WO2022221973A1 - 一种气雾弹 - Google Patents

一种气雾弹 Download PDF

Info

Publication number
WO2022221973A1
WO2022221973A1 PCT/CN2021/087992 CN2021087992W WO2022221973A1 WO 2022221973 A1 WO2022221973 A1 WO 2022221973A1 CN 2021087992 W CN2021087992 W CN 2021087992W WO 2022221973 A1 WO2022221973 A1 WO 2022221973A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
aerosol
exchange element
liquid exchange
Prior art date
Application number
PCT/CN2021/087992
Other languages
English (en)
French (fr)
Inventor
王立平
周兴夫
王立娟
沈立夫
Original Assignee
迈博高分子材料(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈博高分子材料(宁波)有限公司 filed Critical 迈博高分子材料(宁波)有限公司
Priority to PCT/CN2021/087992 priority Critical patent/WO2022221973A1/zh
Publication of WO2022221973A1 publication Critical patent/WO2022221973A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M13/00Fumigators; Apparatus for distributing gases
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures

Definitions

  • the invention relates to an aerosol bomb, in particular to an aerosol bomb with a gas-liquid exchange element that atomizes liquids such as electronic cigarettes and drug atomization inhalation devices.
  • Aerosol bombs and atomizing devices are widely used in various fields of daily life, such as electronic cigarettes and drug atomizing inhalation devices.
  • a common structure is to install atomizing cores in aerosol bombs, such as pre-embedded heating wires. Porous ceramics.
  • the air flow through the aerosol bomb heats the atomizing core, the liquid is atomized and carried out by the air flow.
  • the surface of the atomizing core is usually covered with non-woven fabric and fixed in the aerosol bomb. Because the non-woven fabric is soft and lacks strength and is easy to wrinkle, it is difficult to make aerosol bombs with stable quality, and liquid leakage is prone to occur in the case of serious wrinkles.
  • the method of coating the non-woven fabric on the surface of the atomizing core requires a lot of labor, is difficult to automate, has high cost and low efficiency.
  • the present invention provides an aerosol bomb, the aerosol bomb includes a liquid storage element, an atomizing core, and a gas communicating with the liquid storage element and the atomizing core.
  • a liquid exchange element the atomizing core is located at least partially above the bottom of the gas-liquid exchange element, the gas-liquid exchange element conducts the liquid in the liquid storage element to the atomizing core, and through the gas-liquid exchange element A liquid exchange element replenishes gas to the liquid storage element.
  • gas-liquid exchange element is made into a three-dimensional network three-dimensional structure by fiber bonding.
  • the density of the gas-liquid exchange element is 0.035 g/cm 3 -0.3 g/cm 3 .
  • the fiber is a bicomponent fiber having a skin layer and a core layer, and the core layer has a melting point higher than that of the skin layer by more than 20°C.
  • the skin layer of the bicomponent fiber is polyolefin, copolyester of polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polylactic acid or polyamide -6.
  • the capillary pressure of the gas-liquid exchange element is 1 mm to 35 mm.
  • the liquid storage element has an aerosol channel extending axially through the liquid storage element and an atomization chamber cavity, and one end of the aerosol channel is communicated with the atomization chamber cavity.
  • the gas-liquid exchange element and the atomization core are accommodated in the atomization chamber cavity, the atomization chamber through holes are provided on the atomization chamber cavity, and the liquid in the liquid storage element passes through the atomization chamber.
  • the through hole of the atomization chamber contacts the gas-liquid exchange element.
  • gas-liquid exchange element covers the peripheral wall of the atomization chamber cavity.
  • the lower part of the gas-liquid exchange element extends out of the bottom opening of the liquid storage element.
  • the height of the portion of the lower portion of the gas-liquid exchange element beyond the lower end of the aerosol passage is more than a quarter of the height of the gas-liquid exchange element.
  • the part of the lower part of the gas-liquid exchange element beyond the lower end of the aerosol channel is in contact with the atomizing core.
  • the aerosol bomb further includes a silica gel aerosol tube, and the silica gel aerosol tube is arranged between the lower end of the aerosol channel and the atomizing core.
  • the aerosol bomb includes an aerosol channel extending axially through the liquid storage element, and the atomizing core is inserted into the lower end of the aerosol channel.
  • the gas-liquid exchange element can stably conduct the liquid to the atomizing core and replenish the gas to the liquid storage element, thereby ensuring the stability of atomization.
  • the gas-liquid exchange element made of bicomponent fiber bonding has high strength and toughness, is not easy to wrinkle or break during installation, can be easily assembled in aerosol bombs, easy to realize assembly automation, improve efficiency and save costs, It is especially suitable for the manufacture of large-scale consumer products, such as electronic cigarettes.
  • the gas-liquid exchange element of the present invention can be applied to the atomization of various electronic cigarette liquids, and also to the atomization of CBD and other drug solutions.
  • preferred embodiments are hereinafter described in detail with reference to the accompanying drawings.
  • Figure 1a is a schematic longitudinal cross-sectional view of the aerosol bomb according to the first embodiment disclosed in the present invention
  • Fig. 1b is a schematic longitudinal cross-sectional view of the gas-liquid exchange element disclosed in the first embodiment of the present invention
  • Fig. 1c is a schematic cross-sectional view of the gas-liquid exchange element of the first embodiment disclosed in the present invention.
  • Figure 1d is an enlarged schematic cross-section of the bicomponent fiber of Figures 1b and 1c;
  • Figure 1e is another schematic enlarged cross-section of the bicomponent fiber of Figures 1b and 1c;
  • Figure 2a is a schematic longitudinal cross-sectional view of an aerosol bomb according to the second embodiment disclosed in the present invention.
  • Figure 2b is a schematic longitudinal cross-sectional view of another aerosol bomb according to the second embodiment disclosed in the present invention.
  • FIG. 3 is a schematic longitudinal cross-sectional view of the aerosol bomb according to the third embodiment disclosed in the present invention.
  • FIG. 4 is a schematic longitudinal cross-sectional view of the aerosol bomb according to the fourth embodiment disclosed in the present invention.
  • Figure 5a is a schematic longitudinal cross-sectional view of an aerosol bomb according to the fifth embodiment disclosed in the present invention.
  • 5b is a schematic cross-sectional view of the gas-liquid exchange element disclosed in the fifth embodiment of the present invention.
  • Figure 5c is a schematic longitudinal cross-sectional view of another aerosol bomb according to the fifth embodiment disclosed in the present invention.
  • FIG. 6 is a schematic longitudinal cross-sectional view of the aerosol bomb according to the sixth embodiment disclosed in the present invention.
  • the capillary pressure is defined as the height h at which one end of the gas-liquid exchange element 290 just touches the liquid to be atomized and is placed for 5 minutes to absorb the liquid.
  • the melting point in the present invention is determined according to ASTM D3418-2015.
  • Figure 1a is a schematic longitudinal sectional view of the aerosol bomb disclosed in the first embodiment of the present invention
  • Figure 1b is a schematic longitudinal sectional view of the gas-liquid exchange element disclosed in the first embodiment of the present invention
  • Figure 1d is an enlarged schematic cross-section of the bicomponent fiber in Figures 1b and 1c
  • Figure 1e is another cross-section of the bicomponent fiber in Figures 1b and 1c Enlarge the schematic.
  • an aerosol bomb 800 includes a liquid storage element 100, an atomizing core 930, and a gas-liquid exchange element 290 connecting the liquid storage element 100 and the atomizing core 930.
  • the atomizing core 930 is located at least partially above the bottom of the gas-liquid exchange element 290 , which conducts the liquid in the liquid storage element 100 to the atomizing core 930 and supplies gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the atomizing core 930 may be at least partially in contact with parts other than the bottom of the gas-liquid exchange element 290 , for example, the atomizing core 930 is only in contact with the gas-liquid exchange element 290
  • the inner peripheral wall of the gas-liquid exchange element 290 conducts the liquid to the atomizing core 930. This arrangement can make the structure of the aerosol bomb 800 more compact, which is beneficial to the miniaturization of the aerosol bomb 800.
  • the aerosol bomb 800 further includes an aerosol shell 810, a shell base 112 disposed at the bottom of the aerosol shell 810, an atomization chamber cavity 9342 disposed inside the aerosol shell 810, and the atomization chamber cavity 9342 and the aerosol shell 9342.
  • the liquid storage element 100 has an aerosol channel 1303 axially extending through the liquid storage element 100, and one end of the aerosol channel 1303 is communicated with the atomization chamber cavity 9342.
  • the aerosol atomized in the chemical chamber cavity 9342 escapes through the aerosol channel 1303 .
  • the gas-liquid exchange element 290 and the atomizing core 930 are accommodated in the atomizing chamber cavity 9342, and the atomizing chamber cavity 9342 is provided with an atomizing chamber through hole 9341, and the liquid storage element The liquid in 100 contacts the gas-liquid exchange element 290 through the through hole 9341 of the atomization chamber.
  • the liquid storage element 100 may be formed separately, or may be formed by the space enclosed by the aerosol shell 810 , the wall of the aerosol channel 1303 , the atomization chamber cavity 9342 and the shell base 112 .
  • the liquid storage element 100 may have a liquid storage element through hole 130 axially extending through the liquid storage element 100 , and the liquid storage element through hole 130 may simultaneously serve as the aerosol channel 1303 .
  • the atomizing core 930 is arranged in the atomizing chamber 934 .
  • the atomization chamber cavity 9342 is provided with an atomization chamber through hole 9341 that communicates with the atomization chamber 934 and the liquid storage element 100 and penetrates through the atomization chamber cavity 9342 .
  • the gas-liquid exchange element 290 has a tubular structure, and the tubular gas-liquid exchange element 290 has a through hole 2903 axially extending through the gas-liquid exchange element.
  • the outer peripheral wall of the gas-liquid exchange element 290 is tightly fitted with the through hole 9341 of the atomization chamber, the gas-liquid exchange element 290 blocks the through hole 9341 of the atomization chamber, and contacts the liquid in the liquid storage element 100 through the through hole 9341 of the atomization chamber.
  • the inner peripheral wall of the gas-liquid exchange element 290 is in contact with the atomizing core 930 , thereby conducting the liquid in the liquid storage element 100 to the atomizing core 930 .
  • the gas-liquid exchange element 290 is made of a three-dimensional network three-dimensional structure by fiber bonding. Thermal bonding is preferred.
  • the density of the gas-liquid exchange element 290 of the present invention is 0.035-0.3 g/ cm3 , eg, 0.035/ cm3 , 0.050/ cm3 , 0.065/ cm3 , 0.080/ cm3 , 0.100/ cm3 , 0.125/ cm3 , 0.150/ cm3 , 0.175/ cm3 , 0.200/ cm3 , 0.225/ cm3 , 0.250/ cm3 , 0.275/ cm3 , 0.300/ cm3 , preferably 0.05-0.2 g/ cm3 .
  • the gas-liquid exchange element 290 When the density is less than 0.035 g/cm 3 , the gas-liquid exchange element 290 is difficult to manufacture and has insufficient strength, and is easily deformed or wrinkled during assembly, which affects the stability of atomization or causes liquid leakage. When the density is greater than 0.3 g/cm 3 , the ability of the gas-liquid exchange element 290 to supplement gas to the liquid storage element 100 is insufficient, and the negative pressure in the liquid storage element 100 is too high, making it difficult for the liquid to be led out.
  • the gas-liquid exchange element 290 is made of fiber bonding, and can be made of monocomponent fibers such as polyamide 6, polyamide 66, polyamide 610, PET, PBT, PTT, etc., which are bonded by binders or plasticizers.
