WO2023010710A1 - 一种气液交换元件和气雾弹 - Google Patents

一种气液交换元件和气雾弹 Download PDF

Info

Publication number
WO2023010710A1
WO2023010710A1 PCT/CN2021/131581 CN2021131581W WO2023010710A1 WO 2023010710 A1 WO2023010710 A1 WO 2023010710A1 CN 2021131581 W CN2021131581 W CN 2021131581W WO 2023010710 A1 WO2023010710 A1 WO 2023010710A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
exchange element
liquid exchange
capillary
Prior art date
Application number
PCT/CN2021/131581
Other languages
English (en)
French (fr)
Inventor
王立平
周兴夫
沈鼎
Original Assignee
迈博高分子材料(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈博高分子材料(宁波)有限公司 filed Critical 迈博高分子材料(宁波)有限公司
Priority to JP2023551652A priority Critical patent/JP2024506214A/ja
Publication of WO2023010710A1 publication Critical patent/WO2023010710A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps

Definitions

  • the invention relates to a gas-liquid exchange element and an aerosol bomb using the gas-liquid exchange element, in particular to a gas-liquid exchange element used in the application fields of electronic cigarettes and drug solution atomization and an aerosol bomb using the gas-liquid exchange element. fog bombs.
  • the technology of atomizing or vaporizing liquids through ultrasonic waves or electric heating is widely used in fields such as electronic cigarettes.
  • the common technology in electronic cigarettes is to heat the atomizing core directly connected with the e-liquid to atomize the nicotine and solvent together.
  • This technology usually lacks precise control over the e-liquid export, and the individual differences between products are large, and it is easy to Liquid leakage occurs, and the consumer experience is poor.
  • the present invention provides a gas-liquid exchange element
  • the gas-liquid exchange element includes a gas-liquid exchange element body, a gas-liquid exchange element sleeve at least partially covering the gas-liquid exchange element body , and the capillary pores of the gas-liquid exchange element arranged between the outer peripheral wall of the gas-liquid exchange element body and the inner peripheral wall of the gas-liquid exchange element sleeve and axially penetrating through the gas-liquid exchange element, the gas-liquid exchange element
  • the lower end surface of the exchange element sleeve is close to or flush with the lower end surface of the gas-liquid exchange element body, and the gas-liquid exchange element body is made of fiber bonding.
  • the diameter of the largest inscribed circle of the smallest cross section of the capillary of the gas-liquid exchange element is 0.05 mm to 2.0 mm.
  • the fiber is a bicomponent fiber with a sheath-core structure.
  • the melting point of the core layer of the bicomponent fiber is higher than the melting point of the skin layer by more than 20°C.
  • the skin layer of the bicomponent fiber is polyethylene, polypropylene, polylactic acid, polybutylene succinate, low melting point copolyester, polyethylene terephthalate, polypropylene terephthalate Diesters, polybutylene terephthalate, copolymers of butylene adipate and butylene terephthalate, polyamides.
  • the present invention also provides an aerosol bomb, which at least includes the gas-liquid exchange element described in any one of the present invention.
  • the aerosol bomb also includes a liquid storage element and an atomizing core
  • the atomizing core includes an atomizing core liquid guiding element and a heating element.
  • At least one of the gas-liquid exchange elements is connected to the liquid storage element and the atomizing core liquid guide element.
  • At least one capillary of the gas-liquid exchange element communicates with the liquid storage element and the atomizing core liquid-conducting element.
  • the end opening of the capillary of the gas-liquid exchange element connected to the liquid-conducting element of the atomizing core is blocked by the liquid-conducting element of the atomizing core, so that external air cannot directly enter the capillary of the gas-liquid exchange element.
  • the aerosol bomb further includes a relay liquid guiding element, and the relay liquid guiding element connects the gas-liquid exchange element and the atomizing core liquid guiding element.
  • the capillary of the gas-liquid exchange element is connected to the relay liquid-guiding element, and the opening at one end of the capillary of the gas-liquid exchange element is blocked by the relay liquid-guiding element, so that external air cannot directly enter The capillary pores of the gas-liquid exchange element.
  • liquid guiding element of the atomizing core does not directly contact the liquid in the liquid storage element.
  • liquid guiding element of the atomizing core is in direct contact with the liquid in the liquid storage element.
  • the gas-liquid exchange element of the invention has small volume and simple structure, and is very suitable for use in aerosol bombs with small space. Aerosol bombs using gas-liquid exchange elements are suitable for atomization or vaporization of various liquids, such as atomization of e-cigarette liquids, atomization of drug solutions, etc.
  • the aerosol bomb with the gas-liquid exchange element of the present invention has the advantages of simple structure, low cost, easy automatic assembly, good leak resistance, effective control of liquid release, and improved consistency of product performance.
  • Figure 1a is a schematic cross-sectional view of a gas-liquid exchange element according to a first embodiment of the present invention
  • Fig. 1 b is a cross-sectional enlarged schematic view of a bicomponent fiber according to a first embodiment of the present invention
  • Fig. 1c is another cross-sectional enlarged schematic view of the bicomponent fiber according to the first embodiment of the present invention.
  • Fig. 1d is a schematic structural view of an aerosol bomb with a gas-liquid exchange element according to the first embodiment of the present invention
  • Fig. 1e is another schematic structural view of an aerosol bomb with a gas-liquid exchange element according to the first embodiment of the present invention
  • Figure 2a is a schematic cross-sectional view of a gas-liquid exchange element according to a second embodiment of the present invention.
  • Fig. 2b is a schematic structural view of an aerosol bomb with a gas-liquid exchange element according to a second embodiment of the present invention
  • Fig. 2c is another schematic cross-sectional view of the gas-liquid exchange element according to the second embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of an aerosol bomb with a gas-liquid exchange element according to a third embodiment of the present invention.
  • Fig. 1a is a schematic cross-sectional view of a gas-liquid exchange element according to a first embodiment of the present invention.
  • the gas-liquid exchange element 290 includes a gas-liquid exchange element body 2900, a gas-liquid exchange element sleeve 2905 at least partially covering the gas-liquid exchange element body 2900, and a gas-liquid exchange element sleeve 2905 arranged on the gas-liquid exchange element body Between the outer peripheral wall of 2900 and the inner peripheral wall of the gas-liquid exchange element sleeve 2905 and axially through the gas-liquid exchange element capillary 2904 of the gas-liquid exchange element 290, the lower end surface of the gas-liquid exchange element sleeve 2905 is close to the body of the gas-liquid exchange element The lower end surface of 2900 is or is flush with the lower end surface of the gas-liquid exchange element body 2900, and the gas-liquid exchange element body 2900 is made of fiber bonding.
  • the lower end surface of the gas-liquid exchange element 290 refers to the end surface of the gas-liquid exchange element 290 in contact with the liquid-conducting element 932 of the atomizing core.
  • the lower end surface of the gas-liquid exchange element sleeve 2905 close to the lower end surface of the gas-liquid exchange element body 2900 means that the lower end surface of the gas-liquid exchange element sleeve 2905 and the lower end surface of the gas-liquid exchange element body 2900 are on the same side of the gas-liquid exchange element body 2900
  • the distance difference in the axial direction of the gas-liquid exchange element does not exceed one-fifth of the height of the gas-liquid exchange element body 2900 .
  • the lower end surface of the gas-liquid exchange element sleeve 2905 is flush with the lower end surface of the gas-liquid exchange element body 2900 .
  • the gas-liquid exchange element 290 is preferably a columnar body having capillary pores 2904 axially penetrating through the gas-liquid exchange element, such as cylinders, elliptical cylinders, and square cylinders.
  • the capillary holes 2904 of the gas-liquid exchange element are arranged parallel to the central axis of the columnar body.
  • the capillary holes 2904 of the gas-liquid exchange element preferably form capillary grooves or protrusions on the outer peripheral wall of the gas-liquid exchange element body 2900, or form capillary grooves or protrusions on the inner peripheral wall of the gas-liquid exchange element sleeve 2905, and the two are assembled Afterwards, the capillary pores 2904 of the gas-liquid exchange element are formed.
  • the cross-section of the capillary grooves formed on the outer peripheral wall of the gas-liquid exchange element body 2900 can also be in various geometric shapes, such as semicircle, rectangle, semiellipse and so on.
  • the gas-liquid exchange element 290 includes a gas-liquid exchange element body 2900 with a circular cross section, a gas-liquid exchange element sleeve 2905 covering the gas-liquid exchange element body 2900, and a gas-liquid exchange element sleeve 2905 disposed on the gas-liquid exchange element body 2900.
  • the capillary groove formed on the wall is formed by the space defined by the inner peripheral wall of the gas-liquid exchange element sleeve 2905 , and the cross section of the capillary groove formed on the outer peripheral wall of the gas-liquid exchange element body 2900 is semicircular.
  • the space of the capillary hole 2904 of the gas-liquid exchange element is limited by the gas-liquid exchange element body 2900 and the gas-liquid exchange element sleeve 2905, and the minimum capillary hole 2904 of the gas-liquid exchange element defined by the gas-liquid exchange element body 2900 and the gas-liquid exchange element sleeve 2905
  • the maximum inscribed circle diameter of the cross section is 0.05mm to 2.0mm, such as 0.05, 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.2mm , 1.5mm, 2.0mm, etc., preferably 0.2mm to 1.2mm.
  • the smaller capillary pore 2904 cross section of the gas-liquid exchange element is suitable for the atomized liquid with less viscosity, or the application with a small amount of atomization; the larger capillary pore 2904 cross section of the gas-liquid exchange element is suitable for the liquid with higher viscosity The liquid being atomized, or the application of a large amount of atomization.
  • the diameter of the largest inscribed circle of the smallest cross-section of the capillary 2904 of the gas-liquid exchange element is less than 0.05 mm, processing is difficult and the cost performance is too poor.
  • the capillary hole 2904 of the gas-liquid exchange element When the diameter of the largest inscribed circle of the minimum cross-section of the capillary hole 2904 of the gas-liquid exchange element is greater than 2.0 mm, the capillary hole is too large to ensure a good gas-liquid exchange effect, and the capillary hole 2904 of the gas-liquid exchange element is too large to cause gas-liquid
  • the exchange element 290 is too large to be used in a compact aerosol bomb.
  • the gas-liquid exchange element body 2900 is made of fiber bonding and has good liquid-conducting performance. Fibers can be filament or staple. The fibers from which the gas-liquid exchange element 2900 is made can be monocomponent fibers or bicomponent fibers or a mixture of both.
  • the gas-liquid exchange element body 2900 can be made by bonding single-component fibers with a binder or a plasticizer, or can be made by bonding two-component fibers with a skin-core structure or a side-by-side structure.
  • the gas-liquid exchange element body 2900 is preferably made of bicomponent fibers 2 with a sheath-core structure through thermal bonding. Since no binder or plasticizer is added during thermal bonding, it is beneficial to obtain pure products and reduce costs.
  • the fineness of the fibers used to make the gas-liquid exchange element body 2900 is from 1 denier to 30 deniers, preferably from 2 deniers to 10 deniers.
  • Fig. 1b is an enlarged schematic cross-sectional view of a bicomponent fiber according to a first embodiment of the present invention.
  • the skin layer 21 and the core layer 22 are concentric structures.
  • Fig. 1c is another enlarged cross-sectional schematic view of the bicomponent fiber according to the first embodiment of the present invention.
  • the skin layer 21 and the core layer 22 are eccentric structures.
  • the bicomponent fibers 2 are filaments or staple fibers. According to the performance requirements of the gas-liquid exchange element 290 , suitable bicomponent fibers can be selected to make the gas-liquid exchange element body 2900 .
  • the melting point of the core layer 22 of the bicomponent fiber 2 of the skin-core structure is 20°C higher than the melting point of the skin layer 21, so that the core layer 22 can maintain better rigidity during thermal bonding, which is conducive to the formation of the gas-liquid exchange element body 2900 .
