temperature cooling section 323.
  • the low-temperature cooling section 323 is preferably arranged as a hollow structure with a star-shaped cross-section of the through-hole of the cooling element 330, and the cross-sectional shape is a star-shaped ring.
  • the cross-sectional area of the cooling element through hole 330 of the high-temperature cooling section 324 is larger than the cross-sectional area of the cooling element through hole 330 of the low-temperature cooling section 323.
  • an inner core 331 can be inserted into the cooling element through holes 330 of the high temperature cooling section 324 and the low temperature cooling section 323, and the diameter of the inner core 331 is not larger than the cooling element of the low temperature cooling section 323 The inner diameter of the through hole 330.
  • Figure 17a is a longitudinal cross-sectional view of a cooling element according to a seventeenth embodiment of the present invention
  • Figure 17b is a cross-sectional view of a high-temperature cooling section of a cooling element according to a seventeenth embodiment of the present invention
  • Figure 17c is a tenth according to the present invention
  • the structure of this embodiment is similar to that of the eleventh embodiment, and the same parts as the eleventh embodiment will not be repeated in the description of this embodiment.
  • the cooling element through hole 330 of the high temperature cooling section 324 is preferably configured as a hollow structure with a star-shaped cross-section of the cooling element through hole 330, and the cross-sectional shape of the through-hole 330 is a star-shaped ring.
  • the low-temperature cooling section 323 also has a cooling element through hole 330 that axially penetrates the low-temperature cooling section 323.
  • the low-temperature cooling section 323 is preferably arranged as a hollow structure with a star-shaped cross-section of the through-hole of the cooling element 330, and the cross-sectional shape is a star-shaped ring.
  • an inner core 331 can be inserted into the cooling element through hole 330 of the low-temperature cooling section 323, and the inner core 331 is loaded with flavoring agents, such as mint, flavor, and the like.
  • the high temperature cooling section 324 and the low temperature cooling section 323 may be integrally formed, and the porosity is preferably 85%.
  • the cooling element 300 is made by bonding bicomponent fibers 2.
  • the skin layer 21 of the bicomponent fiber 2 is polylactic acid with a melting point of about 170°C, and the core layer 22 is polyterephthalene with a melting point of about 265°C.
  • the skin layer 21 can be replaced with polypropylene.
  • Fig. 18a is a longitudinal sectional view of a cooling element according to an eleventh embodiment of the present invention
  • Fig. 18b is a cross-sectional view of a cooling element according to an eleventh embodiment of the present invention.
  • the structure of this embodiment is similar to that of the eleventh embodiment, and the same parts as the eleventh embodiment will not be repeated in the description of this embodiment.
  • the cooling element 300 is made of bicomponent fibers 2 through thermal bonding, and the porosity is 90%.
  • the bicomponent fiber 2 is a short fiber, and has a skin layer 21 and a core layer 22 with a concentric or eccentric structure.
  • the skin layer 21 is polylactic acid with a melting point of 125-135°C
  • the core layer 22 is a polylactic acid with a melting point of 160-185°C.
  • the cooling element 300 is a non-hollow structure, and when the aerosol passes through the cooling element 300, it can fully contact the cooling element 300 and exchange heat.
  • the skin layer 21 can be replaced with polyethylene, polypropylene, etc.
  • the core layer 22 can be replaced with polypropylene, polyethylene terephthalate, or the like.
  • the present invention relates to a cooling element 300.
  • the cooling element 300 is made of bicomponent fibers 2 bonded together.
  • the bicomponent fibers 2 have a skin layer 21 and a core layer 22.
  • the cooling element 300 made by bonding the bicomponent fiber 2 has a large number of capillary pores, which has a good absorption effect on the condensate generated when the aerosol is cooled, and the aerosol becomes dry, which is beneficial to the user to perceive Lower temperature.
  • the cooling element 300 made by bonding the bicomponent fiber 2 can be made into a hollow structure and a non-hollow structure, and the two can be used alone or in combination according to requirements to achieve proper cooling effect and air resistance.
  • the cooling element 300 of the present invention can be applied to various aerosol emitting devices, such as fragrance-containing aerosol emitting devices, nicotine-containing aerosol emitting devices, and aerosol emitting devices containing gasifiable Chinese medicine components.
  • aerosol emitting devices such as fragrance-containing aerosol emitting devices, nicotine-containing aerosol emitting devices, and aerosol emitting devices containing gasifiable Chinese medicine components.
  • the above-mentioned embodiments only exemplarily illustrate the principles and effects of the present invention, but are not used to limit the present invention.
  • two different bicomponent fibers can be mixed to prepare the cooling element 300, or without affecting the overall performance of the cooling element 300. Under the circumstances, some single-component fibers are mixed with bi-component fibers to reduce costs.
  • Fig. 19a is a longitudinal cross-sectional view of a condensate absorbing element according to the nineteenth embodiment disclosed in the present invention
  • Fig. 19b is a cross-sectional view of a condensate absorbing element according to the nineteenth embodiment disclosed in the present invention.
  • the condensate absorbing element 400 is used for absorbing condensate in the aerosol channel of the aerosol dispersing device.
  • the condensate absorbing element 400 is composed of a double-core skin-core structure.
  • the sub-fibers 2 are thermally bonded to form a three-dimensional network three-dimensional structure, and the bicomponent fiber 2 has a skin layer 21 and a core layer 22.
  • the skin layer 21 is preferably polylactic acid, or, preferably, a polyester such as polyethylene, polypropylene, PBT, or PTT, or a copolyester with a low melting point copolyester such as polyethylene terephthalate.
  • the polylactic acid is preferably poly D-lactic acid, poly L-lactic acid or poly D, L-lactic acid.
  • the density of the condensate absorbing element 400 of this embodiment is 0.1 g/cm 3 to 0.4 g/cm 3 , preferably 0.2 g/cm 3 to 0.3 g/cm 3 .
  • the condensate density of the absorbent member 400 is smaller than 0.1 g / cm 3
  • the capillary force of the condensate liquid absorbing member 400 is small, a poor ability to absorb the condensate, and condensate absorbing rigid axial member 400 is too small, is not conducive to the when the device is difficult to assemble the condensate density of the absorbent element 400 is greater than 0.4 g / cm 3
  • absorption of the condensate is too high radial stiffness element 400, distributing the aerosol; means for distributing the aerosol assembly, in particular not conducive to high-speed automated assembly
  • the liquid absorption capacity per unit volume of the condensate absorption element 400 is too small, and the space utilization efficiency is poor, which is not conducive to use in
  • the rigid comparison method in this article is to place the condensate absorption element 400 in the axial or radial direction, clamp it between two parallel plates, and measure the axial height or diameter of the condensate absorption element 400 before compression.
  • measure the axial or radial height of the condensate absorption element 400 after axial or radial compression of the two plates and calculate the amount of compression deformation, which is The difference between the uncompressed axial height or radial height minus the compressed axial height or radial height; divide the compressed deformation by the axial height or diameter of the condensate absorption element 400 before uncompressed To the height, the compression ratio is obtained.
  • the smaller the compression ratio the greater the rigidity, and the larger the compression ratio, the lower the rigidity.
  • the axial rigidity of the condensate absorbing element 400 is greater than the radial rigidity thereof.
  • the manufacturing process can be controlled so that the axial rigidity of the condensate absorbing element 400 is greater than its radial rigidity.
  • the condensate absorbing element 400 can be adaptively deformed in the radial direction under the action of axial force, and be adaptively fixed in the aerosol emitting device, which facilitates high-speed automated assembly.
  • Fig. 19c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 19a and 19b. As shown in Fig. 19c, the skin layer 21 and the core layer 22 have a concentric structure. The bicomponent fiber 2 with a concentric structure is more rigid and convenient to produce.
  • Fig. 19d is another enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 19a and 19b.
  • the skin layer 21 and the core layer 22 have an eccentric structure.
  • the bicomponent fiber 2 with an eccentric structure is relatively soft and fluffy, and it is easy to manufacture the condensate absorption element 400 with a lower density.
  • the bicomponent fibers 2 are filaments or staple fibers.
  • the condensate absorbing element 400 made of filaments has higher strength, and the condensate absorbing element 400 made of staple fibers has better elasticity.
  • the manufacturer can select a suitable bicomponent fiber according to the performance requirements of the condensate absorbing element 400 to make the condensate absorbing element 400 with a suitable density and a suitable shape.
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by more than 20°C.
  • the condensate absorbing element 400 of this embodiment is made by thermal bonding of the bicomponent fiber 2 with a sheath-core structure.
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by more than 20° C., and the core layer 22 can maintain a certain rigidity when the fibers are thermally bonded, which facilitates the production of the condensate absorption element 400.
  • the skin layer 21 of the bicomponent fiber 2 is polylactic acid, or PLA for short.
  • Polylactic acid is made by chemical reaction of lactic acid, and there are L and D optical isomers of lactic acid.
  • Polylactic acid includes poly L-lactic acid, poly D-lactic acid and poly D, L-lactic acid.
  • Different polylactic acids have different melting points. Due to differences in raw material purity and production processes, the same type of polylactic acid from different manufacturers may have the same or different melting points; the same type of but different types of polylactic acid from the same manufacturer may have the same or different melting points.
  • a suitable core layer 22 material can be selected according to the melting point of the polylactic acid of the skin layer 21.
  • poly-D with a melting point of 125-135°C and L-lactic acid as the skin layer 21, polypropylene, polyethylene terephthalate, etc. can be used as the core layer 22, or poly-D-lactic acid with a melting point of 165-180°C Or poly-L-lactic acid is the core layer.
  • poly-D-lactic acid or poly-L-lactic acid with a melting point of 155-170°C as the skin layer 21, which can be polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate.
  • Polyamide, etc. are the core layer 22.
  • Polylactic acid is a biodegradable material, which can be completely decomposed into carbon dioxide and water by microorganisms. Especially when the skin layer 21 and the core layer 22 are both polylactic acid, the condensate absorption element can be completely decomposed by microorganisms, thereby greatly reducing the condensate absorption element 400 Environmental pollution caused by being abandoned after use.
  • the skin layer of the bicomponent fiber 2 can also be polyethylene, polypropylene, polytrimethylene terephthalate, polybutylene terephthalate or polyethylene terephthalate copolyester, or poly Amide-6.
  • a suitable core layer 22 material can be selected according to the melting point of the skin layer 21.
  • high-density polyethylene with a melting point of 125-135°C is used as the skin layer
  • polypropylene, polyethylene terephthalate, etc. can be used as the core layer 22.
  • polypropylene with a melting point of 160-170°C is used as the skin layer 21, and polyethylene terephthalate, polyamide, etc. can be selected as the core layer 22.
  • a low-melting copolyester with a melting point of 110-120°C is used as the skin layer 21, and polyethylene terephthalate or the like can be selected as the core layer 22.
  • polybutylene terephthalate or polytrimethylene terephthalate with a melting point of 225-235°C is used as the skin layer 21
  • polyethylene terephthalate with a melting point of 255-265°C can be selected as the skin layer 21 ⁇ 22 ⁇ Core layer 22.
  • the bicomponent fibers 2 are bonded to form a three-dimensional network of three-dimensional structure.
  • bonding There are many methods for bonding, such as glue (the most common bonding method), plasticizer (the bonding method of cigarette filters) and so on.
  • the present invention preferably forms a three-dimensional network three-dimensional structure through thermal bonding. Through the method of thermal bonding, the cost is low and no impurities are introduced.
  • the denier of the bicomponent fiber 2 used to make the condensate absorbing element 400 of the present invention ranges from 1 denier to 10 denier, preferably 2 denier to 6 denier. It is difficult to manufacture the bicomponent fiber 2 with a core-sheath structure of less than 1 denier, and the cost is high.
  • the condensate absorption element 400 made of fibers higher than 10 denier has insufficient capillary force and poor condensate absorption ability.
  • the sheath-core bicomponent fiber 2 between 1 denier and 10 denier is easily thermally bonded into a condensate absorbing element 400 with a low density and a three-dimensional structure with suitable capillary force.
  • the core-sheath bicomponent fiber 2 with a fineness between 2 denier and 6 denier is particularly suitable and has a lower cost.
  • the condensate absorption element 400 of this embodiment can be made into a suitable cross-sectional shape according to the internal structure of the aerosol emitting device, such as a circle, an ellipse, a rectangle, or a combination of various geometric shapes, to facilitate the aerosol emission Assembled in the device.
  • the condensate absorption element through hole 430 can be provided in the axial direction of the condensate absorption element 400 as required. When the gas mist passes through the periphery of the condensate absorption element 400 or passes through the condensate absorption element through hole 430, the condensate around the gas mist Contact with the condensate absorption element to be absorbed.
  • the through hole 430 of the condensate absorbing element may be circular, elliptical, rectangular or a combination of various geometric shapes, and the through hole 430 of the condensate absorbing element may be one or more.
  • the condensate absorbing element 400 is formed of a three-dimensional network of three-dimensional structure by thermal bonding of bicomponent fibers 2 with a concentric structure.
  • the denier of the bicomponent fiber 2 is 2 denier
  • the skin layer 21 is poly-D
  • the core layer 22 is poly-L-lactic acid with a melting point of 165-180°C.
  • the condensate absorption element 400 is made.
  • the density is between 0.2 g/cm 3 to 0.3 g/cm 3 , this condensate absorption element 400 has the characteristics of large liquid absorption capacity and fast absorption speed.
  • the cross-sectional shape of the condensate absorbing element 400 in this embodiment is elliptical, and an axial condensate absorbing element through hole 430 with a circular cross-section is provided.
  • the gas mist passes through the condensate absorbing element 400
  • the through hole 430 of the axial condensate absorbing element is formed, the condensate around the aerosol contacts and is absorbed by the peripheral wall of the through hole 430 of the axial condensate absorbing element to prevent the condensate from being sucked into the mouth by the user and improve the user experience.
  • the skin layer 21 may be high-density polyethylene with a melting point of 125-135°C
  • the core layer 22 may be polypropylene with a melting point of 160-170°C.
  • Fig. 20a is a longitudinal cross-sectional view of the condensate absorbing element of the twentieth embodiment disclosed in the present invention
  • Fig. 20b is a cross-sectional view of the condensate absorbing element of the twentieth embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the nineteenth embodiment, and the same parts as those of the nineteenth embodiment will not be repeated in the description of this embodiment.
  • the condensate absorbing element 400 is formed by thermally bonding bicomponent fibers 2 with a concentric structure to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers 2 are filaments with a fineness of 4 denier.
  • the skin layer 21 of the bicomponent fiber 2 is poly-L-lactic acid or poly-D-lactic acid with a melting point of 165-180°C, and the core layer 22 is polyethylene terephthalate with a melting point of 255-265°C.
  • This condensate absorbing element 400 has good temperature resistance and can be installed in the aerosol channel near the atomizer.
  • the density of the prepared condensate absorbing element 400 is preferably 0.25 g/cm 3 , which has greater rigidity and is suitable for high-speed automated assembly.
  • the cross-sectional shape of the condensate absorbing element 400 in this embodiment is circular, and the axial condensate absorbing element through hole 430 is also circular.
  • the skin can be replaced by polylactic acid with a lower melting point, such as poly-L-lactic acid or poly-D-lactic acid with a melting point of 145-160°C.
  • the skin layer 21 of the bicomponent fiber 2 may be polybutylene terephthalate with a melting point of 225-235°C
  • the core layer 22 may be polyethylene terephthalate with a melting point of 255-265°C. Diester. If the condensate absorbing element in this embodiment is used in a place far away from the atomizer, the skin layer can be made of a polymer with a lower melting point, such as polypropylene with a melting point of 160-170°C.
  • Fig. 21a is a longitudinal cross-sectional view of the condensate absorbing element of the twenty-first embodiment disclosed in the present invention
  • Fig. 21b is a cross-sectional view of the condensate absorbing element of the twenty-first embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the nineteenth embodiment, and the same parts as those of the nineteenth embodiment will not be repeated in the description of this embodiment.
  • the condensate absorption element 400 is formed by thermal bonding of bicomponent fibers 2 with an eccentric structure to form a three-dimensional network structure.
  • the bicomponent fiber 2 has a denier of 10 denier
  • the skin layer 21 is poly-D,L-lactic acid with a melting point of 125-135°C
  • the core layer 22 is poly-L-lactic acid with a melting point of about 165-180°C.
  • the made condensate absorption element has a density of 400 0.3 g / cm 3-0.4 g / cm 3.
  • the cross section of the condensate absorption element 400 in this embodiment is composed of a rectangle and two semicircles, and two axial condensate absorption element through holes 430 are provided. This structure is particularly suitable for the design of two cigarette holders.
  • the skin layer 21 is a low-melting copolyester with a melting point of 110-120°C
  • the core layer 22 is a polyethylene terephthalate with a melting point of about 255-265°C.
  • Fig. 22a is a longitudinal cross-sectional view of the condensate absorbing element according to the twenty-second embodiment disclosed in the present invention
  • Fig. 22b is a cross-sectional view of the condensate absorbing element according to the twenty-second embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the nineteenth embodiment, and the same parts as those of the nineteenth embodiment will not be repeated in the description of this embodiment.
  • the condensate absorbing element 400 is formed by thermally bonding bicomponent fibers 2 with an eccentric structure to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers 2 are short fibers with a denier of 6 denier, and the skin layer 21 has a melting point of 115.
  • the poly-D, L-lactic acid at -125°C, and the core layer 22 is poly-L-lactic acid with a melting point of 155-170°C.
  • the condensate absorption element made of bi-component fiber 2 with eccentric structure has better elasticity in the radial direction, and is convenient to install and fix in the aerosol dispersing device.
  • the condensate absorbing element 400 in this embodiment is provided with grooves 4 at both ends of the long axis, so that it can be easily installed in an oval space.
  • the core layer 22 can be replaced with polypropylene or polyethylene terephthalate to reduce cost.
  • the skin layer 21 may be low-density polyethylene with a melting point of 110-125°C
  • the core layer 22 may be polypropylene with a melting point of 160°C to 170°C.
  • Figure 23a is a longitudinal cross-sectional view of the condensate absorption element before assembly of the twenty-third embodiment disclosed in the present invention.
  • the up and down direction is the axial direction, which is the direction of force during assembly;
  • Figure 23b is the twentieth version of the present invention.
  • FIG. 23c is a longitudinal cross-sectional view of the condensate absorption element of the twenty-third embodiment disclosed in the present invention after installation.
  • the structure of this embodiment is similar to that of the nineteenth embodiment, and the same parts as those of the nineteenth embodiment will not be repeated in the description of this embodiment.
  • the condensate absorption element 400 is formed by thermal bonding of bicomponent fibers 2 to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers 2 are short fibers with a denier of 1 denier, and the skin layer 21 is an amorphous poly D, L- lactic acid, such polylactic acid amorphous no melting point, a melting point of the core layer 22 is about 160-180 °C polylactic acid, the condensate 400 density absorbent element made of 0.1 g / cm 3.
  • the condensate absorbing element 400 is inserted into the partially trapezoidal cavity inside the cigarette holder along the axial direction.
  • the radial direction of the condensate absorbing element 400 is adaptively deformed according to the cavity inside the cigarette holder.
  • a longitudinal section view of the assembled condensate absorbing element 400 As shown in Figure 23c. Utilizing the characteristic that the condensate absorbing element 400 can adaptively deform in the radial direction, it is possible to make full use of the space inside the aerosol dispersing device while simplifying the design of the condensate absorbing element 400, which is beneficial to the innovative design of the aerosol dispersing device.
  • the skin layer 21 may be polyethylene, and the core layer 22 may be polypropylene.
  • Fig. 24a is a longitudinal cross-sectional view of the condensate absorbing element of the twenty-fourth embodiment disclosed in the present invention
  • Fig. 24b is a cross-sectional view of the condensate absorbing element of the twenty-fourth embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the nineteenth embodiment, and the same parts as those of the nineteenth embodiment will not be repeated in the description of this embodiment.
  • the condensate absorbing element 400 is formed by thermal bonding of the bicomponent fiber 2 to form a three-dimensional network three-dimensional structure.
  • the denier of the bicomponent fiber 2 is 3 denier
  • the skin layer 21 is polylactic acid with a melting point of 125-135°C.
  • the core layer 22 is polylactic acid with a melting point of 165-180°C
  • the density of the manufactured condensate absorption element 400 is 0.25 g/cm 3 to 0.35 g/cm 3 .
  • the condensate absorbing element 400 of the present embodiment is provided with a groove 5 for conducting aerosol on one side, which is suitable for aerosol dispersing device with aerosol channel provided on one side.
  • the skin layer 21 may be polyethylene with a melting point of 125-135°C
  • the core layer 22 may be polyethylene terephthalate with a melting point of 255-265°C.
  • the condensate absorption element 400 of the present invention has a lower density and a higher porosity, and has a large liquid absorption capacity per unit volume, which is suitable for a compact space of an aerosol emitting device.
  • the three-dimensional network three-dimensional structure made by the two-component fiber bonding based on the skin-core structure does not expand or deform after absorbing the condensate, so that the aerosol channel has a stable air flow resistance, which is beneficial to maintain the aerosol during the use of the aerosol emitting device. Prevent stability and improve user experience.
  • the condensate absorption element of the present invention can be customized according to the structure of the aerosol emitting device, so as to be easily assembled in a precise aerosol emitting device.
  • the manufacturing process can be controlled so that the axial direction of the condensate absorption element has greater rigidity than the radial direction, which facilitates the use of force in the axial direction during assembly and facilitates high-speed automatic assembly.
  • the condensate absorbing element 400 can quickly absorb condensate when contacted with aerosol, and effectively improve the taste.
  • Fig. 25a is a longitudinal sectional view of the supporting element of the twenty-fifth embodiment disclosed in the present invention
  • Fig. 25b is a cross-sectional view of the supporting element of the twenty-fifth embodiment disclosed in the present invention.
  • the support element according to the twenty-fifth embodiment of the present invention is used to support the flavor conversion component in an aerosol emitting device.
  • the support element 500 is formed by thermally bonding bicomponent fibers 2 to form a three-dimensional network. Three-dimensional structure, the bicomponent fiber 2 has a skin layer 21 and a core layer 22.
  • the support element 500 may have a support element through hole 530 penetrating the support element 500 axially.
  • the supporting element through hole 530 may be used to support the flavor transforming member (not shown).
  • the flavor transforming component may be popped beads, and the popped beads are encapsulated with flavoring agents such as mint, natural or synthetic flavors.
  • the blasting ball is inserted into the through hole 530 of the supporting element and supported by the through hole 530 of the supporting element.
  • the support element 500 can be squeezed to rupture the popping beads, so that the flavoring agent escapes, and is mixed with the aerosol generated by the aerosol dispersing device to change the flavor of the aerosol, so that the user can experience the aerosol with different flavors.
  • the flavor is added by the supporting element 500, because the flavor is coated in the flavor conversion member, no flavor loss occurs during storage, and there is no problem of decomposition due to high temperature during atomization.
  • the supporting element 500 of this embodiment can be made into a suitable geometric shape according to the internal space of the aerosol emitting device, such as a cylindrical shape, a square cylindrical shape, or an elliptical cylindrical shape.
  • the axial support element through hole 530 may not be provided.
  • the flavor conversion component can be pre-embedded in the support element when the support element is formed, or a hole can be punched in the support element along the radial direction to install the flavor change. part.
  • the density of the supporting element 500 in this embodiment is 0.08-0.35 g/cm 3 , such as 0.08 g/cm 3 , 0.10 g/cm 3 , 0.12 g/cm 3 , 0.15 g/cm 3 , 0.18 g/cm 3 , 0.21 g / cm 3, 0.25 g / cm3, 0.3 g / cm3, 0.35 g / cm 3, preferably 0.1 to 0.25 g / cm 3.
  • a support member 500 make it difficult, insufficient strength and the support element 500, easily assembled means for distributing the aerosol; when the density greater than 0.35 g / cm 3, the strength of the support member 500 is too large , It is not easy to rupture the flavor conversion element by squeezing the supporting element during use.
  • the present invention determines that the preferred density range of the supporting element 500 is 0.1-0.25 g/cm 3 , and most preferably 0.12-0.2 g/cm 3 .
  • the support element 500 according to the present embodiment is bonded by bicomponent fibers 2 to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers 2 have a skin layer 21 and a core layer 22. Adhesives, plasticizers, or heat may be used to bond the fibers, and heat is preferably used to bond the fibers to avoid introducing impurities during the process of making the support element 500.
  • the fiber component in the present invention refers to the polymer that makes the fiber. Additives used on the fiber surface, such as surfactants, are not considered to be components of the fiber.
  • Fig. 25c is an enlarged schematic cross-sectional view of the bicomponent fiber in Figs. 25a and 25b. As shown in FIG. 25c, the skin layer 21 and the core layer 22 have a concentric structure. The bicomponent fiber 2 with a concentric structure is more rigid, convenient to produce, and less expensive.
  • Fig. 25d is another cross-sectional enlarged schematic view of the bicomponent fiber in Figs. 25a and 25b.
  • the skin layer 21 and the core layer 22 have an eccentric structure.
  • the bicomponent fiber 2 with an eccentric structure is relatively soft and fluffy, and it is easy to manufacture a supporting element 500 with a lower density.
  • bicomponent fibers with a side-by-side structure can also be used to make the supporting element 500, but thermal bonding is more difficult.
  • three-component skin-core structure fibers can also be used to make the supporting element 500, but the three-component skin-core structure fiber is difficult to manufacture, high in cost, and poor in cost performance.
  • the bicomponent fibers 2 are filaments or staple fibers.
  • the support element 500 made of filaments has higher strength, and the support element 500 made of short fibers has better elasticity.
  • the manufacturer can select a suitable bicomponent fiber according to the performance requirements of the support element 500 to make the support element 500 with a suitable density and a suitable shape.
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by 25° C. or more.
  • the supporting element 500 of this embodiment is made by thermal bonding of the bicomponent fiber 2 with a sheath-core structure.
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by more than 25° C., which can maintain a certain rigidity of the core layer 22 when the fibers are thermally bonded, which is convenient for making the support element 500 with a lower density.
  • the skin layer 21 of the bicomponent fiber 2 may be polyolefin such as polyethylene and polypropylene, or common polymers such as copolyester of ethylene terephthalate, polyamide-6, and polylactic acid.
  • Polyolefin is a polymer of olefins, and is usually a general term for a class of thermoplastic resins obtained by single polymerization or copolymerization of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, and 1-hexene.
  • Polyolefin has an inert molecular structure, no active groups on the molecular chain, and less adsorption of flavors, so it has unique advantages.
  • the core layer 22 may be a polymer such as polypropylene or polyethylene terephthalate.
  • the core layer 22 may be polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyamide, or the like.
  • the skin layer 21 of the bicomponent fiber 2 has a low melting temperature, which is beneficial to improve production efficiency and reduce energy consumption in the manufacturing process.
  • the core layer 22 can be polypropylene, polyethylene terephthalate, and a melting point of about 170°C. Polylactic acid, etc.
  • the core layer 22 may be polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyamide, or the like.
  • Polylactic acid is a biodegradable material, which can reduce environmental pollution caused when the support element 500 is discarded.
  • the denier of the bicomponent fiber 2 used to make the supporting element 500 of the present invention is between 1 and 30 denier, preferably between 1 and 15 denier, and most preferably between 1.5 and 10 denier. It is difficult to manufacture the bicomponent fiber 2 with a core-sheath structure of less than 1 denier, and the cost is high. It is difficult to fabricate the supporting element 500 with fibers higher than 30 denier.
  • the sheath-core bicomponent fiber 2 between 1-15 denier is easily thermally bonded into a support element 500 with a low density and a three-dimensional structure with suitable capillary force, 1.5-10 denier sheath-core bicomponent fiber 2 Especially suitable and low cost.
  • the denier of the bicomponent fiber 2 is 1.5 denier, 2 denier, 3 denier or 6 denier
  • the skin layer 21 is polyethylene with a melting point of about 130°C
  • the core layer 22 is polypropylene with a melting point of about 165°C.
  • element 500 density is between 0.1 to 0.25 g / cm 3.
  • the support element 500 can also be made of single-component fibers, such as polypropylene fibers, bonded with a binder, the use of binders usually makes it difficult for the support element 500 to comply with relevant food or pharmaceutical regulations.
  • This kind of support The element 500 is not suitable for use in aerosol dispersing devices such as electronic cigarettes and drug atomization.
  • the supporting element 500 is formed by thermally bonding bicomponent fibers 2 with a concentric structure to form a three-dimensional network three-dimensional structure.
  • the denier of the bicomponent fiber 2 is 3 deniers
  • the skin layer 21 is polyethylene with a melting point of about 130°C
  • the core layer 22 is polyethylene terephthalate with a melting point of about 270°C.
  • the density of the support element made is between 500 0.1 to 0.25 g / cm 3.
  • the support element 500 has a cylindrical shape with an outer diameter of 7.5 mm, and an axial support element through hole 530 with a diameter of 3.5 mm is provided.
  • the shape and size of the supporting element 500 are suitable for use in an electronic cigarette that simulates the shape of a cigarette.
  • the outer diameter of the cross section of the support element 500 and the size of the through hole 530 of the axial support element can be changed to make the support element 500 of different sizes, which is convenient for use in different aerosol emitting devices.
  • the skin layer 21 of the bicomponent fiber 2 can be replaced by polylactic acid with a melting point of about 130° C., and the made support element 500 has similar performance.
  • the condensate generated during the cooling of the aerosol can be partially absorbed by the supporting element 500, reducing the condensate in the aerosol and improving the consumer experience.
  • Fig. 26a is a longitudinal sectional view of the supporting element of the twenty-sixth embodiment disclosed in the present invention
  • Fig. 26b is a cross-sectional view of the supporting element of the twenty-sixth embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the twenty-fifth embodiment, and the same parts as those of the twenty-fifth embodiment will not be repeated in the description of this embodiment.
  • the supporting element 500 is formed by thermal bonding of bicomponent filaments with a concentric structure to form a three-dimensional network three-dimensional structure.
  • the denier of the bicomponent fiber 2 is 6 denier
  • the skin layer 21 is Polypropylene with a melting point of about 165°C
  • the core layer 22 is polybutylene terephthalate with a melting point of about 230°C.
  • This support element 500 has high temperature resistance, and the density of the made support element 500 is between 0.25- 0.35 g / cm 3, having a greater rigidity, suitable for high speed automated assembly.
  • the cross-sectional view of the support element 500 shows a rectangular parallelepiped shape, and an axial through hole with a diameter of 3 mm is set as the support element through hole 530.
  • the shape of the support element 500 is suitable for use in a rectangular parallelepiped flat cigarette.
  • the skin layer 21 of the bicomponent fiber 2 can be replaced by polylactic acid with a melting point of about 170° C., and the made support element 500 has similar performance.
  • Fig. 27a is a longitudinal cross-sectional view of the supporting element 500 of the twenty-seventh embodiment disclosed in the present invention
  • Fig. 27b is a cross-sectional view of the supporting element 500 of the twenty-seventh embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the twenty-fifth embodiment, and the same parts as those of the twenty-fifth embodiment will not be repeated in the description of this embodiment.
  • the supporting element 500 is formed by thermally bonding bicomponent fibers 2 with an eccentric structure to form a three-dimensional network three-dimensional structure.
  • the bicomponent fibers 2 are staple fibers with a denier of 2 denier. , melting point 130 °C skin layer 21 of a polylactic acid, a core layer 22 having a melting point 155-185 °C polylactic acid, the supporting member 500 made of a density of between 0.12 and 0.2 g / cm 3.
  • the cross-sectional view of the supporting element 500 shows an elliptical shape, and an axial supporting element through hole 530 with a diameter of 2.5 mm is provided.
  • the shape of the supporting element 500 is suitable for use in an elliptical cylindrical flat smoke.
  • the supporting element 500 in this embodiment is entirely made of polylactic acid, which can be completely biodegraded, and is of great significance for reducing environmental pollution.
  • the supporting element 500 for the aerosol emitting device is made of bicomponent fibers with a skin-core structure.
  • the supporting element 500 can be made into the required three-dimensional structure during the thermal bonding process according to application requirements.
  • the size and shape are suitable for high-speed automated assembly to reduce the manufacturing cost of the aerosol emitting device.
  • the above-mentioned embodiments only exemplify the principles and effects of the present invention, but are not used to limit the present invention.
  • two bicomponent fibers of different deniers can be mixed to prepare the support element 500, or the support element 500 as a whole can be mixed. In the case of performance, some single-component fibers are mixed in bi-component fibers to reduce costs.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Catching Or Destruction (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Medicinal Preparation (AREA)
  • Nonwoven Fabrics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种用于气雾散发装置的储液元件(100)、导液元件(200)、冷却元件(300)、冷凝液吸收元件(400)及支撑元件(200),这些元件是由双组分纤维(2)经热粘结形成三维网络的立体结构,双组分纤维(2)具有皮层(21)和芯层(22)。双组分纤维(2)经热粘结制成的具有三维网络的立体结构的这些元件,可以方便地在气雾散发装置中组装。