  • the liquid exchange element 290 can also be made by bonding the bicomponent fibers to form the gas-liquid exchange element 290 .
  • Figure 1d is an enlarged schematic cross-sectional view of the bicomponent fiber of Figures 1b and 1c. As shown in Fig. 1d, the skin layer 21 and the core layer 22 are concentric structures.
  • Figure 1e is another enlarged schematic cross-sectional view of the bicomponent fiber of Figures 1b and 1c. As shown in Fig. 1e, the skin layer 21 and the core layer 22 are eccentric structures.
  • the bicomponent fibers 2 are filaments or staple fibers.
  • the gas-liquid exchange element 290 can be made by selecting suitable bicomponent fibers according to the performance requirements of the gas-liquid exchange element 290 .
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by 20° C. or more.
  • the gas-liquid exchange element 290 of this embodiment is made by thermal bonding of the bicomponent fibers 2 of the sheath-core structure.
  • the core layer 22 of the bicomponent fiber 2 has a melting point higher than that of the skin layer 21 by more than 20°C, which can maintain a certain rigidity of the core layer 22 during thermal bonding between the fibers, which facilitates the manufacture of a gas-liquid exchange element 290 with uniform voids.
  • the skin layer 21 of the bicomponent fiber 2 may be polyolefin, copolyester of polyethylene terephthalate (referred to as Co-PET), polytrimethylene terephthalate (referred to as PTT), polyethylene terephthalate Butylene diester (PBT for short), polylactic acid, polyamide-6, etc.
  • Polyolefin is a polymer of olefins, and is a general term for a class of thermoplastic resins usually obtained by polymerizing or copolymerizing ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, and 1-hexene alone.
  • the denier of the bicomponent fibers 2 making up the gas-liquid exchange element 290 of the present invention is between 1.5-50 denier, preferably 3-30 denier.
  • the bicomponent fiber 2 with a sheath-core structure between 3-30 denier is easy to make the gas-liquid exchange element 290 .
  • fibers with smaller fineness to make the gas-liquid exchange element 290 such as fibers of 1.5 denier, 2 denier, and 3 denier.
  • fibers with larger fineness should be used to make the gas-liquid exchange element 290, such as fibers of 6 denier, 10 denier, 30 denier, and 50 denier.
  • the gas-liquid exchange element 290 is a three-dimensional network three-dimensional structure formed by two-component short-dimensional thermal bonding.
  • the skin layer 21 is polyethylene with a melting point of 125-135°C
  • the core layer 22 is polypropylene or PET with a melting point of 160-170°C
  • the density of the gas-liquid exchange element 290 is between 0.035-0.3 g/cm 3 , preferably 0.05-0.2 g/cm 3
  • the gas-liquid exchange element 290 has better strength and better elasticity, and has a faster liquid conduction velocity and the ability to replenish gas to the liquid storage element 100 .
  • This gas-liquid exchange element 290 can be used for the atomization of electronic cigarette liquid, the atomization of CBD liquid medicine, and the like.
  • the skin layer 21 of the bicomponent fiber 2 can be replaced by polypropylene, Co-PET, polyamide-6, PBT or PTT, etc., and the fabricated gas-liquid exchange element 290 has higher temperature resistance.
  • Common atomization cores 930 can be used in the present invention, such as porous ceramic atomization cores 930 with pre-embedded heating wires, compressed cotton atomization cores 930 with pre-embedded heating wires, cotton fiber bundle atomization cores 930 wound with heating wires, winding
  • the atomizing core 930 is a porous ceramic with pre-embedded heating wires and is designed in a tubular shape. A part of the outer wall of the tubular gas-liquid exchange element 290 directly contacts the liquid in the liquid storage element 100 .
  • the atomizing core 930 is connected to the power supply through the wire 933 and the wire pin 936 .
  • the liquid storage element 100 is a component of the aerosol bomb 800 that stores liquid, and the liquid to be atomized is injected into the liquid storage element 100 .
  • the liquid storage element 100 may be a cavity made of plastic or metal, or a cavity filled with a porous material that stores liquid.
  • the liquid in the liquid storage element 100 is conducted to the atomizing core 930 through the gas-liquid exchange element 290, and is atomized when necessary.
  • the liquid storage element 100 is a cavity made of metal or plastic, into which the atomized liquid is injected. During use, as the liquid in the liquid storage element 100 is led out, the outside air can enter the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the liquid storage element 100 has a liquid storage element through hole 130 axially extending through the liquid storage element 100 , the liquid storage element through hole 130 can be used as an aerosol channel 1303 , and one end of the aerosol channel 1303 is connected to one end of the atomization chamber cavity 9342 .
  • the gas-liquid exchange element 290 and the atomization core 930 are accommodated in the atomization chamber cavity 9342, and the atomization chamber through hole 9341 is provided on the atomization chamber cavity 9342, and the liquid in the liquid storage element 100 passes through the atomization chamber.
  • the chemical chamber through hole 9341 contacts the gas-liquid exchange element 290 and penetrates therein.
  • a lead pin 936 is provided on the housing base 112 , and the lead pin 936 communicates with the atomizing core 930 through the lead 933 .
  • the gas-liquid exchange element 290 can be coated on the peripheral wall of the atomization chamber cavity 9342.
  • the liquid on the atomizing core 930 is atomized, and when the liquid content on the atomizing core 930 is reduced, the liquid can be absorbed from the gas-liquid exchange element 290, and the gas-liquid exchange element 290 can absorb the liquid from the liquid storage element 100.
  • the negative pressure in the liquid storage element 100 increases, and the gas is replenished into the liquid storage element 100 through the gas-liquid exchange element 290, and this process is repeated until the liquid is used up.
  • the capillary pressure of the gas-liquid exchange element 290 is 1mm-35mm, for example, 1mm, 2mm, 3mm, 5mm, 7mm, 9mm, 11mm, 13mm, 15mm, 17mm, 20mm, 25mm, 30mm, 35mm.
  • the capillary pressure of the gas-liquid exchange element 290 is less than 1 mm, the liquid in the liquid storage element 100 is likely to leak.
  • the capillary pressure of the gas-liquid exchange element 290 is greater than 35 mm, it is difficult for the gas to pass through the gas-liquid exchange element 290 to be replenished to the liquid storage element 100 , resulting in an excessively high negative pressure in the liquid storage element 100 , causing the liquid in the liquid storage element 100 to become too high.
  • the capillary pressure of the gas-liquid exchange element 290 is 2 mm to 25 mm, more preferably 3 mm to 10 mm.
  • An appropriate capillary pressure of the gas-liquid exchange element 290 should be selected according to different atomization requirements.
  • Fig. 2a is a schematic longitudinal sectional view of an aerosol bomb according to the second embodiment disclosed in the present invention
  • Fig. 2b is a schematic longitudinal sectional view of another aerosol bomb according to the second embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as those of the first embodiment will not be repeated in the description of this embodiment.
  • the aerosol bomb 800 includes a liquid storage element 100, an atomizing core 930, and a gas-liquid exchange element 290 communicating with the liquid storage element 100 and the atomizing core 930.
  • the core 930 is located at least partially above the bottom of the gas-liquid exchange element 290, which conducts the liquid in the liquid storage element 100 to the atomizing core 930 and replenishes the gas through the gas-liquid exchange element 290 to the liquid storage element 100. .
  • the liquid storage element 100 is a cavity made of plastic, and the liquid is injected into the liquid storage element 100 .
  • the atomizing core 930 is a cotton fiber bundle wound with electric heating wires, and both ends of the cotton fiber bundle pass through the atomizing chamber through holes 9341 on both sides of the atomizing chamber 934 and are loosely matched with the atomizing chamber through holes 9341, so that the atomizing chamber
  • the air in the cavity 9342 is introduced into the gas-liquid exchange element 290 through the through hole 9341 of the atomization chamber and is finally replenished into the liquid storage element 100 .
  • the gas-liquid exchange element 290 covers the outer peripheral wall of the atomization chamber cavity 9342, the inner peripheral wall of the gas-liquid exchange element 290 contacts both ends of the cotton fiber bundle, and the end face of the gas-liquid exchange element 290 contacts the liquid in the liquid storage element 100 .
  • the two ends of the cotton fiber bundle extending out of the through hole 9341 of the atomization chamber can be bent upwards or downwards, and then contact with the inner peripheral wall of the gas-liquid exchange element 290, that is, the cotton fiber bundle is clamped in the Between the gas-liquid exchange element 290 and the atomization chamber cavity 9342.
  • the working principle of this embodiment is similar to that of the first embodiment.
  • the gas-liquid exchange element 290 may be integrally formed as a whole, or may be divided into multiple pieces by a plurality of gas-liquid exchange elements 290 .
  • the gas-liquid exchange element 290 can be split into multiple pieces to be assembled in the aerosol bomb 800 , for example, into two left and right pieces, or divided into two pieces along the circumference of the aerosol bomb 800 . Three, four or more block configurations.
  • the space of the aerosol bomb 800 is smaller, only a part of the gas-liquid exchange element 290 may be intercepted and assembled in the aerosol bomb 800 .
  • FIG. 3 is a schematic longitudinal cross-sectional view of the aerosol bomb according to the third embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as those of the first embodiment will not be repeated in the description of this embodiment.
  • the aerosol bomb 800 includes a liquid storage element 100 , an atomizing core 930 , and a gas-liquid exchange element 290 communicating with the liquid storage element 100 and the atomizing core 930 .
  • the wick 930 is located at least partially above the bottom of the gas-liquid exchange element 290 , which conducts the liquid in the liquid storage element 100 to the atomizing core 930 and supplies gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the liquid storage element 100 is formed by the space enclosed by the aerosol bomb casing 810 , the wall of the aerosol channel 1303 , the atomization chamber cavity 9342 and the casing base 112 .
  • the liquid storage element 100 may have a liquid storage element through hole 130 axially extending through the liquid storage element 100 , and the liquid storage element through hole 130 simultaneously serves as the aerosol channel 1303 .
  • the atomizing core 930 is arranged in the atomizing chamber 934 .
  • the gas-liquid exchange element 290 and the atomization core 930 are accommodated in the atomization chamber cavity 9342, and the atomization chamber through hole 9341 is provided on the atomization chamber cavity 9342, and the liquid in the liquid storage element 100 contacts through the atomization chamber through hole 9341 Gas-liquid exchange element 290 . That is, the atomization chamber cavity 9342 is provided with an atomization chamber through hole 9341 that communicates with the atomization chamber 934 and the liquid storage element 100 and penetrates through the atomization chamber cavity 9342 .
  • the gas-liquid exchange element 290 has a tubular structure.
  • the outer peripheral wall of the gas-liquid exchange element 290 is tightly fitted with the through hole 9341 of the atomization chamber, the gas-liquid exchange element 290 blocks the through hole 9341 of the atomization chamber, and contacts the liquid in the liquid storage element 100 through the through hole 9341 of the atomization chamber.
  • the inner peripheral wall of the gas-liquid exchange element 290 is in contact with the atomizing core 930 , thereby conducting the liquid in the liquid storage element 100 to the atomizing core 930 .
  • the gas-liquid exchange element 290 and the atomization core 930 are accommodated in the atomization chamber cavity 9342, and the atomization core 930 is a cotton fiber bundle or a glass fiber bundle wound with a heating wire.