  • the skin layer 21 of the bicomponent fiber 2 of the skin-core structure can be a common polymer, such as polyethylene, polypropylene, polylactic acid, polybutylene succinate (abbreviated as PBS), low-melting copolyester (abbreviated as copolyester).
  • PET polyethylene terephthalate
  • PBT polytrimethylene terephthalate
  • PBAT butylene adipate Copolymer with butylene terephthalate
  • Figure 1d is a schematic structural view of an aerosol bomb with a gas-liquid exchange element according to the first embodiment of the present invention
  • Figure 1e is another type of aerosol bomb with a gas-liquid exchange element according to the first embodiment of the present invention Schematic.
  • the aerosol bomb 800 according to the aerosol bomb 800 having the gas-liquid exchange element 290 according to the first embodiment of the present invention, the aerosol bomb 800 includes the above-mentioned gas-liquid exchange element 290.
  • the aerosol bomb 800 also includes a liquid storage element 100 and an atomizing core 930 , and the atomizing core 930 includes an atomizing core liquid guiding element 932 and a heating element 931 .
  • At least one gas-liquid exchange element 290 is connected to the liquid storage element 100 and the atomizing core liquid guide element 932 , and the liquid in the liquid storage element 100 is transferred to the atomization core liquid guide element 932 through the gas-liquid exchange element 290 .
  • the gas-liquid exchange element capillary hole 2904 of at least one gas-liquid exchange element 290 communicates with the liquid storage element 100 and the atomizing core liquid guide element 932, and the end opening of the gas-liquid exchange element capillary hole 2904 communicates with the atomizing core liquid guide element 932 is closed
  • the liquid guide element 932 of the atomizing core is blocked so that the external air cannot directly enter the capillary pores 2904 of the gas-liquid exchange element.
  • the liquid storage element 100 is a component for storing the atomized liquid. According to the purpose of application, different liquids can be stored in it, such as e-liquid for electronic cigarettes, etc.
  • the cross section of the liquid storage element 100 can be in various shapes, such as circular, elliptical, rectangular, etc., and can also be a combination of various geometric shapes.
  • a liquid injection port can be provided on the liquid storage element 100, and the liquid injection port can be closed after the liquid is injected.
  • the aerosol bomb 800 also includes an aerosol bomb housing 810 , and the liquid storage element 100 is disposed in the aerosol bomb housing 810 .
  • the liquid storage element 100 may have a liquid storage element through hole 130 axially penetrating the liquid storage element 100 .
  • the through hole 130 of the liquid storage element can be used as the aerosol channel 1303 of the aerosol bomb 800 .
  • the aerosol bomb 800 of the present invention also includes an atomization chamber 934, which is a cavity where liquid is vaporized or atomized.
  • the atomization chamber 934 is disposed at the bottom of the liquid storage element 100 , the area between the aerosol bomb housing 810 and the housing base 112 .
  • An atomizing core 930 is provided in the atomizing chamber 934 , and an air inlet can be provided as required, for example, a base portion through hole 1122 is provided on the housing base 112 as the air inlet 1121 .
  • the liquid is atomized by the atomizing core 930 in the atomizing chamber 934 , and escapes from the aerosol bomb 800 through the aerosol channel 1303 and the aerosol outlet 1301 .
  • the atomizing core 930 of the present invention generally refers to a component that can vaporize or atomize liquid according to usage requirements.
  • the atomizing core 930 includes an atomizing core liquid guiding element 932 and a heating element 931, and the atomizing core liquid guiding element 932 can be made of capillary material such as cotton fiber or glass fiber.
  • the atomizing core 930 also includes wires 933 and wire pins 936 .
  • the heating element 931 is connected to a power source (not shown) through a wire 933 and a wire pin 936 .
  • a support member 935 can be provided at the bottom of the atomization chamber 934 , and the support member 935 can be made of materials such as silica gel to strengthen the contact communication between the gas-liquid exchange element 290 and the liquid guide element 932 of the atomization core. It is also beneficial for the atomizing core liquid guiding element 932 to block the end opening of the capillary 2904 of the gas-liquid exchange element that communicates with it, so that the external air cannot directly enter the capillary 2904 of the gas-liquid exchange element.
  • the bottom of the liquid storage element 100 is provided with a bottom baffle 103 separated from the atomization chamber 934, and the bottom baffle 103 is provided with one or more penetrating bottoms connecting the atomization chamber 934 and the liquid storage element 100.
  • the partition through hole 9341 of the partition 103 .
  • liquid can be injected into the liquid storage element 100 from the through hole 9341 of the partition, and then the gas-liquid exchange element 290 is installed in the through hole 9341 of the partition, and then the atomizing core 930, the support member 935 and the housing base 112 are installed.
  • Most of the gas-liquid exchange element 290 can be located in the atomization chamber 934, as shown in FIG.
  • gas-liquid exchange element 290 can also be located in the liquid storage element 100, as shown in FIG. 1e.
  • two gas-liquid exchange elements 290 can be used, respectively connected to the two ends of the atomizing core liquid guide element 932; as shown in Figure 1e, one gas-liquid exchange element 290 and A common fluid-guiding element 200 made of fiber bonding is respectively connected to both ends of the atomizing core fluid-guiding element 932.
  • the common fluid-guiding element 200 does not contain capillary holes 2904 of the gas-liquid exchange element, which is easy to manufacture and low in cost.
  • Ordinary liquid guiding element 200 can also be made of porous material, which utilizes the capillary force caused by the porous nature of the porous material to conduct liquid conduction, but does not include capillary pores 2904 of the gas-liquid exchange element.
  • Materials may include sponges, bonded fibers, sintered powder plastics, and the like.
  • the liquid guiding element 932 of the atomizing core does not directly contact the liquid in the liquid storage element 100 .
  • the inner peripheral wall of the through hole 9341 of the partition can be used as the sleeve 2905 of the gas-liquid exchange element.
  • the body 2900 of the gas-liquid exchange element needs to be inserted into the through hole 9341 of the partition It is only necessary to make the lower end surface of the through-hole 9341 of the separator close to the lower end surface of the gas-liquid exchange element body 2900, and there is no need to separately arrange an independently formed sleeve for the gas-liquid exchange element.
  • the liquid in the liquid storage element 100 is conducted to the atomization core liquid guide element 932 through the gas-liquid exchange element 290, As the liquid in the liquid storage element 100 is discharged, a negative pressure difference is formed between the inside of the liquid storage element 100 and the outside.
  • the outside air can enter the liquid storage element 100 through the gas-liquid exchange element capillary 2904 of the gas-liquid exchange element 290, but due to the blockage of the atomizing core liquid guide element 932
  • the end opening of the gas-liquid exchange element capillary 2904 of the gas-liquid exchange element 290 connected therewith prevents external air from entering the gas-liquid exchange element capillary 2904 directly, and the outside air must pass through the atomizing core liquid guide element 932 to enter the air.
  • the gas-liquid exchange element capillary 2904 of the liquid exchange element 290 finally enters the liquid storage element 100 .
  • the capillary force of the atomizing core liquid guiding element 932 decreases with the increase of the liquid content therein, until the negative pressure difference between the liquid storage element 100 and the outside reaches a balance state.
  • the liquid guide element 932 of the atomizing core In the equilibrium state, the liquid guide element 932 of the atomizing core is in an unsaturated state, so it has the ability to further absorb liquid, and also reduces the risk of oil explosion caused by excessive liquid content in the liquid guide element 932 of the atomizing core during atomization. risk.
  • the air in the liquid storage element 100 expands, and the liquid in the liquid storage element 100 is led out, and the atomizing core liquid guide element 932 in an unsaturated state can pass through the gas-liquid exchange element 290
  • the liquid is absorbed from the liquid storage element 100, thereby reducing the risk of liquid leakage from the aerosol bomb 800 due to an increase in ambient temperature or a decrease in external pressure.
  • the end opening of the gas-liquid exchange element capillary 2904 of the gas-liquid exchange element 290 connected with it is blocked by the atomizing core liquid guide element 932, so that the outside air cannot directly enter
  • the capillary hole 2904 of the gas-liquid exchange element, part of the liquid in the liquid guide element 932 of the atomizing core enters the liquid storage element 100 through the gas-liquid exchange element 290 prior to the outside air.
  • This is beneficial for the liquid to go back and forth between the liquid storage element 100 and the atomizing core liquid guide element 932 when the ambient temperature or pressure changes, thereby reducing the risk of liquid leakage of the aerosol bomb 800 during daily use.
  • the aerosol outlet 1301 and the air inlet 1121 of the aerosol bomb can be sealed, such as installing a silicone plug.
  • Fig. 2a is a schematic cross-sectional view of a gas-liquid exchange element according to a second embodiment of the present invention
  • Fig. 2b is a schematic structural view of an aerosol bomb with a gas-liquid exchange element according to a second embodiment of the present invention
  • Fig. 2c is a schematic diagram according to the present invention Another schematic cross-sectional view of the gas-liquid exchange element of the second embodiment.
  • This embodiment is similar in structure to the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the gas-liquid exchange element 290 includes a gas-liquid exchange element body 2900, a gas-liquid exchange element sleeve 2905 at least partially covering the gas-liquid exchange element body 2900, and a gas-liquid exchange element sleeve 2905 arranged on the gas-liquid exchange element body Between the outer peripheral wall of 2900 and the inner peripheral wall of the gas-liquid exchange element sleeve 2905 and axially through the gas-liquid exchange element capillary 2904 of the gas-liquid exchange element 290, the lower end surface of the gas-liquid exchange element sleeve 2905 is close to the body of the gas-liquid exchange element The lower end surface of 2900 is or is flush with the lower end surface of the gas-liquid exchange element body 2900, and the gas-liquid exchange element body 2900 is made of fiber bonding.
  • the gas-liquid exchange element 290 includes a gas-liquid exchange element body 2900 with an elliptical cross section and a gas-liquid exchange element capillary 2904 axially penetrating the gas-liquid exchange element 290, the gas-liquid
  • the capillary hole 2904 of the exchange element is formed by the space defined by the capillary groove formed on the outer peripheral wall of the gas-liquid exchange element body 2900 and the inner peripheral wall of the gas-liquid exchange element sleeve 2905, and the space formed on the outer peripheral wall of the gas-liquid exchange element body 2900
  • the cross-section of the capillary groove is semicircular.
  • the maximum inscribed circle diameter of the minimum cross-section of the gas-liquid exchange element capillary 2904 is 0.05mm to 2.0mm, such as 0.05, 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm , 0.9mm, 1.0mm, 1.2mm, 1.5mm, 2.0mm, etc., preferably 0.2mm to 1.2mm.
  • the gas-liquid exchange element body 2900 is made of fiber bonding and has good liquid-conducting performance. Fibers can be filament or staple.
  • the body 2900 of the gas-liquid exchange element is preferably made of bicomponent fibers 2 of sheath-core structure through thermal bonding, and the fineness of the fibers is preferably 2 denier to 10 denier.
  • the melting point of the core layer 22 of the bicomponent fiber 2 of the skin-core structure is 20°C higher than the melting point of the skin layer 21, so that the core layer 22 can maintain better rigidity during thermal bonding, which is conducive to the formation of the gas-liquid exchange element body 2900 .
  • the skin layer 21 of the bicomponent fiber 2 of the skin-core structure can be a common polymer, such as polyethylene, polypropylene, polylactic acid, polybutylene succinate (abbreviated as PBS), low-melting copolyester (abbreviated as copolyester).
  • PBS polybutylene succinate
  • copolyester low-melting copolyester
  • -PET polyethylene terephthalate
  • PET polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • PBAT butylene adipate Copolymer with butylene terephthalate
  • polyamide etc.
  • polylactic acid, PBS or PBAT which are easily degraded in nature.