Description

一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件 技术领域
本发明涉及一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件,特别涉及将液体气化或雾化的气雾散发装置中储存和释放液体的储液元件、传导液体的导液元件、冷却气雾的冷却元件、吸收冷凝液的冷凝液吸收元件、及支撑风味变换部件的支撑元件。
背景技术
使用传统烟草的时候,吸入燃烧烟草时产生焦油等有害物质会影响身体健康,电子烟中,通常采用加热气化或加热雾化有效成份的方法来代替燃烧传统烟草的方法。在常见的加热液体烟油雾化的方法中,液体被储存于油仓中,雾化的气雾从油仓导出,这种结构的电子烟液体容易泄漏。也有的电子烟中采用棉花或无纺布缠绕在玻纤或陶瓷的管子上,然后将烟液注在棉花或无纺布上,由于棉花和无纺布缺乏三维立体形状和强度,难以自动化组装,并且棉花或无纺布缠绕后不均匀,局部密度较高,储液容量较小,使用后期对烟油释放能力较差,使用后液体残留率较高。电蚊香、电香薰和药物雾化吸入的装置等将液体气化或雾化的气雾散发装置中也存在类似的问题。
又,在电子烟、电蚊香、电香薰和药物雾化吸入的装置等,常见的一种结构是在气雾散发装置中安装雾化芯,如预埋电热丝的多孔陶瓷。当气流通过雾化装置的同时雾化芯加热,液体被雾化并被气流带出。为了将储液部中的液体比较平稳地传导给雾化芯并防止液体泄漏,通常在雾化芯表面包覆无纺布,并固定于气雾散发装置中。由于无纺布柔软缺少强度、容易褶皱,难以制成质量稳定的气雾散发装置,褶皱严重的情况下容易发生液体泄漏。在雾化芯表面包覆无纺布的方法需要大量人工,难以自动化,成本高、效率低。
又,传统卷烟燃烧时的温度在800℃左右,如此高温使烟草中的水分在形成气雾时,其中的大部分水被蒸发掉,气雾相对干燥,使用者吸入气雾时感知的温度较低。在不燃烧的情况下通过加热气雾基体产生的气雾或气溶胶中,可能含有较高的水分以及从气雾基体气化的气雾剂,如丙二醇、甘油等,使用者吸入气雾时感知的温度较高。未经适当冷却的加热不燃烧气雾甚至会使使用者感到烫嘴。使用加热不燃烧中药时,吸食者会遇到同样的问题。
可以在气雾基体下游采用冷却元件来吸收气雾中的热量从而冷却气雾。气雾通过热交换 把自身的热量传导给冷却元件而降低温度,冷却元件吸收气雾中的热量后温度升高,如果冷却元件中的物质在吸收热量后发生熔化等相变过程,则可以更多地吸收气雾中的热量,使气雾的降温效果更为显著。为使热交换充分进行,冷却元件需要有大的表面积与气雾接触。参考被广泛使用的翅片式热交换器,可以采用薄片状物质来制作冷却元件。CN104203015A公开了用片材制作冷却元件来冷却加热不燃烧气雾的方法。但从热交换接触面积的角度来说,薄片是二维结构,比表面积较小。此外,根据CN104203015A所公开的,用薄片制作的冷却元件不能邻接气雾基体,中间需用其他元件隔开。显然,用薄片制作的冷却元件也不能高效吸收气雾中的小液滴。综上,在气雾散发装置中薄片制作的冷却元件有诸多局限性。药物雾化吸入的装置等将液体加热气化或雾化的气雾散发装置中也存在类似的问题。
又,使用传统烟草的时候,吸入燃烧烟草时产生焦油等物质对健康危害较大,电子雾化烟采用加热雾化溶剂来摄入尼古丁或尼古丁盐,这种方法不产生焦油。电子雾化烟中的常用溶剂为1,2丙二醇和甘油,沸点分别为188.2℃和290℃,由于气雾通道的周壁温度较低,雾化后的气雾通过气雾通道的过程中冷凝液不断增加。大量的冷凝液进入口中时会严重影响使用者的口感,因此在气雾入口前去除大部分冷凝液能大幅度提升电子雾化烟的吸烟体验。可使用适当的吸收物质(冷凝液吸收元件)与冷凝液接触来去除冷凝液。有的雾化装置中,冷凝液会沉降到雾化器底部,这种情况下可以在雾化器底部安装冷凝液吸收体来防止冷凝液渗入主机。较为常见冷凝液吸收元件由多层无纺布叠加在一起并模切成要求的大小和形状,由于无纺布柔软、并缺乏固定的立体形状,在狭小的电子雾化气雾雾通道中安装或固定困难。另一种较为常见的冷凝液吸收元件由纤维或木浆压缩成片状,根据需要切成要求的大小和形状,或根据需要冲孔形成气流通道,这种冷凝液吸收元件俗称高压棉。其优点是可以制成立体形状,便于安装,高压棉的缺点是吸收冷凝液后明显膨胀,使用过程中气雾通道的气阻不稳定,影响使用体验。药物雾化吸入的装置等将液体气化或雾化的散发装置中也存在类似的问题。
又,对传统烟草,吸入燃烧烟草时产生的焦油等有害物质,对健康影响较大。通过雾化来摄入尼古丁或尼古丁盐,因为这种方法不产生焦油等有害物质,应用越来越广泛。类似的雾化技术也可用于摄入药物等物质。为提升口感,通常在被雾化的液体中加入各种风味剂。但有两个问题,一方面风味剂容易挥发,在产品储存过程中会逐渐失去风味,另一方面,风味剂在加热雾化时可能因高温而分解或产生有害物质,从而产生额外的安全风险。
发明内容
为解决现有技术中的存在的问题,本发明提出了一种储液元件,用于气雾散发装置中储 存和释放液体,该储液元件由双组分纤维经热粘结形成三维网络的立体结构,该双组分纤维具有皮层和芯层。
由双组分纤维经热粘结制成的具有三维网络的立体结构的储液元件,可以方便地在气雾散发装置中组装。这种储液元件密度较低、孔隙率较高,因此单位体积内可以储存更多的液体,并能将液体更高效地释放,由于液体被储存于储液元件的毛细空隙中,在储运和使用过程中不易泄漏。本发明的储液元件不但可以用于电子烟,也适用于具有雾化器的电蚊香、电香薰和药物雾化装置中。
本发明还提出了一种导液元件,用于气雾散发装置中传导液体,导液元件由双组分纤维经热粘结形成三维网络的立体结构,双组分纤维具有皮层和芯层。
由双组分纤维粘结制成的导液元件具有较高的强度和韧性,安装时不易褶皱或破碎,可以方便地在气雾散发装置中组装,容易实现装配自动化,提高效率,节省成本,尤其适合于制造大规模的消费品,如电子烟等。由于双组分纤维粘结形成三维网络的立体结构,导液元件中形成大量的互相连通的毛细孔,这种毛细孔有利于液体在其中快速、平稳地传导,提高为雾化芯补充液体的稳定性,从而提高雾化稳定性。通过选择纤维纤度并设置导液元件的密度,可以控制毛细孔和毛细力的大小,使导液元件适合于不同气雾散发装置的要求。
本发明的导液元件可以应用于各种电子烟烟液的雾化,还适用于电蚊香液体和空气清香剂的雾化。
本发明还提供一种冷却元件,用于冷却气雾散发装置中产生的气雾,该冷却元件由双组分纤维经热粘结形成三维网络的立体结构,双组分纤维具有皮层和芯层。
由双组分纤维粘结制成的冷却元件具有大量的毛细孔,对气雾冷却时产生的冷凝液具有很好的吸收作用,使气雾变得干燥,有利于使使用者感知到较低的温度。由双组分纤维粘结制成的冷却元件,可以制成中空结构和非中空结构,根据需要可以两者单独使用或把两者组合使用,以便达到适当的冷却效果和气阻。
由双组分纤维粘结制成的冷却元件比表面积大,有利于提高与气雾的热交换效率。双组分纤维的芯层熔点比皮层熔点高25℃以上,当气雾温度高于皮层熔点时,皮层接触高温气雾被部分熔化并吸收大量热量,使气雾温度迅速降低。双组分纤维中的高熔点芯层担当骨架,熔化的皮层成为黏流态并附着于芯层上,从而保持冷却元件的完整性。
由双组分纤维粘结制成的冷却元件,可以根据要求制成不同的孔隙率,使冷却元件具有需要的径向硬度和轴向刚性,便于和气雾基体等其它元件装配成气雾散发装置,容易实现高效的自动化装配。
本发明的冷却元件可以应用于各种气雾散发装置,如含香精的气雾散发装置,含尼古丁 的气雾散发装置,含咖啡因或茶碱的气雾散发装置,含可气化中药成分的气雾散发装置等。
本发明还提出了一种冷凝液吸收元件,用于气雾散发装置中吸收冷凝液,冷凝液吸收元件由双组分纤维经热粘结形成三维网络的立体结构,双组分纤维具有皮层和芯层
由双组分纤维经热粘结制成的具有三维网络的立体结构的冷凝液吸收元件,可以根据气雾散发装置的结构进行定制,从而方便地在精密的气雾散发装置中组装。可以控制制作工艺使冷凝液吸收元件的轴向比径向具有更大的刚性,便于组装时在轴向用力,提高组装效率,同时利用其径向的自适应变形,使冷凝液吸收元件方便地在气雾散发装置中固定。
本发明的冷凝液吸收元件由双组分纤维粘结制成,具有三维网络的立体结构,能在接触气雾时快速吸收气雾周边的冷凝液,并传导至冷凝液吸收元件的各部位,对气雾中的冷凝液去除效率高,用户体验好。本发明的冷凝液吸收元件具有较低的密度和较高的孔隙率,单位体积的吸收容量大,适合于气雾散发装置的紧凑空间。
本发明的冷凝液吸收元件,由双组分纤维粘结制成的三维网络立体结构,吸收冷凝液后不膨胀、不变形,使气雾通道具有稳定的气流阻力,有利于保持气雾散发装置使用过程中的气阻稳定性,提升用户体验。
制成本发明的冷凝液吸收元件的双组分纤维的皮层可以为聚乳酸,聚乳酸为生物降解材料,可以减少冷凝液吸收元件被抛弃时造成的环境污染。尤其是当双组分纤维的芯层也为聚乳酸时,被抛弃的冷凝液吸收元件可以在自然界中被微生物完全降解生成二氧化碳和水。
本发明还提出了一种支撑元件,用于气雾散发装置中支撑风味变换部件,该支撑元件由双组分纤维经热粘结形成三维网络的立体结构,该双组分纤维具有皮层和芯层。
由双组分纤维经热粘结制成的具有三维网络的立体结构的支撑元件,可以方便地在气雾散发装置中组装。本发明的支撑元件不但可以用于电子烟,也适用于药物雾化装置中,还可以将支撑元件用于单独的吸嘴中,由吸嘴与气雾散发装置配套使用。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并结合附图,作详细说明如下。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a为本发明所公开的第一实施例的储液元件的纵剖面图;
图1b为本发明所公开的第一实施例的储液元件的横截面图;
图1c是图1a和1b中的双组分纤维的一种截面放大示意图;
图1d是图1a和1b中的双组分纤维的另一种放大截面示意图;
图2a为本发明所公开的第二实施例的储液元件的纵剖面图;
图2b为本发明所公开的第二实施例的储液元件的横截面图;
图3a为本发明所公开的第三实施例的储液元件的纵剖面图;
图3b为本发明所公开的第三实施例的储液元件的横截面图;
图4a为本发明所公开的第四实施例的储液元件的纵剖面图;
图4b为本发明所公开的第四实施例的储液元件的横截面图;
图5a为本发明所公开的第五实施例的储液元件的纵剖面图;
图5b为本发明所公开的第五实施例的储液元件的横截面图;
图6a为本发明所公开的第六实施例的储液元件的纵剖面图;
图6b为本发明所公开的第六实施例的储液元件的横截面图;
图7a为本发明所公开的第七实施例的储液元件的纵剖面图;
图7b为本发明所公开的第七实施例的储液元件的横截面图;
图8a为本发明所公开的第八实施例的导液元件的纵剖面图;
图8b为本发明所公开的第八实施例的导液元件的横截面图;
图8c是图8a和8b中的双组分纤维的一种截面放大示意图;
图8d是图8a和8b中的双组分纤维的另一种截面放大示意图;
图9a为本发明所公开的第九实施例的导液元件的纵剖面图;
图9b为本发明所公开的第九实施例的导液元件为圆柱体时的横截面图;
图9c为本发明所公开的第九实施例的导液元件为长方体时的横截面图;
图9d为本发明所公开的第九实施例的导液元件为椭圆柱体时的横截面图;
图10a为本发明所公开的第十实施例的导液元件的纵剖面图;
图10b为本发明所公开的第十实施例的导液元件为圆柱体时的横截面图;
图10c为本发明所公开的第十实施例的导液元件为长方体时的横截面图;
图10d为本发明所公开的第十实施例的导液元件为椭圆柱体时的横截面图;
图11a是根据本发明第十一实施例的冷却元件的纵剖面图;
图11b是根据本发明第十一实施例的冷却元件的一种横截面图;
图11c是图11a和11b中的双组分纤维的一种截面放大示意图;
图11d是图11a和11b中的双组分纤维的另一种截面放大示意图;
图11e是根据本发明第十一实施例的冷却元件的另一种横截面图;
图12a是根据本发明第十二实施例的冷却元件的纵剖面图;
图12b是根据本发明第十二实施例的冷却元件的横截面图;
图13a是根据本发明第十三实施例的冷却元件的纵剖面图;
图13b是根据本发明第十三实施例的冷却元件的高温冷却段的一种横截面图;
图13c是根据本发明第十三实施例的冷却元件的高温冷却段的另一种横截面图;
图13d是根据本发明第十三实施例的冷却元件的低温冷却段的横截面图;
图14a是根据本发明第十四实施例的冷却元件的纵剖面图;
图14b是根据本发明第十四实施例的冷却元件的高温冷却段的横截面图;
图14c是根据本发明第十四实施例的冷却元件的低温冷却段的一种横截面图;
图14d是根据本发明第十四实施例的冷却元件的低温冷却段的另一横截面图;
图15a是根据本发明第十五实施例的冷却元件的纵剖面图;
图15b是根据本发明第十五实施例的冷却元件的高温冷却段的横截面图;
图15c是根据本发明第十五实施例的冷却元件的低温冷却段的横截面图;
图16a是根据本发明第十六实施例的冷却元件的纵剖面图;
图16b是根据本发明第十六实施例的冷却元件的高温冷却段的横截面图;
图16c是根据本发明第十六实施例的冷却元件的低温冷却段的横截面图;
图17a是根据本发明第十七实施例的冷却元件的纵剖面图;
图17b是根据本发明第十七实施例的冷却元件的高温冷却段的横截面图;
图17c是根据本发明第十七实施例的冷却元件的低温冷却段的横截面图;
图18a是根据本发明第十八实施例的冷却元件的纵剖面图;
图18b是根据本发明第十八实施例的冷却元件的横截面图;
图19a为本发明所公开的第十九实施例的冷凝液吸收元件的纵剖面图;
图19b为本发明所公开的第十九实施例的冷凝液吸收元件的横截面图;
图19c是图1a和1b中的双组分纤维的一种截面放大示意图;
图19d是图1a和1b中的双组分纤维的另一种截面放大示意图;
图20a为本发明所公开的第二十实施例的冷凝液吸收元件的纵剖面图;
图20b为本发明所公开的第二十实施例的冷凝液吸收元件的横截面图;
图21a为本发明所公开的第二十一实施例的冷凝液吸收元件的纵剖面图;
图21b为本发明所公开的第二十一实施例的冷凝液吸收元件的横截面图;
图22a为本发明所公开的第二十二实施例的冷凝液吸收元件的纵剖面图;
图22b为本发明所公开的第二十二实施例的冷凝液吸收元件的横截面图;
图23a为本发明所公开的第二十三实施例的冷凝液吸收元件安装前的纵剖面图;
图23b为本发明所公开的第二十三实施例的冷凝液吸收元件的横截面图;
图23c为本发明所公开的第二十三实施例的冷凝液吸收元件安装后的纵剖面图;
图24a为本发明所公开的第二十四实施例的冷凝液吸收元件的纵剖面图;
图24b为本发明所公开的第二十四实施例的冷凝液吸收元件的横截面图;
图25a为本发明所公开的第二十五实施例的支撑元件的纵剖面图;
图25b为本发明所公开的第二十五实施例的支撑元件的横截面图;
图25c是图25a和25b中的双组分纤维的一种截面放大示意图;
图25d是图25a和25b中的双组分纤维的另一种截面放大示意图;
图26a为本发明所公开的第二十六实施例的支撑元件的纵剖面图;
图26b为本发明所公开的第二十六实施例的支撑元件的横截面图;
图27a为本发明所公开的第二十七实施例的支撑元件的纵剖面图;
图27b为本发明所公开的第二十七实施例的支撑元件的横截面图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。
本发明中的聚L-乳酸,简称PLLA,是指由单体L-乳酸制成,但可能有少量D-乳酸无规共聚于其中,且熔点介于145℃至180℃的聚乳酸。
本发明中的聚D-乳酸,简称PDLA,是指由单体D-乳酸制成,但可能有少量L-乳酸无规共聚于其中,且熔点介于145℃至180℃的聚乳酸。
本发明中的聚D,L-乳酸,简称PDLLA,是指由单体D-乳酸和L-乳酸制成,熔点小于145℃的聚乳酸,包括无定形的PDLLA,无定形的PDLLA没有熔点。
本发明中的熔点根据ASTM D3418-2015测定。
术语“酚”指由直接结合到芳烃基的羟基构成的一类化合物。酚类包括苯酚、邻苯二酚、邻苯酚、间甲酚和对甲酚等。
除非另有说明,此处使用的术语包括科技术语对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
第一实施例
图1a为本发明所公开的第一实施例的储液元件的纵剖面图;图1b为本发明所公开的第一实施例的储液元件的横截面图。
如图1a和1b所示,根据本发明第一实施例的储液元件,用于气雾散发装置中储存和释放液体,储液元件100由双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2具有皮层21和芯层22。
<储液元件的形状>
储液元件100可以具有轴向贯穿储液元件100的储液元件通孔130。储液元件通孔130可以用作气雾散发装置中的气雾通道。
本实施例的储液元件100可以根据气雾散发装置的内部空间制成合适的几何形状,如适合于圆柱形气雾散发装置的圆柱形储液元件100;适合于扁形气雾散发装置的方柱形储液元件100;适合于椭圆柱形气雾散发装置的椭圆柱形储液元件100等。
储液元件100具有轴向贯穿储液元件100的储液元件通孔130。储液元件通孔130中可以插入气雾管,如金属管、玻纤管或塑料管等,气雾可以从气雾管导出。设置气雾管可以更好地固定储液元件100,并可以在储液元件100注液时防止液体从雾化器(未图示)泄漏。
可以将储液元件100与雾化器接触的部位压缩成较高密度,使液体在释放过程中向较高密度部位富集,从而提高液体释放的均匀性,并进一步降低使用后的液体残留。
<储液元件的密度>
本实施例的储液元件100密度为0.03-0.25克/厘米 3,如0.03克/厘米 3、0.04克/厘米 3、0.050克/厘米 3、0.055克/厘米 3、0.065克/厘米 3、0.08克/厘米 3、0.10克/厘米 3、0.12克/厘米 3、0.15克/厘米 3、0.18克/厘米 3、0.21克/厘米 3、0.25克/厘米 3,优选为0.04-0.12克/厘米 3。当密度小于0.03克/厘米 3时,储液元件100制造困难,并且储液元件100的强度不足,不易在气雾散发装置中组装;当密度为0.03-0.04克/厘米 3时,轴向设置通道的储液元件100的 强度稍嫌不足,不太易组装;当密度大于0.15克/厘米 3时,使用后期储液元件100的液体释放效率略差,使用后的液体残留偏高;当密度大于0.25克/厘米 3时,单位体积储液元件100的储液量过小,并且使用后期储液元件100的液体释放效率差,使用后的液体残留高,不利于在空间狭小的气雾散发装置中使用。