  • the aerosol bomb 800 further includes a high temperature-resistant thermal insulation tube 9343 for the atomization chamber, the tubular gas-liquid exchange element 290 has a through hole 2903 axially penetrating the gas-liquid exchange element, and the thermal insulation tube 9343 for the atomization chamber is inserted into In the through hole 2903 of the gas-liquid exchange element, the heat generated by the atomizing core 930 is prevented from diffusing to the gas-liquid exchange element 290 as much as possible.
  • the part where the cotton fiber bundle or glass fiber bundle of the atomizing core 930 is wound around the heating wire is placed in a high temperature-resistant atomization chamber insulation pipe 9343, and a through hole is opened on the peripheral wall of the atomization chamber insulation pipe 9343, and the cotton fiber bundle Both ends of the gas-liquid exchange element 290 pass through the through hole.
  • the working principle of this embodiment is the same as that of the first embodiment.
  • FIG. 4 is a schematic longitudinal sectional view of the aerosol bomb according to the fourth embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as those of the first embodiment will not be repeated in the description of this embodiment.
  • the aerosol bomb 800 includes a liquid storage element 100 , an atomizing core 930 , and a gas-liquid exchange element 290 communicating with the liquid storage element 100 and the atomizing core 930 .
  • the wick 930 is located at least partially above the bottom of the gas-liquid exchange element 290 , which conducts the liquid in the liquid storage element 100 to the atomizing core 930 and supplies gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the gas-liquid exchange element 290 is made of polyamide 6 fibers bonded by a plasticizer to form a three-dimensional network tubular structure, and one side is cut along the axial direction.
  • the density of the gas-liquid exchange element 290 is 0.15-0.25 g/cm 3 .
  • the atomizing core 930 is a helical resistance wire covered with a cotton non-woven fabric. The gas-liquid exchange element 290 is broken apart from the incision, and the atomizing core 930 can be loaded through the incision, and the elastic tubular gas-liquid exchange element 290 springs back and closes the incision. Therefore, the gas-liquid exchange element 290 and the atomizing core 930 can be conveniently installed in the atomizing chamber cavity 9342 together.
  • the wires 933 extend out of the housing base 112 so as to be connected to an external power source.
  • Fig. 5a is a schematic longitudinal sectional view of an aerosol bomb according to the fifth embodiment of the present invention
  • Fig. 5b is a schematic cross-sectional view of a gas-liquid exchange element according to the fifth embodiment of the present invention
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as those of the first embodiment will not be repeated in the description of this embodiment.
  • the aerosol bomb 800 includes a liquid storage element 100, an atomization core 930, and a gas-liquid exchange element 290 communicating with the liquid storage element 100 and the atomization core 930.
  • the wick 930 is located at least partially above the bottom of the gas-liquid exchange element 290 , which conducts the liquid in the liquid storage element 100 to the atomizing core 930 and supplies gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the liquid storage element 100 may be formed separately, or may be formed by the space enclosed by the aerosol shell 810 and the wall of the aerosol channel 1303 .
  • the liquid storage element 100 may have a liquid storage element through hole 130 axially extending through the liquid storage element 100 , and the liquid storage element through hole 130 may simultaneously serve as the aerosol channel 1303 .
  • the opening of the liquid storage element 100 close to the housing base 112 is blocked by the gas-liquid exchange element 290 .
  • the aerosol channel 1303 is also used as the through hole 130 of the liquid storage element, one end of the aerosol channel 1303 passes through part of the gas-liquid exchange element 290 and fits tightly with the inner hole of the gas-liquid exchange element 290 to prevent liquid leakage.
  • the inner hole of the gas-liquid exchange element 290 is closely matched with the wall of the liquid storage element through hole 130 to prevent liquid leakage.
  • the outer peripheral wall of the gas-liquid exchange element 290 is tightly fitted with the inner peripheral wall of the aerosol shell 810 .
  • the outer peripheral wall of the gas-liquid exchange element 290 is tightly fitted with the inner peripheral wall of the housing of the liquid storage element 100 .
  • One side of the gas-liquid exchange element 290 is in contact with the liquid in the liquid storage element 100
  • the inner peripheral wall of the gas-liquid exchange element 290 is in contact with the atomizing core 930 , thereby conducting the liquid in the liquid storage element 100 to the atomizing core 930 .
  • the gas-liquid exchange element 290 is formed by thermal bonding of bicomponent fibers 2 with a sheath-core structure to form a three-dimensional network three-dimensional structure, and the skin layer 21 of the bicomponent fibers 2 is Co-PET , the core layer 22 is PET.
  • the cross section of the gas-liquid exchange element 290 is circular, and a gas-liquid exchange element through hole 2903 axially penetrates the gas-liquid exchange element is provided in the center.
  • the gas-liquid exchange element 290 includes a high capillary portion 2901 near the center and a low capillary portion 2902 away from the center but adjacent to the high capillary portion 2901 .
  • the density of the low capillary portion 2902 is 0.035-0.15 g/cm 3
  • the density of the high capillary portion 2901 is 0.15-0.3 g/cm 3
  • the capillary pressure of the low capillary portion 2902 is 1 mm-35 mm, preferably the capillary pressure of the low capillary portion 2902 is 2 mm to 25 mm, more preferably 3 mm to 10 mm.
  • the low capillary portion 2902 with appropriate capillary pressure can be selected according to different atomization requirements.
  • both the high capillary portion 2901 and the low capillary portion 2902 can conduct liquid, but only the low capillary portion 2902 can conduct gas.
  • the high capillary portion 2901 and the low capillary portion 2902 can be integrally formed, or can be assembled together after being formed separately.
  • the low capillary part 2902 has a buffer space
  • the buffer space refers to a part of the low capillary part 2902 that is not wetted by liquid during normal use.
  • the thickness of the gas-liquid exchange element 290 is preferably 2 mm or more. Those skilled in the art can determine the thickness of the gas-liquid exchange element 290 according to the limitation of the space of the aerosol bomb 800, but in order to ensure the existence of the buffer space, the gas-liquid exchange element 290 cannot be less than 2 mm at least.
  • the high capillary part 2901 Under normal use, if the high capillary part 2901 is wetted by liquid, but the low capillary part 2902 is only partially wetted by liquid, and the buffer space will not be wetted, the high capillary part 2901 can conduct liquid, and the low capillary part 2902 can conduct gas , in this case, the portion of the low capillary portion 2902 that is not wetted by the liquid has a buffer space to reduce the risk of liquid leakage from the aerosol bomb.
  • the buffer space can temporarily store the liquid that is conducted in excess in the liquid element 100 , thereby effectively avoiding the risk of liquid leakage from the aerosol bomb 800 .
  • the outer peripheral wall of the gas-liquid exchange element 290 is closely matched with the inner peripheral wall of the shell of the aerosol bomb.
  • One side of the gas-liquid exchange element 290 is in contact with the liquid in the liquid storage element 100.
  • the atomizing core 930 contacts.
  • the liquid in the liquid storage element 100 is conducted to the atomizing core 930 through the inner peripheral wall of the high capillary portion 2901 .
  • the negative pressure in the liquid storage element 100 increases.
  • the outside air enters the liquid storage element through the gas-liquid exchange element 290 100, so that the pressure in the liquid storage element 100 remains stable during the atomization process.
  • the working principle of this embodiment is similar to that of the first embodiment.
  • the aerosol bomb 800 further includes a condensate absorbing element 400.
  • the condensate absorbing element 400 is installed in the aerosol channel 1303, and can absorb the condensate generated by the aerosol, thereby improving the consumption experience.
  • the lower part of the gas-liquid exchange element 290 extends out of the bottom opening of the liquid storage element 100 . Since the lower part of the gas-liquid exchange element 290 extends out of the bottom opening of the liquid storage element 100 , the height of the gas-liquid exchange element 290 can be increased, and thus the capacity of the buffer space of the low capillary part 2902 can be further increased, thereby preventing the aerosol bomb 800 from preventing The leak function can be further enhanced.
  • the height of the lower portion of the gas-liquid exchange element 290 beyond the lower end of the aerosol channel 1303 is preferably more than a quarter of the height of the gas-liquid exchange element 290 , more preferably more than half of the height of the gas-liquid exchange element 290 .
  • the part of the lower part of the gas-liquid exchange element 290 beyond the lower end of the aerosol channel 1303 is in contact with the atomizing core 930 .
  • the liquid in the liquid storage element 100 is conducted to the atomizing core 930 through the inner peripheral wall of the high capillary portion 2901 .
  • the structure of the aerosol bomb 800 can be made more compact and the assembly is more convenient.
  • the aerosol bomb 800 includes an aerosol channel 1303 axially extending through the liquid storage element 100 , and the atomizing core 930 is inserted into the lower end of the aerosol channel 1303 .
  • the height of the atomizing core 930 can be increased, so that a part of the atomizing core 930 extends into the interior of the lower end of the aerosol channel 1303 .
  • This setting is suitable for the aerosol bomb 800 that needs to be preheated during use.
  • the liquid to be atomized is highly viscous or semi-fluid at room temperature.
  • Preheating can reduce the viscosity of the liquid to be atomized, increase its fluidity, and improve the The ability of the liquid to conduct to the atomizing core 930 through the high capillary part 2901.
  • the aerosol channel 1303 can be made of metal to improve the effect of preheating.
  • FIG. 6 is a schematic longitudinal cross-sectional view of the aerosol bomb according to the fifth embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as those of the first embodiment will not be repeated in the description of this embodiment.
  • the aerosol bomb 800 includes a liquid storage element 100 , an atomizing core 930 , and a gas-liquid exchange element 290 communicating with the liquid storage element 100 and the atomizing core 930 .
  • the wick 930 is located at least partially above the bottom of the gas-liquid exchange element 290 , which conducts the liquid in the liquid storage element 100 to the atomizing core 930 and supplies gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the aerosol bomb 800 further includes a silica gel aerosol tube 1305 , and the silica gel aerosol tube 105 is disposed between the lower end of the aerosol channel 1303 and the atomizing core 930 .
  • Silicone is resistant to high temperature and can be used stably under normal atomization temperature. Therefore, the use of silicone aerosol tube 1305 can reduce the temperature of the aerosol entering the aerosol channel 1303, and can reduce the temperature resistance requirements of the wall of the aerosol channel 1303. , which can expand the material selection range for making the aerosol shell 810 and the tube wall of the aerosol channel 1303 .
  • the gas-liquid exchange element involved in the present invention is made of fiber bonding, and can be widely used in various types of aerosol bombs.
  • the gas-liquid exchange element in the aerosol bomb can smoothly and quickly conduct the liquid to the atomizing core, and at the same time supplement the gas into the liquid storage element, so that the liquid storage element maintains a stable pressure and improves the stability of atomization.
  • the above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Any person skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