  • the aerosol bomb 800 includes a liquid storage element 100, an atomization core 930 and a gas-liquid exchange element 290, and the atomization core 930 It includes an atomizing core liquid guiding element 932 and a heating element 931 .
  • the aerosol bomb 800 further includes a relay liquid guiding element 939 , and the relay liquid guiding element 939 connects the gas-liquid exchange element 290 and the atomizing core liquid guiding element 932 .
  • the capillary hole 2904 of the gas-liquid exchange element is connected to the relay liquid guide element 939, and the opening at one end of the gas-liquid exchange element capillary hole 2904 is blocked by the relay liquid guide element 939, so that external air cannot directly enter the capillary hole of the gas-liquid exchange element 2904.
  • At least one gas-liquid exchange element 290 is connected to the liquid storage element 100 and the relay liquid guiding element 939 .
  • the relay liquid guide element 939 connects the gas-liquid exchange element 290 and the atomizing core liquid guide element 932, and the liquid in the liquid storage element 100 is transferred to the atomization core liquid guide element 932 through the gas-liquid exchange element 290 and the relay liquid guide element 939 .
  • the gas-liquid exchange element pore 2904 of at least one gas-liquid exchange element 290 communicates with the liquid storage element 100 and the relay liquid guide element 939, and the gas-liquid exchange element capillary 2904 communicates with the end opening of the relay liquid guide element 939 to be relayed
  • the liquid guiding element 939 is blocked so that external air cannot directly enter the capillary pores 2904 of the gas-liquid exchange element.
  • the relay liquid guiding element 939 can be made of a porous material made of a polymer, which can be easily made into a flat surface, and can better block the end opening of the gas-liquid exchange element capillary 2904 of the gas-liquid exchange element 290 connected thereto. Therefore, the leakproof performance of the aerosol bomb 800 can be improved.
  • a support member 935 can be provided at the bottom of the atomization chamber 934 , and the support member 935 can be made of materials such as silica gel to strengthen the contact communication between the gas-liquid exchange element 290 , the relay liquid guide element 939 and the atomizing core liquid guide element 932 . And it is beneficial for the relay liquid guide element 939 to block the end opening of the gas-liquid exchange element capillary 2904 of the gas-liquid exchange element 290 connected therewith.
  • the bottom of the liquid storage element 100 is provided with a bottom baffle 103 separated from the atomization chamber 934, and the bottom baffle 103 is provided with one or more penetrating bottoms connecting the atomization chamber 934 and the liquid storage element 100.
  • the partition through hole 9341 of the partition 103 .
  • liquid can be injected into the liquid storage element 100 from the through hole 9341 of the partition, and then the gas-liquid exchange element 290 is installed in the through hole 9341 of the partition, and then the atomizing core 930, the relay liquid guide element 939, and the support member 935 are installed.
  • housing base 112 and other components are installed.
  • the gas-liquid exchange element sleeve 2905 only covers the portion of the gas-liquid exchange element body 2900 from the bottom partition 103 to the lower end surface of the gas-liquid exchange element body 2900 .
  • the liquid in the liquid storage element 100 is conducted through the gas-liquid exchange element 290 and the relay liquid guide element 939 To the liquid guide element 932 of the atomizing core, as the liquid in the liquid storage element 100 is led out, a negative pressure difference is formed between the inside of the liquid storage element 100 and the outside.
  • the liquid guide element 932 of the atomizing core In the equilibrium state, the liquid guide element 932 of the atomizing core is in an unsaturated state, so it has the ability to further absorb liquid, and also reduces the risk of oil explosion caused by excessive liquid content in the liquid guide element 932 of the atomizing core during atomization. risk.
  • the capillary force of the atomization core liquid guide element 932 increases, and the atomization core liquid guide element 932 communicates with the relay liquid guide element 939 and the gas-liquid exchange element 290
  • the liquid storage element 100 performs gas-liquid exchange until an equilibrium state is reached again.
  • the air in the liquid storage element 100 expands, and the liquid in the liquid storage element 100 is led out, and the atomizing core liquid guide element 932 in an unsaturated state can pass through the relay liquid guide element 939 and the gas-liquid exchange element 290 absorb liquid from the liquid storage element 100, thereby reducing the risk of liquid leakage from the aerosol bomb 800 due to an increase in ambient temperature or a decrease in external pressure.
  • the relay liquid guide element 939 and the Part of the liquid in the atomizing core liquid guide element 932 enters the liquid storage element 100 through the gas-liquid exchange element 290 prior to the outside air. This is beneficial for the liquid to go back and forth between the liquid storage element 100 and the relay liquid guiding element 939 and the atomizing core liquid guiding element 932 when the ambient temperature or pressure changes, thereby reducing the risk of liquid leakage of the aerosol bomb 800 during daily use.
  • Fig. 2c is another schematic cross-sectional view of the gas-liquid exchange element according to the second embodiment of the present invention.
  • the capillary pores 2904 of the gas-liquid exchange element are divided into multiple axial cavities by the ring between the gas-liquid exchange element body 2900 and the gas-liquid exchange element sleeve 2905.
  • the capillary pores 2904 of the gas-liquid exchange element formed in this way facilitate processing and assembly.
  • Fig. 3 is a schematic structural diagram of an aerosol bomb with a gas-liquid exchange element according to a third embodiment of the present invention. This embodiment is similar in structure to the first embodiment, and the same parts as the first embodiment will not be repeated in the description of this embodiment.
  • the gas-liquid exchange element 290 includes a gas-liquid exchange element body 2900, a gas-liquid exchange element sleeve 2905 at least partially covering the gas-liquid exchange element body 2900, and a gas-liquid exchange element sleeve 2905 disposed on the outer peripheral wall of the gas-liquid exchange element body 2900.
  • the lower end surface of the gas-liquid exchange element sleeve 2905 is close to the lower end surface of the gas-liquid exchange element body 2900 or with the lower end surface of the gas-liquid exchange element body 2900
  • the lower end surface of the gas-liquid exchange element body 2900 is even, and the gas-liquid exchange element body 2900 is made of fiber bonding.
  • the aerosol bomb 800 includes a liquid storage element 100, an atomization core 930 and a gas-liquid exchange element 290, the atomization core 930 It includes an atomizing core liquid guiding element 932 and a heating element 931 .
  • the bottom of the liquid storage element 100 is provided with a bottom partition 103 and a side partition 104 separated from the atomization chamber 934.
  • the separator through hole 9341 of the liquid element 100 runs through the bottom separator 103 .
  • the side partition 104 is also provided with two partition through-holes 9341 which pass through the side partition 104 and communicate with the atomization chamber 934 and the liquid storage element 100 . Both ends of the atomizing core liquid guiding element 932 pass through and block the partition through hole 9341 on the side partition 104 , and the two ends of the atomizing core liquid guiding element 932 directly contact the liquid in the liquid storage element 100 .
  • the end opening of the gas-liquid exchange element capillary 2904 of the gas-liquid exchange element 290 connected to the atomization core liquid guide element 932 is blocked by the atomization core liquid guide element 932 so that external air cannot directly enter the gas-liquid exchange element capillary 2904 .
  • the gas-liquid exchange element 290 has functions of guiding liquid and guiding gas. Since the two ends of the atomizing core liquid guiding element 932 directly contact the liquid in the liquid storage element 100 , it can ensure that the atomizing core 930 obtains sufficient liquid supply during the atomization process.
  • two gas-liquid exchange elements 290 are preferably used, but only one gas-liquid exchange element 290 may also be used.
  • the end face of the gas-liquid exchange element 290 can compress the two ends of the atomization core liquid guide element 932 to ensure that the atomization core liquid guide element 932 blocks the end opening of the gas-liquid exchange element capillary 2904 .
  • the inner peripheral wall of the partition through-hole 9341 on the side partition 104 compresses or tightly fits the atomizing core liquid-guiding element 932 to ensure that the atomizing core liquid-guiding element 932 blocks the partition through-hole 9341 to avoid External air leaks into the liquid storage element 100 through the through hole 9341 of the partition.
  • the atomizing core 930 can be supported by a support member 935 .
  • the supporting member 935 may not be provided, and it may be directly supported by the housing base 112 .
  • the partition through hole 9341 on the side partition 104 may also be partially formed on the support member 935 or the housing base 112 .
  • the liquid in the liquid storage element 100 is conducted to the liquid-conducting element 932 of the atomizing core, and as the liquid in the liquid storage element 100 is led out, a negative pressure difference is formed between the inside of the liquid storage element 100 and the outside.
  • the negative pressure difference between the inside of the liquid storage element 100 and the outside is high enough, external air can enter the liquid storage element 100 through the capillary pores 2904 of the gas-liquid exchange element.
  • the atomizing core liquid guide element 932 blocks the end opening of the capillary 2904 of the gas-liquid exchange element connected thereto, the external air cannot directly enter the capillary 2904 of the gas-liquid exchange element, and the external air must pass through the atomizer.
  • the core liquid guide element 932 can enter the capillary 2904 of the gas-liquid exchange element, and finally enter the liquid storage element 100 .
  • the capillary force of the atomizing core liquid guiding element 932 decreases with the increase of the liquid content therein, until the negative pressure difference between the liquid storage element 100 and the outside reaches a balance state.
  • the liquid guide element 932 of the atomizing core In the equilibrium state, the liquid guide element 932 of the atomizing core is in an unsaturated state, so it has the ability to further absorb liquid, and also reduces the oil explosion caused by the excessive liquid content in the liquid guide element 932 of the atomizing core during atomization risks of.
  • the capillary force of the atomization core liquid guide element 932 increases, the atomization core liquid guide element 932 replenishes liquid from the liquid storage element, and the liquid storage element 100 passes through the air
  • the liquid exchange element 290 is replenished with gas until an equilibrium state is re-established.
  • the air in the liquid storage element 100 expands, and the liquid in the liquid storage element 100 is led out, and the atomizing core liquid guide element 932 in an unsaturated state absorbs liquid from the liquid storage element 100 , thereby reducing the risk of liquid leakage from the aerosol bomb 800 due to an increase in ambient temperature or a decrease in external pressure.
  • the ambient temperature or the external air pressure returns to the original state, since the atomizing core liquid guide element 932 blocks the end opening of the capillary hole 2904 of the gas-liquid exchange element communicating with it, the external air cannot directly enter the gas-liquid exchange element
  • the capillary 2904 , part of the liquid in the atomizing core liquid guiding element 932 enters the liquid storage element 100 through the atomizing core liquid guiding element 932 or the gas-liquid exchange element 290 prior to the outside air. This is beneficial for the liquid to go back and forth between the liquid storage element 100 and the atomizing core liquid guide element 932 when the ambient temperature or pressure changes, thereby reducing the risk of liquid leakage of the aerosol bomb 800 during daily use.
  • the gas-liquid exchange element 290 of the present invention has a simple structure and is suitable for use in a compact aerosol bomb 800 or atomization device.
  • the aerosol bomb 800 using the gas-liquid exchange element 290 is suitable for applications such as electronic cigarettes, and can also be used for quantitative atomization of inhaled medicinal liquid in the medical field.
  • the aerosol bomb 800 using the gas-liquid exchange element 290 has a compact structure, good leak-proof performance, and can control liquid release uniformly. If an airflow sensor is installed in the external control device, the atomization of the liquid can be controlled according to the airflow, which is more convenient to use.