在0.04-0.12克/厘米 3范围内,根据被储存液体的粘度、表面张力和应用需求,选择合适的密度,储液元件100既有足够的毛细力以防止液体泄漏,又具有良好的释放性能,并且可以使储液元件100的储液容量最大化,有利于制作小巧的气雾散发装置。值得注意的是,为防止在储存、运输和使用过程中泄漏,加载到储液元件100的液体体积最好不超过储液元件100中毛细空隙体积的90%。
为更直观地说明储液元件100的密度与使用效果的关系,本实施例制作了不同密度的储液元件100并组装了相应的气雾散发装置进行抽吸测试。雾化芯为缠绕电热丝的玻纤束。储液元件100由3旦的双组分短纤热粘结制成,皮层21为聚乙烯,芯层22为聚丙烯,储液元件100的高度为29mm,体积为1.91厘米 3。储液元件100的密度分别为0.04克/厘米 3,0.055克/厘米 3,0.08克/厘米 3,0.12克/厘米 3,0.15克/厘米 3,和0.20克/厘米 3,被雾化的液体为丙二醇和甘油的混合物,注液量为1.62克。用抽烟机进行测试,测试条件为:吸气3秒,停27秒,每分钟吸气2次,每次吸气55ml,收集每抽吸50口的雾化量,每个产品重复测试20次,锂电池设计容量为400口(实际测试405-436口时电池耗尽)。数据经计算后获得每口雾化量的平均值(单位mg)、变异系数(简称CV),以及抽吸400口后的液体残留率和变异系数,结果如下:
Figure PCTCN2020116733-appb-000001
从测试结果可以看出,0.04-0.20克/厘米 3的密度范围内,储液元件100的密度越小,抽吸过程中雾化量的衰减越小。特别是当密度为0.04-0.12克/厘米 3时,前350口的雾化量相当稳定。而当密度为0.20克/厘米 3时,即使前350口雾化量也存在明显衰减。一般认为抽吸过 程中雾化量衰减越小,口感越稳定,用户体验越好。实验数据也显示,351-400口时雾化量衰减较多,并且CV明显偏大,这一般认为是由于锂电池即将耗尽时电压不稳定所导致。
当储液元件100的密度为0.15克/厘米 3时,301-350口的雾化量比1-50口的雾化量衰减了33.3%,351-400口的雾化量比1-50口的雾化量衰减了41.2%;当储液元件100的密度为0.20克/厘米 3时,301-350口的雾化量比1-50口的雾化量衰减了44.5%,351-400口的雾化量比1-50口的雾化量衰减了50.6%。在抽吸过程中,当雾化量比初始抽吸阶段降低接近50%时,一般被认为明显影响口感。
由于毛细力的作用,抽吸结束后储液元件100中会残留一部分液体。液体的残留率越低,则液体的利用效率越高。从测试结果可以看出,0.04-0.20克/厘米 3的密度范围内,储液元件100的密度越小,抽吸400口后液体的残留率越低。当储液元件100的密度为0.04-0.12克/厘米 3时,抽吸400口后液体的残留率低于介于16.5%-24.2%;当储液元件100的密度为0.15克/厘米 3时,抽吸400口后液体的残留率接近30%;当储液元件100的密度为0.20克/厘米 3时,抽吸400口后液体的残留率超过35%,液体的利用效率不到65%,浪费较为严重。
综合考虑抽吸过程中雾化量的稳定性和抽吸后的液体残留率,以及组装的方便性,本发明确定储液元件100优选的密度范围为0.03-0.15克/厘米 3,最优选为0.04-0.12克/厘米 3
<双组分纤维>
如图1a和1b所示,根据本实施例的储液元件100由双组分纤维2粘结形成三维网络的立体结构,双组分纤维2具有皮层21和芯层22。可以采用粘结剂、增塑剂或热量粘结纤维,优选用热量来粘结纤维以避免在制作储液元件100的过程中引进杂质。本发明中所说的纤维组分是指制作纤维的聚合物。用于纤维表面的添加剂,如表面活性剂,并不被认为是纤维的组分。本实施例的储液元件100能被储存的液体浸润,可以添加表面活性剂来改变储液元件100被液体浸润的能力。
图1c是图1a和1b中的双组分纤维的一种截面放大示意图。如图1c所示,皮层21和芯层22为同心结构。同心结构的双组分纤维2刚性较大,生产方便,价格较低。
图1d是图1a和1b中的双组分纤维的另一种放大截面示意图。如图1d所示,皮层21和芯层22为偏心结构。偏心结构的双组分纤维2较为柔软蓬松,容易制作密度较小的储液元件100。此外,还可以采用并列结构的双组分纤维来制作储液元件100,但热粘结时比较困难。当然,还可以采用三组分的皮芯结构纤维来制作储液元件100,但三组分的皮芯结构纤维制造难度大,成本高,性价比较差。
双组分纤维2为长丝或者短纤。长丝制成的储液元件100强度较高,短纤制成的储液元 件100弹性较好。制造者可以根据储液元件100的性能要求选择合适的双组分纤维制成合适的密度和合适形状的储液元件100。
双组分纤维2的芯层22比皮层21的熔点高25℃以上。本实施例的储液元件100由皮芯结构双组分纤维2热粘结制成。双组分纤维2的芯层22比皮层21熔点高25℃以上,可以在纤维之间进行热粘结的时候使芯层22保持一定的刚性,便于制成密度较低的储液元件100。
皮层21为聚乙烯、聚丙烯、聚烯烃、或者共聚酯,所述芯层22为聚合物。或者,皮层21为聚乳酸,芯层22为熔点比皮层21高25℃以上的聚乳酸。
双组分纤维2的皮层21可以为聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯的共聚酯、聚酰胺-6和聚乳酸等常见的聚合物,或者其它聚烯烃。聚烯烃为烯烃的聚合物,通常由乙烯、丙烯、1-丁烯、1-戊烯、1-己烯等α-烯烃单独聚合或共聚而得的一类热塑性树脂的总称。聚烯烃具有惰性的分子结构,分子链上不含活性基团,在本发明的应用领域中几乎不与液体成分反应,因此具有独特的优势。
当皮层21为聚乙烯时,比如线性低密度聚乙烯、低密度聚乙烯或高密度聚乙烯,芯层22可以为聚丙烯、聚对苯二甲酸乙二酯等聚合物。当皮层21为聚丙烯和聚烯烃时,芯层22可以为聚对苯二甲酸乙二酯(简称PET)、聚对苯二甲酸丙二醇酯(简称PTT)或聚对苯二甲酸丁二醇酯(简称PBT)、聚酰胺等。双组分纤维2的皮层21熔化温度低,有利于提高生产效率,降低制造过程中的能耗。
当皮层21为聚乳酸时,根据聚乳酸的熔点,如果采用熔点约130℃的聚乳酸为皮层21,芯层22可以为聚丙烯、聚对苯二甲酸乙二酯、熔点约170℃左右的聚乳酸等。当皮层21为熔点约170℃的聚乳酸时,芯层22可以为聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚对苯二甲酸丙二酯、尼龙、聚酰胺等。聚乳酸为生物降解材料,可以减少储液元件100被抛弃时造成的环境污染。尤其是当皮层21采用较低熔点的聚乳酸,芯层22采用较高熔点的聚乳酸时,制成的储液元件100为生物全降解材料。
<双组分纤维的纤度>
制作本发明储液元件100的双组分纤维2的纤度介于1-30旦,优选1-15旦,最优选1.5-10旦。低于1旦的皮芯结构双组分纤维2制造困难,成本高。高于30旦的纤维制成的储液元件100毛细力不足,容易泄漏。介于1-15旦的皮芯结构双组分纤维2容易热粘结成密度较低、并且具有合适毛细力的三维立体结构的储液元件100,1.5-10旦皮芯结构双组分纤维2尤为合适,并且成本较低。
可以将不同纤度的双组分纤维混合制成储液元件100,以优化储存和释放液体的性能或者降低成本。还可以在不影响储液元件100加工和性能的情况下在双组分纤维中掺入一些单组份纤维如聚丙烯纤维等来降低成本。
本实施例中,优选双组分纤维2的纤度为1.5旦、2旦、3旦或6旦,皮层21为熔点约130℃的聚乙烯,芯层22为熔点约165℃的聚丙烯,储液元件100密度介于0.04-0.12克/厘米 3,储液元件100具有储液容量大、不易泄漏和释放效率高等优点。
虽然储液元件100也可以由单组份纤维,如聚丙烯纤维,用粘结剂粘结制成,但粘结剂的使用通常会使储液元件100难以符合食品或药品的相关法规,这种储液元件100不宜用于电子烟、药物雾化等气雾散发装置中。
如图1a、1b、1c和1d所示,在本实施例中,储液元件100由同心结构或偏心结构的双组分纤维2经热粘结形成三维网络的立体结构。储液元件100形状为圆柱体,外径为9mm,并设置直径为3.5mm的轴向通孔为储液元件通孔130,通孔的一端与雾化器连接并将液体传导给雾化器。这种储液元件100的形状和尺寸适合于仿真烟形状的电子烟中使用,也适合在迷你型电蚊香和香薰中使用。本实施例中双组分纤维2的皮层21可以用熔点约130℃的聚乳酸代替,制成的储液元件100具有类似的性能。
第二实施例
图2a为本发明所公开的第二实施例的储液元件的纵剖面图;图2b为本发明所公开的第二实施例的储液元件的横截面图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图2a和2b所示,本实施例中,储液元件100由同心结构的双组分长丝经热粘结形成三维网络的立体结构,双组分纤维2的纤度为6旦,皮层21为熔点约165℃的聚丙烯,芯层22为熔点230℃左右的聚对苯二甲酸丁二酯,这种储液元件100具有较高的耐温性能,制成的储液元件100密度介于0.1-0.2克/厘米 3,具有较大的刚性,适合于高速自动化组装。储液元件100横截面图显示的形状为长方体,设置直径3mm的轴向通孔为储液元件通孔130,通孔的一端与雾化器连接,雾化时产生的气雾经储液元件通孔130逸出,这种储液元件100的形状适合在长方体形状的扁烟中使用,也适合于电蚊香和电加热香薰中使用。本实施例中双组分纤维2的皮层21可以用熔点约170℃的聚乳酸代替,制成的储液元件100具有类似的性能。
第三实施例
图3a为本发明所公开的第三实施例的储液元件100的纵剖面图;图3b为本发明所公开的第三实施例的储液元件100的横截面图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图3a和3b所示,本实施例中,储液元件100由同心结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2为短纤,其纤度为2旦,皮层21为熔点130℃的聚乳酸,芯层22为熔点155-185℃的聚乳酸,制成的储液元件100密度介于0.08-0.12克/厘米 3。储液元件100横截面图显示的为椭圆形,设置直径为4mm的轴向通孔为储液元件通孔130,通孔的一端与雾化器连接,储液元件100中的液体经连接处传导给雾化器,雾化时产生的气雾经储液元件通孔130逸出,这种储液元件100的形状适合在椭圆柱形状的扁烟中使用,也可用于类似形状的电蚊香和电香薰。本实施例中的储液元件100完全由聚乳酸制成,能完全生物降解,对减少环境污染具有重要意义。
第四实施例
图4a为本发明所公开的第四实施例的储液元件100的纵剖面图;图4b为本发明所公开的第四实施例的储液元件100的横截面图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图4a和4b所示,本实施例中,储液元件100由偏心结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2为短纤,其纤度为3旦,皮层21为熔点约130℃的聚乳酸,芯层22为聚对苯二甲酸乙二酯。制成的储液元件100密度介于0.03-0.06克/厘米 3,具有吸液容量大和释放残留低的特性。储液元件100为圆柱形,设置直径为4.5mm的轴向通孔为储液元件通孔130,通孔的一端与雾化器连接,雾化时产生的气雾经储液元件通孔130逸出。
本实施例中与雾化器连接部位的储液元件100被压缩形成较高密度,液体在消耗的过程中向较高密度部位富集,从而提高液体释放的均匀性并进一步降低使用后的液体残留。
优选,储液元件100被压缩形成低密度部123和高密度部124和设置在低密度部123和高密度部124之间的密度递增部125。从而液体能够更好的向高密度部124富集,可以提高液体传导的流畅性,并减少使用后在储液元件100中的液体残留。
这种储液元件100的形状适合在圆柱形的电子烟中使用,也适合用于电蚊香和电香薰。本实施例中双组分纤维2的皮层21可以用聚烯烃或熔点约110℃的聚对苯二甲酸乙二醇酯的共聚酯代替,制成的储液元件100具有类似的性能。
第五实施例
图5a为本发明所公开的第五实施例的储液元件100的纵剖面图;图5b为本发明所公开的第五实施例的储液元件100的横截面图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图5a和5b所示,本实施例中,储液元件100由同心结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2为长丝,其纤度为30旦,皮层21为熔点约200℃的聚对苯二甲酸乙二醇酯的共聚酯,芯层22为熔点270℃左右的聚对苯二甲酸乙二酯,这种储液元件100具有较高的耐温性能,制成的储液元件100密度介于0.15-0.25克/厘米 3,储液元件100为圆柱形,设置直径5mm的轴向通孔为储液元件通孔130,通孔的一端与电加热雾化器或超声波雾化器连接,雾化时产生的气雾经储液元件通孔130逸出,这种储液元件100适合于便携式电蚊香或香薰中使用,也适合用于电子烟。本实施例中双组分纤维2的皮层21可以用熔点约170℃的聚乳酸代替,制成的储液元件100具有类似的性能。
第六实施例
图6a为本发明所公开的第六实施例的储液元件100的纵剖面图;图6b为本发明所公开的第六实施例的储液元件100的横截面图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图6a和6b所示,本实施例中,储液元件100包括上下结构的储液部121和集液部122。储液部121和集液部122均具有轴向贯穿的储液元件通孔130。
储液部121由偏心结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2的纤度为3旦,皮层21为熔点约130℃的聚乙烯,芯层22为熔点165℃左右的聚丙烯,储液部121密度介于0.04-0.08克/厘米 3,储液部121为圆柱形。制成集液部122的双组分纤维2与制成储液部的纤维相同,储液部121和集液部122均设置直径4mm的轴向通孔为储液元件通孔130,通孔的一端与电加热雾化器或超声波雾化器连接,雾化时产生的气雾经储液元件通孔130逸出,这种储液元件100适合于便携式电蚊香或香薰中使用,也适合用于电子烟。本实施例中双组分纤维2的皮层21可以用熔点约130℃的聚乳酸代替,制成的储液元件100具有类似的性能。
本实施例中,集液部122的密度高于储液部121。由于集液部122的密度高于储液部121,使液体在消耗的过程中向较高密度的集液部122富集,从而提高液体释放的均匀性并进一步降低使用后的液体残留。
第七实施例
图7a为本发明所公开的第七实施例的储液元件100的纵剖面图;图7b为本发明所公开的第七实施例的储液元件100的横截面图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图7a和7b所示,本实施例中,储液元件100包括集液部122和包覆在集液部122外周壁上的密度低于集液部122的储液部121。集液部122具有轴向贯穿集液部122的储液元件通孔130。
储液部121由同心结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2的纤度为3旦,皮层21为熔点约130℃的聚乳酸,芯层22为熔点270℃左右的聚对苯二甲酸乙二酯,储液部121密度介于0.1-0.15克/厘米 3,储液部121为圆柱形。集液部122由同心结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2的纤度为2旦,皮层为熔点约170℃的聚乳酸,芯层为熔点270℃左右的聚对苯二甲酸乙二酯,设置直径5mm的轴向通孔为气雾通道,通孔的一端与电加热雾化器或超声波雾化器连接,雾化时产生的气雾经储液元件通孔130逸出,这种储液元件100适合于便携式电蚊香或香薰中使用,也适合用于电子烟。
本实施例中,集液部122的密度高于储液部121。由于集液部122的密度高于储液部121,使液体在消耗的过程中向较高密度的集液部122富集,从而提高液体释放的均匀性并进一步降低使用后的液体残留。
综上,本发明涉及的用于气雾散发装置的储液元件100采用了皮芯结构的双组分纤维制成并在轴向设置气雾通道,气雾通道由储液元件100中的储液元件通孔130形成。本发明的储液元件100能广泛应用于各类将液体气化或雾化的气雾散发装置中来储存和释放液体,在简化气雾散发装置结构的同时巧妙地具有导出气雾的功能,提高使用者体验。储液元件100根据应用需求能在热粘结过程中制成需要的三维结构的尺寸和形状,从而适合高速的自动化组装,以降低电子烟、药物雾化、电蚊香和电香薰等气雾散发装置的制造成本。上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明,任何本领域技术人员皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,本领域技术人员在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
第八实施例
图8a为本发明所公开的第八实施例的导液元件的纵剖面图;图8b为本发明所公开的第 八实施例的导液元件的横截面图;图8c是图8a和8b中的双组分纤维的一种截面放大示意图;图8d是图8a和8b中的双组分纤维的另一种截面放大示意图。
如图8a至8d所示,根据本发明第八实施例的导液元件200,用于气雾散发装置中传导液体,导液元件200由双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2具有皮层21和芯层22。
<导液元件的形状、厚度、刚性和液体渗透的速度>
导液元件200可以具有轴向贯穿导液元件200的导液元件通孔230。
本实施例的导液元件200,根据气雾散发装置的设计,可以把导液元件200设计为片状或者管状。如图1a和图1b所示,本实施例中的导液元件200设置为管状。