一种气雾弹(800),包括储液元件(100)、雾化芯(930)、和连通储液元件(100)和雾化芯(930)的气液交换元件(290),气液交换元件(290)将储液元件(100)中的液体传导至雾化芯(930),并且通过气液交换元件(290)将气体补充到储液元件(100)。该气雾弹(800),气液交换元件(290)能稳定地向雾化芯(930)传导液体,并向储液元件(100)补充气体,从而确保雾化稳定性。

Description

一种气雾弹 技术领域
本发明涉及一种气雾弹,特别涉及电子烟和药物雾化吸入装置等将液体雾化的具有气液交换元件的气雾弹。
背景技术
气雾弹及雾化装置被广泛应用于日常生活的各个领域,如电子烟和药物雾化吸入装置等,常见的一种结构是在气雾弹中安装雾化芯,如预埋电热丝的多孔陶瓷。当气流通过气雾弹的同时雾化芯加热,液体被雾化并被气流带出。为了将储液部中的液体传导给雾化芯,通常在雾化芯表面包覆无纺布,并固定于气雾弹中。由于无纺布柔软缺少强度、容易褶皱,难以制成质量稳定的气雾弹,褶皱严重的情况下容易发生液体泄漏。在雾化芯表面包覆无纺布的方法需要大量人工,难以自动化,成本高、效率低。
发明内容
为解决现有技术中的存在的问题,本发明提出了一种气雾弹,所述气雾弹包括储液元件、雾化芯、和连通所述储液元件和所述雾化芯的气液交换元件,所述雾化芯至少部分位于所述气液交换元件的底部上方,所述气液交换元件将所述储液元件中的液体传导至所述雾化芯,并且通过所述气液交换元件将气体补充到所述储液元件。
进一步,所述气液交换元件由纤维粘结制成三维网络的立体结构。
进一步,所述气液交换元件的密度为0.035克/厘米 3-0.3克/厘米 3
进一步,所述纤维为具有皮层和芯层的双组分纤维,且芯层比皮层的熔点高20℃以上。
进一步,所述双组分纤维的皮层为聚烯烃、聚对苯二甲酸乙二酯的共聚酯、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二酯、聚乳酸或者聚酰胺-6。
进一步,所述气液交换元件的毛细压为1mm到35mm。
进一步,所述储液元件具有轴向贯穿所述储液元件的气雾通道和雾化室腔体,所述气雾通道一端与所述雾化室腔体连通。
进一步,所述气液交换元件和所述雾化芯容纳在所述雾化室腔体内,所述雾化室腔体 上设置雾化室通孔,所述储液元件中的液体通过所述雾化室通孔接触所述气液交换元件。
进一步,所述气液交换元件包覆雾化室腔体的外周壁。
进一步,所述气液交换元件的下部延伸出储液元件底部开口。
进一步,所述气液交换元件的下部超出气雾通道下端部的部分的高度超过所述气液交换元件高度的四分之一。
进一步,所述气液交换元件的下部超出气雾通道下端部的部分与所述雾化芯接触。
进一步,所述气雾弹还包括硅胶气雾管,所述硅胶气雾管设置在所述气雾通道的下端部与所述雾化芯之间。
进一步,所述气雾弹包括轴向贯穿所述储液元件的气雾通道,所述雾化芯插入所述气雾通道的下端部。气液交换元件能稳定地向雾化芯传导液体,并向储液元件补充气体,从而确保雾化稳定性。由双组分纤维粘结制成的气液交换元件具有较高的强度和韧性,安装时不易褶皱或破碎,可以方便地在气雾弹中组装,容易实现装配自动化,提高效率,节省成本,尤其适合于制造大规模的消费品,如电子烟等。
本发明的气液交换元件可以应用于各种电子烟液体的雾化,也适用于CBD等药物溶液的雾化等。为让本发明的上述内容能更明显易懂,下文特举优选实施例,并结合附图,作详细说明如下。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a为本发明所公开的第一实施例的气雾弹纵剖面示意图;
图1b为本发明所公开的第一实施例的气液交换元件纵剖面示意图;
图1c为本发明所公开的第一实施例的气液交换元件横截面示意图;
[根据细则91更正 28.06.2021] 
图1d是图1b和1c中的双组分纤维的一种截面放大示意图;
[根据细则91更正 28.06.2021] 
图1e是图1b和1c中的双组分纤维的另一种截面放大示意图;
图2a为本发明所公开的第二实施例的一种气雾弹的纵剖面示意图;
图2b为本发明所公开的第二实施例的另一种气雾弹的纵剖面示意图;
图3为本发明所公开的第三实施例的气雾弹的纵剖面示意图;
图4为本发明所公开的第四实施例的气雾弹的纵剖面示意图;
图5a为本发明所公开的第五实施例的一种气雾弹的纵剖面示意图;
图5b为本发明所公开的第五实施例的气液交换元件横截面示意图;
图5c为本发明所公开的第五实施例的另一种气雾弹的纵剖面示意图;
图6为本发明所公开的第六实施例的气雾弹的纵剖面示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。
本发明中毛细压的定义为将气液交换元件290的一端刚好接触被雾化的液体,放置5分钟后吸收液体的高度h。具体测试及计算方法定义如下:
1)制作轴向高度H的气液交换元件290材料,在未受挤压并充分排出空气的情况下将气液交换元件290材料缓慢插入被雾化的液体直至浸没,称量并计算气液交换元件290材料的饱和吸液量W 0。2)取同等的气液交换元件290材料,将气液交换元件290材料的一端刚好接触被雾化的液体,放置5分钟后,称量并计算气液交换元件290材料的吸液量W 1。3)吸液高度h计算:h=(HxW 1)/W 0
本发明中的熔点根据ASTM D3418-2015测定。
除非另有说明,此处使用的术语包括科技术语对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
第一实施例
图1a为本发明所公开的第一实施例的气雾弹纵剖面示意图;图1b为本发明所公开的第一实施例的气液交换元件纵剖面示意图;图1c为本发明所公开的第一实施例的气液交换元件横截面示意图;图1d是图1b和1c中的双组分纤维的一种截面放大示意图;图1e是图1b和1c中的双组分纤维的另一种截面放大示意图。
如图1a所示,根据本发明第一实施例气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930至少部分位于气液交 换元件290的底部上方,气液交换元件290将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
由于雾化芯930至少部分位于气液交换元件290的底部上方,雾化芯930至少部分可以与气液交换元件290的底部以外的部分接触,例如,雾化芯930仅与气液交换元件290的内周壁接触,通过气液交换元件290的内周壁将液体传导至雾化芯930,这种设置,可以使气雾弹800的结构更加紧凑,有利于气雾弹800小型化。
气雾弹800还包括气雾弹壳体810、设置在气雾弹壳体810底部的壳体底座112、设置在气雾弹壳体810内部的雾化室腔体9342、由雾化室腔体9342和壳体底座112围成的雾化室934和从雾化室腔体9342顶部延伸至气雾弹壳体810顶部的气雾通道1303。
由于气雾弹800包括雾化室腔体9342,储液元件100具有轴向贯穿所述储液元件100的气雾通道1303,气雾通道1303的一端与雾化室腔体9342连通,在雾化室腔体9342内雾化的气雾通过气雾通道1303逸出。
如图1a所示,在本实施例中,气液交换元件290和雾化芯930容纳在雾化室腔体9342内,雾化室腔体9342上设置雾化室通孔9341,储液元件100中的液体通过雾化室通孔9341接触气液交换元件290。
储液元件100可以单独成型,也可以是由气雾弹壳体810、气雾通道1303的壁部、雾化室腔体9342以及壳体底座112围成的空间形成。储液元件100可以具有轴向贯穿储液元件100的储液元件通孔130,储液元件通孔130可以同时用作气雾通道1303。雾化芯930设置在雾化室934内。
雾化室腔体9342上设置有连通雾化室934和储液元件100的贯穿雾化室腔体9342的雾化室通孔9341。如图1b,1c所示,气液交换元件290为管状的结构,管状的气液交换元件290具有轴向贯穿气液交换元件通孔2903。
气液交换元件290的外周壁与雾化室通孔9341紧配,气液交换元件290封堵雾化室通孔9341,并通过雾化室通孔9341与储液元件100中的液体接触。气液交换元件290的内周壁与雾化芯930接触,由此,将储液元件100中的液体传导至雾化芯930。
<气液交换元件>
如图1b和1c所示,气液交换元件290由纤维粘结制成三维网络的立体结构。优选采用热粘接的方式。本发明的气液交换元件290的密度为0.035-0.3克/厘米 3,例如,0.035/厘米 3、0.050/厘米 3、0.065/厘米 3、0.080/厘米 3、0.100/厘米 3、0.125/厘米 3、0.150/厘米 3、0.175/厘米 3、0.200/厘米 3、0.225/厘米 3、0.250/厘米 3、0.275/厘米 3、0.300/厘米 3,优选 为0.05-0.2克/厘米 3。当密度小于0.035克/厘米 3时,气液交换元件290制作困难并且强度不足,装配时容易变形或褶皱,影响雾化的稳定性或造成漏液。当密度大于0.3克/厘米 3时,气液交换元件290向储液元件100补充气体的能力不足,储液元件100中的负压过高而使液体难以导出。
