WO2022221974A1 - 一种气雾弹 - Google Patents

一种气雾弹 Download PDF

Info

Publication number
WO2022221974A1
WO2022221974A1 PCT/CN2021/087994 CN2021087994W WO2022221974A1 WO 2022221974 A1 WO2022221974 A1 WO 2022221974A1 CN 2021087994 W CN2021087994 W CN 2021087994W WO 2022221974 A1 WO2022221974 A1 WO 2022221974A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
aerosol
exchange element
liquid exchange
Prior art date
Application number
PCT/CN2021/087994
Other languages
English (en)
French (fr)
Inventor
王立平
周兴夫
王立娟
沈立夫
Original Assignee
迈博高分子材料(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈博高分子材料(宁波)有限公司 filed Critical 迈博高分子材料(宁波)有限公司
Priority to PCT/CN2021/087994 priority Critical patent/WO2022221974A1/zh
Publication of WO2022221974A1 publication Critical patent/WO2022221974A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the invention relates to an aerosol bomb, in particular to an aerosol bomb used in electronic cigarettes and drug atomizing devices.
  • the technology of atomizing liquid by heating is widely used in fields such as electronic cigarettes.
  • a common technique in electronic atomization is to heat the gas-liquid exchange element of the atomization core that is directly connected to the e-liquid, such as glass fiber bundles or cotton fiber bundles passing through the cavity of the atomization chamber, to atomize the liquid. It is necessary to properly match the atomizing chamber cavity and the atomizing core gas-liquid exchange element, so that the liquid can be conducted from the atomizing core gas-liquid exchange element and the outside air can be passed from the atomizing core gas-liquid exchange element and the atomizing chamber cavity. The gap between them enters the reservoir element.
  • the glass fiber bundle and cotton fiber bundle are soft and lack a fixed shape, it is difficult to precisely control the gap between the gas-liquid exchange element of the atomizing core and the cavity of the atomizing chamber.
  • the gap is too large, there is too much liquid on the atomizing core. During atomization, oil will explode, and in severe cases, liquid will leak. If the gap is too small, it is difficult for air to enter the liquid storage element, which will lead to the lack of liquid in the atomization core and the paste core, which will affect the stability of atomization and consumption experience.
  • the present invention provides an aerosol bomb, the aerosol bomb includes a liquid storage element, an atomizing core, and a gas communicating with the liquid storage element and the atomizing core.
  • a liquid exchange element the atomizing core is located below the gas-liquid exchange element, the gas-liquid exchange element conducts the liquid in the liquid storage element to the atomizing core, and passes through the gas-liquid exchange element
  • the reservoir element is replenished with gas.
  • the capillary pressure of the gas-liquid exchange element is 2mm-35mm.
  • the gas-liquid exchange element includes a high capillary part and a low capillary part, and the capillary pressure of the low capillary part is 2mm-35mm.
  • the low capillary portion has a buffer space therein.
  • the density of the gas-liquid exchange element is 0.035 g/cm 3 -0.3 g/cm 3 .
  • gas-liquid exchange element is formed into a three-dimensional network three-dimensional structure by bonding bicomponent fibers with a skin-core structure.
  • the liquid storage element has an aerosol channel axially extending through the liquid storage element, and one end of the aerosol channel passes through the gas-liquid exchange element.
  • the atomization core is directly in contact with the gas-liquid exchange element, and the gas-liquid exchange element conducts the liquid directly to the atomization core.
  • the aerosol bomb further includes a relay liquid guiding element, the atomizing core is covered by the relay liquid guiding element, and the liquid is conducted to the mist through the gas-liquid exchange element and the relay liquid guiding element core.
  • the aerosol bomb includes a condensate absorbing element.
  • the aerosol bomb includes an aerosol channel and a silicone aerosol tube cap, and the silicone aerosol tube cap is inserted into the aerosol channel from one end of the aerosol inlet of the aerosol channel.
  • the aerosol bomb includes a shell of the aerosol bomb, the shell of the aerosol bomb is provided with a liquid injection hole that communicates with the inside of the liquid storage element, and a sealing plug is provided on the liquid injection hole.
  • the thickness of the gas-liquid exchange element is greater than or equal to 1 mm.
  • the gas-liquid exchange element in the aerosol bomb of the present invention can stably conduct liquid to the atomizing core.
  • the liquid As the liquid is led out from the liquid storage element, when the pressure difference between the liquid storage element and the outside reaches a certain range, the outside air can Entering the liquid storage element through the gas-liquid exchange element, so as to maintain the pressure in the liquid storage element stable and make the atomization proceed stably.
  • the gas-liquid exchange element made of fiber bonding has high strength and toughness, and is not easy to be wrinkled or broken during installation. It can be easily assembled in aerosol bombs, and it is easy to realize assembly automation, improve efficiency and save costs. It is especially suitable for Manufacture of consumer goods such as e-cigarettes is on a large scale.
  • the aerosol bomb of the present invention can be applied to the atomization of various electronic cigarette liquids, and is also suitable for the atomization of CBD and other drug solutions.
  • preferred embodiments are hereinafter described in detail with reference to the accompanying drawings.
  • FIG. 1a is a schematic longitudinal cross-sectional view of the aerosol bomb according to the first embodiment disclosed in the present invention
  • Fig. 1b is a schematic cross-sectional view of the gas-liquid exchange element in Fig. 1a;
  • Figure 1c is an enlarged schematic cross-sectional view of the bicomponent fiber of Figure 1b;
  • Fig. 1d is another enlarged cross-sectional schematic view of the bicomponent fiber in Fig. 1b;
  • Figure 2a is a schematic longitudinal cross-sectional view of the aerosol bomb according to the second embodiment disclosed in the present invention.
  • Fig. 2b is a schematic cross-sectional view of the gas-liquid exchange element in Fig. 2a;
  • Fig. 2c is another schematic cross-sectional view of the gas-liquid exchange element in Fig. 2a;
  • FIG. 3a is a schematic longitudinal cross-sectional view of the aerosol bomb according to the third embodiment disclosed in the present invention.
  • Figure 3b is a schematic cross-sectional view of the gas-liquid exchange element in Figure 3a;
  • FIG. 4a is a schematic longitudinal cross-sectional view of an aerosol bomb according to the fourth embodiment disclosed in the present invention.
  • Figure 4b is a schematic longitudinal cross-sectional view of another aerosol bomb according to the fourth embodiment disclosed in the present invention.
  • Figure 4c is a schematic cross-sectional view of the gas-liquid exchange element in Figure 4a when it is a cylinder;
  • Figure 4d is a schematic cross-sectional view of the gas-liquid exchange element in Figure 4a when it is a rectangular parallelepiped;
  • Fig. 4e is a schematic cross-sectional view when the gas-liquid exchange element in Fig. 4a is an elliptical cylinder;
  • FIG. 5 is a schematic longitudinal cross-sectional view of the aerosol bomb according to the fifth embodiment disclosed in the present invention.
  • the capillary pressure in the present invention is defined as the height h at which one end of the gas-liquid exchange element material just touches the liquid to be atomized and is placed for 5 minutes to absorb the liquid.
  • the specific test and calculation methods are defined as follows:
  • the melting point in the present invention is determined according to ASTM D3418-2015.
  • Fig. 1a is a schematic longitudinal sectional view of the aerosol bomb according to the first embodiment disclosed in the present invention
  • Fig. 1b is a schematic cross-sectional view of the gas-liquid exchange element in Fig. 1a.
  • the aerosol bomb 800 includes a liquid storage element 100, an atomizing core 930, and a gas-liquid exchange element 290 communicating with the liquid storage element 100 and the atomizing core 930.
  • the core 930 is located below the gas-liquid exchange element 290 , the gas-liquid exchange element 100 conducts the liquid in the liquid storage element 100 to the atomizing core 930 , and supplements the gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the aerosol bomb 800 further includes an aerosol shell 810 , an aerosol channel 1303 extending axially from the top of the aerosol shell 810 to the inside of the aerosol shell 810 , and a shell base 112 disposed at the bottom of the aerosol shell 810 .
  • the liquid storage element 100 may be formed separately, or may be formed by the space enclosed by the aerosol shell 810 and the wall of the aerosol channel 1303 .
  • the liquid storage element 100 may have a liquid storage element through hole 130 axially extending through the liquid storage element 100 , and the liquid storage element through hole 130 may simultaneously serve as the aerosol channel 1303 .
  • the opening of the liquid storage element 100 close to the housing base 112 is blocked by the gas-liquid exchange element 290 .
  • the aerosol channel 1303 is also used as the liquid storage element through hole 130, one end of the aerosol channel 1303 passes through the gas-liquid exchange element 290 and fits tightly with the inner hole of the gas-liquid exchange element 290 to prevent liquid leakage.
  • the inner hole of the gas-liquid exchange element 290 is closely matched with the wall of the liquid storage element through hole 130 to prevent liquid leakage.
  • the outer peripheral wall of the gas-liquid exchange element 290 is tightly fitted with the inner peripheral wall of the aerosol shell 810 .
  • the outer peripheral wall of the gas-liquid exchange element 290 is tightly fitted with the inner peripheral wall of the housing of the liquid storage element 100 .
  • One side of the gas-liquid exchange element 290 is in contact with the liquid in the liquid storage element 100, and the other side of the gas-liquid exchange element 290 is in direct or indirect contact with the atomizing core 930, thereby conducting the liquid in the liquid storage element 100 to the mist. Core 930.
  • a hollow plastic baffle (not shown) can be installed in the opening of the liquid storage element 100 near the housing base 112.
  • the shape of the plastic baffle is similar to the gas-liquid exchange element 290 but the size Slightly smaller than the gas-liquid exchange element 290 , the plastic baffle plays the role of positioning and supporting the gas-liquid exchange element 290 .
  • the atomization chamber 934 is a cavity in which the liquid is atomized, and the atomization chamber 934 is formed by the space enclosed by the aerosol shell 810 , the gas-liquid exchange element 290 and the shell base 112 .
  • the atomizing core 930 is arranged in the atomizing chamber 934, the casing base 112 is provided with a casing base through-hole 1122 that penetrates the casing base 112, and the end of the casing base through-hole 1122 that communicates with the outside is used as the air inlet 1121, and the outside air
  • the atomization chamber 934 is entered through the air inlet 1121 .
  • the liquid is atomized by the atomizing core 930 in the atomizing chamber 934 and escapes the aerosol bomb 800 through the aerosol channel 1303 and the aerosol outlet 1301 .
  • the atomizing core 930 can be assembled on the shell base 112 first, and then inserted into the aerosol shell 810 together with the shell base 112 to complete the assembly , forming a detachable and reusable atomizing core 930 . That is, the aerosol bomb 800 according to the present embodiment can be integrated into two parts, the first part is the part including the housing base 112 and the atomizing core 930, and the second part is the part other than the first part. After the liquid in the liquid storage element 100 is consumed, it can be used again by replacing the second part. Since the first part is a structure that can be disassembled and installed by simply plugging in, the atomizing core 930 can be used multiple times, and can Greatly save the cost of use for consumers.
  • the gas-liquid exchange element 290 is made of a three-dimensional network three-dimensional structure by fiber bonding. Thermal bonding is preferred.
  • the cross-section of the gas-liquid exchange element 290 can be in various geometric shapes, such as circular, oval, rectangular, and the like.
  • the density of the gas-liquid exchange element 290 of the present invention is 0.035-0.3 g/ cm3 , eg, 0.035/ cm3 , 0.050/ cm3 , 0.065/ cm3 , 0.080/ cm3 , 0.100/ cm3 , 0.125/ cm3 , 0.150/ cm3 , 0.175/ cm3 , 0.200/ cm3 , 0.225/ cm3 , 0.250/ cm3 , 0.275/ cm3 , 0.300/ cm3 , preferably 0.05-0.2 g/ cm3 .
  • the gas-liquid exchange element 290 When the density is less than 0.035 g/cm 3 , the gas-liquid exchange element 290 is difficult to manufacture and has insufficient strength, and is easily deformed or wrinkled during assembly, which affects the stability of atomization or causes liquid leakage. When the density is greater than 0.3 g/cm 3 , the ability of the gas-liquid exchange element 290 to supplement gas to the liquid storage element 100 is insufficient, and the negative pressure in the liquid storage element 100 is too high, making it difficult for the liquid to be led out.