导液元件200也可以设计为片状。片状的导液元件200也可以设置导液元件通孔230。
根据气雾散发装置的结构,可以把导液元件200的横截面制成圆环状、椭圆环状或其它需要的形状。
对于片状导液元件200,本文中轴向定义为其厚度方向,径向定义为与厚度垂直的方向。采用适当的制作技术,可以使纤维在导液元件200中具有较多的轴向排列取向,这种情况下,片状导液元件200的轴向刚性大于其径向刚性,导液元件200中液体沿轴向渗透的速度大于液体沿径向渗透的速度;也可以使纤维在导液元件200中具有较多的径向排列的取向,这种情况下,片状导液元件200的径向刚性大于其轴向刚性,导液元件200中液体沿径向渗透的速度大于液体沿轴向渗透的速度。
对管状导液元件200,本文中轴向定义为导液元件通孔230的中轴线的方向,径向定义为与导液元件通孔230的中轴线垂直的方向。管状导液元件200中纤维具有较多的轴向排列取向,导液元件200的轴向刚性大于其径向刚性,导液元件200中液体沿轴向渗透的速度大于液体沿径向渗透的速度。
本文中的刚性的比较方法是:将导液元件200沿轴向或者径向放置,夹持在两块平行的板之间,测量未压缩前的导液元件200的轴向高度或者径向高度;在施加同样作用力的情况下,测量两块板轴向或者径向压缩导液元件200后的轴向高度或者径向高度,并计算压缩的变形量,该压缩的变形量为未压缩前的轴向高度或者径向高度减去压缩后的轴向高度或者径向高度后的差值;将压缩的变形量除以未压缩前的导液元件200的轴向高度或者径向高度,获得压缩比。压缩比越小,则刚性越大,压缩比越大,则刚性越小。
导液元件200的厚度是指液体从导液元件200一侧传导到另一侧的最短距离,管状导液元件200的厚度为管壁的厚度,片状导液元件200的厚度为其厚度方向上的厚度。
导液元件200的厚度为0.3mm-3mm,优选0.6mm,0.9mm,1.2mm,1.5mm,2mm。当导液元件200的厚度小于0.3mm时,难以制作均匀的导液元件200,也不方便安装。当导液元件200的厚度大于3mm时,导液元件200在气雾散发装置中占过多的空间,尤其对管状导液元件200,厚度大于3mm时通常难以在细小的气雾散发装置中安装。另外,厚度大于3mm时,导液元件200吸收液体量过多,影响液体的利用效率。
<导液元件的密度>
本实施例的导液元件200的密度为0.05-0.35克/厘米 3,优选为0.1-0.3克/厘米 3。当密度小于0.05克/厘米 3时,导液元件200的强度不足,管状导液元件200与气雾散发装置装配时容易变形甚至褶皱,影响雾化的稳定性,严重时甚至造成漏液。当密度大于0.35克/厘米 3时,导液速度较慢,影响雾化效率,并且高密度的导液元件的硬度过高,径向弹性不足,管状导液元件与气雾散发装置的匹配性下降。
<双组分纤维>
图8c是图8a和8b中的双组分纤维的一种放大截面示意图。如图8c所示,皮层21和芯层22为同心结构。图8d是图8a和8b中的双组分纤维的另一种放大截面示意图。如图8d所示,皮层21和芯层22为偏心结构。由同心结构的双组分纤维2制成的导液元件刚性较大,由偏心结构的双组分纤维2制成的导液元件200弹性较好。
双组分纤维2为长丝或者短纤。长丝制成的导液元件200刚性较大,短纤制成的导液元件200弹性较好。可以根据导液元件200的性能要求选择双组分纤维制成合适的导液元件200。
双组分纤维2的芯层22比皮层21的熔点高20℃以上。本实施例的导液元件200由皮芯结构双组分纤维2热粘结制成。双组分纤维2的芯层22比皮层21熔点高20℃以上,可以在纤维之间进行热粘结的时候使芯层22保持一定的刚性,便于制成空隙均匀的导液元件200。
双组分纤维2的皮层21可以为聚烯烃、聚对苯二甲酸乙二醇酯的共聚酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚乳酸或者聚酰胺-6。聚烯烃为烯烃的聚合物,通常由乙烯、丙烯、1-丁烯、1-戊烯、1-己烯等α-烯烃单独聚合或共聚而得的一类热塑性树脂的总称。也可以为聚酯或低熔点共聚酯等常见的聚合物。
当皮层21为聚乙烯时,芯层22可以为聚丙烯、聚对苯二甲酸乙二醇酯(简称PET)等聚合物。当皮层21为聚丙烯时,芯层22可以为PET、聚酰胺等。双组分纤维2的皮层21熔点较低,有利于提高生产效率,降低制造成本。双组分纤维2的皮层21熔点较高,导液元件有较高的耐温性能,有利于提高雾化芯的工作温度。
当皮层21为聚乳酸时,根据聚乳酸的熔点,比如用熔点125-135℃的聚D,L-乳酸为皮层21,芯层22可以为聚丙烯、聚对苯二甲酸乙二醇酯、熔点155-180℃的聚L-乳酸或聚D-乳酸等。当皮层21为熔点145-180℃的聚D-乳酸或聚L-乳酸时,芯层22可以为聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯(简称PBT)、聚对苯二甲酸丙二醇酯(简称PTT)、聚酰胺等。聚乳酸为生物降解材料,可以减少导液元件被抛弃时造成的环境污染。
当皮层21为聚酯或共聚酯时,可以根据皮层21的熔点选择合适的芯层22。比如皮层21用熔点225-235℃的PBT或PTT,芯层22可以用熔点255-265℃的PET。再比如皮层为熔点为110-120℃或160-200℃的聚对苯二甲酸乙二醇酯的共聚酯(简称Co-PET),芯层可以用PET、PBT或PTT。
制作本发明导液元件200的双组分纤维2的纤度介于1-30旦,优选1.5-10旦。低于1旦的皮芯结构双组分纤维2制造困难,成本高。高于30旦的纤维制成的导液元件200毛细力不足,导液较差。介于1-30旦的皮芯结构双组分纤维2容易制作导液元件200,1.5-10旦皮芯结构双组分纤维2尤为合适,并且成本较低。被雾化的液体粘度较低时,宜采用纤度较小的纤维制作导液元件,如采用1旦、1.5旦、2旦、3旦的纤维。被雾化的液体粘度较高时,宜采用纤度较大的纤维制作导液元件,如采用6旦、10旦、30旦的纤维。
如图8a、8b、8c和8d所示,在本实施例中,优选导液元件200由同心结构的双组分短维2经热粘结形成三维网络的管状立体结构。皮层21为熔点125-135℃的聚乙烯,芯层22为熔点160-170℃的聚丙烯,制成的导液元件200密度介于0.05-0.35克/厘米 3,这种导液元件200具有较好的轴向强度和较好的径向弹性,并具有较快的液体传导速度。这种导液元件200可以用于电子烟烟液的雾化,也适合在迷你型电蚊香和香薰中使用。
本实施例中双组分纤维2的皮层21用熔点160-170℃的聚丙烯替代时,双组分纤维2的芯层可以用PET、PBT、PTT、聚酰胺等,制成的导液元件200具有较高的耐温性能。还可以用PBT或PTT作为皮层,用PET为芯层制成耐温更高的导液元件200。
在本实施例中的另一优选方式中,导液元件200由偏心结构的双组分纤维经热粘结形成三维网络的管状结构。导液元件200的皮层21为聚乙烯,芯层22为聚丙烯或PET,制成的导液元件200厚度为0.3-0.8mm,密度介于0.1-0.3克/厘米 3
第九实施例
图9a为本发明所公开的第九实施例的导液元件的纵剖面图;图9b为本发明所公开的第九实施例的导液元件为圆柱体时的横截面图;图9c为本发明所公开的第九实施例的导液元件为长方体时的横截面图;图9d为本发明所公开的第九实施例的导液元件为椭圆柱体时的横截 面图。本实施例与第八实施例结构相似,与第八实施例相同的部分在本实施例的描述中不再赘述。
本实施例中,导液元件200为片状,由同心结构的双组分纤维2经热粘结形成三维网络的片状结构。导液元件200的厚度为0.8-1.5mm,中心设置导液元件通孔230。导液元件200的皮层21为熔点125-135℃的聚D,L-乳酸,芯层22为熔点155-180℃的聚L-乳酸或聚D-乳酸,制成的导液元件200密度介于0.2-0.3克/厘米 3,这种导液元件200为生物降解材料,可以减少导液元件200被抛弃时造成的环境污染。
本实施例中,片状导液元件200的径向刚性大于其轴向刚性,导液元件200中液体沿径向渗透的速度大于液体沿轴向渗透的速度。
如图9b、9c和9d所示,根据气雾散发装置的结构,可以把导液元件200分别设计为圆柱体、方柱体和椭圆柱体,对应的横截面分别为圆环状、方形环状、椭圆环状。也可以根据需要设计为其它需要的形状。
第十实施例
图10a为本发明所公开的第十实施例的导液元件的纵剖面图;图10b为本发明所公开的第十实施例的导液元件为圆柱体时的横截面图;图10c为本发明所公开的第十实施例的导液元件为长方体时的横截面图;图10d为本发明所公开的第十实施例的导液元件为椭圆柱体时的横截面图。本实施例与第八实施例结构相似,与第八实施例相同的部分在本实施例的描述中不再赘述。
在本实施例中,导液元件200为片状,中心不设置导液元件通孔230,且由偏心结构的双组分纤维2经热粘结形成三维网络的结构。皮层21为熔点145-180℃的聚D-乳酸或聚L-乳酸,芯层22为熔点255-265℃的PET,制成的导液元件200密度介于0.25-0.35克/厘米 3,厚度为3mm。这种导液元件200具有较高的导液速度。本实施例中双组分纤维的皮层可以用Co-PET代替以降低成本,或用PBT或PTT代替,使导液元件200具有更好的耐温性能。
在本实施例中,导液元件200的轴向刚性大于其径向刚性,导液元件200中液体沿轴向渗透的速度大于液体沿径向渗透的速度。
本实施例中,也可以是,导液元件200由同心结构的双组分纤维经热粘结形成三维网络的片状结构,厚度为1.5-2mm。导液元件的皮层21为PBT或PTT,芯层22为PET,制成的导液元件200密度介于0.25-0.35克/厘米 3。优选,该片状导液元件的径向刚性大于其轴向刚性,导液元件中液体沿径向渗透的速度大于液体沿轴向渗透的速度。
如图10b、10c和10d所示,根据气雾散发装置的结构,可以把导液元件200分别设计为 圆柱体、方柱体和椭圆柱体,对应的横截面分别为圆形、矩形和椭圆形。也可以根据需要设计为其它需要的形状。
综上,本发明涉及的用于气雾散发装置的导液元件由双组分纤维粘结制成,能广泛应用于各类气雾散发装置。导液元件具有较好的强度,适合自动化组装,大幅提高气雾散发装置的生产效率。导液元件能平稳快速地将液体传导给雾化芯,提高雾化效率和稳定性。上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,本领域技术人员在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
第十一实施例
图11a是根据本发明第十一实施例的冷却元件的纵剖面图;图11b是根据本发明第十一实施例的冷却元件的一种横截面图;图11c是图11a和11b中的双组分纤维的一种截面放大示意图;图11d是图11a和11b中的双组分纤维的另一种截面放大示意图;图11e是根据本发明第十一实施例的冷却元件的另一种横截面图。
如图11a至图11e所示,根据本发明第十一实施例的冷却元件,用于冷却气雾散发装置中产生的气雾,冷却元件300由双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维材料2具有皮层21和芯层22。
本实施例适用于各种气雾散发装置,如加热不燃烧型的气雾散发装置和雾化型的气雾散发装置。气雾散发装置中包括气雾基体,气雾基体中含有气雾剂,如丙二醇、甘油、水等。气雾基体还可以包括载体,如烟草、中草药、纤维、纸屑等等。传统的卷烟燃烧时高达800℃左右的温度将烟草中的大部分水分蒸发掉,气雾相对干燥,使用者吸入气雾时感知的温度较低。不同的是,气雾散发装置加热时的温度较低,只有200-400℃,产生的气雾中可能含有较高的水分,并含有气化的气雾剂,如丙二醇、甘油等,使用者吸入这种气雾时感知的温度较高。因此将气雾冷却至使用者感觉舒服的温度并去除冷凝液是气雾散发装置的一个重要考量。
在雾化类的气雾散发装置中,气雾基体也可以为加载气雾剂的储液元件。在此种情形下,气雾基体891中的气雾剂通过加热元件(未图示)加热后雾化并通过冷却元件300冷却后逸出。同时,冷却元件300兼具吸收气雾中的冷凝液的功能,使得使用者吸入气雾时感知的温度适中,且基本不包含冷凝液,提升口感和体验。
<冷却元件的孔隙率>
根据本实施例的冷却元件300由双组分纤维热粘结制成,可以制成不同的孔隙率。在本实施例中,冷却元件300的孔隙率可以设置为65%-95%,优选孔隙率为75-85%。
孔隙率大于95%时,冷却元件300成型困难并且硬度不足。孔隙率小于65%时,冷却元件300硬度过大,或成本过高,不适合在气雾散发装置中使用。
<冷却元件的结构>
根据本实施例的冷却元件300,可以根据需要制成各种结构,如图11a至11c所示,冷却元件300可以设置为中空的结构,即冷却元件300可以具有轴向贯穿冷却元件300的冷却元件通孔330。
如图11b所示,冷却元件300可以设置为冷却元件通孔330截面为圆形的中空结构,冷却元件300的横截面形状为圆环。也可以如图11e所示,冷却元件300可以设置为冷却元件通孔330截面为星形的中空结构,冷却元件300的横截面形状为星形环,冷却元件通孔330的截面可以为五角星形、六角星形等。
在制作冷却元件300时,中空的冷却元件300和非中空的冷却元件300可以单独使用,也可以组合使用,以达到适当的冷却效果并控制合适的气阻。
本实施例中,采用中空结构的冷却元件300,可以降低气雾穿过冷却元件300的阻力,从而使高温气雾在气阻低的中空通道通过,中空通道内表面与高温气雾接触时,双组分纤维2的皮层21从高温气雾中吸收大量热量而熔化,使气雾温度迅速降低。当高温气雾主要从中空通道通过时,冷却元件300的外周与高温气雾距离较远,温度传递至外周时已经降至较低温度,从而避免冷却元件300的外周壁因高温而发生形变或损坏气雾散发装置的结构和性能。
<双组分纤维>
如图11c和11d所示,本发明的冷却元件300由双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2具有皮层21和芯层22。
图11c是图11a和11b中的双组分纤维的一种截面放大示意图。如图11c所示,皮层21和芯层22为同心结构。图11d是图11a和11b中的双组分纤维的另一种截面放大示意图,如图11d所示,皮层21和芯层22为偏心结构。密度相同时,由同心结构的双组分纤维2制成的冷却元件300刚性较大,由偏心结构的双组分纤维2制成的冷却元件300弹性较好。
双组分纤维2为长丝或者短纤。长丝制成的冷却元件300轴向刚性较大,短纤制成的冷却元件300径向弹性较好。可以根据冷却元件300的性能要求选择双组分纤维制成合适的冷却元件300。
双组分纤维2的皮层21可以为聚乙烯、聚丙烯等聚烯烃、或对苯二甲酸乙二醇酯的共聚酯、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二酯、聚D-乳酸、聚L-乳酸、聚D,L-乳酸、或者聚酰胺-6等。聚烯烃为烯烃的聚合物,通常由乙烯、丙烯、1-丁烯、1-戊烯、1-己烯等α-烯烃单独聚合或共聚而得的一类热塑性树脂的总称。聚烯烃具有惰性的分子结构,分子链上不含活性基团,在本发明的应用领域中几乎不与液体成分反应,因此具有独特的优势。
当皮层21为聚乙烯时,芯层22可以为聚丙烯、聚对苯二甲酸乙二酯等聚合物。当皮层21为聚丙烯时,芯层22可以为聚对苯二甲酸乙二酯、聚酰胺等。双组分纤维2的皮层21熔点较低,有利于提高生产效率,降低制造成本。双组分纤维2的皮层21熔点较高,同时采用更高熔点的芯层22,制作的高温冷却段能耐受更高温度的气雾。
当皮层21为聚乳酸时,根据聚乳酸的熔点,如果采用熔点约130℃的聚乳酸为皮层21,芯层22可以为聚丙烯、聚对苯二甲酸乙二酯、熔点170℃左右的聚乳酸等。当皮层21为熔点150-185℃的聚乳酸时,芯层22可以为聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚对苯二甲酸丙二酯、聚酰胺等。聚乳酸为生物降解材料,可以减少冷却元件300被抛弃时造成的环境污染。
制作本发明冷却元件300的双组分纤维2的纤度介于1-30旦,优选1.5-10旦,1.5-10旦的双组分纤维制造方便、成本较低,并且制成的冷却元件具有较大的毛细力,能更好地吸收并去除气雾中的冷凝液而形成干燥的气雾,有利于使用者感知到较低的温度。
在本实施例中,双组分纤维2为长丝或短纤,具有同心结构的皮层21和芯层22,皮层21为聚对苯二甲酸乙二醇酯的共聚酯,芯层22为聚对苯二甲酸乙二酯。
双组分纤维2的皮层21为熔点较高,能耐更高的气雾温度,如某些中药气雾散发装置,工作时加热元件的温度高达400℃或以上。若气雾散发装置工作时的温度较低,如雾化电子烟或加热不燃烧电子烟,可以用熔点较低的聚合物如聚丙烯、或聚L-乳酸等作为双组分纤维2的皮层21。
<冷却元件的工作原理>
根据本实施例的冷却元件300,用于冷却气雾散发装置中产生的气雾。气雾散发装置产生的气雾通过冷却元件300被适当地冷却。气雾通过热交换把自身的热量传导给冷却元件300而降低温度,冷却元件300吸收气雾中的热量后温度升高,冷却元件300中的物质在吸收热量后部分熔化,则可以吸收气雾中的大量热量,使气雾的温度显著降低。
本实施例中的冷却元件300由双组分纤维2粘结制成,双组分纤维2的皮层21和芯层22均为聚合物,聚合物发生某些相变时可以吸收热量,如聚合物熔化时晶区被破坏,从固态转 变为黏流态,这种相变过程需要从外界吸收大量的热量。
在应用了根据本实施例的冷却元件300的气雾散发装置中,气雾散发装置中产生的气雾,温度高于双组分纤维的皮层熔点。高温气雾从冷却元件300的一端流入并从其另一端逸出,冷却元件300的双组分纤维的皮层接触高温气雾时熔化,从而吸收气雾中的大量热量,使高温气雾的温度迅速降低。
在本实施例中,冷却元件300的双组分纤维2的芯层22的熔点比皮层21的熔点高25℃以上,双组分纤维2中的高熔点芯层22担当骨架,熔化的皮层21成为黏流态并附着于芯层22上,从而保持冷却元件300的完整性。
根据应用要求对冷却元件300进行设计,可以使气雾从冷却元件300的另一端逸出时的温度降至65℃以下,以适合抽吸者的口感。
<冷却元件的附加功能>
气雾从冷却元件300的一端流入并从其另一端逸出的过程中,温度逐渐下降,部分气化的气雾剂和水分冷凝成小液滴。由双组分纤维2粘结制成的冷却元件300具有大量的毛细孔,毛细孔能吸收气雾冷却时产生的冷凝液,使气雾变得干燥,有利于使用者感知到较低的温度。冷凝液可以吸收部分的酚类和醛类物质,因此冷却元件300的毛细孔吸收冷凝液的同时还能减少气雾中的酚类和醛类等有害物质。