<纤维和双组分纤维>
气液交换元件290由纤维粘结制成,可以用单组分纤维如聚酰胺6、聚酰胺66、聚酰胺610、PET、PBT、PTT等由粘结剂或增塑剂粘结制成气液交换元件290,也可以用双组分纤维粘结制成气液交换元件290。
图1d是图1b和1c中的双组分纤维的一种放大截面示意图。如图1d所示,皮层21和芯层22为同心结构。图1e是图1b和1c中的双组分纤维的另一种放大截面示意图。如图1e所示,皮层21和芯层22为偏心结构。双组分纤维2为长丝或者短纤。可以根据气液交换元件290的性能要求选择合适的双组分纤维制成气液交换元件290。
双组分纤维2的芯层22比皮层21的熔点高20℃以上。本实施例的气液交换元件290由皮芯结构双组分纤维2热粘结制成。双组分纤维2的芯层22比皮层21熔点高20℃以上,可以在纤维之间进行热粘结的时候使芯层22保持一定的刚性,便于制成空隙均匀的气液交换元件290。
双组分纤维2的皮层21可以为聚烯烃、聚对苯二甲酸乙二酯的共聚酯(简称Co-PET)、聚对苯二甲酸丙二酯(简称PTT)、聚对苯二甲酸丁二酯(简称PBT)、聚乳酸、聚酰胺-6等。聚烯烃为烯烃的聚合物,通常由乙烯、丙烯、1-丁烯、1-戊烯、1-己烯等α-烯烃单独聚合或共聚而得的一类热塑性树脂的总称。
制作本发明气液交换元件290的双组分纤维2的纤度介于1.5-50旦,优选3-30旦。介于3-30旦的皮芯结构双组分纤维2容易制作气液交换元件290。被雾化的液体粘度较低时,宜采用纤度较小的纤维制作气液交换元件290,如1.5旦、2旦、3旦的纤维。被雾化的液体粘度较高时,宜采用纤度较大的纤维制作气液交换元件290,如6旦、10旦、30旦、50旦的纤维。
在本实施例中,优选气液交换元件290由双组分短维经热粘结形成三维网络的立体结构。皮层21为熔点125-135℃的聚乙烯,芯层22为熔点160-170℃的聚丙烯或PET,制成的气液交换元件290密度介于0.035-0.3克/厘米 3,优选0.05-0.2克/厘米 3,这种气液交换元件290具有较好的强度和较好的弹性,并具有较快的液体传导速度和向储液元件100补充气体的能力。这种气液交换元件290可以用于电子烟烟液的雾化、CBD药液的雾化等。
本实施例中双组分纤维2的皮层21可以用聚丙烯、Co-PET、聚酰胺-6、PBT或PTT等替代,制成的气液交换元件290具有更高的耐温性能。
<雾化芯>
本发明中可以使用常见的雾化芯930,如预埋电热丝的多孔陶瓷雾化芯930、预埋电热丝的压缩棉雾化芯930、缠绕电热丝的棉纤束雾化芯930、缠绕电热丝的玻纤束雾化芯930、包覆织布或不织布的螺旋状电热丝雾化芯930等。在本实施例中,雾化芯930为预埋电热丝的多孔陶瓷并设计为管状。管状气液交换元件290外壁的一部分直接接触储液元件100中的液体,液体在气液交换元件290中沿轴向和径向渗透,并通过气液交换元件290传导给雾化芯930。雾化芯930通过导线933及导线引脚936与电源连接。
<储液元件>
储液元件100为气雾弹800中储存液体的部件,储液元件100中注入待雾化的液体。储液元件100可以为塑料或金属制成的空腔,或者在空腔中填充储存液体的多孔材料。储液元件100中的液体通过气液交换元件290传导给雾化芯930,在需要时被雾化。
本实施例中,储液元件100为金属或塑料制成的空腔,被雾化的液体注入其中。使用时随着储液元件100中的液体导出,外界空气可以通过气液交换元件290进入储液元件100。储液元件100具有轴向贯穿储液元件100的储液元件通孔130,储液元件通孔130可以用作气雾通道1303,气雾通道1303的一端与雾化室腔体9342的一端连接。
如图1a所示,气液交换元件290和雾化芯930容纳在雾化室腔体9342内,雾化室腔体9342上设置雾化室通孔9341,储液元件100中的液体通过雾化室通孔9341接触气液交换元件290并渗透其中。壳体底座112上设置导线引脚936,导线引脚936与雾化芯930通过导线933连通。可替代的,可以将气液交换元件290包覆在雾化室腔体9342外周壁上。
使用时,雾化芯930上的液体被雾化,雾化芯930上的液体含量减少时可以从气液交换元件290吸收液体,气液交换元件290则从储液元件100吸收液体,其结果是气液交换元件290将储液元件100中的液体传导给雾化芯930。随着储液元件100中的液体减少,储液元件100中的负压增加,气体透过气液交换元件290补充至储液元件100中,这一过程反复进行直至液体被用完。
在本发明中,气液交换元件290的毛细压为1mm-35mm,例如,1mm、2mm、3mm、5mm、7mm、9mm、11mm、13mm、15mm、17mm、20mm、25mm、30mm、35mm。当 气液交换元件290的毛细压小于1mm时,储液元件100中的液体容易泄漏。当气液交换元件290的毛细压大于35mm时,气体难以透过气液交换元件290补充至储液元件100,从而导致储液元件100中的负压过高,使储液元件100中的液体难以经气液交换元件290传导给雾化芯930,导致雾化芯930上液体含量不足而影响雾化质量。优选气液交换元件290的毛细压为2mm到25mm,更优选3mm-10mm。根据不同的雾化要求应选择合适的气液交换元件290的毛细压。
第二实施例
图2a为本发明所公开的第二实施例的一种气雾弹的纵剖面示意图;图2b为本发明所公开的第二实施例的另一种气雾弹的纵剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图2a所示,根据本发明第三实施例的气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930至少部分位于气液交换元件290的底部上方,气液交换元件290将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到将储液元件100。
在本实施例中,储液元件100为塑料制成的空腔,液体注于储液元件100中。雾化芯930为缠绕电热丝的棉纤束,棉纤束的两端穿过雾化室934的两侧的雾化室通孔9341并与雾化室通孔9341松配,以便雾化室腔体9342内的空气通过雾化室通孔9341导入气液交换元件290并最终补充到储液元件100中。气液交换元件290包覆雾化室腔体9342的外周壁上,气液交换元件290的内周壁与棉纤束的两端接触,气液交换元件290的端面接触储液元件100中的液体。
如图2a和2b所示,可以将棉纤束延伸出雾化室通孔9341的两端向上或者向下弯折后,与气液交换元件290的内周壁接触,即将棉纤束夹持在气液交换元件290和雾化室腔体9342之间。本实施例的工作原理和第一实施例相似。
在本实施例中,气液交换元件290可以是一体成型为一个整体,也可以是由多个气液交换元件290拆分成多块。在气雾弹800的空间受限时,气液交换元件290可以拆分成多块装配在气雾弹800中,例如拆分成左右两块,或者沿气雾弹800的周向拆分成三块、四块或者更多块配置。在气雾弹800的空间更小的时候,也可以仅截取部分气液交换元件290装配在气雾弹800中。
第三实施例
图3为本发明所公开的第三实施例的气雾弹的纵剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图3所示,根据本发明第三实施例的气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930至少部分位于气液交换元件290的底部上方,气液交换元件290将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
储液元件100由气雾弹壳体810、气雾通道1303的壁部、雾化室腔体9342以及壳体底座112围成的空间形成。储液元件100可以具有轴向贯穿储液元件100的储液元件通孔130,储液元件通孔130同时用作气雾通道1303。雾化芯930设置在雾化室934内。
气液交换元件290和雾化芯930容纳在雾化室腔体9342内,雾化室腔体9342上设置雾化室通孔9341,储液元件100中的液体通过雾化室通孔9341接触气液交换元件290。即,雾化室腔体9342上设置有连通雾化室934和储液元件100的贯穿雾化室腔体9342的雾化室通孔9341。
气液交换元件290为管状的结构。气液交换元件290的外周壁与雾化室通孔9341紧配,气液交换元件290封堵雾化室通孔9341,并通过雾化室通孔9341与储液元件100中的液体接触。气液交换元件290的内周壁与雾化芯930接触,由此,将储液元件100中的液体传导至雾化芯930。
在本实施例中,气液交换元件290和雾化芯930容纳在雾化室腔体9342内,雾化芯930为缠绕电热丝的棉纤束或玻纤束。