Landscapes

  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

一种气液交换元件(290)和气雾弹(800),气液交换元件(290)包括气液交换元件本体(2900)、至少部分包覆气液交换元件本体(2900)的气液交换元件套筒(2905),和设置在气液交换元件本体(2900)的外周壁与气液交换元件套筒(2905)的内周壁之间并轴向贯穿气液交换元件(290)的气液交换元件毛细孔(2904),气液交换元件套筒(2905)的下端面靠近气液交换元件本体(2900)的下端面或者与气液交换元件本体(2900)的下端面平齐,气液交换元件本体(2900)由纤维粘结制成。气液交换元件(290),体积小、结构简单,适合空间小巧的气雾弹(800)中使用。

Description

一种气液交换元件和气雾弹 技术领域
本发明涉及一种气液交换元件和使用该气液交换元件的气雾弹,特别涉及用于电子烟和药物溶液雾化等应用领域中的气液交换元件和使用该气液交换元件的气雾弹。
背景技术
通过超声波或电加热来雾化或气化液体的技术被广泛用于电子烟等领域。电子雾化烟中常见的技术是加热与烟油直接连通的雾化芯,使尼古丁与溶剂一起雾化,这种技术通常由于对烟油导出缺乏精密控制,产品之间个体差异大,并且容易发生液体泄漏,消费体验较差。
发明内容
为解决现有技术中存在的问题,本发明一种气液交换元件,所述气液交换元件包括气液交换元件本体、至少部分包覆所述气液交换元件本体的气液交换元件套筒、和设置在所述气液交换元件本体的外周壁与所述气液交换元件套筒的内周壁之间并轴向贯穿所述气液交换元件的气液交换元件毛细孔,所述气液交换元件套筒的下端面靠近所述气液交换元件本体的下端面或者与所述气液交换元件本体的下端面平齐,所述气液交换元件本体由纤维粘结制成。
进一步,所述气液交换元件毛细孔的最小横截面的最大内切圆直径为0.05mm到2.0mm。
进一步,所述纤维为皮芯结构的双组分纤维。
进一步,所述双组分纤维的芯层的熔点比皮层的熔点高20℃以上。
进一步,所述双组分纤维的皮层为聚乙烯、聚丙烯、聚乳酸、聚丁二酸丁二醇酯、低熔点共聚酯、聚对苯二甲酸乙二酯、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二酯、己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物、聚酰胺。
本发明还提供一种气雾弹,所述气雾弹至少包括本发明任一项所述的气液交换元件。
进一步,所述气雾弹还包括储液元件和雾化芯,所述雾化芯包括雾化芯导液元件和发热体。
进一步,至少一个所述气液交换元件连接所述储液元件和所述雾化芯导液元件。
进一步,至少一个所述气液交换元件毛细孔连通所述储液元件和所述雾化芯导液元件。
进一步,所述气液交换元件毛细孔连通所述雾化芯导液元件的端部开口被所述雾化芯导液元件封堵,使得外部空气不能直接进入所述气液交换元件毛细孔。
进一步,所述气雾弹还包括中继导液元件,所述中继导液元件连接所述气液交换元件和所述雾化芯导液元件。
进一步,所述气液交换元件毛细孔连通所述中继导液元件,所述气液交换元件毛细孔的一个端部的开口被所述中继导液元件封堵,使得外部空气不能直接进入所述气液交换元件毛细孔。
进一步,所述雾化芯导液元件与储液元件中的液体不直接接触。
进一步,所述雾化芯导液元件直接与储液元件中的液体接触。
本发明的气液交换元件体积小、结构简单,非常适合空间小巧的气雾弹中使用。采用气液交换元件的气雾弹适合于各种液体的雾化或气化,比如电子烟烟液的雾化,药物溶液的雾化等。本发明的具有气液交换元件的气雾弹结构简单、成本低、容易自动化组装,并且防漏性好、能有效地控制液体释放,提高产品性能的一致性。为让本发明的上述内容能更明显易懂,下文特举优选实施例,并结合附图,作详细说明。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a为根据本发明第一实施例的气液交换元件的横截面示意图;
图1b为根据本发明第一实施例的双组分纤维的一种横截面放大示意图;
图1c为根据本发明第一实施例的双组分纤维的另一种横截面放大示意图;
图1d为根据本发明第一实施例的具有气液交换元件的气雾弹的一种结构示意图;
图1e为根据本发明第一实施例的具有气液交换元件的气雾弹的另一种结构示意图;
图2a为根据本发明第二实施例的气液交换元件的横截面示意图;
图2b为根据本发明第二实施例的具有气液交换元件的气雾弹的结构示意图;
图2c为根据本发明第二实施例的气液交换元件的另一种横截面示意图。
图3为根据本发明第三实施例的具有气液交换元件的气雾弹的结构示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示 的内容轻易地了解本发明的其他优点及功效。
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语包括科技术语对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
第一实施例
图1a为根据本发明第一实施例的气液交换元件的横截面示意图。
如图1a所示,根据本发明的气液交换元件290包括气液交换元件本体2900、至少部分包覆气液交换元件本体2900的气液交换元件套筒2905、和设置在气液交换元件本体2900的外周壁与气液交换元件套筒2905内周壁之间并轴向贯穿气液交换元件290的气液交换元件毛细孔2904,气液交换元件套筒2905的下端面靠近气液交换元件本体2900的下端面或者与气液交换元件本体2900的下端面平齐,气液交换元件本体2900由纤维粘结制成。
在本发明中,气液交换元件290的下端面是指气液交换元件290与雾化芯导液元件932接触的端面。气液交换元件套筒2905的下端面靠近气液交换元件本体2900的下端面是指:气液交换元件套筒2905的下端面与气液交换元件本体2900的下端面在气液交换元件本体2900的轴向方向上的距离差不超过气液交换元件本体2900的高度的五分之一。
在本实施例中,优选气液交换元件套筒2905的下端面与气液交换元件本体2900的下端面平齐。
气液交换元件290优选为具有轴向贯穿的气液交换元件毛细孔2904的柱状体,例如圆柱体、椭圆柱体、方柱体等柱状体。优选,气液交换元件毛细孔2904与柱状体的中轴线平行设置。气液交换元件毛细孔2904优选在气液交换元件本体2900的外周壁上形成毛细凹槽或凸起,或者在气液交换元件套筒2905的内周壁形成毛细凹槽或凸起,两者装配后形成气液交换元件毛细孔2904。气液交换元件本体2900的外周壁上形成的毛细凹槽的横截面也可以为各种几何形状,如半圆形、长方形、半椭圆形等。
在本实施例中,气液交换元件290包括横截面为圆形的气液交换元件本体2900、包覆气液交换元件本体2900的气液交换元件套筒2905和设置在气液交换元件本体2900的外周壁与气液交换元件套筒2905内周壁之间并轴向贯穿气液交换元件290的气液交换元件毛细孔 2904,气液交换元件毛细孔2904由在气液交换元件本体2900的外周壁上形成的毛细凹槽和气液交换元件套筒2905的内周壁限定的空间构成,在气液交换元件本体2900的外周壁上形成的毛细凹槽的横截面为半圆形。
气液交换元件毛细孔2904的空间被气液交换元件本体2900和气液交换元件套筒2905限定,由气液交换元件本体2900和气液交换元件套筒2905限定的气液交换元件毛细孔2904的最小横截面的最大内切圆直径为0.05mm到2.0mm,如0.05、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.2mm、1.5mm、2.0mm等,优选为0.2mm到1.2mm。较小的气液交换元件毛细孔2904横截面适合于粘度较小的被雾化液体,或雾化量较小的应用;较大的气液交换元件毛细孔2904横截面适合于粘度较高的被雾化液体,或雾化量较大的应用。当气液交换元件毛细孔2904的最小横截面的最大内切圆直径小于0.05mm时,加工困难,性价比过差。当气液交换元件毛细孔2904的最小横截面的最大内切圆直径大于2.0mm时,毛细孔太大,难以保证良好的气液交换效果,并且气液交换元件毛细孔2904太大会导致气液交换元件290太大,难以在体积小巧的气雾弹中使用。
气液交换元件本体2900由纤维粘结制成,具有良好的导液性能。纤维可以为长丝或短纤。制成气液交换元件2900的纤维可以为单组分纤维或双组分纤维或两者的混合物。气液交换元件本体2900可以由单组分纤维用粘结剂或增塑剂粘结制成,也可以用皮芯结构或并列结构的双组分纤维粘结制成。气液交换元件本体2900优选由皮芯结构的双组分纤维2经热粘结制成,由于热粘结时不需要添加粘结剂或增塑剂,有利于获得纯净的产品并降低成本。制作气液交换元件本体2900的纤维的纤度为1旦到30旦,优选2旦至10旦的纤维。
图1b为根据本发明第一实施例的双组分纤维的一种横截面放大示意图。如图1b所示,皮层21和芯层22为同心结构。图1c为根据本发明第一实施例的双组分纤维的另一种横截面放大示意图。如图1c所示,皮层21和芯层22为偏心结构。双组分纤维2为长丝或者短纤。可以根据气液交换元件290的性能要求选择合适的双组分纤维制成气液交换元件本体2900。