可以在冷却元件中添加减少酚类物质的添加剂,比如甘油醋酸酯、柠檬酸三乙酯、低分子量乙二醇,以及甘油醋酸酯和醋酸纤维素纤维的混合物等。还可以在冷却元件中添加风味剂,如薄荷、天然或合成香精等,使使用者可以吸入具有不同风味的气雾。
第十二实施例
图12a是根据本发明第十二实施例的冷却元件的纵剖面图;图12b是根据本发明第十二实施例的冷却元件的横截面图。本实施例与第十一实施例结构相似,与第十一实施例相同的部分在本实施例的描述中不再赘述。
在本实施例中,冷却元件300包括轴向贯穿冷却元件300的冷却元件通孔330。冷却元件通孔330的截面设置为星形,并且,如图2b所示,在冷却元件通孔330中插入内芯331。内芯331优选圆柱体结构,由于在星形的中空结构和圆柱体内芯331之间形成多个气流通道,使气雾通过冷却元件300时分成数股小气流,从而更充分地与冷却元件300接触并进行热交换。
第十三实施例
图13a是根据本发明第十三实施例的冷却元件的纵剖面图;图13b是根据本发明第十三实施例的冷却元件的高温冷却段的一种横截面图;图13c是根据本发明第十三实施例的冷却元件的高温冷却段的另一种横截面图;图13d是根据本发明第十三实施例的冷却元件的低温冷却段的横截面图。本实施例与第十一实施例结构相似,与第十一实施例相同的部分在本实施例的描述中不再赘述。
如图13a至13d所示,冷却元件300包括高温冷却段324和低温冷却段323。在应用了根据本实施例的冷却元件300的气雾散发装置中,气雾散发装置中产生的气雾,从冷却元件300的高温冷却段324的端部流入,并从低温冷却段323的端部逸出。
如图13b所示,冷却元件300的高温冷却段324具有轴向贯穿高温冷却段324的冷却元件通孔330。高温冷却段324优选设置为冷却元件通孔330截面为圆形的中空结构,其横截面形状为圆环。也可以如图13d所示,冷却元件300的高温冷却段324可以设置为冷却元件通孔330截面为星形的中空结构,其横截面形状为星形环,即中空结构的内孔的截面形状可以为五角星形、六角星形等。高温冷却段324采用中空结构,可以降低气雾穿过高温冷却段324的阻力,从而使高温气雾在气阻低的中空通道通过,中空通道内表面与高温气雾接触时,双组分纤维2的皮层21从高温气雾中吸收大量热量而熔化,使气雾温度迅速降低。当高温气雾主要从中空通道通过时,高温冷却段324的外周与高温气雾距离较远、温度传递至外周时已经降至较低温度,从而避免高温冷却段324的外周壁因高温而发生形变或损坏气雾散发装置的结构和性能。
在本实施例中,冷却元件300的高温冷却段324由双组分纤维热2粘结制成,高温冷却段324的孔隙率优选为80%,双组分纤维2为短纤,具有同心结构的皮层21和芯层22。
如图13c所示,本实施例中低温冷却段323采用非中空结构,低温冷却段323的横截面形状为实心圆面。低温冷却段323的孔隙率为90-95%,由偏心结构的双组分纤维2粘结制成。虽然低温冷却段323为非中空结构,但由于低温冷却段323的孔隙率高,仍具有较低的气阻。
气雾经过高温冷却段324冷却后,温度较低的气雾进入低温冷却段323。低温冷却段323与气雾进行热交换,低温冷却段323吸收热量温度升高,气雾将热量传导给低温冷却段323后温度进一步降低。若经过高温冷却段324冷却后的气雾温度高于低温冷却段323的双组分纤维2的皮层21的熔点,则低温冷却段323的双组分纤维2的皮层21会被部分熔化,使气雾温度迅速下降。根据应用要求对冷却元件300进行设计,可以使气雾从低温冷却段323的端面逸出时的温度降至65℃以下,以适合抽吸者的口感。采用非中空结构的低温冷却段323,气雾穿透低温冷却段323时,能与双组分纤维2进行更充分的热交换,能更好地降低气雾温 度。
在本实施例中,优选,高温冷却段324的皮层21的熔点大于低温冷却段323的皮层21的熔点。在高温冷却段324的双组分纤维2中,皮层21为熔点约170℃的聚L-乳酸,芯层22为熔点约265℃的聚对苯二甲酸乙二酯。在低温冷却段323的双组分纤维2中,皮层21为熔点约130℃的聚D,L-乳酸,芯层22为熔点约170℃的聚L-乳酸。
如果应用本实施例的冷却元件300的气雾散发装置载有尼古丁和甘油等成份,当气雾散发装置加热至375℃左右时,尼古丁和甘油等成份挥发并随着用户抽吸从产生气雾逸出,高温气雾进入冷却原件300的高温冷却段324。高温冷却段324的中空通道内壁与高温气雾接触并发生热交换,部分双组分纤维2的皮层21接触高温气雾时熔化,同时吸收气雾中的大量热量,使高温气雾的温度迅速降低,部分甘油冷凝成液体并被高温冷却段324吸收。高温冷却段324中双组分纤维2中的高熔点芯层22担当骨架,熔化的皮层21成为黏流态并附着于芯层22上,从而保持冷却元件300的完整性。
经过高温冷却段冷却后,温度较低的气雾进入冷却元件300的低温冷却段323。若进入低温冷却段323的气雾温度仍高于130℃,则低温冷却段323的双组分纤维2的皮层21会被部分熔化,使气雾温度迅速下降至130℃以下。随后低温冷却段323继续与气雾进行热交换,并利用低温冷却段323中聚乳酸在55℃至70℃之间的相变吸热,使气雾温度进一步降低至适合抽吸者的口感。
如图13d所示,本实施例中低温冷却段323采用非中空结构,气雾穿透低温冷却段323时与双组分纤维进行充分的接触和热交换,使气雾从低温冷却段323端部逸出时的温度降至65℃以下。气雾中的部分甘油和水分在低温冷却段323冷凝成液体后被低温冷却段323吸收,使气雾变得干燥,有利于使用者感知到较低的温度。
由于冷凝液可以溶解部分醛类和酚类物质,冷凝液被冷却元件300中的毛细孔吸收后可以减少用户对有害物质醛和酚的吸入。本实施例的冷却原件300的低温冷却段323中添加1-3%的甘油醋酸酯或甘油醋酸酯和醋酸纤维素纤维的混合物,用来减少气雾中的酚类物质含量。
第十四实施例
图14a是根据本发明第十四实施例的冷却元件的纵剖面图;图14b是根据本发明第十四实施例的冷却元件的高温冷却段的横截面图;图14c是根据本发明第十四实施例的冷却元件的低温冷却段的一种横截面图;图14d是根据本发明第十四实施例的冷却元件的低温冷却段的另一横截面图。本实施例与第十一实施例结构相似,与第十一实施例相同的部 分在本实施例的描述中不再赘述。
在本实施例中,冷却元件300包括高温冷却段324和低温冷却段323。高温冷却段324具有轴向贯穿高温冷却段324的冷却元件通孔330。高温冷却段324优选设置为冷却元件通孔330截面为圆形的中空结构,其横截面形状为圆环。
如图14c所示,低温冷却段323具有轴向贯穿低温冷却段323的冷却元件通孔330。低温冷却段323的冷却元件通孔330截面为圆形,在低温冷却段323的冷却元件通孔330中插入内芯331,内芯331优选圆柱体结构。
如图14d所示,可以在低温冷却段323的内芯331的表面可以设置凹槽332,以减少气阻。
在本实施例中,冷却元件300和内芯331由双组分纤维2粘结制成,双组分纤维2的皮层21为熔点约120℃的聚乳酸,芯层22为熔点约160℃的聚乳酸。
为节省成本,皮层21可以用熔点100-120℃的聚乙烯、聚烯烃或共聚酯代替,芯层22可以用聚丙烯、聚对苯二甲酸乙二酯代替。
高温冷却段324和低温冷却段323的孔隙率优选为85%,低温冷却段323的内芯331的孔隙率为优选为85-95%。
第十五实施例
图15a是根据本发明第十五实施例的冷却元件的纵剖面图;图15b是根据本发明第十五实施例的冷却元件的高温冷却段的横截面图;图15c是根据本发明第十五实施例的冷却元件的低温冷却段的横截面图。本实施例与第十一实施例结构相似,与第十一实施例相同的部分在本实施例的描述中不再赘述。
本实施例中,冷却元件300包括高温冷却段324和低温冷却段323。如图15b所示,高温冷却段324具有轴向贯穿高温冷却段324的冷却元件通孔330。高温冷却段324优选设置为冷却元件通孔330截面为星形的中空结构,其横截面形状为星形环。
如图15c所示,低温冷却段323也具有轴向贯穿低温冷却段323的冷却元件通孔330。低温冷却段323优选设置为冷却元件通孔330截面为星形的中空结构,其横截面形状为星形环。高温冷却段324的冷却元件通孔330的横截面积大于低温冷却段323的冷却元件通孔330的横截面积。
本实施例中冷却元件300由双组分纤维2粘结制成,双组分纤维2的皮层21为熔点约130℃的聚乳酸,芯层22为熔点约170℃的聚乳酸。为节省成本,皮层21可以用熔点100-130℃的聚乙烯、聚烯烃或共聚酯等代替,芯层22可以用聚丙烯、聚对苯二甲酸乙二酯代替。
高温冷却段324的孔隙率优选为75-85%,低温冷却段323的孔隙率优选为85-90%。
第十六实施例
图16a是根据本发明第十六实施例的冷却元件的纵剖面图;图16b是根据本发明第十六实施例的冷却元件的高温冷却段的横截面图;图16c是根据本发明第十六实施例的冷却元件的低温冷却段的横截面图。本实施例与第十一实施例结构相似,与第十一实施例相同的部分在本实施例的描述中不再赘述。
本实施例中,冷却元件300包括高温冷却段324和低温冷却段323。如图16b所示,高温冷却段324具有轴向贯穿高温冷却段324的冷却元件通孔330。高温冷却段324优选设置为冷却元件通孔330截面为星形的中空结构,其横截面形状为星形环。
如图16c所示,低温冷却段323也具有轴向贯穿低温冷却段323的冷却元件通孔330。低温冷却段323优选设置为冷却元件通孔330截面为星形的中空结构,其横截面形状为星形环。高温冷却段324的冷却元件通孔330的横截面积大于低温冷却段323的冷却元件通孔330的横截面积。
如图16a至16c所示,为提高冷却效果,可以在高温冷却段324和低温冷却段323的冷却元件通孔330中插入内芯331,内芯331的直径不大于低温冷却段323的冷却元件通孔330的内径。
第十七实施例
图17a是根据本发明第十七实施例的冷却元件的纵剖面图;图17b是根据本发明第十七实施例的冷却元件的高温冷却段的横截面图;图17c是根据本发明第十七实施例的冷却元件的低温冷却段的横截面图。本实施例与第十一实施例结构相似,与第十一实施例相同的部分在本实施例的描述中不再赘述。
高温冷却段324的冷却元件通孔330。高温冷却段324优选设置为冷却元件通孔330截面为星形的中空结构,其横截面形状为星形环。
如图17c所示,低温冷却段323也具有轴向贯穿低温冷却段323的冷却元件通孔330。低温冷却段323优选设置为冷却元件通孔330截面为星形的中空结构,其横截面形状为星形环。
如图17a至17c所示,可以在低温冷却段323的冷却元件通孔330中插入内芯331,内芯331中加载风味剂,如薄荷、香精等。
在本实施例中,高温冷却段324和低温冷却段323可以一体成形,孔隙率优选为85%。
在本实施例中,冷却元件300由双组分纤维2粘结制成,双组分纤维2的皮层21为熔点约170℃的聚乳酸,芯层22为熔点约265℃的聚对苯二甲酸乙二酯,为降低成本,皮层21可 以用聚丙烯替代。
第十八实施例
图18a是根据本发明第十一实施例的冷却元件的纵剖面图;图18b是根据本发明第十一实施例的冷却元件的横截面图。本实施例与第十一实施例结构相似,与第十一实施例相同的部分在本实施例的描述中不再赘述。
本实施例中,冷却元件300由双组分纤维2经热粘结制成,孔隙率为90%。双组分纤维2为短纤,具有同心或偏心结构的皮层21和芯层22,皮层21为熔点125-135℃的聚乳酸,芯层22为熔点160-185℃的聚乳酸。
本实施例中,冷却元件300为非中空结构,气雾通过冷却元件300时能充分地与冷却元件300接触并进行热交换。为节省成本,皮层21可以用聚乙烯、聚丙烯等代替,芯层22可以用聚丙烯、聚对苯二甲酸乙二酯等代替。
综上,本发明涉及的一种冷却元件300,冷却元件300由双组分纤维2粘结制成,双组分纤维2具有皮层21和芯层22。由双组分纤维2粘结制成的冷却元件300具有大量的毛细孔,对气雾冷却时产生的冷凝液具有很好的吸收作用,使气雾变得干燥,有利于使使用者感知到较低的温度。由双组分纤维2粘结制成的冷却元件300,可以制成中空结构和非中空结构,根据需要可以两者单独使用或把两者组合使用,以便达到适当的冷却效果和气阻。本发明的冷却元件300可以应用于各种气雾散发装置,如含香精的气雾散发装置,含尼古丁的气雾散发装置,含可气化中药成分的气雾散发装置等。上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明,比如可以将两种不同的双组分纤维混合来制备冷却元件300,或者在不影响冷却元件300整体性能的情况下将一些单组份纤维参杂于双组分纤维中以降低成本。
第十九实施例
图19a为本发明所公开的第十九实施例的冷凝液吸收元件的纵剖面图;图19b为本发明所公开的第十九实施例的冷凝液吸收元件的横截面图。
如图19a和19b所示,根据本发明第十九实施例的冷凝液吸收元件400,用于气雾散发装置的气雾通道中吸收冷凝液,冷凝液吸收元件400由皮芯结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2具有皮层21和芯层22。
皮层21优选为聚乳酸,或者是,优选为聚乙烯、聚丙烯、PBT或PTT等聚酯、或低熔 点共聚酯如聚对苯二甲酸乙二醇酯的共聚酯。
聚乳酸优选为聚D-乳酸,聚L-乳酸或聚D,L-乳酸。
<冷凝液吸收元件的密度及刚性>
本实施例的冷凝液吸收元件400密度为0.1克/厘米 3到0.4克/厘米 3,优选为0.2克/厘米 3到0.3克/厘米 3。当冷凝液吸收元件400的密度小于0.1克/厘米 3时,冷凝液吸收元件400的毛细力偏小,吸收冷凝液的能力较差,并且冷凝液吸收元件400轴向刚性过小,不利于在气雾散发装置中组装,尤其不利于高速自动化装配;当冷凝液吸收元件400的密度大于0.4克/厘米 3时,冷凝液吸收元件400径向刚性过高,在气雾散发装置中装配较为困难,并且单位体积冷凝液吸收元件400的吸液容量过小,空间利用效率差,不利于在空间狭小的气雾散发装置中使用。
本文中的刚性的比较方法是:将冷凝液吸收元件400沿轴向或者径向放置,夹持在两块平行的板之间,测量未压缩前的冷凝液吸收元件400的轴向高度或者径向高度;在施加同样作用力的情况下,测量两块板轴向或者径向压缩冷凝液吸收元件400后的轴向高度或者径向高度,并计算压缩的变形量,该压缩的变形量为未压缩前的轴向高度或者径向高度减去压缩后的轴向高度或者径向高度后的差值;将压缩的变形量除以未压缩前的冷凝液吸收元件400的轴向高度或者径向高度,获得压缩比。压缩比越小,则刚性越大,压缩比越大,则刚性越小。
冷凝液吸收元件400轴向的刚性大于其径向的刚性。在冷凝液吸收元件400的制作过程中,可以控制制作工艺,使冷凝液吸收元件400轴向的刚性大于其径向的刚性。由此便于组装时,冷凝液吸收元件400在轴向用力的作用下,径向能自适应地变形,并自适应地固定于气雾散发装置中,方便高速自动化组装。
<双组分纤维>
图19c是图19a和19b中的双组分纤维的一种截面放大示意图。如图19c所示,皮层21和芯层22为同心结构。同心结构的双组分纤维2刚性较大,生产方便。
图19d是图19a和19b中的双组分纤维的另一种截面放大示意图。如图19d所示,皮层21和芯层22为偏心结构。偏心结构的双组分纤维2较为柔软蓬松,容易制作密度较小的冷凝液吸收元件400。
双组分纤维2为长丝或者短纤。长丝制成的冷凝液吸收元件400强度较高,短纤制成的 冷凝液吸收元件400弹性较好。制造者可以根据冷凝液吸收元件400的性能要求选择合适的双组分纤维制成合适的密度和合适形状的冷凝液吸收元件400。
双组分纤维2的芯层22比皮层21的熔点高20℃以上。本实施例的冷凝液吸收元件400由皮芯结构双组分纤维2热粘结制成。双组分纤维2的芯层22比皮层21熔点高20℃以上,可以在纤维之间进行热粘结的时候使芯层22保持一定的刚性,便于冷凝液吸收元件400的制作。
双组分纤维2的皮层21为聚乳酸,简称PLA。聚乳酸由乳酸经化学反应制成,乳酸存在L和D光学异构体。聚乳酸包括聚L-乳酸、聚D-乳酸和聚D,L-乳酸。不同的聚乳酸有不同的熔点。由于原料纯度和生产工艺的差异,来自不同生产厂家的同一种类型的聚乳酸,可能有相同或不同的熔点;同一生产厂家的同一种类型但不同型号的聚乳酸可能有相同或不同的熔点。可以根据皮层21的聚乳酸的熔点来选择合适的芯层22材料。比如采用熔点125-135℃的聚D,L-乳酸为皮层21,可以用聚丙烯、聚对苯二甲酸乙二酯等为芯层22,也可以采用熔点165-180℃的聚D-乳酸或聚L-乳酸为芯层。再比如采用熔点155-170℃的聚D-乳酸或聚L-乳酸作为皮层21,可以选聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚对苯二甲酸丙二酯、聚酰胺等为芯层22。聚乳酸为生物降解材料,可以被微生物完全分解成二氧化碳和水,尤其是当皮层21和芯层22均为聚乳酸时,冷凝液吸收元件可以全部被微生物分解,从而大大减少冷凝液吸收元件400使用后被抛弃所产生的环境污染。
双组分纤维2的皮层也可以为聚乙烯、聚丙烯、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二酯或聚对苯二甲酸乙二醇酯的共聚酯、或者聚酰胺-6。可以根据皮层21的熔点来选择合适的芯层22材料。比如采用熔点125-135℃的高密度聚乙烯为皮层,可以用聚丙烯、聚对苯二甲酸乙二酯等为芯层22。再比如采用熔点160-170℃的聚丙烯为皮层21,可以选聚对苯二甲酸乙二酯、聚酰胺等为芯层22。再比如采用熔点110-120℃的低熔点共聚酯为皮层21,可以选聚对苯二甲酸乙二酯等为芯层22。再比如采用熔点225-235℃的聚对苯二甲酸丁二酯或聚对苯二甲酸丙二酯为皮层21为皮层21,可以选熔点255-265℃的聚对苯二甲酸乙二酯为芯层22。
双组分纤维2经粘结形成三维网络的立体结构。粘结可以采用多种方法,比如用胶水(最常见的粘结方法)、增塑剂(香烟过滤嘴的粘结方法)等。本发明优选通过热粘结形成三维网络的立体结构。通过热粘结的方法,成本低、并且不引入杂质。
<双组分纤维的纤度>
制作本发明冷凝液吸收元件400的双组分纤维2的纤度介于1旦到10旦,优选2旦到6 旦。低于1旦的皮芯结构双组分纤维2制造困难,成本高。高于10旦的纤维制成的冷凝液吸收元件400毛细力不足,吸收冷凝液的能力较差。