  • the capillary pressure of the gas-liquid exchange element 290 is 2mm-35mm, for example, 2mm, 3mm, 5mm, 7mm, 9mm, 11mm, 13mm, 15mm, 17mm, 20mm, 25mm, 30mm, 35mm.
  • the capillary pressure of the gas-liquid exchange element 290 is less than 2 mm, the liquid in the liquid storage element 100 is likely to leak.
  • the capillary pressure of the gas-liquid exchange element 290 is greater than 35 mm, it is difficult for the gas to pass through the gas-liquid exchange element 290 into the liquid storage element 100 , resulting in an excessively high negative pressure in the liquid storage element 100 , making it difficult for the liquid in the liquid storage element 100 to enter the liquid storage element 100 .
  • the capillary pressure of the gas-liquid exchange element 290 is preferably 2.5 mm to 25 mm, more preferably 3 mm to 10 mm.
  • the gas-liquid exchange element 290 with appropriate capillary pressure can be selected according to different atomization requirements.
  • the gas-liquid exchange element 290 is preferably made by bonding bicomponent fibers 2 of a sheath-core structure.
  • the bicomponent fibers 2 of the sheath-core structure may have a concentric structure or an eccentric structure.
  • the bicomponent fibers 2 may be filaments or staple fibers.
  • suitable bicomponent fibers 2 can be selected to make the gas-liquid exchange element 290 .
  • the core layer of the bicomponent fiber 2 has a melting point higher than that of the skin layer by more than 20°C, which can maintain a certain rigidity of the core layer during thermal bonding between fibers, which facilitates the manufacture of a gas-liquid exchange element 290 with uniform voids.
  • Figure 1c is an enlarged schematic cross-sectional view of the bicomponent fiber of Figure 1b. As shown in Fig. 1c, the skin layer 21 and the core layer 22 are concentric structures.
  • Figure 1d is another enlarged schematic cross-sectional view of the bicomponent fiber of Figure 1b. As shown in Fig. 1d, the skin layer 21 and the core layer 22 are eccentric structures.
  • the bicomponent fibers 2 are filaments or staple fibers.
  • the gas-liquid exchange element 290 can be made by selecting suitable bicomponent fibers according to the performance requirements of the gas-liquid exchange element 290 .
  • the skin layer 21 of the bicomponent fiber 2 may be polyolefin, copolyester of polyethylene terephthalate (referred to as Co-PET), polytrimethylene terephthalate (referred to as PTT), polyethylene terephthalate Butylene diester (PBT for short), polylactic acid, polyamide-6, etc.
  • Polyolefin is a polymer of olefins, and is a general term for a class of thermoplastic resins usually obtained by polymerizing or copolymerizing ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, and 1-hexene alone.
  • the denier of the bicomponent fibers 2 for making the gas-liquid exchange element 290 of the present invention is between 1.5-30 denier, preferably 2-15 denier.
  • the bicomponent fiber 2 with a sheath-core structure between 2-15 denier is easy to make the gas-liquid exchange element 290 .
  • fibers with smaller fineness to make the gas-liquid exchange element 290 such as fibers of 1.5 denier, 2 denier, and 3 denier.
  • fibers with larger fineness should be used to make the gas-liquid exchange element 290, such as fibers of 6 denier, 10 denier, 15 denier and 30 denier.
  • the gas-liquid exchange element 290 is preferably a three-dimensional network three-dimensional structure formed by two-component short-dimensional thermal bonding, the skin layer 21 is polyethylene, and the core layer 22 is polypropylene or PET.
  • the density of the manufactured gas-liquid exchange element 290 is between 0.035-0.3 g/cm 3 , preferably 0.05-0.2 g/cm 3 , this gas-liquid exchange element 290 has better strength and better elasticity, and has a faster and the ability to replenish gas to the liquid storage element 100.
  • This gas-liquid exchange element 290 can be used for the atomization of electronic cigarette liquid and CBD liquid medicine.
  • the skin layer 21 of the bicomponent fiber 2 can be replaced by polypropylene, Co-PET, polyamide-6, PBT or PTT, etc., and the fabricated gas-liquid exchange element 290 has higher temperature resistance.
  • the liquid storage element 100 is a component of the aerosol bomb 800 that stores liquid, and the liquid to be atomized is injected into the liquid storage element 100 .
  • the liquid storage element 100 may be a cavity made of plastic or metal, and the cavity may be filled with a porous material that stores liquid.
  • the liquid in the liquid storage element 100 is conducted to the atomizing core 930 through the gas-liquid exchange element 290, and is atomized when necessary.
  • the aerosol shell 810 may be provided with a liquid injection hole (not shown) communicating with the interior of the liquid storage element 100, and a sealing plug (not shown) is provided on the liquid injection hole. That is, a liquid injection hole may be provided on the aerosol bomb casing 810 where the aerosol bomb 800 is located at the position of the liquid storage element 100 .
  • the sealing plug is opened, liquid is injected, and the sealing plug is re-inserted into the liquid injection hole.
  • the use of the aerosol bomb 800 with an open liquid injectable structure can further reduce the use cost of the aerosol bomb 800 .
  • the atomizing core 930 is the part that atomizes the liquid in the aerosol bomb 800 .
  • Common atomizing cores 930 that can be used in the present invention include glass fiber bundle atomizing cores 930 wound with heating wires, cotton rope atomizing cores 930 wound with heating wires, porous ceramic atomizing cores 930 with pre-embedded heating wires, and pre-embedded heating wires.
  • the gas-liquid exchange element 290 can directly contact the atomizing core 930 and conduct the liquid from the liquid storage element 100 to the atomizing core 930 .
  • a relay liquid guiding element 939 may also be added between the atomizing core 930 and the gas-liquid exchange element 290 .
  • the relay liquid guiding element 939 refers to a liquid guiding element in the aerosol bomb 800 that can transport the liquid in the liquid storage element 100 to the atomizing core. Specifically, the liquid in the liquid storage element 100 is conducted to the relay liquid guide element 939 through the gas-liquid exchange element 290 , and the relay liquid guide element 939 then conducts the liquid to the atomizing core 930 .
  • the gas-liquid exchange element 290 is in direct contact with the atomizing core 930 , and the coil-shaped electric heating wire atomizing core 930 covered with cotton non-woven fabric is preferably used.
  • the air When in use, the air enters through the air inlet 1121 of the housing base 112 and passes through the atomizing core 930.
  • the atomizing core 930 When the atomizing core 930 is heated, the liquid on the atomizing core 930 is atomized, and the aerosol generated by the atomization passes through the aerosol channel 1303. And the aerosol outlet 1301 escapes.
  • the liquid content on the atomizing core 930 is reduced, and the gas-liquid exchange element 290 conducts the liquid from the liquid storage element 100 to the atomizing core 930 .
  • the negative pressure in the liquid storage element 100 increases.
  • the outside air enters the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the atomizing core 930 further includes a wire 933, and the wire 933 is connected to the wire pin 936 or a power supply (not shown).
  • Fig. 2a is a schematic longitudinal cross-sectional view of the aerosol bomb according to the second embodiment disclosed in the present invention
  • Fig. 2b is a schematic cross-sectional view of the gas-liquid exchange element in Fig. 2a
  • Fig. 2c is another schematic view of the gas-liquid exchange element in Fig. 2a
  • a schematic diagram of a cross-section. The structure of this embodiment is similar to that of the first embodiment, and the same parts as those of the first embodiment will not be repeated in the description of this embodiment.
  • the aerosol bomb includes a liquid storage element 100, an atomizing core 930, and a gas-liquid exchange element 290 connecting the liquid storage element 100 and the atomizing core 930.
  • the atomizing core 930 Located below the gas-liquid exchange element 290 , the gas-liquid exchange element 100 conducts the liquid in the liquid storage element 100 to the atomizing core 930 , and supplements the gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • an atomizing core 930 such as porous ceramics with pre-embedded heating wires or compressed cotton with pre-embedded heating wires is used.
  • the aerosol bomb further includes a relay liquid guiding element 939 , and the relay liquid guiding element 939 may be a non-woven fabric covering the atomizing core 930 .
  • the relay liquid guiding element 939 can also be a tube made by bonding the bicomponent fibers 2 .
  • the atomizing core 930 is inserted into the tubular relay liquid guiding element 939 and is in close contact with the inner wall of the relay liquid guiding element 939 .
  • the liquid storage element 100 is formed by the space enclosed by the aerosol shell 810 , the wall of the aerosol channel 1303 and the gas-liquid exchange element 290 .
  • the liquid storage element 100 may have a through hole 130 of the liquid storage element 100 extending axially through the liquid storage element 100 , and the through hole 130 of the liquid storage element 100 may be used as an aerosol channel 1303 at the same time, and one end of the aerosol channel 1303 passes through the gas-liquid exchange element 290 , and is closely matched with the inner hole of the gas-liquid exchange element 290 to prevent liquid leakage.
  • the gas-liquid exchange element 290 is formed by thermal bonding of bicomponent fibers 2 of a sheath-core structure to form a three-dimensional network three-dimensional structure, the skin layer 21 of the bicomponent fibers 2 is polyethylene, and the core layer 22 is polypropylene .
  • the cross section of the gas-liquid exchange element 290 is circular, and a gas-liquid exchange element through hole 2903 axially penetrates the gas-liquid exchange element is provided in the center.
  • the gas-liquid exchange element 290 includes a high capillary portion 2901 near the center and a low capillary portion 2902 away from the center but adjacent to the high capillary portion 2901 .
  • the density of the low capillary portion 2902 is 0.035-0.15 g/cm 3
  • the density of the high capillary portion 2901 is 0.15-0.3 g/cm 3
  • the capillary pressure of the low capillary portion 2902 is 2 mm-35 mm, preferably the capillary pressure of the low capillary portion 2902 is 2.5 mm to 25 mm, more preferably 3 mm to 10 mm.
  • the low capillary portion 2902 with appropriate capillary pressure can be selected according to different atomization requirements.
  • both the high capillary portion 2901 and the low capillary portion 2902 can conduct liquid, but only the low capillary portion 2902 can conduct gas.
  • the high capillary portion 2901 and the low capillary portion 2902 can be integrally formed, or can be assembled together after being formed separately.
  • the low capillary part 2902 has a buffer space
  • the buffer space refers to a part of the low capillary part 2902 that is not wetted by liquid during normal use.
  • the thickness of the gas-liquid exchange element 290 is preferably greater than or equal to 1 mm, most preferably greater than or equal to 2 mm, such as 3 mm, 4 mm and 5 mm, those skilled in the art can determine the space of the aerosol bomb 800 according to the definition
  • the thickness of the gas-liquid exchange element 290 is determined, but in order to ensure the existence of the buffer space, the gas-liquid exchange element 290 cannot be less than 1 mm at least.
  • the high capillary part 2901 Under normal use, if the high capillary part 2901 is wetted by liquid, but the low capillary part 2902 is only partially wetted by liquid, and the buffer space will not be wetted, the high capillary part 2901 can conduct liquid, and the low capillary part 2902 can conduct gas , in this case, the portion of the low capillary portion 2902 that is not wetted by the liquid has a buffer space to reduce the risk of liquid leakage from the aerosol bomb.
  • the buffer space can temporarily store the liquid that is conducted in excess in the liquid element 100 , thereby effectively avoiding the risk of liquid leakage from the aerosol bomb 800 .
  • the outer peripheral wall of the gas-liquid exchange element 290 is closely matched with the inner peripheral wall of the aerosol shell.
  • One side of the gas-liquid exchange element 290 is in contact with the liquid in the liquid storage element 100, and the other side of the gas-liquid exchange element 290 is in contact with the relay guide Element 939.
  • the liquid in the liquid storage element 100 is conducted to the relay liquid-conducting element 939 through the gas-liquid exchange element 290 , and the relay liquid-conducting element 939 then conducts the liquid to the atomizing core 930 .
  • the negative pressure in the liquid storage element 100 increases.
  • the aerosol bomb 800 further includes a condensate absorbing element 400.
  • the condensate absorbing element 400 is installed in the aerosol channel 1303, and can absorb the condensate generated by the aerosol, thereby improving the consumption experience.
  • the aerosol bomb 800 further includes a silicone aerosol tube cap 1304 .
  • the longitudinal section of the silicone aerosol tube cap 1304 is an inverted T-shaped tubular structure having a through hole axially passing through the silicone aerosol tube cap 1304 .
  • the silicone aerosol tube cap 1304 is inserted into the aerosol channel 1303 from one end of the aerosol inlet of the aerosol channel 1303, the outer peripheral wall of the inserted part abuts against the inner peripheral wall of the aerosol channel 1303, and its non-inserted end abuts against the aerosol channel 1303 end of .
  • the outer diameter of the non-inserted end of the silicone aerosol tube cap 1304 is larger than the outer diameter of the aerosol channel 1303, so that the non-inserted end of the silicone aerosol tube cap 1304 can support and position the gas-liquid exchange element 290 effect.
  • Silicone is resistant to high temperature and can be used stably at normal atomization temperature. Therefore, the use of silicone aerosol tube cap 1304 can reduce the temperature resistance requirements for the wall of the aerosol channel 1303, and can expand the manufacture of the aerosol shell 810 and the aerosol channel. 1303 pipe wall material selection range.
  • the silicone aerosol tube cap 1304 can also prevent the condensate absorbing element 400 from falling off the aerosol channel 1303 .
  • a filter component can also be installed at the aerosol inlet of the silicone aerosol tube cap 1304, and the filter component can be a filter screen or a filter baffle with holes or a baffle plate (not shown), or it can be arranged at the aerosol inlet.
  • the baffle at the location is used to prevent the large atomized droplets from rushing upward directly into the aerosol channel 1303 .
  • the atomized aerosol needs to bypass the baffle and then enter the aerosol channel 1303 , which can effectively prevent the large-particle atomized droplets from rushing up directly into the aerosol channel 1303 .
  • the aerosol channel 1303 can extend out of the top of the aerosol shell 810.
  • the extended aerosol channel 1303 can be used as a suction nozzle when the user is sucking. This can make the structure of the aerosol bomb 800 simpler.
  • the cross section of the gas-liquid exchange element 290 in this embodiment may be circular, and the gas-liquid exchange element 290 has a gas-liquid exchange element through hole 2903 axially penetrating the gas-liquid exchange element 290 , and the low capillary portion 2902 coats the high capillary portion 2901.
  • the cross section of the gas-liquid exchange element 290 in this embodiment can also be the structure shown in FIG. 2c , that is, the cross section of the high capillary part 2901 is rectangular, and the cross section of the low capillary part 2902 is two hemispherical or two arcuate shapes structure to meet the needs of various designs of the aerosol bomb 800.
  • Fig. 3a is a schematic longitudinal sectional view of the aerosol bomb according to the third embodiment disclosed in the present invention
  • Fig. 3b is a schematic cross-sectional view of the gas-liquid exchange element in Fig. 3a.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as those of the first embodiment will not be repeated in the description of this embodiment.
  • an aerosol bomb 800 includes a liquid storage element 100, an atomizing core 930, and a gas-liquid exchange element 290 connecting the liquid storage element 100 and the atomizing core 930.
  • the atomizing core 930 is located below the gas-liquid exchange element 290 , the gas-liquid exchange element 100 conducts the liquid in the liquid storage element 100 to the atomizing core 930 , and supplements the gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the outer peripheral wall of the gas-liquid exchange element 290 is closely matched with the inner peripheral wall of the shell of the aerosol bomb, and one side of the gas-liquid exchange element 290 is in contact with the liquid in the liquid storage element 100 .
  • the atomizing core 930 is a glass fiber bundle wound with a heating wire, and both ends of the glass fiber bundle are restricted by the oblique upwardly extending baffle walls of the housing base 112 to bend upward, and are connected with the gas-liquid exchange element 290. side contact.
  • the gas-liquid exchange element 290 conducts the liquid from the liquid storage element 100 to the atomizing core 930 .
  • the gas-liquid exchange element 290 is formed of a three-dimensional network three-dimensional structure by thermal bonding of bicomponent fibers 2 with a skin-core structure.
  • the skin layer 21 of the bicomponent fiber 2 is Co-PET, and the core layer 22 is PET. .
  • a through hole of the gas-liquid exchange element 290 is provided in the center of the gas-liquid exchange element 290 .
  • the density of the gas-liquid exchange element 290 is 0.035-0.3 g/cm 3 , preferably 0.05-0.2 g/cm 3 .
  • the capillary pressure of the gas-liquid exchange element 290 is 2 mm to 35 mm, preferably 2.5 mm to 25 mm. An appropriate density and capillary pressure of the gas-liquid exchange element 290 can be selected according to different atomization requirements.
  • the working principle of the embodiment is the same as that of the first embodiment.
  • Figure 4a is a schematic longitudinal sectional view of an aerosol bomb according to the fourth embodiment disclosed in the present invention
  • Figure 4b is a schematic longitudinal sectional view of another aerosol bomb according to the fourth embodiment disclosed in the present invention
  • Figure 4a is a schematic cross-sectional view when the gas-liquid exchange element in Figure 4a is a cylinder
  • Figure 4d is a schematic cross-sectional view when the gas-liquid exchange element in Figure 4a is a rectangular parallelepiped
  • Figure 4e is a schematic cross-sectional view of the gas-liquid exchange element in Figure 4a Schematic cross-section of an elliptical cylinder.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as those of the first embodiment will not be repeated in the description of this embodiment.
  • the aerosol bomb 800 includes a liquid storage element 100, an atomizing core 930, and a gas-liquid exchange element 290 communicating with the liquid storage element 100 and the atomizing core 930.
  • the core 930 is located below the gas-liquid exchange element 290 , the gas-liquid exchange element 100 conducts the liquid in the liquid storage element 100 to the atomization core 930 , and supplements the gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the liquid storage element 100 has a liquid storage element through hole 130 axially extending through the liquid storage element 100 , and the liquid storage element through hole 130 is simultaneously used as the aerosol channel 1303 .
  • the bottom of the liquid storage element 100 has a bottom opening, and the bottom opening is located between the end of the liquid storage element through hole 130 close to the atomizing core 930 and the aerosol shell 810 .
  • the gas-liquid exchange element 290 covers the end of the liquid storage element through hole 130 close to the atomizing core 930 and blocks the bottom opening of the liquid storage element 100 .
  • the atomization chamber 934 is formed by the space formed by the housing base 112 , the aerosol bomb housing 810 and the gas-liquid exchange element 290 .
  • the gas-liquid exchange element 290 is formed by thermal bonding of bicomponent fibers 2 of concentric or eccentric structure to form a three-dimensional network three-dimensional structure.
  • the skin layer of the fiber is polyethylene, and the core layer is polypropylene or PET.
  • a gas-liquid exchange element through hole 2903 is provided in the center of the gas-liquid exchange element 290.
  • the gas-liquid exchange element 290 has a low capillary portion 2902 and a high capillary portion 2901, the density of the low capillary portion 2902 is 0.035-0.15 g/cm 3 , and the density of the high capillary portion 2901 is 0.15-0.3 g/cm 3 .
  • the capillary pressure of the low capillary portion 2902 is 2 mm to 35 mm.
  • the liquid storage element 100 is a cavity made of plastic, the liquid is injected into the liquid storage element 100, and one side of the gas-liquid exchange element 290 is connected to the liquid storage element 100. Liquid in element 100 contacts.
  • the atomizing core 930 is a glass fiber bundle or a cotton fiber bundle wound with electric heating wires.
  • the high capillary portion 2901 on the other side of the liquid exchange element 290 is in contact with the high capillary portion 2901 and the low capillary portion 2902 on the other side of the liquid exchange element 290 at the same time.
  • a condensate absorbing element 400 may be arranged in the aerosol channel 1303 to absorb the condensate in the aerosol, so as to improve the taste of the aerosol.
  • the radial dimension of the end of the liquid storage element through hole 130 close to the atomizing core 930 is larger than the rest of the liquid storage element through hole 130,
  • a groove is formed at the position of the housing base 112 corresponding to the through hole 130 of the liquid storage element.
  • the end of the large radial dimension of the liquid storage element through hole 130 and the groove of the housing base 112 constitute the atomization chamber 934 .
  • This structure is particularly suitable for the aerosol bomb 800 of a flat structure.
  • the atomizing core 930 is a glass fiber bundle or a cotton fiber bundle wound with a heating wire, and the glass fiber bundle or cotton fiber bundle extends out of the atomization chamber 934 and is clamped on the housing base 112 for gas-liquid exchange. between elements 290.
  • the gas-liquid exchange element 290 may be a cylinder as shown in FIG. 4c , a rectangular parallelepiped as shown in FIG. 4d , or an elliptical cylinder as shown in FIG. 4e .
  • the shape of the gas-liquid exchange element 290 can be selected according to the shape design of different aerosol bombs 800 .
  • the liquid on the atomizing core 930 is atomized, the gas-liquid exchange element 290 obtains the liquid from the liquid storage element 100 and conducts it to the atomizing core 930, the negative pressure in the liquid storage element 100 increases, and the gas passes through the low capillary part 2902 is replenished to the liquid storage element 100, and this process is repeated to ensure smooth atomization.
  • FIG. 5 is a longitudinal sectional view of the aerosol bomb according to the fifth embodiment disclosed in the present invention.
  • the structure of this embodiment is similar to that of the first embodiment, and the same parts as those of the first embodiment will not be repeated in the description of this embodiment.
  • the aerosol bomb 800 includes a liquid storage element 100 , an atomizing core 930 , and a gas-liquid exchange element 290 communicating with the liquid storage element 100 and the atomizing core 930 .
  • the core 930 is located below the gas-liquid exchange element 290 , the gas-liquid exchange element 100 conducts the liquid in the liquid storage element 100 to the atomizing core 930 , and supplements the gas to the liquid storage element 100 through the gas-liquid exchange element 290 .
  • the liquid storage element 100 is a cavity made of plastic, and the liquid is injected into the liquid storage element 100 .
  • the atomizing core 930 is a cotton fiber bundle wound with electric heating wires, and both ends of the cotton fiber bundle pass through both sides of the atomizing chamber 934 and are loosely matched with the through holes 9341 of the atomizing chamber, so that the air in the atomizing chamber 934 can be introduced into gas-liquid
  • the exchange element 290 is finally replenished into the reservoir element 100 .
  • One end face of the gas-liquid exchange element 290 is in contact with both ends of the cotton fiber bundle, and the other end face of the gas-liquid exchange element 290 is in contact with the liquid in the liquid storage element 100 .
  • the gas-liquid exchange element 290 may be integrally formed as a whole, or may be divided into multiple pieces by a plurality of gas-liquid exchange elements 290 .
  • the gas-liquid exchange element 290 can be split into multiple pieces to be assembled in the aerosol bomb 800 , for example, into two left and right pieces, or divided into two pieces along the circumference of the aerosol bomb 800 . Three, four or more block configurations.
  • the space of the aerosol bomb 800 is smaller, only a part of the gas-liquid exchange element 290 may be intercepted and assembled in the aerosol bomb 800 .
  • the gas-liquid exchange element can stably conduct liquid to the atomizing core, and introduce gas into the liquid storage element when necessary, so as to maintain a stable pressure in the liquid storage element, thereby ensuring Atomization is stable.
  • the aerosol bomb of the invention has a simple structure, can adopt a conventional atomizing core with high cost performance, is easy to assemble and automate, improves efficiency and saves costs.
  • the above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Any person skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.