皮芯结构的双组分纤维2的芯层22的熔点比皮层21的熔点高20℃以上,可以使芯层22在热粘结时保持较好的刚性,有利于气液交换元件本体2900成型。皮芯结构的双组分纤维2的皮层21可以为常见的聚合物,如聚乙烯、聚丙烯、聚乳酸、聚丁二酸丁二醇酯(简称PBS)、低熔点共聚酯(简称co-PET)、聚对苯二甲酸乙二酯(简称PET)、聚对苯二甲酸丙二酯(简称PTT)、聚对苯二甲酸丁二酯(简称PBT)、己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物(简称PBAT)、聚酰胺等。
图1d为根据本发明第一实施例的具有气液交换元件的气雾弹的一种结构示意图;图1e为根据本发明第一实施例的具有气液交换元件的气雾弹的另一种结构示意图。如图1d和图 1e所示,根据本发明第一实施例的具有气液交换元件290的气雾弹800,气雾弹800包括上述的气液交换元件290。
气雾弹800还包括储液元件100和雾化芯930,雾化芯930包括雾化芯导液元件932和发热体931。
至少一个气液交换元件290连接储液元件100和雾化芯导液元件932,储液元件100中的液体通过气液交换元件290传递给雾化芯导液元件932。
至少一个气液交换元件290的气液交换元件毛细孔2904连通储液元件100和雾化芯导液元件932,并且气液交换元件毛细孔2904连通雾化芯导液元件932的端部开口被雾化芯导液元件932封堵,使得外部空气不能直接进入气液交换元件毛细孔2904。
本发明的气雾弹800中,储液元件100是储存被雾化液体的部件。根据应用的目的可以在其中储存不同的液体,如用于电子烟的烟油等。储液元件100的横截面可以为多种形状,如圆形,椭圆型,长方型等,也可以为各种几何形状的组合。可以在储液元件100上设置注液口,注完液体后将注液口封闭。
气雾弹800还包括气雾弹壳体810,储液元件100设置在气雾弹壳体810中。储液元件100可以具有轴向贯穿储液元件100的储液元件通孔130。储液元件通孔130可以用作气雾弹800的气雾通道1303。
本发明的气雾弹800还包括雾化室934,雾化室934是液体被气化或雾化的空腔。在本实施例中,雾化室934设置在储液元件100底部、气雾弹壳体810和壳体底座112之间的区域。雾化室934中设置雾化芯930,并可以根据需要,设置进气孔,例如在壳体底座112上设置底座部通孔1122,作为进气口1121。液体在雾化室934中被雾化芯930雾化,并经气雾通道1303经气雾出口1301逸出气雾弹800。
本发明的雾化芯930泛指能将液体按使用要求气化或雾化的部件。雾化芯930包括雾化芯导液元件932和发热体931,雾化芯导液元件932可以为棉纤维或玻璃纤维等毛细材料。
雾化芯930还包括导线933和导线引脚936。发热体931通过导线933及导线引脚936与电源(未图示)连接。
雾化室934底部可以设置支撑部件935,支撑部件935可以用诸如硅胶的材料制成,以加强气液交换元件290和雾化芯导液元件932的接触连通。并有利于雾化芯导液元件932封堵与其连通的气液交换元件毛细孔2904的端部开口,使得外部空气不能直接进入气液交换元件毛细孔2904。
本实施例中,储液元件100的底部设置有与雾化室934之间隔开的底部隔板103,底部隔板103上设置一个或者多个连通雾化室934和储液元件100的贯穿底部 隔板103的隔板通孔9341。安装时可以将液体从隔板通孔9341注入储液元件100,然后将气液交换元件290安装到隔板通孔9341中,再安装雾化芯930、支撑部件935和壳体底座112等部件。气液交换元件290可以大部分位于雾化室934中,如图1d所示;气液交换元件290也可以大部分位于储液元件100中,如图1e所示。如图1d所示,本实施例中可以使用两个气液交换元件290,分别与雾化芯导液元件932的两端连接;也可以如图1e所示,使用一个气液交换元件290和一个由纤维粘结制成的普通导液元件200,分别与雾化芯导液元件932的两端连接,普通导液元件200不含气液交换元件毛细孔2904,制作方便,成本较低。
普通导液元件200也可以是由多孔材料构成,利用多孔材料的多孔性质造成的毛细力进行液体传导的导液元件,但不包含气液交换元件毛细孔2904。材料可以包括海绵、粘结纤维、烧结粉末塑料等。
在本实施例中,雾化芯导液元件932与储液元件100中的液体不直接接触。
在一种变形实施例中,可以将隔板通孔9341的内周壁兼作为气液交换元件套筒2905,在这种情况下,只需将气液交换元件本体2900插入隔板通孔9341中,使得隔板通孔9341的下端面靠近气液交换元件本体2900的下端面即可,无需单独设置独立成型的气液交换元件套筒。
气雾弹800组装完成后,由于气液交换元件本体2900和雾化芯导液元件932的毛细作用,储液元件100中的液体经气液交换元件290传导至雾化芯导液元件932,随着储液元件100中的液体导出,储液元件100内与外界形成负压差。当储液元件100内与外界的负压差足够高时,外界空气可以通过气液交换元件290的气液交换元件毛细孔2904进入储液元件100,但由于雾化芯导液元件932封堵与之连通的气液交换元件290的气液交换元件毛细孔2904的端部开口使得外部空气不能直接进入气液交换元件毛细孔2904,外界空气必须穿过雾化芯导液元件932才能进入气液交换元件290的气液交换元件毛细孔2904,并最终进入储液元件100。雾化芯导液元件932的毛细力随着其中的液体含量增加而减小,直到与储液元件100与外界的负压差达到平衡状态。平衡状态时雾化芯导液元件932处在不饱和状态,因此具有进一步吸收液体的能力,同时也减少了雾化时因雾化芯导液元件932中液体含量过高而产生的爆油的风险。
当雾化芯导液元件932中的液体被雾化消耗时,雾化芯导液元件932的毛细力升高,雾化芯导液元件932通过气液交换元件290与储液元件100进行气液交换,直到重新达到平衡状态。
当环境温度升高或外界气压减小时,储液元件100中的空气膨胀,储液元件100中的液体向外导出,处于不饱和状态的雾化芯导液元件932能通过气液交换元件290从储液元件100吸收液体,从而减少气雾弹800因环境温度升高或外界压力减小而漏液的风险。如果环境温度或外界气压恢复至原先的状态,由于雾化芯导液元件932封堵与之连通的气液交换元件290的气液交换元件毛细孔2904的端部开口,使得外部空气不能直接进入气液交换元件毛细孔2904,雾化芯导液元件932中的部分液体优先于外界的空气通过气液交换元件290进入储液元件100。这样有利于环境温度或压力变化时液体往返于储液元件100和雾化芯导液元件932之间,从而减少气雾弹800在日常使用过程中的漏液风险。为减少气雾弹长期储存和运输过程中的漏液风险,可以将气雾弹的气雾出口1301和进气口1121密封,如安装硅胶塞。
第二实施例
图2a为根据本发明第二实施例的气液交换元件的横截面示意图;图2b为根据本发明第二实施例的具有气液交换元件的气雾弹的结构示意图;图2c为根据本发明第二实施例的气液交换元件的另一种横截面示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
如图2a所示,根据本发明的气液交换元件290包括气液交换元件本体2900、至少部分包覆气液交换元件本体2900的气液交换元件套筒2905、和设置在气液交换元件本体2900的外周壁与气液交换元件套筒2905内周壁之间并轴向贯穿气液交换元件290的气液交换元件毛细孔2904,气液交换元件套筒2905的下端面靠近气液交换元件本体2900的下端面或者与气液交换元件本体2900的下端面平齐,气液交换元件本体2900由纤维粘结制成。
如图2a所示,在本实施例中,气液交换元件290包括横截面为椭圆形的气液交换元件本体2900和轴向贯穿气液交换元件290的气液交换元件毛细孔2904,气液交换元件毛细孔2904由在气液交换元件本体2900的外周壁上形成的毛细凹槽和气液交换元件套筒2905的内周壁限定的空间构成,在气液交换元件本体2900的外周壁上形成的毛细凹槽的横截面为半圆形。
气液交换元件毛细孔2904的最小横截面的最大内切圆直径为0.05mm到2.0mm,如0.05、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.2mm、 1.5mm、2.0mm等,优选为0.2mm到1.2mm。
气液交换元件本体2900由纤维粘结制成,具有良好的导液性能。纤维可以为长丝或短纤。本实施例中气液交换元件本体2900优选由皮芯结构的双组分纤维2经热粘结制成,纤维的纤度优选2旦至10旦。皮芯结构的双组分纤维2的芯层22的熔点比皮层21的熔点高20℃以上,可以使芯层22在热粘结时保持较好的刚性,有利于气液交换元件本体2900成型。皮芯结构的双组分纤维2的皮层21可以为常见的聚合物,如聚乙烯、聚丙烯、聚乳酸、聚丁二酸丁二醇酯(简称PBS)、低熔点共聚酯(简称co-PET)、聚对苯二甲酸乙二酯(简称PET)、聚对苯二甲酸丙二酯(简称PTT)、聚对苯二甲酸丁二酯(简称PBT)、己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物(简称PBAT)、聚酰胺等,优选容易在自然界中降解的聚乳酸、PBS或PBAT。
如图2b所示,根据本发明第二实施例的具有气液交换元件290的气雾弹800,气雾弹800包括储液元件100、雾化芯930和气液交换元件290,雾化芯930包括雾化芯导液元件932和发热体931。