介于1旦到10旦的皮芯结构双组分纤维2容易热粘结成密度较低、并且具有合适毛细力的三维立体结构的冷凝液吸收元件400。纤度介于2旦到6旦的皮芯结构双组分纤维2尤为合适,并且成本较低。
<冷凝液吸收元件的形状>
本实施例的冷凝液吸收元件400可以根据气雾散发装置的内部结构需要制成合适的横截面外形,如圆形、椭圆形、长方形,或各种几何形状的组合,以方便在气雾散发装置中装配。可以根据需要在冷凝液吸收元件400的轴向设置冷凝液吸收元件通孔430,气雾从冷凝液吸收元件400周边通过或从冷凝液吸收元件通孔430中穿过时,气雾周围的冷凝液与冷凝液吸收元件接触从而被吸收。冷凝液吸收元件通孔430可以为圆形、椭圆形、长方形或各种几何形状的组合,冷凝液吸收元件通孔430可以为一个或多个。
在本实施例中,优选冷凝液吸收元件400由同心结构的双组分纤维2经热粘结形成三维网络的立体结构。双组分纤维2的纤度为2旦,皮层21为熔点125-135℃的聚D,L-乳酸,芯层22为熔点165-180℃的聚L-乳酸,制成的冷凝液吸收元件400密度介于0.2克/厘米 3到0.3克/厘米 3,这种冷凝液吸收元件400具有吸液容量大和吸收速度快的特性。如图1b所示,本实施例中冷凝液吸收元件400横截面外形为椭圆形,并设置横截面为圆形的轴向冷凝液吸收元件通孔430,当气雾穿过冷凝液吸收元件400的轴向冷凝液吸收元件通孔430时,气雾周围的冷凝液与轴向冷凝液吸收元件通孔430周壁接触并被吸收,防止冷凝液被使用者吸入口中,提升使用者的体验。
在本实施例中,也可以采用皮层21为熔点125-135℃的高密度聚乙烯,芯层22为熔点160-170℃的聚丙烯。
第二十实施例
图20a为本发明所公开的第二十实施例的冷凝液吸收元件的纵剖面图;图20b为本发明所公开的第二十实施例的冷凝液吸收元件的横截面图。本实施例与第十九实施例结构相似,与第十九实施例相同的部分在本实施例的描述中不再赘述。
在本实施例中,冷凝液吸收元件400由同心结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2为长丝,纤度为4旦。双组分纤维2的皮层21为熔点165-180℃的聚L-乳酸或聚D-乳酸,芯层22为熔点255-265℃的聚对苯二甲酸乙二酯。这种冷凝液吸收 元件400耐温性能较好,可以安装于气雾通道靠近雾化器的部位。制成的冷凝液吸收元件400密度优选0.25克/厘米 3,具有较大的刚性,适合于高速自动化组装。如图20b所示,本实施例中冷凝液吸收元件400横截面外形为圆形,轴向冷凝液吸收元件通孔430也为圆形。
如果本实施例中的冷凝液吸收元件用于离雾化器较远的部位,皮层可以用熔点较低的聚乳酸替代,比如熔点145-160℃的聚L-乳酸或聚D-乳酸,熔点155-170℃的聚L-乳酸或聚D-乳酸,或熔点125-135℃的聚D,L-乳酸等。
在本实施例中,也可以是,双组分纤维2的皮层21为熔点225-235℃的聚对苯二甲酸丁二酯,芯层22为熔点255-265℃的聚对苯二甲酸乙二酯。如果本实施例中的冷凝液吸收元件用于离雾化器较远的部位,皮层可以用熔点较低聚合物,比如熔点160-170℃的聚丙烯。
第二十一实施例
图21a为本发明所公开的第二十一实施例的冷凝液吸收元件的纵剖面图;图21b为本发明所公开的第二十一实施例的冷凝液吸收元件的横截面图。本实施例与第十九实施例结构相似,与第十九实施例相同的部分在本实施例的描述中不再赘述。
本实施例中,冷凝液吸收元件400由偏心结构的双组分纤维2经热粘结形成三维网络的立体结构。双组分纤维2纤度为10旦,皮层21为熔点125-135℃的聚D,L乳酸,芯层22为熔点约165-180℃的聚L-乳酸,制成的冷凝液吸收元件400密度为0.3克/厘米 3到0.4克/厘米 3。如图21b所示,本实施例中冷凝液吸收元件400横截面由长方形和两个半圆组成,并设置两个轴向冷凝液吸收元件通孔430,这种结构特别适合于烟嘴部位设计有两个气雾通道的气雾散发装置。
在本实施例中,也可以是,皮层21为熔点110-120℃的低熔点共聚酯,芯层22为熔点约255-265℃的聚对苯二甲酸乙二酯。
第二十二实施例
图22a为本发明所公开的第二十二实施例的冷凝液吸收元件的纵剖面图;图22b为本发明所公开的第二十二实施例的冷凝液吸收元件的横截面图。本实施例与第十九实施例结构相似,与第十九实施例相同的部分在本实施例的描述中不再赘述。
本实施例中,冷凝液吸收元件400由偏心结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2为短纤,其纤度为6旦,皮层21为熔点115-125℃的聚D,L乳酸,芯层22为熔点155-170℃的聚L-乳酸。由偏心结构的双组分纤维2制成的冷凝液吸收元件在径向具有更好的弹性,方便在气雾散发装置中安装固定。冷凝液吸收元件400密度介于0.1 克/厘米 3到0.2克/厘米 3,较低的密度使其单位体积具有较大的吸液容量。如图22b所示的横截面,本实施例中冷凝液吸收元件400在长轴两端设计凹槽4,使其方便在椭圆状空间中卡位安装。本实施例中芯层22可以用聚丙烯或聚对苯二甲酸乙二酯替代以降低成本。
在本实施例中,也可以是皮层21为熔点110-125℃的低密度聚乙烯,芯层22为熔点160℃到170℃的聚丙烯。
第二十三实施例
图23a为本发明所公开的第二十三实施例的冷凝液吸收元件装配前的纵剖面图,上下方向为轴向,为装配时用力的方向;图23b为本发明所公开的第二十三实施例的冷凝液吸收元件的横截面图;图23c为本发明所公开的第二十三实施例的冷凝液吸收元件安装后的纵剖面图。本实施例与第十九实施例结构相似,与第十九实施例相同的部分在本实施例的描述中不再赘述。
本实施例中,冷凝液吸收元件400由双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2为短纤,其纤度为1旦,皮层21为无定形的的聚D,L-乳酸,这种无定形的聚乳酸没有熔点,芯层22为熔点约160-180℃的聚乳酸,制成的冷凝液吸收元件400密度为0.1克/厘米 3。冷凝液吸收元件400沿轴向插入烟嘴内部中部分梯形的空腔中,冷凝液吸收元件400的径向根据烟嘴内部的空腔自适应地变形,装配后的冷凝液吸收元件400的纵剖面图如图23c所示。利用冷凝液吸收元件400径向能自适应变形的特点,可以在简化冷凝液吸收元件400设计的情况下,充分利用气雾散发装置内部的空间,有利于气雾散发装置的创新设计。
在本实施例中,也可以是皮层21为聚乙烯,芯层22为聚丙烯。
第二十四实施例
图24a为本发明所公开的第二十四实施例的冷凝液吸收元件的纵剖面图;图24b为本发明所公开的第二十四实施例的冷凝液吸收元件的横截面图。本实施例与第十九实施例结构相似,与第十九实施例相同的部分在本实施例的描述中不再赘述。
本实施例中,冷凝液吸收元件400由双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2的纤度为3旦,皮层21为熔点125-135℃的聚乳酸,芯层22为熔点165-180℃的聚乳酸,制成的冷凝液吸收元件400密度为0.25克/厘米 3到0.35克/厘米 3。如图24b所示,本实施例的冷凝液吸收元件400的一侧设有导通气雾的凹槽5,适合于气雾通道设于一侧的气雾散发装置。
在本实施例中,也可以是,皮层21为熔点125-135℃的聚乙烯,芯层22为熔点255-265 ℃的聚对苯二甲酸乙二酯。
本发明的冷凝液吸收元件400具有较低的密度和较高的孔隙率,单位体积的吸液容量大,适合于气雾散发装置的紧凑空间。基于皮芯结构双组分纤维粘结制成的三维网络立体结构,吸收冷凝液后不膨胀、不变形,使气雾通道具有稳定的气流阻力,有利于保持气雾散发装置使用过程中的气阻稳定性,提升用户体验。
本发明的冷凝液吸收元件可根据气雾散发装置的结构进行定制,从而方便地在精密的气雾散发装置中组装。可以控制制作工艺使冷凝液吸收元件的轴向比径向具有更大的刚性,便于组装时在轴向用力,方便高速自动化组装。
冷凝液吸收元件400能在接触气雾时快速吸收冷凝液,有效提升口感。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明,比如可以将两种不同纤度的双组分纤维混合来制备冷凝液吸收元件,或者在不影响冷凝液吸收元件整体性能的情况下将一些单组分纤维参杂于双组分纤维中以降低成本。任何本领域技术人员皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,本领域技术人员在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
第二十五实施例
图25a为本发明所公开的第二十五实施例的支撑元件的纵剖面图;图25b为本发明所公开的第二十五实施例的支撑元件的横截面图。
如图25a和25b所示,根据本发明第二十五实施例的支撑元件,用于气雾散发装置中支撑风味变换部件,支撑元件500由双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2具有皮层21和芯层22。
<支撑元件的形状>
支撑元件500可以具有轴向贯穿支撑元件500的支撑元件通孔530。支撑元件通孔530可以用于支撑风味变换部件(未图示)。例如,风味变换部件可以是爆珠,爆珠封装有诸如薄荷、天然或合成香精的风味剂。在装配时,爆珠插入支撑元件通孔530中,并由支撑元件通孔530支撑。用户使用时,可以挤压支撑原件500使爆珠破裂,使得风味剂逸出,并与气雾散发装置产生的气雾混合,改变气雾的风味,使用户能够体验不同风味的气雾。
通过支撑元件500来添加风味,因为风味被包覆于风味变换部件中,在储存过程中不发 生风味散失,也不存在雾化时因高温而发生分解的问题。
本实施例的支撑元件500可以根据气雾散发装置的内部空间制成合适的几何形状,如圆柱形、方柱形或者椭圆柱形等。可以不设置轴向支撑元件通孔530,在这种情况下,可以在支撑元件成型时将风味变换部件预埋于支撑元件中,或者在支撑元件中沿径向打孔,用于安装风味变化部件。
<支撑元件的密度>
本实施例的支撑元件500密度为0.08-0.35克/厘米 3,如0.08克/厘米 3、0.10克/厘米 3、0.12克/厘米 3、0.15克/厘米 3、0.18克/厘米 3、0.21克/厘米 3、0.25克/厘米 3、0.3克/厘米 3、0.35克/厘米 3,优选为0.1-0.25克/厘米 3。当密度小于0.08克/厘米 3时,支撑元件500制造困难,并且支撑元件500的强度不足,不易在气雾散发装置中组装;当密度大于0.35克/厘米 3时,支撑元件500的强度太大,使用时不易通过挤压支撑元件使风味变换元件破裂。
综合考虑制造、组装和使用的方便性,本发明确定支撑元件500优选的密度范围为0.1-0.25克/厘米 3,最优选为0.12-0.2克/厘米 3
<双组分纤维>
如图25a和25b所示,根据本实施例的支撑元件500由双组分纤维2粘结形成三维网络的立体结构,双组分纤维2具有皮层21和芯层22。可以采用粘结剂、增塑剂或热量粘结纤维,优选用热量来粘结纤维以避免在制作支撑元件500的过程中引进杂质。本发明中所说的纤维组分是指制作纤维的聚合物。用于纤维表面的添加剂,如表面活性剂,并不被认为是纤维的组分。
图25c是图25a和25b中的双组分纤维的一种截面放大示意图。如图25c所示,皮层21和芯层22为同心结构。同心结构的双组分纤维2刚性较大,生产方便,价格较低。
图25d是图25a和25b中的双组分纤维的另一种截面放大示意图。如图25d所示,皮层21和芯层22为偏心结构。偏心结构的双组分纤维2较为柔软蓬松,容易制作密度较小的支撑元件500。此外,还可以采用并列结构的双组分纤维来制作支撑元件500,但热粘结时比较困难。当然,还可以采用三组分的皮芯结构纤维来制作支撑元件500,但三组分的皮芯结构纤维制造难度大,成本高,性价比较差。
双组分纤维2为长丝或者短纤。长丝制成的支撑元件500强度较高,短纤制成的支撑元件500弹性较好。制造者可以根据支撑元件500的性能要求选择合适的双组分纤维制成合适的密度和合适形状的支撑元件500。
双组分纤维2的芯层22比皮层21的熔点高25℃以上。本实施例的支撑元件500由皮芯结构双组分纤维2热粘结制成。双组分纤维2的芯层22比皮层21熔点高25℃以上,可以在纤维之间进行热粘结的时候使芯层22保持一定的刚性,便于制成密度较低的支撑元件500。
双组分纤维2的皮层21可以为聚乙烯、聚丙烯等聚烯烃、或对苯二甲酸乙二醇酯的共聚酯、聚酰胺-6和聚乳酸等常见的聚合物。聚烯烃为烯烃的聚合物,通常由乙烯、丙烯、1-丁烯、1-戊烯、1-己烯等α-烯烃单独聚合或共聚而得的一类热塑性树脂的总称。聚烯烃具有惰性的分子结构,分子链上不含活性基团,对风味剂吸附少,因此具有独特的优势。
当皮层21为聚乙烯时,比如线性低密度聚乙烯、低密度聚乙烯或高密度聚乙烯,芯层22可以为聚丙烯、聚对苯二甲酸乙二酯等聚合物。当皮层21为聚丙烯等其他聚烯烃时,芯层22可以为聚对苯二甲酸乙二酯、聚对苯二甲酸丙二酯或聚对苯二甲酸丁二酯、聚酰胺等。双组分纤维2的皮层21熔化温度低,有利于提高生产效率,降低制造过程中的能耗。
当皮层21为聚乳酸时,根据聚乳酸的熔点,如果采用熔点约130℃的聚乳酸为皮层21,芯层22可以为聚丙烯、聚对苯二甲酸乙二酯、熔点约170℃左右的聚乳酸等。当皮层21为熔点约170℃的聚乳酸时,芯层22可以为聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚对苯二甲酸丙二酯、聚酰胺等。聚乳酸为生物降解材料,可以减少支撑元件500被抛弃时造成的环境污染。
<双组分纤维的纤度>
制作本发明支撑元件500的双组分纤维2的纤度介于1-30旦,优选1-15旦,最优选1.5-10旦。低于1旦的皮芯结构双组分纤维2制造困难,成本高。高于30旦的纤维难以制作支撑元件500。介于1-15旦的皮芯结构双组分纤维2容易热粘结成密度较低、并且具有合适毛细力的三维立体结构的支撑元件500,1.5-10旦皮芯结构双组分纤维2尤为合适,并且成本较低。
本实施例中,优选双组分纤维2的纤度为1.5旦、2旦、3旦或6旦,皮层21为熔点约130℃的聚乙烯,芯层22为熔点约165℃的聚丙烯,支撑元件500密度介于0.1-0.25克/厘米 3
虽然支撑元件500也可以由单组份纤维,如聚丙烯纤维,用粘结剂粘结制成,但粘结剂的使用通常会使支撑元件500难以符合食品或药品的相关法规,这种支撑元件500不宜用于电子烟、药物雾化等气雾散发装置中。
如图25a、25b、25c和25d所示,在本实施例中,优选支撑元件500由同心结构的双组分纤维2经热粘结形成三维网络的立体结构。双组分纤维2的纤度为3旦,皮层21为熔点约130℃的聚乙烯,芯层22为熔点约270℃左右的聚对苯二甲酸乙二酯,制成的支撑元件500密度介于0.1-0.25克/厘米 3。支撑元件500形状为圆柱体,外径为7.5mm,并设置直径为3.5mm 的轴向支撑元件通孔530。这种支撑元件500的形状和尺寸适合于仿真烟形状的电子烟中使用。可以改变支撑元件500横截面的外径和轴向支撑元件的通孔530大小,制成不同尺寸的支撑元件500,方便在不同的气雾散发装置中使用。本实施例中双组分纤维2的皮层21可以用熔点约130℃的聚乳酸代替,制成的支撑元件500具有类似的性能。
气雾散发装置900雾化产生的气雾流经支撑元件500时,气雾在冷却过程中产生的冷凝液能够部分被支撑元件500吸收,减少气雾中的冷凝液,提升消费体验。
第二十六实施例
图26a为本发明所公开的第二十六实施例的支撑元件的纵剖面图;图26b为本发明所公开的第二十六实施例的支撑元件的横截面图。本实施例与第二十五实施例结构相似,与第二十五实施例相同的部分在本实施例的描述中不再赘述。
如图26a和26b所示,本实施例中,支撑元件500由同心结构的双组分长丝经热粘结形成三维网络的立体结构,双组分纤维2的纤度为6旦,皮层21为熔点约165℃的聚丙烯,芯层22为熔点230℃左右的聚对苯二甲酸丁二酯,这种支撑元件500具有较高的耐温性能,制成的支撑元件500密度介于0.25-0.35克/厘米 3,具有较大的刚性,适合于高速自动化组装。支撑元件500横截面图显示的形状为长方体,设置直径3mm的轴向通孔为支撑元件通孔530,这种支撑元件500的形状适合在长方体形状的扁烟中使用。本实施例中双组分纤维2的皮层21可以用熔点约170℃的聚乳酸代替,制成的支撑元件500具有类似的性能。
第二十七实施例
图27a为本发明所公开的第二十七实施例的支撑元件500的纵剖面图;图27b为本发明所公开的第二十七实施例的支撑元件500的横截面图。本实施例与第二十五实施例结构相似,与第二十五实施例相同的部分在本实施例的描述中不再赘述。
如图27a和27b所示,本实施例中,支撑元件500由偏心结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2为短纤,其纤度为2旦,皮层21为熔点130℃的聚乳酸,芯层22为熔点155-185℃的聚乳酸,制成的支撑元件500密度介于0.12-0.2克/厘米 3。支撑元件500横截面图显示的为椭圆形,设置直径为2.5mm的轴向支撑元件通孔530,这种支撑元件500的形状适合在椭圆柱形状的扁烟中使用。本实施例中的支撑元件500完全由聚乳酸制成,能完全生物降解,对减少环境污染具有重要意义。
综上,本发明涉及的用于气雾散发装置的支撑元件500采用了皮芯结构的双组分纤维制 成,支撑元件500根据应用需求能在热粘结过程中制成需要的三维结构的尺寸和形状,从而适合高速的自动化组装,以降低气雾散发装置的制造成本。上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明,比如可以将两种不同纤度的双组分纤维混合来制备支撑元件500,或者在不影响支撑元件500整体性能的情况下将一些单组份纤维参杂于双组分纤维中以降低成本。任何本领域技术人员皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,本领域技术人员在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (64)