在本实施例中,气雾弹800还包括耐高温的雾化室隔热管9343,管状的气液交换元件290具有轴向贯穿气液交换元件通孔2903,雾化室隔热管9343插入气液交换元件通孔2903内,尽可能的阻隔雾化芯930产生的热量扩散至气液交换元件290。雾化芯930的棉纤束或玻纤束缠绕电热丝的部分被置于耐高温的雾化室隔热管9343中,雾化室隔热管9343的周壁上开设有通孔,棉纤束的两端穿过该通孔与气液交换元件290接触。本实施例的工作原理与第一实施例相同。
第四实施例
图4为本发明所公开的第四实施例的气雾弹的纵剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图4所示,根据本发明第四实施例的气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930至少部分位于气液交 换元件290的底部上方,气液交换元件290将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
在本实施例中,气液交换元件290由聚酰胺6纤维经增塑剂粘结形成三维网络的管状结构,并在一侧沿轴向切开。气液交换元件290的密度为0.15-0.25克/厘米 3。雾化芯930为包覆棉质不织布的螺旋状电阻丝。将气液交换元件290从切口掰开,可以通过切口装入雾化芯930,富有弹性的管状气液交换元件290回弹并闭合切口。由此,可方便地将气液交换元件290和雾化芯930一并安装于雾化室腔体9342中。
在本实施例中,导线933延伸出壳体底座112,以便于跟外部电源连接。
本实施例的工作原理与第一实施例相同。
第五实施例
图5a为本发明所公开的第五实施例的一种气雾弹的纵剖面示意图;图5b为本发明所公开的第五实施例的气液交换元件横截面示意图;图5c为本发明所公开的第五实施例的另一种气雾弹的纵剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图5a所示,根据本发明第五实施例的气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930至少部分位于气液交换元件290的底部上方,气液交换元件290将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
储液元件100可以单独成型,也可以是由气雾弹壳体810和气雾通道1303的壁部围成的空间形成。储液元件100可以具有轴向贯穿储液元件100的储液元件通孔130,储液元件通孔130可以同时用作气雾通道1303。
储液元件100靠近壳体底座112的开口由气液交换元件290封堵。当气雾通道1303同时用作储液元件通孔130时,气雾通道1303的一端穿过部分气液交换元件290,并与气液交换元件290的内孔紧密配合,以防止液体泄漏。当储液元件100单独成型时,气液交换元件290的内孔与储液元件通孔130的壁部紧密配合,以防止液体泄漏。
当气雾弹壳体810同时用作储液元件100的壳体时,气液交换元件290的外周壁与气雾弹外壳810的内周壁紧密配合。当储液元件100单独成型时,气液交换元件290的外周壁与储液元件100的壳体的内周壁紧密配合。气液交换元件290一侧与储液元件100中的液体接触,气液交换元件290的内周壁与雾化芯930接触,由此,将储液元件100中的液体传导至雾化芯930。
如图5b所示,在本实施例中,气液交换元件290由皮芯结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2的皮层21为Co-PET,芯层22为PET。气液交换元件290的横截面为圆形,中心设置轴向贯穿气液交换元件的气液交换元件通孔2903。气液交换元件290包括靠近中心的高毛细部2901和远离中心但与高毛细部2901邻接的低毛细部2902。低毛细部2902的密度为0.035-0.15克/厘米 3,高毛细部2901的密度为0.15-0.3克/厘米 3。也可以让高毛细部2901和低毛细部2902的密度相近,均在0.035-0.3克/厘米 3范围内,但用纤度较小的纤维制作高毛细部2901,用纤度较大的纤维制作低毛细部2902。低毛细部2902的毛细压为1mm-35mm,优选低毛细部2902的毛细压为2mm到25mm,更优选为3mm到10mm。可以根据不同的雾化要求选择适当毛细压的低毛细部2902。
在本实施例中,若高毛细部2901和低毛细部2902全部被液体浸润,则高毛细部2901和低毛细部2902均能传导液体,但仅低毛细部2902能传导气体。
高毛细部2901和低毛细部2902可以一体成型,也可以分体成型后装配在一起。
优选,低毛细部2902中具有缓冲空间,缓冲空间是指在正常使用过程中,低毛细部2902中存在部分未被液体浸润的部分。在这种情况下,气液交换元件290的厚度优选大于等于2毫米。本领域的技术人员可以根据气雾弹800空间的限定确定气液交换元件290的厚度,但为了确保缓冲空间的存在,气液交换元件290最低不能小于2毫米。在正常使用的情况下,若高毛细部2901被液体浸润,但低毛细部2902仅部分被液体浸润,缓冲空间不会被浸润,则高毛细部2901能传导液体,低毛细部2902能传导气体,这种情况下,未被液体浸润的部分低毛细部2902具有缓冲空间,减少液体从气雾弹泄漏的风险。在运输或者极端环境下,导致气压急剧变化时,缓冲空间可以暂存储液元件100中过量传导的液体,由此可以有效地避免液体从气雾弹800中泄漏的风险。
气液交换元件290的外周壁与气雾弹外壳的内周壁紧密配合,气液交换元件290一侧与储液元件100中的液体接触,气液交换元件290的高毛细部2901的内周壁与雾化芯930接触。使用时,储液元件100中的液体通过高毛细部2901的内周壁传导给雾化芯930。随着储液元件100中的液体导出雾化,储液元件100中的负压增加,当储液元件100与外界的压差达到一定范围时,外界空气通过气液交换元件290进入储液元件100,从而使储液元件100内的压力在雾化过程中保持稳定。本实施例的工作原理与第一实施例相似。
在本实施例中,气雾弹800还包括冷凝液吸收元件400,冷凝液吸收元件400安装在气雾通道1303中,可以吸收气雾产生的冷凝液,提高消费体验。
在本实施例中,气液交换元件290的下部延伸出储液元件100的底部开口。由于气液 交换元件290的下部延伸出储液元件100的底部开口,可以增加气液交换元件290的高度,并因此进一步提高低毛细部2902的缓冲空间的容量,由此气雾弹800的防泄漏功能可以进一步增强。
气液交换元件290的下部优选超出气雾通道1303下端部的部分的高度超过气液交换元件290高度的四分之一,更优选超过气液交换元件290高度的二分之一。气液交换元件290的下部超出气雾通道1303下端部的部分与雾化芯930接触。
使用时,储液元件100中的液体通过高毛细部2901的内周壁传导至雾化芯930。通过这种方式,可以使得气雾弹800的结构更加紧凑,装配更加方便。
如图5c所示,在本实施例中,气雾弹800包括轴向贯穿储液元件100的气雾通道1303,雾化芯930插入气雾通道1303的下端部。具体而言,可以增加雾化芯930的高度,使雾化芯930的一部分伸入气雾通道1303下端的内部。这种设置适合于使用时需要预热的气雾弹800,例如,被雾化的液体在常温下呈高粘度或半流动状,预热可以降低被雾化液体的粘度,增加流动性,提高液体通过高毛细部2901向雾化芯930传导的能力。可以用金属制成气雾通道1303,提高预热的效果。
第六实施例
图6为本发明所公开的第五实施例的气雾弹的纵剖面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图6所示,根据本发明第六实施例的气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930至少部分位于气液交换元件290的底部上方,气液交换元件290将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
在本实施例中,气雾弹800还包括硅胶气雾管1305,硅胶气雾管105设置在气雾通道1303的下端部与雾化芯930之间。硅胶耐高温,能在通常的雾化温度下稳定使用,因此硅胶气雾管1305的使用可以降低对进入气雾通道1303中的气雾温度,可以降低气雾通道1303壁部的耐温性要求,能够扩大制造气雾弹壳体810和气雾通道1303管壁的材料选择范围。
综上,本发明涉及的气液交换元件由纤维粘结制成,能广泛应用于各类气雾弹。气雾弹中气液交换元件能平稳快速地将液体传导给雾化芯,同时补充气体到储液元件中,使储液元件内维持稳定的压力,提高雾化的稳定性。上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员皆可在不违背本发明的精神及范畴下, 对上述实施例进行修饰或改变。因此,本领域技术人员在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (15)