在本实施例中,气雾弹800还包括中继导液元件939,中继导液元件939连接气液交换元件290和雾化芯导液元件932。气液交换元件毛细孔2904连通中继导液元件939,气液交换元件毛细孔2904的一个端部的开口被中继导液元件939封堵,使得外部空气不能直接进入气液交换元件毛细孔2904。
至少一个气液交换元件290连接储液元件100和中继导液元件939。中继导液元件939连接气液交换元件290和雾化芯导液元件932,储液元件100中的液体通过气液交换元件290和中继导液元件939传递给雾化芯导液元件932。至少一个气液交换元件290的气液交换元件毛细孔2904连通储液元件100和中继导液元件939,并且气液交换元件毛细孔2904连通中继导液元件939的端部开口被中继导液元件939封堵,使得外部空气不能直接进入气液交换元件毛细孔2904。中继导液元件939可以为聚合物制成的多孔材料,容易制成平整的表面,能更好地封堵与之连通的气液交换元件290的气液交换元件毛细孔2904端部开口,因此可以提高气雾弹800的防漏性能。
雾化室934底部可以设置支撑部件935,支撑部件935可以用诸如硅胶的材料制成,以加强气液交换元件290、中继导液元件939和雾化芯导液元件932的接触连通。并有利于中继导液元件939封堵与其连通的气液交换元件290气液交换元件毛细孔2904的端部开口。
本实施例中,储液元件100的底部设置有与雾化室934之间隔开的底部隔板103,底部隔板103上设置一个或者多个连通雾化室934和储液元件100的贯穿底部隔板103的隔板通孔9341。安装时可以将液体从隔板通孔9341注入储液元件100, 然后将气液交换元件290安装到隔板通孔9341中,再安装雾化芯930、中继导液元件939、支撑部件935和壳体底座112等部件。
在本实施例中,气液交换元件套筒2905仅包覆气液交换元件本体2900的从底部隔板103至气液交换元件本体2900下端面之间的部分。
安装完成后,由于气液交换元件290、中继导液元件939和雾化芯导液元件932的毛细作用,储液元件100中的液体经气液交换元件290和中继导液元件939传导至雾化芯导液元件932,随着储液元件100中的液体导出,储液元件100内与外界形成负压差。当储液元件100内与外界的负压差足够高时,外界空气可以通过气液交换元件290的气液交换元件毛细孔2904进入储液元件100,但由于中继导液元件939封堵与之连通的气液交换元件290的气液交换元件毛细孔2904的端部开口,外界空气必须穿过中继导液元件939才能进入气液交换元件290的气液交换元件毛细孔2904,并最终进入储液元件100。雾化芯导液元件932的毛细力随着其中的液体含量增加而减小,直到与储液元件100与外界的负压差达到平衡状态。平衡状态时雾化芯导液元件932处在不饱和状态,因此具有进一步吸收液体的能力,同时也减少了雾化时因雾化芯导液元件932中液体含量过高而产生的爆油的风险。
当雾化芯导液元件932中的液体被雾化消耗时,雾化芯导液元件932的毛细力升高,雾化芯导液元件932通过中继导液元件939和气液交换元件290与储液元件100进行气液交换,直到重新达到平衡状态。
当环境温度升高或外界气压减小时,储液元件100中的空气膨胀,储液元件100中的液体向外导出,处于不饱和状态的雾化芯导液元件932能通过中继导液元件939和气液交换元件290从储液元件100吸收液体,从而减少气雾弹800因环境温度升高或外界压力减小而漏液的风险。如果环境温度或外界气压恢复至原先的状态,由于中继导液元件939封堵与之连通的气液交换元件290的气液交换元件毛细孔2904的端部开口,中继导液元件939和雾化芯导液元件932中的部分液体优先于外界的空气通过气液交换元件290进入储液元件100。这样有利于环境温度或压力变化时液体往返于储液元件100和中继导液元件939及雾化芯导液元件932之间,从而减少气雾弹800在日常使用过程中的漏液风险。
图2c为根据本发明第二实施例的气液交换元件的另一种横截面示意图。如图2c所示,气液交换元件毛细孔2904由气液交换元件本体2900和气液交换元件套筒2905之间的圆环分 隔成多个轴向的腔道构成。通过此种方式形成的气液交换元件毛细孔2904,加工和组装更为便利。
第三实施例
图3为根据本发明第三实施例的具有气液交换元件的气雾弹的结构示意图。本实施例与第一实施例结构相似,与第一实施例相同的部分在本实施例的描述中不再赘述。
根据本发明的气液交换元件290包括气液交换元件本体2900、至少部分包覆气液交换元件本体2900的气液交换元件套筒2905、和设置在气液交换元件本体2900的外周壁与气液交换元件套筒2905内周壁之间并轴向贯穿气液交换元件290的气液交换元件毛细孔2904,气液交换元件套筒2905的下端面靠近气液交换元件本体2900的下端面或者与气液交换元件本体2900的下端面平齐,气液交换元件本体2900由纤维粘结制成。
如图3所示,根据本发明第三实施例的具有气液交换元件290的气雾弹800,气雾弹800包括储液元件100、雾化芯930和气液交换元件290,雾化芯930包括雾化芯导液元件932和发热体931。
本实施例中,储液元件100的底部设置有与雾化室934之间隔开的底部隔板103和侧部隔板104,底部隔板103上设置一个或者多个连通雾化室934和储液元件100的贯穿底部隔板103的隔板通孔9341。
侧部隔板104上也设置有连通雾化室934和储液元件100的贯穿侧部隔板104的两个隔板通孔9341。雾化芯导液元件932的两端穿过并封堵侧部隔板104上的隔板通孔9341,雾化芯导液元件932的两端直接接触储液元件100中的液体。气液交换元件290的气液交换元件毛细孔2904连通雾化芯导液元件932的端部开口被雾化芯导液元件932封堵,使得外部空气不能直接进入气液交换元件毛细孔2904。
在本实施例中,气液交换元件290具有导液和导气作用。由于雾化芯导液元件932的两端直接接触储液元件100中的液体,可以确保雾化过程中雾化芯930获得充分的液体供给。在本实施例中,优选采用两个气液交换元件290,但也可以只采用一个气液交换元件290。
在本实施例中,可以让气液交换元件290的端面压缩雾化芯导液元件932的两端来确保雾化芯导液元件932对气液交换元件毛细孔2904端部开口的封堵。
优选,侧部隔板104上的隔板通孔9341的内周壁对雾化芯导液元件932进行压缩或紧配,确保雾化芯导液元件932对隔板通孔9341的封堵,避免外部空气从隔板通孔9341向储液元件100中泄漏。
在本实施例中,雾化芯930可以由支撑部件935支撑。当然,也可以不设置支撑部件935,直接由壳体底座112支撑。侧部隔板104上的隔板通孔9341也可以部分形成在支撑部件935或者壳体底座112上。
气雾弹800组装完成后,储液元件100中的液体传导至雾化芯导液元件932,随着储液元件100中的液体导出,储液元件100内与外界形成负压差。当储液元件100内与外界的负压差足够高时,外部空气可以通过气液交换元件毛细孔2904进入储液元件100。但由于雾化芯导液元件932封堵与之连通的气液交换元件毛细孔2904的端部开口,使得外部空气不能直接进入所述气液交换元件毛细孔2904,外部空气必须穿过雾化芯导液元件932才能进入气液交换元件毛细孔2904,并最终进入储液元件100。
雾化芯导液元件932的毛细力随着其中的液体含量增加而减小,直到与储液元件100与外界的负压差达到平衡状态。平衡状态时,雾化芯导液元件932处在不饱和状态,因此具有进一步吸收液体的能力,同时也减少了雾化时因雾化芯导液元件932中液体含量过高而产生的爆油的风险。
当雾化芯导液元件932中的液体被雾化消耗时,雾化芯导液元件932的毛细力升高,雾化芯导液元件932从储液元件补充液体,储液元件100通过气液交换元件290补充气体,直到重新达到平衡状态。
当环境温度升高或外界气压减小时,储液元件100中的空气膨胀,储液元件100中的液体向外导出,处于不饱和状态的雾化芯导液元件932从储液元件100吸收液体,从而减少气雾弹800因环境温度升高或外界压力减小而漏液的风险。如果环境温度或外界气压恢复至原先的状态,由于雾化芯导液元件932封堵与之连通的气液交换元件毛细孔2904的端部开口,使得外部空气不能直接进入所述气液交换元件毛细孔2904,雾化芯导液元件932中的部分液体优先于外界的空气通过雾化芯导液元件932或气液交换元件290进入储液元件100。这样有利于环境温度或压力变化时液体往返于储液元件100和雾化芯导液元件932之间,从而减少气雾弹800在日常使用过程中的漏液风险。
综上,本发明的气液交换元件290结构简单,适合在体积小巧的气雾弹800或雾化装置中使用。使用气液交换元件290的气雾弹800适用于电子烟等应用,也可以在医疗领域中用于吸入型药液的定量雾化。使用气液交换元件290的气雾弹800结构紧凑、防漏性好,并能均匀地控制液体释放。如果在外部控制装置中设置气流传感器,可以根据气流来控制液体的雾化,使用更加方便。此外,本发明上述实施例仅例示性说明本发明的原理及其功效,而非 用于限制本发明。任何本领域技术人员皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,本领域技术人员在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (14)