  1. 一种储液元件,用于气雾散发装置中储存和释放液体,其特征在于,所述储液元件(100)由双组分纤维(2)经热粘结形成三维网络的立体结构,所述双组分纤维(2)具有皮层(21)和芯层(22)。
  2. 如权利要求1所述的储液元件,其特征在于,所述储液元件(100)具有轴向贯穿所述储液元件(100)的储液元件通孔(130)。
  3. 如权利要求1所述的储液元件,其特征在于,所述储液元件(100)的密度为0.03克/厘米 3-0.25克/厘米 3
  4. 如权利要求3所述的储液元件,其特征在于,所述储液元件(100)的密度为0.04克/厘米 3-0.12克/厘米 3
  5. 如权利要求1所述的储液元件,其特征在于,所述皮层(21)和所述芯层(22)为同心结构或者偏心结构。
  6. 如权利要求1所述的储液元件,其特征在于,所述双组分纤维(2)为长丝或者短纤。
  7. 如权利要求1所述的储液元件,其特征在于,所述双组分纤维(2)的芯层(22)比皮层(21)的熔点高25℃以上。
  8. 如权利要求1或者7所述的储液元件,其特征在于,所述皮层(21)为聚烯烃、聚对苯二甲酸乙二醇酯的共聚酯或者聚酰胺-6。
  9. 如权利要求7所述的储液元件,其特征在于,所述皮层(21)为聚乳酸。
  10. 如权利要求9所述的储液元件,其特征在于,所述芯层(22)为聚乳酸。
  11. 如权利要求1所述的储液元件,其特征在于,所述双组分纤维(2)的纤度介于1-30旦。
  12. 如权利要求11所述的储液元件,其特征在于,所述双组分纤维(2)的纤度介于1-15旦。
  13. 如权利要求1所述的储液元件,其特征在于,所述储液元件(100)具有低密度部(123)和高密度部(124)以及设置在所述低密度部(123)和所述高密度部(124)之间的密度递增部(125)。
  14. 如权利要求1所述的储液元件,其特征在于,所述储液元件(100)包括上下结构的储液部(121)和集液部(122),所述集液部(122)的密度高于所述储液部(121)。
  15. 如权利要求1所述的储液元件,其特征在于,所述储液元件(100)包括集液部(122)和包覆在所述集液部(122)外周壁上的密度低于所述集液部(122)的储液部(121)。
  16. 一种导液元件,用于气雾散发装置中传导液体,其特征在于,所述导液元件(200)由双组分纤维(2)经热粘结形成三维网络的立体结构,所述双组分纤维(2)具有皮层(21)和芯层(22)。
  17. 如权利要求16所述的导液元件,其特征在于,所述导液元件(200)具有轴向贯穿所述导液元件(200)的导液元件通孔(230)。
  18. 如权利要求16所述的导液元件,其特征在于,所述导液元件(200)为片状或者管状。
  19. 如权利要求16所述的导液元件,其特征在于,所述导液元件(200)轴向的刚性大于其径向的刚性。
  20. 如权利要求16所述的导液元件,其特征在于,所述导液元件(200)中液体沿轴向渗透的速度大于液体沿径向渗透的速度。
  21. 如权利要求16所述的导液元件,其特征在于,所述导液元件(200)径向的刚性大于其轴向的刚性。
  22. 如权利要求16所述的导液元件,其特征在于,所述导液元件(200)中液体沿径向渗透的速度大于液体沿轴向渗透的速度。
  23. 如权利要求16所述的导液元件,其特征在于,所述导液元件(200)的厚度为0.3mm-3mm。
  24. 如权利要求16所述的导液元件,其特征在于,所述导液元件(200)的密度为0.05克/厘米 3-0.35克/厘米 3
  25. 如权利要求16所述的导液元件,其特征在于,所述双组分纤维的皮层(21)和芯层(22)为同心结构或偏心结构。
  26. 如权利要求16所述的导液元件,其特征在于,所述双组分纤维(2)的芯层(22)比皮层(21)的熔点高20℃以上。
  27. 如权利要求16所述的导液元件,其特征在于,所述双组分纤维的皮层(21)为聚烯烃、聚对苯二甲酸乙二醇酯的共聚酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚乳酸或者聚酰胺-6。
  28. 如权利要求16所述的导液元件,其特征在于,所述双组分纤维(2)的芯层(22)为聚乳酸。
  29. 一种冷却元件,用于冷却气雾散发装置中产生的气雾,其特征在于,所述冷却元件(300)由双组分纤维(2)经热粘结形成三维网络的立体结构,所述双组分纤维材料(2)具有皮层(21)和芯层(22)。
  30. 如权利要求29所述的冷却元件,其特征在于,所述冷却元件的孔隙率为65%-95%。
  31. 如权利要求29所述的冷却元件,其特征在于,冷却元件(300)具有轴向贯穿所述冷却元件(300)的冷却元件通孔(330)。
  32. 如权利要求29所述的冷却元件,其特征在于,所述皮层(21)和所述芯层(22)为同心结构或者偏心结构。
  33. 如权利要求29所述的冷却元件,其特征在于,所述皮层(21)为聚烯烃、聚对苯二甲酸乙二醇酯的共聚酯、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二酯、聚D-乳酸,聚L-乳酸,聚D,L乳酸或者聚酰胺-6。
  34. 如权利要求29所述的冷却元件,其特征在于,所述芯层(22)为聚乳酸。
  35. 如权利要求29所述的冷却元件,其特征在于,所述芯层(22)比所述皮层(21)的熔点高25℃以上。
  36. 如权利要求29所述的冷却元件,其特征在于,所述冷却元件(300)中添加甘油醋酸酯、柠檬酸三乙酯、低分子量乙二醇,或者甘油醋酸酯和醋酸纤维素纤维的混合物。
  37. 如权利要求29所述的冷却元件,其特征在于,所述冷却元件(300)中添加薄荷、天然或者合成香精。
  38. 如权利要求29所述的冷却元件,其特征在于,所述冷却元件(300)包括高温冷却段(324)和低温冷却段(323)。
  39. 如权利要求38所述的冷却元件,其特征在于,所述高温冷却段(324)的所述皮层(21)的熔点大于所述低温冷却段(323)的所述皮层(21)的熔点。
  40. 如权利要求38所述的冷却元件,其特征在于,所述高温冷却段(324)具有轴向贯穿所述高温冷却段(324)的冷却元件通孔(330)。
  41. 如权利要求40所述的冷却元件,其特征在于,所述低温冷却段(323)具有轴向贯穿所述低温冷却段(323)的冷却元件通孔(330)。
  42. 如权利要求41所述的冷却元件,其特征在于,所述高温冷却段(324)的所述冷却元件通孔(330)的横截面积大于所述低温冷却段(323)的所述冷却元件通孔(330)的横截面积。
  43. 如权利要求29所示的冷却元件,其特征在于,所述双组分纤维为长丝或短纤。
  44. 一种冷凝液吸收元件,用于气雾散发装置中吸收冷凝液,其特征在于,所述冷凝液吸收元件(400)由双组分纤维(2)经热粘结形成三维网络的立体结构,所述双组分纤维(2)具有皮层(21)和芯层(22)。
  45. 如权利要求44所述的冷凝液吸收元件,其特征在于,所述皮层(21)为聚乳酸。
  46. 如权利要求45所述的冷凝液吸收元件,其特征在于,所述聚乳酸为聚D-乳酸,聚L-乳酸或聚D,L-乳酸。
  47. 如权利要求44所述的冷凝液吸收元件,其特征在于,所述皮层(21)为聚乙烯、聚丙烯、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二酯或聚对苯二甲酸乙二醇酯的共聚酯、或者聚酰胺-6。
  48. 如权利要求44至47中任一项所述的冷凝液吸收元件,其特征在于,所述冷凝液吸收元件(400)的密度为0.1克/厘米 3到0.4克/厘米 3
  49. 如权利要求44至47中任一项所述的冷凝液吸收元件,其特征在于,所述冷凝液吸收元件轴向的刚性大于其径向的刚性。
  50. 如权利要求44至47中任一项所述的冷凝液吸收元件,其特征在于,所述皮层(21)和所述芯层(22)为同心结构或偏心结构。
  51. 如权利要求44至47中任一项所述的冷凝液吸收元件,其特征在于,所述双组分纤维(2)的芯层(22)比皮层(21)的熔点高20℃以上。
  52. 如权利要求44至47中任一项所述的冷凝液吸收元件,其特征在于,所述双组分纤维(2)的芯层为聚乳酸。
  53. 如权利要求44至47中任一项所述的冷凝液吸收元件,其特征在于,所述双组分纤维(2)的纤度介于1旦到10旦。
  54. 如权利要求44至47中任一项所述的冷凝液吸收元件,其特征在于,所述冷凝液吸收元件沿轴向设置冷凝液吸收元件通孔(430)。
  55. 一种支撑元件,用于气雾散发装置或者吸嘴中支撑风味变换部件,其特征在于,所述支撑元件(500)由双组分纤维(2)经热粘结形成三维网络的立体结构,所述双组分纤维(2)具有皮层(21)和芯层(22)。
  56. 如权利要求55所述的支撑元件,其特征在于,所述支撑元件(500)具有轴向贯穿所述支撑元件(500)的支撑元件通孔(530)。
  57. 如权利要求55所述的支撑元件,其特征在于,所述支撑元件(500)的密度为0.08克/厘米 3-0.35克/厘米 3
  58. 如权利要求55所述的支撑元件,其特征在于,所述皮层(21)和所述芯层(22)为同心结构或者偏心结构。
  59. 如权利要求55所述的支撑元件,其特征在于,所述双组分纤维(2)为长丝或者短纤。
  60. 如权利要求55所述的支撑元件,其特征在于,所述双组分纤维(2)的芯层(22) 比皮层(21)的熔点高25℃以上。
  61. 如权利要求55所述的支撑元件,其特征在于,所述皮层(21)为聚烯烃、聚对苯二甲酸乙二醇酯的共聚酯、聚酰胺-6。
  62. 如权利要求55所述的支撑元件,其特征在于,所述皮层(21)为聚乳酸。
  63. 如权利要求55所述的支撑元件,其特征在于,所述芯层(22)为聚乳酸。
  64. 如权利要求55所述的支撑元件,其特征在于,所述双组分纤维(2)的纤度介于1-30旦。
PCT/CN2020/116733 2019-01-21 2020-09-22 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件 WO2021120748A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910050909 2019-01-21
CN201911291779.6A CN111528525A (zh) 2019-01-21 2019-12-16 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件
CN201911291779.6 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021120748A1 true WO2021120748A1 (zh) 2021-06-24