Landscapes

  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

一种气雾弹(800),包括储液元件(100)、雾化芯(930)、和连通储液元件(100)和雾化芯(930)的气液交换元件(290),雾化芯(930)位于气液交换元件(290)的下方,气液交换元件(290)将储液元件(100)中的液体传导至雾化芯(930),并且通过气液交换元件(290)将气体补充到储液元件(100)。该气雾弹(800)可以应用于各种电子烟液体的雾化,也适用于CBD等药物溶液的雾化等。

Description

一种气雾弹 技术领域
本发明涉及一种气雾弹,特别涉及用于电子烟和药物雾化装置中的气雾弹。
背景技术
通过加热来雾化液体的技术被广泛用于电子烟等领域。电子雾化中常见的技术是加热与烟油直接连通的雾化芯气液交换元件,如穿过雾化室腔体的玻纤束或棉纤束,使液体雾化。需要使雾化室腔体与雾化芯气液交换元件适当配合,从而使液体从雾化芯气液交换元件传导的同时让外部空气从雾化芯气液交换元件和雾化室腔体之间的间隙进入储液元件。由于玻纤束和棉纤束柔软并缺乏固定的形状,使得雾化芯气液交换元件和雾化室腔体之间的间隙难以精密控制,间隙过大时雾化芯上的液体过多,雾化时会爆油,严重时会漏液,间隙过小时空气难以进入储液元件,进而导致雾化芯缺液而糊芯,这些均影响雾化的稳定性和消费体验。
发明内容
为解决现有技术中的存在的问题,本发明提出了一种气雾弹,所述气雾弹包括储液元件、雾化芯、和连通所述储液元件和所述雾化芯的气液交换元件,所述雾化芯位于所述气液交换元件的下方,所述气液交换元件将所述储液元件中的液体传导至所述雾化芯,并且通过所述气液交换元件将气体补充到所述储液元件。
进一步,所述气液交换元件的毛细压为2mm-35mm。
进一步,所述气液交换元件包括高毛细部和低毛细部,所述低毛细部的毛细压为2mm-35mm。
进一步,所述低毛细部中具有缓冲空间。
进一步,所述气液交换元件的密度为0.035克/厘米 3-0.3克/厘米 3
进一步,所述气液交换元件由皮芯结构的双组分纤维粘结制成三维网络的立体结构。
进一步,所述储液元件具有轴向贯穿所述储液元件的气雾通道,所述气雾通道的一端穿过所述气液交换元件。
进一步,所述雾化芯直接与所述气液交换元件接触,所述气液交换元件将液体直接传导给所述雾化芯。
进一步,所述气雾弹还包括中继导液元件,所述雾化芯被中继导液元件包覆,液体通过所述气液交换元件和所述中继导液元件传导至所述雾化芯。
进一步,所述气雾弹包括冷凝液吸收元件。
进一步,所述气雾弹包括气雾通道和硅胶气雾管帽,所述硅胶气雾管帽从所述气雾通道的气雾入口一端插入所述气雾通道。
进一步,所述气雾弹包括气雾弹壳体,所述气雾弹壳体上设置有连通所述储液元件内部的注液孔,所述注液孔上设置有密封塞。
进一步,所述气液交换元件的厚度大于等于1毫米。
本发明的气雾弹中的气液交换元件能稳定地向雾化芯传导液体,随着液体从储液元件导出,当储液元件和外界之间的压力差达到一定范围时,外界空气能通过气液交换元件进入储液元件,从而维持储液元件内的压力稳定,使雾化稳定进行。由纤维粘结制成的气液交换元件具有较高的强度和韧性,安装时不易褶皱或破碎,可以方便地在气雾弹中组装,容易实现装配自动化,提高效率,节省成本,尤其适合于电子烟等消费品的制造大规模。
本发明的气雾弹可以应用于各种电子烟液体的雾化,也适用于CBD等药物溶液的雾化等。为让本发明的上述内容能更明显易懂,下文特举优选实施例,并结合附图,作详细说明如下。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a为本发明所公开的第一实施例的气雾弹的纵剖面示意图;
图1b为图1a中的气液交换元件的横截面示意图;
图1c是图1b中的双组分纤维的一种放大截面示意图;
图1d是图1b中的双组分纤维的另一种放大截面示意图;
图2a为本发明所公开的第二实施例的气雾弹的纵剖面示意图;
图2b为图2a中的气液交换元件的一种横截面示意图;
图2c为图2a中的气液交换元件的另一种横截面示意图;
图3a为本发明所公开的第三实施例的气雾弹的纵剖面示意图;
图3b为图3a中的气液交换元件的横截面图示意图;
图4a为本发明所公开的第四实施例的一种气雾弹的纵剖面示意图;
图4b为本发明所公开的第四实施例的另一种气雾弹的纵剖面示意图;
图4c为图4a中的气液交换元件为圆柱体时的横截面示意图;
图4d为图4a中的的气液交换元件为长方体时的横截面示意图;
图4e为图4a中的的气液交换元件为椭圆柱体时的横截面示意图;
图5为本发明所公开的第五实施例的气雾弹的纵剖面示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。
本发明中毛细压的定义为将气液交换元件材料的一端刚好接触被雾化的液体,放置5分钟后吸收液体的高度h。具体测试及计算方法定义如下:
1)制作轴向高度H的气液交换元件材料,在未受挤压并充分排出空气的情况下将气液交换元件290材料缓慢插入被雾化的液体直至浸没,称量并计算气液交换元件材料的饱和吸液量W 0。2)取同等的气液交换元件材料,将气液交换元件材料的一端刚好接触被雾化的液体,放置5分钟后,称量并计算气液交换元件材料的吸液量W 1。3)吸液高度h计算:h=(HxW 1)/W 0
本发明中的熔点根据ASTM D3418-2015测定。
除非另有说明,此处使用的术语包括科技术语对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
第一实施例
图1a为本发明所公开的第一实施例的气雾弹的纵剖面示意图;图1b为图1a中的气液交换元件的横截面示意图。
如图1a所示,根据本发明第一实施例的气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930位于气液交换元件290的下方,气液交换元件100将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
气雾弹800还包括气雾弹壳体810、从气雾弹壳体810顶部向气雾弹壳体810内部轴向延伸的气雾通道1303和设置在气雾弹壳体810底部的壳体底座112。
储液元件100可以单独成型,也可以是由气雾弹壳体810和气雾通道1303的壁部围成的空间形成。储液元件100可以具有轴向贯穿储液元件100的储液元件通孔130,储液元件通孔130可以同时用作气雾通道1303。
储液元件100靠近壳体底座112的开口由气液交换元件290封堵。当气雾通道1303同时用作储液元件通孔130时,气雾通道1303的一端穿过气液交换元件290,并与气液交换元件290的内孔紧密配合,以防止液体泄漏。当储液元件100单独成型时,气液交换元件290的内孔与储液元件通孔130的壁部紧密配合,以防止液体泄漏。
当气雾弹壳体810同时用作储液元件100的壳体时,气液交换元件290的外周壁与气雾弹外壳810的内周壁紧密配合。当储液元件100单独成型时,气液交换元件290的外周壁与储液元件100的壳体的内周壁紧密配合。气液交换元件290一侧与储液元件100中的液体接触,气液交换元件290的另一侧与雾化芯930直接或者间接接触,由此,将储液元件100中的液体传导至雾化芯930。
可以在安装气液交换元件290之前先在储液元件100靠近壳体底座112的开口中安装一块镂空的塑料挡板(未图示),塑料挡板的形状与气液交换元件290相似但尺寸略小于气液交换元件290,塑料挡板对气液交换元件290起到定位和支撑的作用。
在本实施例中,雾化室934是液体被雾化的空腔,雾化室934由气雾弹壳体810、气液交换元件290和壳体底座112围成的空间形成。雾化室934中设置雾化芯930,壳体底座112上设置有贯穿壳体底座112的壳体底座通孔1122,壳体底座通孔1122与外界连通的一端作为进气口1121,外部空气通过进气口1121进入雾化室934。液体在雾化室934中被雾化芯930雾化,并经过气雾通道1303和气雾出口1301逸出气雾弹800。
在本实施例中,由于雾化芯930位于气液交换元件290的下方,雾化芯930可以先装配在壳体底座112上,再连同壳体底座112一起插入气雾弹壳体810中完成装配,形成可拆卸的、可重复利用的雾化芯930。也就是说,根据本实施例的气雾弹800可以集成为两个部分,第一部分为包括壳体底座112和雾化芯930的部分,第二部分为除第一部分以外 的部分。在储液元件100中的液体消耗完之后,通过更换第二部分就可以再次使用,由于第一部分为通过简单的插接即可完成拆卸和安装的结构,雾化芯930可以多次使用,可以大大节约消费者的使用成本。
<气液交换元件>
如图1b所示,气液交换元件290由纤维粘结制成三维网络的立体结构。优选采用热粘接的方式。气液交换元件290的横截面可以为各种几何形状,如圆形,椭圆形,长方形等。本发明的气液交换元件290的密度为0.035-0.3克/厘米 3,例如,0.035/厘米 3、0.050/厘米 3、0.065/厘米 3、0.080/厘米 3、0.100/厘米 3、0.125/厘米 3、0.150/厘米 3、0.175/厘米 3、0.200/厘米 3、0.225/厘米 3、0.250/厘米 3、0.275/厘米 3、0.300/厘米 3,优选为0.05-0.2克/厘米 3。当密度小于0.035克/厘米 3时,气液交换元件290制作困难并且强度不足,装配时容易变形或褶皱,影响雾化的稳定性或造成漏液。当密度大于0.3克/厘米 3时,气液交换元件290向储液元件100补充气体的能力不足,储液元件100中的负压过高而使液体难以导出。
在本发明中,气液交换元件290的毛细压为2mm-35mm,例如,2mm、3mm、5mm、7mm、9mm、11mm、13mm、15mm、17mm、20mm、25mm、30mm、35mm。当气液交换元件290的毛细压小于2mm时,储液元件100中的液体容易泄漏。当气液交换元件290的毛细压大于35mm时,气体难以透过气液交换元件290进入储液元件100,从而导致储液元件100中的负压过高,使储液元件100中的液体难以经气液交换元件290传导给雾化芯930,导致雾化芯930上液体含量不足而影响雾化质量。优选气液交换元件290的毛细压为2.5mm到25mm,更优选为3mm-10mm。可以根据不同的雾化要求选择适当毛细压的气液交换元件290。
<纤维和双组分纤维>
气液交换元件290优选由皮芯结构的双组分纤维2粘结制成。皮芯结构的双组分纤维2可以为同心结构或偏心结构。双组分纤维2可以为长丝或者短纤。可以根据气液交换元件290的性能要求选择合适的双组分纤维2制成气液交换元件290。双组分纤维2的芯层比皮层的熔点高20℃以上,可以在纤维之间进行热粘结的时候使芯层保持一定的刚性,便于制成空隙均匀的气液交换元件290。
图1c是图1b中的双组分纤维的一种放大截面示意图。如图1c所示,皮层21和芯层22为同心结构。图1d是图1b中的双组分纤维的另一种放大截面示意图。如图1d所示, 皮层21和芯层22为偏心结构。双组分纤维2为长丝或者短纤。可以根据气液交换元件290的性能要求选择合适的双组分纤维制成气液交换元件290。
双组分纤维2的皮层21可以为聚烯烃、聚对苯二甲酸乙二酯的共聚酯(简称Co-PET)、聚对苯二甲酸丙二酯(简称PTT)、聚对苯二甲酸丁二酯(简称PBT)、聚乳酸、聚酰胺-6等。聚烯烃为烯烃的聚合物,通常由乙烯、丙烯、1-丁烯、1-戊烯、1-己烯等α-烯烃单独聚合或共聚而得的一类热塑性树脂的总称。
制作本发明气液交换元件290的双组分纤维2的纤度介于1.5-30旦,优选2-15旦。介于2-15旦的皮芯结构双组分纤维2容易制作气液交换元件290。被雾化的液体粘度较低时,宜采用纤度较小的纤维制作气液交换元件290,如1.5旦、2旦、3旦的纤维。被雾化的液体粘度较高时,宜采用纤度较大的纤维制作气液交换元件290,如6旦、10旦、15旦、30旦的纤维。
在本实施例中,优选气液交换元件290由双组分短维经热粘结形成三维网络的立体结构,皮层21为聚乙烯,芯层22为聚丙烯或PET。制成的气液交换元件290密度介于0.035-0.3克/厘米 3,优选0.05-0.2克/厘米 3,这种气液交换元件290具有较好的强度和较好的弹性,并具有较快的液体传导速度和向储液元件100补充气体的能力。这种气液交换元件290可以用于电子烟烟液和CBD药液的雾化等。
本实施例中双组分纤维2的皮层21可以用聚丙烯、Co-PET、聚酰胺-6、PBT或PTT等替代,制成的气液交换元件290具有更高的耐温性能。
<储液元件>
储液元件100为气雾弹800中储存液体的部件,储液元件100中注入待雾化的液体。储液元件100可以为塑料或金属制成的空腔,可以在空腔中填充储存液体的多孔材料。使用时储液元件100中的液体通过气液交换元件290传导给雾化芯930,在需要时被雾化。
可以气雾弹壳体810上设置有连通储液元件100内部的注液孔(未图示),注液孔上设置有密封塞(未图示)。即,可以在气雾弹800位于储液元件100部位的气雾弹壳体810上设置注液孔。当需要向储液元件100中补充液体时,打开密封塞,注入液体,将密封塞重新塞入注液孔即可。气雾弹800采用开放式的可注液结构可以进一步降低气雾弹800的使用成本。
<雾化芯>
雾化芯930为气雾弹800中雾化液体的部件。可用于本发明的常见雾化芯930包括缠 绕电热丝的玻纤束雾化芯930、缠绕电热丝的棉绳雾化芯930、预埋电热丝的多孔陶瓷雾化芯930、预埋电热丝的压缩棉雾化芯930、或包覆无纺布的螺旋状电热丝雾化芯930等。本发明中气液交换元件290可以直接与雾化芯930接触,并将液体从储液元件100传导给雾化芯930。也可以在雾化芯930和气液交换元件290之间增加中继导液元件939。在本发明中,中继导液元件939是指在气雾弹800中能将储液元件100中的液体输送至雾化芯的导液元件。具体而言,储液元件100中的液体通过气液交换元件290传导给中继导液元件939,中继导液元件939再将液体传导给雾化芯930。在本实施例中,气液交换元件290直接与雾化芯930接触,优选使用包覆棉质无纺布的螺旋状电热丝雾化芯930。
使用时,气流经壳体底座112的进气口1121进入并通过雾化芯930时雾化芯930加热,雾化芯930上的液体被雾化,雾化产生的气雾经气雾通道1303和气雾出口1301逸出。雾化时雾化芯930上的液体含量减少,气液交换元件290将液体从储液元件100传导给雾化芯930。随着储液元件100中的液体导出雾化,储液元件100中的负压增加。当储液元件100与外界的压差达到一定范围时,外界空气通过气液交换元件290进入储液元件100。
雾化芯930还包括导线933,导线933与导线引脚936或电源(未图示)连接。
第二实施例
图2a为本发明所公开的第二实施例的气雾弹的纵剖面示意图;图2b为图2a中的气液交换元件的横截面示意图;图2c为图2a中的气液交换元件的另一种横截面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图2a所示,根据本发明第二实施例气雾弹,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930位于气液交换元件290的下方,气液交换元件100将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
在本实施例中,采用预埋电热丝的多孔陶瓷或预埋电热丝的压缩棉等雾化芯930。此外,气雾弹还包括中继导液元件939,中继导液元件939可以为包覆雾化芯930的无纺布。中继导液元件939也可以为双组分纤维2粘结制成的管状物,雾化芯930插入管状中继导液元件939并与中继导液元件939的内壁紧密接触。
储液元件100由气雾弹外壳810、气雾通道1303的壁部和气液交换元件290围成的空间形成。储液元件100可以具有轴向贯穿储液元件100的储液元件100通孔130,储液元件100通孔130可以同时用作气雾通道1303,气雾通道1303一端穿过气液交换元件290, 并与气液交换元件290的内孔紧密配合,以防止液体泄漏。
在本实施例中,气液交换元件290由皮芯结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2的皮层21为聚乙烯,芯层22为聚丙烯。气液交换元件290的横截面为圆形,中心设置轴向贯穿气液交换元件的气液交换元件通孔2903。气液交换元件290包括靠近中心的高毛细部2901和远离中心但与高毛细部2901邻接的低毛细部2902。低毛细部2902的密度为0.035-0.15克/厘米 3,高毛细部2901的密度为0.15-0.3克/厘米 3。也可以让高毛细部2901和低毛细部2902的密度相近,均在0.035-0.3克/厘米 3范围内,但用纤度较小的纤维制作高毛细部2901,用纤度较大的纤维制作低毛细部2902。低毛细部2902的毛细压为2mm-35mm,优选低毛细部2902的毛细压为2.5mm到25mm,更优选为3mm到10mm。可以根据不同的雾化要求选择适当毛细压的低毛细部2902。
在本实施例中,若高毛细部2901和低毛细部2902全部被液体浸润,则高毛细部2901和低毛细部2902均能传导液体,但仅低毛细部2902能传导气体。
高毛细部2901和低毛细部2902可以一体成型,也可以分体成型后装配在一起。
优选,低毛细部2902中具有缓冲空间,缓冲空间是指在正常使用过程中,低毛细部2902中存在部分未被液体浸润的部分。在这种情况下,气液交换元件290的厚度优选大于等于1毫米,最优选大于等于2毫米,例如3毫米,4毫米和5毫米,本领域的技术人员可以根据气雾弹800空间的限定确定气液交换元件290的厚度,但为了确保缓冲空间的存在,气液交换元件290最低不能小于1毫米。在正常使用的情况下,若高毛细部2901被液体浸润,但低毛细部2902仅部分被液体浸润,缓冲空间不会被浸润,则高毛细部2901能传导液体,低毛细部2902能传导气体,这种情况下,未被液体浸润的部分低毛细部2902具有缓冲空间,减少液体从气雾弹泄漏的风险。在运输或者极端环境下,导致气压急剧变化时,缓冲空间可以暂存储液元件100中过量传导的液体,由此可以有效地避免液体从气雾弹800中泄漏的风险。
气液交换元件290的外周壁与气雾弹外壳的内周壁紧密配合,气液交换元件290一侧与储液元件100中的液体接触,气液交换元件290的另一侧接触中继导液元件939。使用时,储液元件100中的液体通过气液交换元件290传导给中继导液元件939,中继导液元件939再将液体传导给雾化芯930。随着储液元件100中的液体导出雾化,储液元件100中的负压增加,当储液元件100与外界的压差达到一定范围时,外界空气通过气液交换元件290进入储液元件100,从而使储液元件100内的压力在雾化过程中保持稳定。本实施例的工作原理与第一实施例相似。
在本实施例中,气雾弹800还包括冷凝液吸收元件400,冷凝液吸收元件400安装在气雾通道1303中,可以吸收气雾产生的冷凝液,提高消费体验。
本实施例中,气雾弹800还包括硅胶气雾管帽1304。如图2a所示,硅胶气雾管帽1304的纵剖面为具有轴向贯穿硅胶气雾管帽1304的通孔的倒置的T型管状结构。硅胶气雾管帽1304从气雾通道1303的气雾入口一端插入气雾通道1303,其插入部分的外周壁抵靠气雾通道1303的内周壁,其非插入的端部抵靠气雾通道1303的端部。硅胶气雾管帽1304的非插入的端部的外径大于气雾通道1303的外径,由此,硅胶气雾管帽1304的非插入的端部能对气液交换元件290起支撑和定位作用。硅胶耐高温,能在通常的雾化温度下稳定使用,因此硅胶气雾管帽1304的使用可以降低对气雾通道1303壁部的耐温性要求,能够扩大制造气雾弹壳体810和气雾通道1303管壁的材料选择范围。
硅胶气雾管帽1304还可以防止冷凝液吸收元件400从气雾通道1303中脱落。此外,还可以在硅胶气雾管帽1304的气雾入口装配有过滤部件,过滤部件可以是过滤网或者带孔的过滤挡片或者挡板(未图示),也可以是设置在气雾入口处的挡流板,用来阻止大颗粒雾化液滴直接上冲进入气雾通道1303。当采用档流板时,雾化后的气雾需绕过挡流板再进入气雾通道1303,可以有效的阻止大颗粒雾化液滴直接上冲进入气雾通道1303。
如图2a所示,气雾通道1303可以延伸出气雾弹壳体810的顶部,对于体积较大的气雾弹800来说,延伸出的气雾通道1303可以作为用户抽吸时的抽吸嘴,这样可以使得气雾弹800的结构更加简单。
如图2b所示,本实施例中的气液交换元件290的横截面可以是圆形,气液交换元件290具有轴向贯穿气液交换元件290的气液交换元件通孔2903,低毛细部2902包覆高毛细部2901。
本实施例中的气液交换元件290的横截面也可以是图2c所示的结构,即高毛细部2901的横截面为矩形,低毛细部2902的横截面为两个半球形或者两个弓形的结构,以满足气雾弹800多样化设计的需求。
第三实施例
图3a为本发明所公开的第三实施例的气雾弹的纵剖面示意图;图3b为图3a中的气液交换元件的横截面图示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图3a所示,根据本发明第三实施例气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930位于气液交换元件290 的下方,气液交换元件100将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
气液交换元件290的外周壁与气雾弹外壳的内周壁紧密配合,气液交换元件290一侧与储液元件100中的液体接触。本实施例中,雾化芯930为缠绕电热丝的玻纤束,玻纤束的两端被壳体底座112的倾斜向上延伸的挡壁限制而向上弯折,并与气液交换元件290的一侧接触。由此,气液交换元件290将液体从储液元件100传导至雾化芯930。
在本实施例中,气液交换元件290由皮芯结构的双组分纤维2经热粘结形成三维网络的立体结构,双组分纤维2的皮层21为Co-PET,芯层22为PET。气液交换元件290的中心设置气液交换元件290通孔。气液交换元件290的密度为0.035-0.3克/厘米 3,优选0.05-0.2克/厘米 3。气液交换元件290的毛细压为2mm-35mm,优选2.5mm到25mm。可以根据不同的雾化要求选择合适的气液交换元件290的密度和毛细压。实施例的工作原理与第一实施例相同。
第四实施例
图4a为本发明所公开的第四实施例的一种气雾弹的纵剖面示意图;图4b为本发明所公开的第四实施例的另一种气雾弹的纵剖面示意图;图4c为图4a中的气液交换元件为圆柱体时的横截面示意图;图4d为图4a中的的气液交换元件为长方体时的横截面示意图;图4e为图4a中的的气液交换元件为椭圆柱体时的横截面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图4a至4e所示,根据本发明第四实施例气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930位于气液交换元件290的下方,气液交换元件100将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
在本实施例中,储液元件100具有轴向贯穿储液元件100的储液元件通孔130,储液元件通孔130同时用作气雾通道1303。储液元件100的底部具有底部开口,该底部开口位于储液元件通孔130的靠近雾化芯930的端部和气雾弹壳体810之间。气液交换元件290包覆储液元件通孔130的靠近雾化芯930的端部,并封堵储液元件100的底部开口。
在本实施例中,雾化室934由壳体底座112、气雾弹壳体810和气液交换元件290转成的空间形成。
本实施例中,气液交换元件290由同心结构或偏心结构的双组分纤维2经热粘结形成三维网络的立体结构,纤维的皮层为聚乙烯,芯层为聚丙烯或PET。气液交换元件290中 心设置气气液交换元件通孔2903。
在本实施例中,气液交换元件290具有低毛细部2902和高毛细部2901,低毛细部2902的密度为0.035-0.15克/厘米 3,高毛细部2901的密度为0.15-0.3克/厘米 3。低毛细部2902的毛细压为2mm到35mm。
在如图4a所示的第四实施例的一种气雾弹中,储液元件100为塑料制成的空腔,液体注于储液元件100中,气液交换元件290一侧与储液元件100中的液体接触。雾化芯930为缠绕电热丝的玻纤束或棉纤束,玻纤束或棉纤束的两端弯折后由壳体底座112支撑,并通过雾化室通孔9341与气液交换元件290的另一侧的高毛细部2901接触,或者同与液交换元件290的另一侧的高毛细部2901和低毛细部2902同时接触。
在气雾通道1303中可以设置冷凝液吸收元件400,用来吸收气雾中的冷凝液,以提高气雾的口感。
在如图4b所示的第四实施例的另一种气雾弹中,储液元件通孔130的靠近雾化芯930的端部的径向尺寸大于储液元件通孔130的其余部分,壳体底座112与储液元件通孔130对应的部位形成有凹槽。储液元件通孔130的大径向尺寸的端部和壳体底座112的凹槽构成雾化室934。该结构尤其适合于扁平结构的气雾弹800。
在本实施例中,雾化芯930为缠绕电热丝的玻纤束或棉纤束,玻纤束或棉纤束的延伸出雾化室934外,并夹持在壳体底座112和气液交换元件290之间。
气液交换元件290可以是如图4c所示的圆柱体,也可以是如图4d所示的长方体,还可以是如图4e所示的椭圆柱体。气液交换元件290的形状可以根据不同气雾弹800的外形设计进行相适应的形状选择。
工作时,雾化芯930上的液体被雾化,气液交换元件290从储液元件100获取液体并传导给雾化芯930,储液元件100内的负压升高,气体通过低毛细部2902补充到储液元件100,这个过程反复进行,从而确保雾化的顺畅进行。
第五实施例
图5为本发明所公开的第五实施例的气雾弹的纵剖面图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图5所示,根据本发明第五实施例的气雾弹800,包括储液元件100、雾化芯930、和连通储液元件100和雾化芯930的气液交换元件290,雾化芯930位于气液交换元件290的下方,气液交换元件100将储液元件100中的液体传导至雾化芯930,并且通过气液交换元件290将气体补充到储液元件100。
在本实施例中,储液元件100为塑料制成的空腔,液体注于储液元件100中。雾化芯930为缠绕电热丝的棉纤束,棉纤束的两端穿过雾化室934的两侧并与雾化室通孔9341松配,以便雾化室934内的空气导入气液交换元件290并最终补充到储液元件100中。气液交换元件290的一个端面与棉纤束的两端接触,气液交换元件290的另一端面接触储液元件100中的液体。
在本实施例中,气液交换元件290可以是一体成型为一个整体,也可以是由多个气液交换元件290拆分成多块。在气雾弹800的空间受限时,气液交换元件290可以拆分成多块装配在气雾弹800中,例如拆分成左右两块,或者沿气雾弹800的周向拆分成三块、四块或者更多块配置。在气雾弹800的空间更小的时候,也可以仅截取部分气液交换元件290装配在气雾弹800中。
综上,本发明气雾弹使用过程中,气液交换元件能稳定地向雾化芯传导液体,并在必要时向储液元件中导入气体,使储液元件内维持稳定的压力,从而确保雾化稳定。本发明的气雾弹结构简单,可采用高性价比的常规雾化芯,容易装配自动化,提高效率,节省成本。上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,本领域技术人员在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (13)

  1. 一种气雾弹,其特征在于,所述气雾弹包括储液元件、雾化芯、和连通所述储液元件和所述雾化芯的气液交换元件,所述雾化芯位于所述气液交换元件的下方,所述气液交换元件将所述储液元件中的液体传导至所述雾化芯,并且通过所述气液交换元件将气体补充到所述储液元件。
  2. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件的毛细压为2mm-35mm。
  3. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件包括高毛细部和低毛细部,所述低毛细部的毛细压为2mm-35mm。
  4. 如权利要求3所述的气雾弹,其特征在于,所述低毛细部中具有缓冲空间。
  5. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件的密度为0.035克/厘米 3-0.3克/厘米 3
  6. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件由皮芯结构的双组分纤维粘结制成三维网络的立体结构。
  7. 如权利要求1所述的气雾弹,其特征在于,所述储液元件具有轴向贯穿所述储液元件的气雾通道,所述气雾通道的一端穿过所述气液交换元件。
  8. 如权利要求1所述的气雾弹,其特征在于,所述雾化芯直接与所述气液交换元件接触,所述气液交换元件将液体直接传导给所述雾化芯。
  9. 如权利要求1所述的气雾弹,其特征在于,所述气雾弹还包括中继导液元件,所述雾化芯被中继导液元件包覆,液体通过所述气液交换元件和所述中继导液元件传导至所述雾化芯。
  10. 如权利要求1所述的气雾弹,其特征在于,所述气雾弹包括冷凝液吸收元件。
  11. 如权利要求1所述的气雾弹,其特征在于,所述气雾弹包括气雾通道和硅胶气雾管帽,所述硅胶气雾管帽从所述气雾通道的气雾入口一端插入所述气雾通道。
  12. 如权利要求1所述的气雾弹,其特征在于,所述气雾弹包括气雾弹壳体,所述气雾弹壳体上设置有连通所述储液元件内部的注液孔,所述注液孔上设置有密封塞。
  13. 如权利要求1所述的气雾弹,其特征在于,所述气液交换元件的厚度大于等于1毫米。
PCT/CN2021/087994 2021-04-19 2021-04-19 一种气雾弹 WO2022221974A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087994 WO2022221974A1 (zh) 2021-04-19 2021-04-19 一种气雾弹

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087994 WO2022221974A1 (zh) 2021-04-19 2021-04-19 一种气雾弹

Publications (1)

Publication Number Publication Date
WO2022221974A1 true WO2022221974A1 (zh) 2022-10-27

Family

ID=83723603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087994 WO2022221974A1 (zh) 2021-04-19 2021-04-19 一种气雾弹

Country Status (1)

Country Link
WO (1) WO2022221974A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082180A1 (zh) * 2014-11-28 2016-06-02 惠州市吉瑞科技有限公司 雾化组件和电子烟
WO2016090531A1 (zh) * 2014-12-08 2016-06-16 惠州市吉瑞科技有限公司 雾化组件和电子烟
CN111528523A (zh) * 2019-01-21 2020-08-14 浙江迈博高分子材料有限公司 一种具有支撑元件的气雾散发装置
CN212309901U (zh) * 2020-07-17 2021-01-08 迈博高分子材料(宁波)有限公司 复合储液元件和气雾散发装置
CN212697666U (zh) * 2020-08-12 2021-03-16 绍兴上虞季真贸易有限公司 一种储液元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082180A1 (zh) * 2014-11-28 2016-06-02 惠州市吉瑞科技有限公司 雾化组件和电子烟
WO2016090531A1 (zh) * 2014-12-08 2016-06-16 惠州市吉瑞科技有限公司 雾化组件和电子烟
CN111528523A (zh) * 2019-01-21 2020-08-14 浙江迈博高分子材料有限公司 一种具有支撑元件的气雾散发装置
CN212309901U (zh) * 2020-07-17 2021-01-08 迈博高分子材料(宁波)有限公司 复合储液元件和气雾散发装置
CN212697666U (zh) * 2020-08-12 2021-03-16 绍兴上虞季真贸易有限公司 一种储液元件

Similar Documents

Publication Publication Date Title
CN212306807U (zh) 一种雾化元件和气雾弹
CN211631799U (zh) 一种具有气液通道的气雾弹
CN212437285U (zh) 一种雾化元件和气雾弹
CN111109678A (zh) 电子雾化装置及其雾化器、雾化组件
CN212325377U (zh) 具有储液元件的气雾弹和气雾散发装置
WO2022221974A1 (zh) 一种气雾弹
CN212345301U (zh) 电子雾化装置及其雾化器、雾化组件
EP4305983A1 (en) Vapor cartridge
CN215958346U (zh) 一种气雾弹
CN215958342U (zh) 一种气雾弹
CN209219274U (zh) 具有防漏油功能的雾化器及电子烟
CN217012790U (zh) 雾化芯、雾化模块和气雾弹
WO2022221973A1 (zh) 一种气雾弹
CN215531649U (zh) 发热结构、雾化器及电子雾化装置
CN216453361U (zh) 一种气液交换元件和气雾弹
CN115211602A (zh) 一种气雾弹
CN215992745U (zh) 一种气雾弹
WO2022221975A1 (zh) 一种气雾弹
CN215958345U (zh) 一种气雾弹
CN220343656U (zh) 一种雾化装置和气溶胶发生装置
CN115211601A (zh) 一种气雾弹
CN216147224U (zh) 电子雾化装置
WO2022032815A1 (zh) 一种储液元件
CN115211600A (zh) 一种气雾弹
WO2022222456A1 (zh) 一种气雾弹

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937230

Country of ref document: EP

Kind code of ref document: A1