  1. 一种气液交换元件,其特征在于,所述气液交换元件包括气液交换元件本体、至少部分包覆所述气液交换元件本体的气液交换元件套筒,和设置在所述气液交换元件本体的外周壁与所述气液交换元件套筒的内周壁之间并轴向贯穿所述气液交换元件的气液交换元件毛细孔,所述气液交换元件套筒的下端面靠近所述气液交换元件本体的下端面或者与所述气液交换元件本体的下端面平齐,所述气液交换元件本体由纤维粘结制成。
  2. 如权利要求1所述的气液交换元件,其特征在于,所述气液交换元件毛细孔的最小横截面的最大内切圆直径为0.05mm到2.0mm。
  3. 如权利要求1所述的气液交换元件,其特征在于,所述纤维为皮芯结构的双组分纤维。
  4. 如权利要求3所述的气液交换元件,其特征在于,所述双组分纤维的芯层的熔点比皮层的熔点高20℃以上。
  5. 如权利要求3所述的气液交换元件,其特征在于,所述双组分纤维的皮层为聚乙烯、聚丙烯、聚乳酸、聚丁二酸丁二醇酯、低熔点共聚酯、聚对苯二甲酸乙二酯、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二酯、己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物、聚酰胺。
  6. 一种气雾弹,其特征在于,所述气雾弹至少包括如权利要求1至5中任一项所述的气液交换元件。
  7. 如权利要求6所述的气雾弹,其特征在于,所述气雾弹还包括储液元件和雾化芯,所述雾化芯包括雾化芯导液元件和发热体。
  8. 如权利要求7所述的气雾弹,其特征在于,至少一个所述气液交换元件连接所述储液元件和所述雾化芯导液元件。
  9. 如权利要求7所述的气雾弹,其特征在于,至少一个所述气液交换元件毛细孔连通所述储液元件和所述雾化芯导液元件。
  10. 如权利要求9所述的气雾弹,其特征在于,所述气液交换元件毛细孔连通所述雾化芯导液元件的端部开口被所述雾化芯导液元件封堵,使得外部空气不能直接进入所述气液交换元件毛细孔。
  11. 如权利要求7所述的气雾弹,其特征在于,所述气雾弹还包括中继导液元件,所述中继导液元件连接所述气液交换元件和所述雾化芯导液元件。
  12. 如权利要求11所述的气雾弹,其特征在于,所述气液交换元件毛细孔连通所述中继导液元件,所述气液交换元件毛细孔的一个端部的开口被所述中继导液元件封堵,使得外部 空气不能直接进入所述气液交换元件毛细孔。
  13. 如权利要求9所述的气雾弹,其特征在于,所述雾化芯导液元件与储液元件中的液体不直接接触。
  14. 如权利要求9所述的气雾弹,其特征在于,所述雾化芯导液元件直接与储液元件中的液体接触。
PCT/CN2021/131581 2021-08-01 2021-11-18 一种气液交换元件和气雾弹 WO2023010710A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551652A JP2024506214A (ja) 2021-08-01 2021-11-18 気液交換部品及びエアロゾルカートリッジ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110877636 2021-08-01
CN202110877636.4 2021-08-01