Family

ID=71736693

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2019/125616 WO2020151403A1 (zh) 2019-01-21 2019-12-16 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件
PCT/CN2020/116733 WO2021120748A1 (zh) 2019-01-21 2020-09-22 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件
PCT/CN2020/116736 WO2021120751A1 (zh) 2019-01-21 2020-09-22 一种具有支撑元件的气雾散发装置
PCT/CN2020/116735 WO2021120750A1 (zh) 2019-01-21 2020-09-22 一种具有导液元件的气雾散化装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125616 WO2020151403A1 (zh) 2019-01-21 2019-12-16 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/116736 WO2021120751A1 (zh) 2019-01-21 2020-09-22 一种具有支撑元件的气雾散发装置
PCT/CN2020/116735 WO2021120750A1 (zh) 2019-01-21 2020-09-22 一种具有导液元件的气雾散化装置

Country Status (2)

Country Link
CN (8) CN213215328U (zh)
WO (4) WO2020151403A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4360481A1 (en) * 2022-10-25 2024-05-01 EQOY International Group AG A handheld device for vaporizing liquid to be inhaled by a user

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020151403A1 (zh) * 2019-01-21 2020-07-30 王水娟 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件
WO2022011716A1 (zh) * 2020-07-17 2022-01-20 深圳麦克韦尔科技有限公司 雾化组件及其组装方法和雾化器及电子雾化装置
WO2022221973A1 (zh) * 2021-04-19 2022-10-27 迈博高分子材料(宁波)有限公司 一种气雾弹
JP2024504859A (ja) * 2021-04-19 2024-02-01 邁博高分子材料(寧波)有限公司 エアロゾルカートリッジ
WO2022221974A1 (zh) * 2021-04-19 2022-10-27 迈博高分子材料(宁波)有限公司 一种气雾弹
CN115428996A (zh) * 2021-04-19 2022-12-06 浙江迈博高分子材料有限公司 一种气雾弹
WO2022221975A1 (zh) * 2021-04-19 2022-10-27 迈博高分子材料(宁波)有限公司 一种气雾弹
KR20240033003A (ko) * 2021-07-12 2024-03-12 마이크로포러스 테크놀로지 (닝보) 리미티드 기체-액체 교환 부품 및 에어로졸 카트리지
JP2024506214A (ja) * 2021-08-01 2024-02-09 邁博高分子材料(寧波)有限公司 気液交換部品及びエアロゾルカートリッジ
WO2023047312A1 (en) * 2021-09-22 2023-03-30 2792684 Ontario Inc. Compressed cartomizer matrix for improved wicking
CA3232747A1 (en) * 2021-09-22 2023-03-30 2792684 Ontario Inc. Partially compressed cartomizer matrix

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187751A1 (en) * 2007-02-02 2008-08-07 Ward Bennett C Porous Reservoirs Formed From Side-By-Side Bicomponent Fibers
CN105188430A (zh) * 2013-03-14 2015-12-23 R·J·雷诺兹烟草公司 具有经改进的储存构件的电子烟制品
CN106102489A (zh) * 2014-01-17 2016-11-09 Rai策略控股有限公司 气溶胶前驱体组合物的储存得到改善的电子烟制品
CN208540740U (zh) * 2018-06-06 2019-02-26 迈博高分子材料(宁波)有限公司 一种多孔体和液体散发装置
CN208915893U (zh) * 2018-09-09 2019-05-31 迈博高分子材料(宁波)有限公司 储液装置和应用该储液装置的液体散发装置
CN111528525A (zh) * 2019-01-21 2020-08-14 浙江迈博高分子材料有限公司 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK245488D0 (da) * 1988-05-05 1988-05-05 Danaklon As Syntetisk fiber samt fremgangsmaade til fremstilling deraf
JP3150528B2 (ja) * 1994-04-06 2001-03-26 日本たばこ産業株式会社 香料保留性複合繊維を用いた喫煙用フィルタおよび喫煙用パイプ
US20120000480A1 (en) * 2010-06-30 2012-01-05 Sebastian Andries D Biodegradable cigarette filter
CN106945321A (zh) * 2016-01-06 2017-07-14 余姚市创辉树脂笔头厂 一种微孔纤维棒料制作方法
KR20230056071A (ko) * 2016-05-31 2023-04-26 필립모리스 프로덕츠 에스.에이. 열 확산기를 구비한 에어로졸 발생 물품
US10085485B2 (en) * 2016-07-06 2018-10-02 Rai Strategic Holdings, Inc. Aerosol delivery device with a reservoir housing and a vaporizer assembly
CN107043978A (zh) * 2017-01-20 2017-08-15 广州市白云区鑫球纤维制品厂 一种多用途双层空芯复合多股丝及其制造方法及应用
CN207653590U (zh) * 2017-11-01 2018-07-27 惠州市吉瑞科技有限公司深圳分公司 一种电子烟滤嘴以及电子烟
CN108468102A (zh) * 2018-03-27 2018-08-31 上海创菲新材料技术有限公司 可降解吸水芯及其制备方法和应用
CN109222225A (zh) * 2018-09-07 2019-01-18 福建中烟工业有限责任公司 一种用于加热非燃烧卷烟的冷却部件
CN109610174A (zh) * 2018-12-03 2019-04-12 武汉红金叶新材料科技有限公司 一种pla复合纤维长丝及其制作工艺与用途
CN110292214A (zh) * 2019-08-08 2019-10-01 鹏力超(深圳)贸易有限公司 一种爆珠电子烟

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187751A1 (en) * 2007-02-02 2008-08-07 Ward Bennett C Porous Reservoirs Formed From Side-By-Side Bicomponent Fibers
CN105188430A (zh) * 2013-03-14 2015-12-23 R·J·雷诺兹烟草公司 具有经改进的储存构件的电子烟制品
CN106102489A (zh) * 2014-01-17 2016-11-09 Rai策略控股有限公司 气溶胶前驱体组合物的储存得到改善的电子烟制品
CN208540740U (zh) * 2018-06-06 2019-02-26 迈博高分子材料(宁波)有限公司 一种多孔体和液体散发装置
CN208915893U (zh) * 2018-09-09 2019-05-31 迈博高分子材料(宁波)有限公司 储液装置和应用该储液装置的液体散发装置
CN111528525A (zh) * 2019-01-21 2020-08-14 浙江迈博高分子材料有限公司 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4360481A1 (en) * 2022-10-25 2024-05-01 EQOY International Group AG A handheld device for vaporizing liquid to be inhaled by a user

Also Published As

Publication number Publication date
CN211657397U (zh) 2020-10-13
WO2021120751A1 (zh) 2021-06-24
WO2021120750A1 (zh) 2021-06-24
CN213215328U (zh) 2021-05-18
CN111528525A (zh) 2020-08-14
CN212065686U (zh) 2020-12-04
CN111528523A (zh) 2020-08-14
CN111728272A (zh) 2020-10-02
CN111528524A (zh) 2020-08-14
WO2020151403A1 (zh) 2020-07-30
CN211657396U (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2021120748A1 (zh) 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件
CN111132568B (zh) 包括具有改进的吸收特性的基材的气溶胶递送装置
CN109152426B (zh) 具有液体气溶胶形成基质和可燃发热元件的加热式气溶胶生成制品
UA127648C2 (uk) Генерування аерозолю
JP7464229B2 (ja) エアロゾルの生成
JP2021531801A (ja) エアロゾル生成基体
JP2021532746A (ja) エアロゾル生成基体
UA127993C2 (uk) Генерування аерозолю
UA127520C2 (uk) Генерування аерозолю
JP2021532766A (ja) エアロゾルの生成
WO2021120749A1 (zh) 具有储液元件的气雾弹和气雾散发装置
CN112533496A (zh) 气溶胶产生
JP2021532759A (ja) エアロゾルの生成
JP2024029221A (ja) 積層エアロゾル生成材料
KR20220040458A (ko) 에어로졸 생성
JP2023538237A (ja) エアロゾル生成
CN211645113U (zh) 具有冷却元件的气雾弹
JP2021532777A (ja) エアロゾル形成基体を作製する方法
RU2799837C2 (ru) Выработка аэрозоля
RU2774799C2 (ru) Устройство доставки аэрозоля, содержащее подложку с улучшенными поглощающими свойствами
CN113061422A (zh) 冷却元件和具有该冷却元件的气雾弹
CN116348003A (zh) 包括烟草颗粒替代品的吸烟制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902552

Country of ref document: EP

Kind code of ref document: A1