  1. 一种气雾弹,其特征在于,所述气雾弹包括储液元件、雾化芯、和连通所述储液元件和所述雾化芯的气液交换元件,所述雾化芯至少部分位于所述气液交换元件的底部上方,所述气液交换元件将所述储液元件中的液体传导至所述雾化芯,并且通过所述气液交换元件将气体补充到所述储液元件。
  2. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件由纤维粘结制成三维网络的立体结构。
  3. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件的密度为0.035克/厘米 3-0.3克/厘米 3
  4. 如权利要求2所述的气雾弹,其特征在于,所述纤维为具有皮层和芯层的双组分纤维,且芯层比皮层的熔点高20℃以上。
  5. 如权利要求4所述的气雾弹,其特征在于,所述双组分纤维的皮层为聚烯烃、聚对苯二甲酸乙二酯的共聚酯、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二酯、聚乳酸或者聚酰胺-6。
  6. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件的毛细压为1mm到35mm。
  7. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件包括高毛细部和低毛细部,所述低毛细部的毛细压为1mm-35mm。
  8. 如权利要求7所述的气雾弹,其特征在于,所述低毛细部中具有缓冲空间。9.如权利要求1所述的气雾弹,其特征在于,所述气雾弹包括雾化室腔体,所述储液元件具有轴向贯穿所述储液元件的气雾通道,所述气雾通道一端与所述雾化室腔体连通。
  9. 如权利要求9所述的气雾弹,其特征在于,所述气液交换元件和所述雾化芯容纳在所述雾化室腔体内,所述雾化室腔体上设置雾化室通孔,所述储液元件中的液体通过所述雾化室通孔接触所述气液交换元件。
  10. 如权利要求9所述的气雾弹,其特征在于,所述气液交换元件包覆雾化室腔体的外周壁。
  11. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件的下部延伸出储液元件底部开口。
  12. 如权利要求12所述的气雾弹,其特征在于,所述气液交换元件的下部超出气雾通 道下端部的部分的高度超过所述气液交换元件高度的四分之一。
  13. 如权利要求13所述的气雾弹,其特征在于,所述气液交换元件的下部超出气雾通道下端部的部分与所述雾化芯接触。
  14. 如权利要求1所述的气雾弹,其特征在于,所述气雾弹还包括硅胶气雾管,所述硅胶气雾管设置在所述气雾通道的下端部与所述雾化芯之间。
  15. 如权利要求1所述的气雾弹,其特征在于,所述气雾弹包括轴向贯穿所述储液元件的气雾通道,所述雾化芯插入所述气雾通道的下端部。
PCT/CN2021/087992 2021-04-19 2021-04-19 一种气雾弹 WO2022221973A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087992 WO2022221973A1 (zh) 2021-04-19 2021-04-19 一种气雾弹

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087992 WO2022221973A1 (zh) 2021-04-19 2021-04-19 一种气雾弹

Publications (1)

Publication Number Publication Date
WO2022221973A1 true WO2022221973A1 (zh) 2022-10-27

Family

ID=83723559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087992 WO2022221973A1 (zh) 2021-04-19 2021-04-19 一种气雾弹

Country Status (1)

Country Link
WO (1) WO2022221973A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277764A1 (en) * 2010-05-15 2011-11-17 Nathan Andrew Terry Data logging personal vaporizing inhaler
CN111528524A (zh) * 2019-01-21 2020-08-14 浙江迈博高分子材料有限公司 一种具有导液元件的气雾散化装置
CN212306806U (zh) * 2020-06-10 2021-01-08 迈博高分子材料(宁波)有限公司 一种导气元件和使用导气元件的气雾散发装置
CN212309901U (zh) * 2020-07-17 2021-01-08 迈博高分子材料(宁波)有限公司 复合储液元件和气雾散发装置
CN212306807U (zh) * 2020-09-15 2021-01-08 迈博高分子材料(宁波)有限公司 一种雾化元件和气雾弹
CN212697666U (zh) * 2020-08-12 2021-03-16 绍兴上虞季真贸易有限公司 一种储液元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277764A1 (en) * 2010-05-15 2011-11-17 Nathan Andrew Terry Data logging personal vaporizing inhaler
CN111528524A (zh) * 2019-01-21 2020-08-14 浙江迈博高分子材料有限公司 一种具有导液元件的气雾散化装置
CN212306806U (zh) * 2020-06-10 2021-01-08 迈博高分子材料(宁波)有限公司 一种导气元件和使用导气元件的气雾散发装置
CN212309901U (zh) * 2020-07-17 2021-01-08 迈博高分子材料(宁波)有限公司 复合储液元件和气雾散发装置
CN212697666U (zh) * 2020-08-12 2021-03-16 绍兴上虞季真贸易有限公司 一种储液元件
CN212306807U (zh) * 2020-09-15 2021-01-08 迈博高分子材料(宁波)有限公司 一种雾化元件和气雾弹

Similar Documents

Publication Publication Date Title
CN212306807U (zh) 一种雾化元件和气雾弹
WO2021120750A1 (zh) 一种具有导液元件的气雾散化装置
CN212697666U (zh) 一种储液元件
CN212437285U (zh) 一种雾化元件和气雾弹
CN212306806U (zh) 一种导气元件和使用导气元件的气雾散发装置
CN216701689U (zh) 一种发热体、雾化器及电子雾化装置
CN111109678A (zh) 电子雾化装置及其雾化器、雾化组件
CN212325377U (zh) 具有储液元件的气雾弹和气雾散发装置
WO2022221973A1 (zh) 一种气雾弹
CN212345301U (zh) 电子雾化装置及其雾化器、雾化组件
EP4305983A1 (en) Vapor cartridge
WO2022221974A1 (zh) 一种气雾弹
CN215992745U (zh) 一种气雾弹
CN215958346U (zh) 一种气雾弹
CN216453361U (zh) 一种气液交换元件和气雾弹
CN216453359U (zh) 一种气液交换元件和气雾弹
CN215958342U (zh) 一种气雾弹
CN115211601A (zh) 一种气雾弹
CN114732163A (zh) 电子雾化装置及其雾化器、雾化组件和导液装置
WO2022221975A1 (zh) 一种气雾弹
CN115211602A (zh) 一种气雾弹
CN215958345U (zh) 一种气雾弹
CN113768189A (zh) 一种导气元件和使用导气元件的气雾散发装置
WO2023010710A1 (zh) 一种气液交换元件和气雾弹
WO2023284214A1 (zh) 一种气液交换元件和气雾弹

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937229

Country of ref document: EP

Kind code of ref document: A1