Publications (1)

Publication Number Publication Date
WO2023010710A1 true WO2023010710A1 (zh) 2023-02-09

Family

ID=85155054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131581 WO2023010710A1 (zh) 2021-08-01 2021-11-18 一种气液交换元件和气雾弹

Country Status (3)

Country Link
JP (1) JP2024506214A (zh)
CN (1) CN117256935A (zh)
WO (1) WO2023010710A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434252A (zh) * 2019-01-11 2020-07-21 上海新型烟草制品研究院有限公司 储液器、气雾产生装置及储液器的制造方法
CN111528525A (zh) * 2019-01-21 2020-08-14 浙江迈博高分子材料有限公司 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件
CN211631799U (zh) * 2020-01-17 2020-10-09 浙江迈博高分子材料有限公司 一种具有气液通道的气雾弹
CN111759010A (zh) * 2020-01-17 2020-10-13 浙江迈博高分子材料有限公司 一种具有气液通道的气雾弹
CN212306806U (zh) * 2020-06-10 2021-01-08 迈博高分子材料(宁波)有限公司 一种导气元件和使用导气元件的气雾散发装置
US20210030066A1 (en) * 2019-08-02 2021-02-04 Shenzhen Smoore Technology Limited Porous component and electronic cigarette including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216453361U (zh) * 2021-08-01 2022-05-10 迈博高分子材料(宁波)有限公司 一种气液交换元件和气雾弹

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434252A (zh) * 2019-01-11 2020-07-21 上海新型烟草制品研究院有限公司 储液器、气雾产生装置及储液器的制造方法
CN111528525A (zh) * 2019-01-21 2020-08-14 浙江迈博高分子材料有限公司 一种储液元件、导液元件、冷却元件、冷凝液吸收元件及支撑元件
US20210030066A1 (en) * 2019-08-02 2021-02-04 Shenzhen Smoore Technology Limited Porous component and electronic cigarette including the same
CN211631799U (zh) * 2020-01-17 2020-10-09 浙江迈博高分子材料有限公司 一种具有气液通道的气雾弹
CN111759010A (zh) * 2020-01-17 2020-10-13 浙江迈博高分子材料有限公司 一种具有气液通道的气雾弹
CN212306806U (zh) * 2020-06-10 2021-01-08 迈博高分子材料(宁波)有限公司 一种导气元件和使用导气元件的气雾散发装置

Also Published As

Publication number Publication date
JP2024506214A (ja) 2024-02-09
CN117256935A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN212697666U (zh) 一种储液元件
WO2021120750A1 (zh) 一种具有导液元件的气雾散化装置
CN212437285U (zh) 一种雾化元件和气雾弹
CN212306807U (zh) 一种雾化元件和气雾弹
CN211631799U (zh) 一种具有气液通道的气雾弹
CN212325377U (zh) 具有储液元件的气雾弹和气雾散发装置
CN216453359U (zh) 一种气液交换元件和气雾弹
CN216453361U (zh) 一种气液交换元件和气雾弹
WO2023010710A1 (zh) 一种气液交换元件和气雾弹
WO2023284214A1 (zh) 一种气液交换元件和气雾弹
CN215958346U (zh) 一种气雾弹
EP4305983A1 (en) Vapor cartridge
CN213819852U (zh) 电子雾化装置及其雾化器
CN215992745U (zh) 一种气雾弹
WO2022040866A1 (zh) 电子雾化装置及其雾化器
CN215958342U (zh) 一种气雾弹
CN215958345U (zh) 一种气雾弹
CN220274911U (zh) 一种气雾弹
CN114073330A (zh) 一种储液元件
WO2022222455A1 (zh) 一种雾化模块、气雾弹和气雾散发装置
CN114246363A (zh) 一种雾化元件和气雾弹
WO2022221973A1 (zh) 一种气雾弹
CN115211602A (zh) 一种气雾弹
WO2022221974A1 (zh) 一种气雾弹
CN219020213U (zh) 气雾弹、具有注液口的气雾弹和气雾散发装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551652

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE