WO2021118288A1 - 대립 유전자의 구분성을 높이는 pcr 방법 및 pcr 킷트 - Google Patents

대립 유전자의 구분성을 높이는 pcr 방법 및 pcr 킷트 Download PDF

Info

Publication number
WO2021118288A1
WO2021118288A1 PCT/KR2020/018147 KR2020018147W WO2021118288A1 WO 2021118288 A1 WO2021118288 A1 WO 2021118288A1 KR 2020018147 W KR2020018147 W KR 2020018147W WO 2021118288 A1 WO2021118288 A1 WO 2021118288A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
pcr
dna
mutation
detecting
Prior art date
Application number
PCT/KR2020/018147
Other languages
English (en)
French (fr)
Inventor
김재종
임시규
박인경
경아영
이보미
유정현
차선호
백승우
Original Assignee
(주)제노텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제노텍 filed Critical (주)제노텍
Priority to CN202080085848.2A priority Critical patent/CN114787383A/zh
Priority to JP2022560843A priority patent/JP7541586B2/ja
Priority to US17/784,530 priority patent/US20230046513A1/en
Priority to CA3164057A priority patent/CA3164057A1/en
Priority to EP20897780.1A priority patent/EP4074840A4/en
Priority to AU2020401936A priority patent/AU2020401936A1/en
Publication of WO2021118288A1 publication Critical patent/WO2021118288A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/107Temperature of melting, i.e. Tm
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2535/00Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
    • C12Q2535/131Allele specific probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2535/00Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
    • C12Q2535/137Amplification Refractory Mutation System [ARMS]

Definitions

  • the present invention provides an allele with increased specificity and sensitivity of the polymerase chain reaction (PCR), which is often used to detect minor alleles such as single nucleotide polymorphism or somatic mutation. It relates to a detection method. More specifically, the present invention selectively amplifies the allele by partially or wholly forming a double-stranded discrimination boosting oligonucleotide (hereinafter referred to as "dbOligo" in the description and drawings of the present invention) By adding to the desired PCR solution, when the base at the 3' end of the primer is complementary to the template (3'-matched), there is little or no effect on PCR amplification, but when it is non-complementary (3'-mismatched), PCR amplification is It relates to strongly inhibited PCR-based single nucleotide mutation genotyping (SNP genotyping) and/or somatic mutation detection technology.
  • SNP genotyping single nucleotide mutation genotyping
  • genetic mutations related to genetic diseases and diseases such as cancer that is, genetic mutations such as single nucleotide polymorphisms and addition-deletions, is very important in predicting treatment, determining treatment methods, and observing treatment prognosis and recurrence. .
  • genetic mutation confirmation or discrimination is very useful in breeding and selection of species in the field of agriculture and food, and discrimination of origin and variety.
  • SNP single nucleotide polymorphism
  • PCR polymerase chain reaction
  • qPCR quantitative real time PCR
  • Real-time PCR which is a quantitative, qualitative and quantitative detection technique for nucleic acids, has been applied in various fields such as health, agriculture, food, and environment.
  • Real-time PCR developed in the early 1990s, has been developing into a more accurate and precise technique by continuously improving technical limitations.
  • control of non-specific signals is essential for the development of real-time PCR technology as a diagnostic technology for detecting cancer and pathogens that cause infection.
  • diagnostic techniques such as non-invasive liquid biopsy, which require a very small amount of detection, PCR efficiency and specificity are increased to accurately diagnose a small amount of target mutation.
  • a technique to increase specificity is very necessary.
  • a method for developing a composition added to a PCR solution, designing special probes or primers, or improving an enzyme has been sought.
  • the composition added to the PCR solution mainly increases the reactivity of PCR or generates primer dimers, or the generation of a non-specific PCR product generated by binding of a primer to a non-specific target, or a high GC ratio and specific high-order structure
  • An additive composition for use in resolving a decrease in PCR efficiency due to formation or the like has been studied.
  • examples of such a composition include dimethylsulfoxide (DMSO), betaine, and the like.
  • DMSO dimethylsulfoxide
  • HotStart PCR a number of methods have been reported to block the reaction proceeding at a low temperature and prevent non-specific amplification by allowing the PCR to proceed at a high temperature.
  • the “HotStart PCR” method is a method of adding a DNA polymerase (DNAP) specific monoclonal antibody ⁇ Biotechniques (1994) 16(6):1134-1137 ⁇ , a single method that inhibits the activity of DNA polymerase
  • DNA polymerases have been developed for easy use in PCR to suppress non-specific signals or to increase the differentiation of alleles. It is common to use a thermostable DNA polymerase for PCR technology. Although DNA polymerases are divided into 7 or more families, heat-resistant polymerases used in PCR technology include a group of heat-resistant bacteria-derived enzymes including Taq DNA polymerase belonging to group A, and archaea including Pfu DNA polymerase belonging to group B. It is mainly selected from a group of derived enzymes.
  • Taq DNA polymerase in the group to which Taq DNA polymerase belongs, it is common that 5' ⁇ 3' nuclease (having both exonuclease and endonuclease activity, also called flap endonuclease or FEN1) activity exists. , this activity is very important for the release of a specific signal through degradation of the hydrolysis probe (TaqMan probe). Since Taq DNA polymerase has no 3' ⁇ 5' exonuclease activity, it is very suitable for PCR using primers whose 3' terminal ends are non-complementary to the template DNA.
  • a special probe and primer are for specifically detecting an amplified target product, and a method using a high specificity probe has been developed.
  • a DNA-binding fluorophore such as SYBR green I or SYTO9
  • target sequence specific probes have been developed.
  • TaqMan probe dual labelled signaling hydrolysis probe
  • molecular beacons ⁇ Methods. 25, 463-71 (2001) ⁇
  • scorpion probes ⁇ Nat Biotechnol. 17, 804-07 (1999) ⁇
  • LUX light upon extension
  • primer ⁇ Nucleic acids research. 30, e137 (2002) ⁇
  • Amplifluor primers ⁇ BioTechniques. 26, 552-58 (1999) ⁇ .
  • an additional artificial mutant sequence is added to the 3' end in addition to one mutated sequence centering on AS-PCR (allele specific PCR), which is distinguished by a base difference at the 3' end.
  • AS-PCR allele specific PCR
  • Methods such as ARMS-PCR (amplification refractory mutation system PCR) ⁇ Mol Cell Probes. 18. 349-352 (2004); Nucleic Acids Res 17. 2503-2516 (1989); Nat Biotechnol. 17. 804-807 (1999); Cytokine 71, 278-282 (2015) ⁇ , and recently, Seegene's DPO (dual-priming oligonucleotide) ⁇ J . Am. Chem. Soc. 126, 4550-4556 (2004); Biomol.
  • Korean Patent Publication No. 10-2013-0138700 Controlled inhibition and reactivation of DNA polymerase by cleavable oligonucleotide inhibitors
  • reagents such as DMSO and betaine to increase amplification efficiency, monoclonal antibody for DNA polymerase inhibition, oligonucleic acid that inhibits DNA polymerase activity at low temperatures such as room temperature, also known as aptamer, often increases DNA amplification efficiency and suppresses non-specific PCR product amplification or primer dimer formation. However, when they are added, it is difficult to increase the allele differentiation.
  • an AS primer or an ARMS primer When an AS primer or an ARMS primer is used to distinguish an allele through the presence or absence of a 3' mismatch according to the mutation sequence of the allele, it is widely adopted because the allele differentiation is improved.
  • AS primers with one base mismatch the allele differentiation is often low compared to high PCR efficiency, and for ARMS primers with two or more base mismatches, the allele differentiation is lower than using AS primers.
  • the limit of detection (LOD) is frequently lowered.
  • mutant sequence can be increased by using a mutant DNA polymerase having improved 3' mismatch and match discrimination.
  • mutant DNA polymerases often have reduced enzyme activity and thus reduced detection sensitivity.
  • An object of the present invention is a PCR buffer composition capable of increasing the differentiation and/or specificity of detection of sequences such as alleles or mutations by increasing the differentiation according to 3' mismatch or match of primers to alleles, or To provide a PCR method using the composition.
  • the present inventors propose a PCR buffer containing an oligonucleotide that forms a double helix in a PCR buffer, that is, a discrimination boosting oligonucleotide ("dbOligo"), and a PCR method using the same.
  • dbOligo discrimination boosting oligonucleotide
  • a PCR reaction occurs despite a mismatch at the 3' end of the primer when performing conventional AS-PCR or ARMS-PCR. This is because, despite the 3' mismatch of the DNA polymerase used in the PCR reaction, the next step of dNTP addition by the DNA polymerase occurs, and the synthesized DNA is matched with the primer from the next PCR cycle by resolving the mismatch. Because synthesis is made, PCR is often performed even in the case of mismatch.
  • the distinction between the two genes can be maximized only when the PCR process is suppressed in a situation where the base at the 3' end of the primer with respect to the template is mismatched at the beginning of the PCR reaction.
  • the reason that PCR proceeds frequently despite the 3' mismatch is that an excessive amount of DNA polymerase (mixed with the abbreviation "DNAP") is initially input for efficient PCR, so errors in the reaction occur frequently.
  • DNAP DNA polymerase
  • the present inventors focused on a method of including a composition that allows the DNA polymerase to be appropriately used in the polymerization reaction in the PCR reaction solution in the PCR solution, PCR kit, or PCR reaction mixture.
  • a composition capable of reversibly binding to a DNA polymerase preferably a nucleic acid, protein, or other organic compound, may be added to the PCR solution, PCR kit or PCR reaction mixture. More preferably, a substance that does not inhibit the activity of DNA polymerase during the PCR reaction may be included. Proteins capable of binding to DNA polymerase may be DNA Mimic Proteins (Biochemistry 53, 2865-2874 (2014)). Nucleic acids capable of binding to DNA polymerase include double-stranded proteins. forming oligonucleotides, and more preferably, double-stranded DNA that readily binds to DNA polymerase may be suitable.
  • the present inventors have prepared a double-stranded oligonucleotide or double-stranded oligonucleotide fragment or double strand having a DNA polymerase and a specific temperature, preferably Tm (melting temperature) higher than the lowest temperature (annealing temperature) in the PCR reaction step.
  • Tm melting temperature
  • annealing temperature the lowest temperature
  • (C) one or two or more types of differentiation enhancing oligonucleotides that are not complementary to the template, the forward primer and the reverse primer, are capable of reversible binding to the DNA polymerase, and form a double-stranded part or whole; It relates to a PCR kit for detecting mutations in a target DNA sequence, including.
  • the present invention also relates to a PCR kit for detecting mutations, further comprising (d) one or more templates comprising a target DNA sequence having a potential mutation site.
  • the present invention relates to a PCR kit for detecting a mutation in which the first base of the 3' end of the forward primer corresponds to a potential mutation site of a target DNA sequence.
  • the present invention relates to a PCR kit for detecting mutations, wherein the forward primer is an allele specific (AS) primer or an amplification refractory mutation system (ARMS) primer.
  • AS allele specific
  • ARMS amplification refractory mutation system
  • the present invention provides that the differentiation enhancing oligonucleotide (dbOligo) is partially or fully complementary to a DNA double-stranded, RNA/DNA hybrid double-stranded, double-stranded oligonucleotide, or partially or fully capable of forming a DNA double-stranded.
  • the differentiation enhancing oligonucleotide enhances differentiation between mutations such as SNPs or somatic mutations while hardly inhibiting the PCR reaction during the PCR reaction.
  • the partially or fully complementary oligonucleotide single strands or single strands capable of forming a partially or fully double stranded in the differentiation enhancing oligonucleotide may be self-complementary single stranded, or two
  • the oligonucleotides may be single strands comprising a partially or wholly complementary sequence of the above.
  • the present invention relates to a PCR kit for detecting mutations, characterized in that the differentiation enhancing oligonucleotide is an arbitrary sequence.
  • the present invention relates to a PCR kit for detecting a mutation, characterized in that the mutation of the target DNA sequence is a single nucleotide polymorphism.
  • the present invention relates to a PCR kit for detecting mutations, wherein the DNA polymerase is a heat-resistant DNA polymerase.
  • the present invention relates to a PCR kit for detecting a mutation in which the DNA polymerase is a wild-type or mutant DNA polymerase.
  • the present invention provides a differentiation enhancing oligonucleotide, wherein the oligonucleotide is 10 bases or more and 100 bases or less, or 10 bases or more 90 bases or less, or 10 bases or more 80 bases or less, or 10 bases or more and 70 bases or less, or 10 bases or more and 60 bases or less, Preferably, it relates to a PCR kit for mutation detection that is 15 bases or more and 50 bases or less, or 15 bases or more and 40 bases or less, or 15 bases or more and 30 bases or less.
  • the oligonucleotide is less than 10 bases or more than 100 bases, the effect of improving allele differentiation is not significant.
  • the present invention relates to a PCR kit for detecting a mutation in which the Tm value of the differentiation enhancing oligonucleotide is equal to or higher than the annealing temperature of the PCR reaction.
  • the Tm value of the differentiation enhancing oligonucleotide is lower than the annealing temperature, the differentiation enhancing effect of the allele is not large.
  • the present invention relates to a PCR kit for detecting a mutation having a Tm value of 50 to 85° C. of the differentiation enhancing oligonucleotide.
  • the Tm value of the oligonucleotide is 50 to 85° C., the effect of improving allele differentiation is excellent.
  • the present invention relates to a method of adding a probe capable of transferring fluorescence resonance energy as a probe to the template, a method of adding a substance binding to amplified nucleic acids such as SYBR Green I, or a method of confirming an amplification product through general electrophoresis. It relates to a PCR kit or method of choosing one.
  • the present invention relates to a PCR kit for detecting mutations further comprising a probe capable of transferring fluorescence resonance energy as a probe for the template, such as a probe modified with a reporter and a quencher, capable of transferring fluorescence resonance energy.
  • the present invention relates to a PCR kit for detecting mutations further comprising a substance binding to an amplification product, such as SYBR Green I.
  • It relates to a method of detecting a gene mutation further comprising: d) determining whether the target DNA sequence contains the mutation from the amplification curve obtained in c).
  • the present invention relates to a method for detecting a gene mutation, further providing a probe for the template in step a) or step b).
  • the present invention relates to a method for detecting a gene mutation, further comprising a substance that binds to an amplification product such as SYBR Green I in step a) or step b).
  • the present invention relates to a method for detecting a gene mutation, wherein the first base of the 3' end of the forward primer corresponds to a potential mutation site of a target DNA sequence.
  • the present invention relates to a method for detecting a gene mutation, wherein the forward primer is an allele specific (AS) primer or an amplification refractory mutation system (ARMS) primer.
  • AS allele specific
  • ARMS amplification refractory mutation system
  • the differentiation enhancing oligonucleotide is a DNA double-stranded, RNA/DNA hybrid double-stranded, double-stranded oligonucleotide, or a partially or fully complementary oligonucleotide capable of forming a DNA double-stranded partially or fully.
  • the present invention relates to a method for detecting a gene mutation, characterized in that the differentiation enhancing oligonucleotide is of any sequence.
  • the present invention also relates to a method for detecting a gene mutation, wherein the mutation is a single nucleotide polymorphism.
  • the present invention relates to a method for detecting a gene mutation, wherein the DNA polymerase is a thermostable DNA polymerase.
  • the present invention relates to a method for detecting a gene mutation, wherein the DNA polymerase is a wild-type or mutant DNA polymerase.
  • the DNA polymerase is a wild-type or mutant DNA polymerase.
  • mutant DNA polymerases in which some amino acids of the DNA polymerase are substituted, deleted, and/or inserted are being developed. Even when such a mutant DNA polymerase is used, the differentiation of alleles is further improved by adding the differentiation enhancing oligonucleotide of the present invention.
  • the present invention provides a differentiation enhancing oligonucleotide, wherein the oligonucleotide is 10 bases or more and 100 bases or less, or 10 bases or more 90 bases or less, or 10 bases or more 80 bases or less, or 10 bases or more and 70 bases or less, or 10 bases or more and 60 bases or less, It relates to a method for detecting a gene mutation, preferably 15 bases or more and 50 bases or less, or 15 bases or more and 40 bases or less, or 15 bases or more and 30 bases or less.
  • the present invention relates to a method for detecting a gene mutation, wherein the Tm value of the differentiation enhancing oligonucleotide is equal to or higher than the annealing temperature of the polymerase chain reaction.
  • the present invention relates to a method for detecting a gene mutation, wherein the Tm value of the differentiation enhancing oligonucleotide is 50 to 85 °C.
  • the present invention relates to a method of adding a probe capable of transferring fluorescence resonance energy as a probe to the template, a method of adding a substance binding to amplified nucleic acids such as SYBR Green I, or a method of confirming an amplification product through general electrophoresis. It relates to a PCR kit or method of choosing one.
  • the specificity and sensitivity of the polymerase chain reaction used for detection of minor alleles such as single nucleotide polymorphism or somatic mutation can be significantly increased. That is, when the differentiation enhancing oligonucleotide is added to the PCR solution, when the base at the 3' end of the primer is non-complementary to the template, PCR amplification is suppressed, and when it is complementary, PCR amplification is enhanced, and when the differentiation enhancing oligonucleotide is not added Compared with , the specificity and sensitivity are significantly improved.
  • the PCR kit or method for adding the differentiation enhancing oligonucleotide of the present invention significantly improves specificity and sensitivity not only in real-time PCR but also in general PCR.
  • the PCR kit or method for adding the differentiation enhancing oligonucleotide of the present invention uses a material capable of detecting an amplification product in addition to a hydrolysis probe that emits a fluorescence signal. The presence and amplification of complementary or non-complementary mutation sites can be easily checked.
  • kit or method of the present invention when used, it is easy to detect alleles in a sample in which a small amount of a variety of varieties is mixed.
  • kit or method of the present invention it is easy to detect a mutant gene in a sample containing a trace amount of mutation.
  • FIG. 1 is a conceptual diagram showing the kinetics of a PCR reaction according to the addition of a differentiation enhancing oligonucleotide ("dbOligo") (I) and an amplification curve (II) of AS-PCR obtained with or without dbOligo addition.
  • dbOligo differentiation enhancing oligonucleotide
  • II amplification curve
  • K cat1 , K 1 , and K -1 Reaction constants of enzymes for each indicated step when using the 3' end match primer of dbOligo-free (A),
  • K cat1d , K 1d and K -1d the reaction constant of the enzyme for each indicated step when using the 3' end match primer of the dbOligo addition (B),
  • K cat2 , K 2 , and K -2 reaction constants of enzymes for each indicated step when using the 3' end mismatch primer of dbOligo-free (A),
  • K cat2d, 2d K and K -2d 3 'terminal mismatch primers using the reaction constant of each step of the enzymes shown dbOligo impregnated furniture (B).
  • dbOligo added during the reaction was SEQ ID NO: 14 and 15, respectively, 20 pmol was added or not added (Test No. 1).
  • the specific amplification ratio is calculated as 2 ⁇ Ct,
  • Specific amplification ratio amplification of 3' matched DNA/amplification of 3' mismatched DNA.
  • 2 is amplification curves showing the differentiation of allele-specific PCR according to the amount of dbOligo added.
  • the added dbOligo has the sequence of SEQ ID NO: 13, and the amounts added are 0, 10, 20, 40, 60, and 80 pmol, respectively.
  • 3 is amplification curves showing the effect of dbOligo on an improved taq DNA polymerase and a wild-type taq DNA polymerase.
  • the added dbOligo shows the sequence of SEQ ID NO: 13, and the amount added is 40 pmol each.
  • Wt-Taq wild-type Taq DNA polymerase
  • Mut-Taq an improved form (R536K mutation) Taq DNA polymerase
  • base refers to a natural or synthetic base or a base analog or base derivative, including purine, pyrimidine, or modified forms thereof, typically adenine, guanine, cytosine, uracil or thymine, etc. , but is not limited thereto.
  • nucleotide is a unit molecule constituting a nucleic acid, which is composed of a sugar, a base, and phosphoric acid, the sugar is ribose or deoxyribose, the base is linked to the C-1' carbon of the sugar, and the C-5' carbon of the sugar It is a compound in which phosphoric acid is linked to
  • nucleotide includes nucleotide analogues. Sugars may be substituted or unsubstituted with other structural analogs. Nucleic acid analogues composed of such compounds may include, but are not limited to, phosphorothioate DNA, peptide nucleic acid (PNA), phosphoramidate DNA, morpholino, and locked nucleic acid (LNA).
  • nucleic acid deoxyribonucleic acid, ribonucleic acid, phosphothioate-containing nucleic acid, LNA (Locked nucleic acid), PNA (peptide nucleic acid) acid
  • LNA Locked nucleic acid
  • PNA peptide nucleic acid
  • oligonucleotide means a short polynucleotide.
  • An oligonucleotide refers to no more than about 250 nucleotides, or no more than about 200 nucleotides, or no more than about 100 nucleotides.
  • oligonucleotide may include an oligonucleotide whose structure is modified.
  • Modification means modification of base (eg, purine analogue, pyrimidine analogue, inverted base, methylated analogue, fluoro analogue, etc.), modification of the binding region of the nucleoside (linker) (eg, amino (NH2) linker, carboxyl linker) , thiol (SH) linker, etc.), modification of a phosphate group and/or modification of the 5'-end or 3'-end or internal base of the oligonucleotide, or a combination of these modifications.
  • base eg, purine analogue, pyrimidine analogue, inverted base, methylated analogue, fluoro analogue, etc.
  • modification of the binding region of the nucleoside (linker) eg, amino (NH2) linker, carboxyl linker
  • thiol (SH) linker e.g
  • template means “template nucleic acid”, and refers to a nucleic acid used as a template for amplification in a PCR reaction.
  • a “template” may include both naturally occurring, naturally occurring or synthetic.
  • target refers to a nucleic acid of a template to be analyzed.
  • the PCR buffer may contain non-essential additive compositions such as DMSO, betaine, aptamer or antibody in addition to essential elements such as Mg ++ and dNTP.
  • non-essential additive compositions such as DMSO, betaine, aptamer or antibody in addition to essential elements such as Mg ++ and dNTP.
  • PCR using a primer that distinguishes two alleles according to 3' mismatch is performed with DNA double-stranded, RNA/DNA hybrid double-stranded, double-stranded oligonucleotide, or partially or a partially or fully complementary oligonucleotide single strand capable of forming a DNA double strand wholly, a partially or fully complementary oligonucleotide single strand capable of forming a partially or fully DNA/RNA hybrid double stranded, partially or Differentiation enhancing oligonucleotides, such as one or more of a partially or fully complementary oligonucleotide single strand capable of forming an entirely double stranded oligonucleotide and one or more of an oligonucleotide capable of partially or fully forming a hairpin double stranded oligonucleotide, are mixed in PCR buffer By adding it as a composition, the all
  • the differentiation enhancing oligonucleotide added during the PCR reaction is partially or completely complementary using, for example, psoralen or a compound having a similar structure, or a chemical linker (eg, disulfied linker, bismalemide linker, etc.).
  • a chemical linker eg, disulfied linker, bismalemide linker, etc.
  • the most preferred example is to easily form a double strand by constructing a complementary sequence within a single stranded oligonucleotide. This is because it is easier to form a double strand when a single-stranded oligonucleotide that is not dispersed in a buffer has a partially or fully self-complementary sequence than when two strands having partially or wholly complementary sequences are separated. . Therefore, it is more advantageous to achieve the object of the present invention to easily form a double strand by a chemical method or a method for allowing the complementary sequence to exist in a single strand so that the two complementary sequences are not physically separated.
  • the differentiation enhancing oligonucleotide may differ in binding force to DNA polymerase depending on the sequence of the nucleotide sequence constituting it, the type or length of the nucleic acid, but in the present invention, a specific nucleotide sequence, a specific It is not limited to a nucleic acid type or a specific range of oligonucleotide lengths.
  • the purpose of the present invention may not be achieved by interfering with double strand formation or causing non-specific double strand formation during the PCR process.
  • the length of the complementary sequence forming the double strand is preferably 10 bases or more, more preferably 15 to 50 bases, but the complementary sequence and the type of nucleic acid are not limited to a specific sequence or a specific nucleic acid.
  • the differentiation enhancing oligonucleotide included in the PCR reaction solution composition is 0.01 to 1,000 pnol, or 0.1 to 500 pmol, or 0.1 to 400 pmol, or 0.1 to 300 pmol, in 20 ul of the PCR reaction solution, Or 0.1-200 pmol, or 0.1-100 pmol, or 1-80 pmol is preferable.
  • the amount of the differentiation enhancing oligonucleotide may vary depending on the sequence of the gene to be detected, the sample, and the conditions of PCR, and is not limited to a specific concentration.
  • the present invention is applicable to PCR using a DNA polymerase, preferably polymerase group A ( E. coli Pol I series) can be applied to PCR.
  • the polymerase is heat-resistant bacterium, preferably a heat-resistant eubacteria (eubacteria) may be selected from DNA polymerase-derived, still more preferably sseomeoseu (Thermus) species, Motor the (Thermotoga) species, Thermococcus Rhodococcus (Thermococcus) written species, Deinococcus species, Bacillus ( Bacillus ) It may be selected from DNA polymerases derived from species, etc.
  • the melting point (Tm) of the double-stranded region of the added differentiation enhancing oligonucleotide is higher than the general PCR annealing temperature.
  • Tm melting point
  • the nucleotide sequence of the differentiation enhancing oligonucleotide used in the present invention is configured such that the Tm of the double-stranded region is higher than the general PCR annealing temperature.
  • the effect of the present invention can be explained by the mechanism as shown in FIG. 1 .
  • This mechanism is for a more accurate understanding of the invention, and may not completely explain the entire invention. However, even if the description of the mechanism of the present invention is not complete, the effect of the present invention should not be denied for this reason.
  • 3'-matched and 3'-mismatched cases are divided into two, respectively, (A) shows that the differentiation enhancing oligonucleotide (dbOligo) was not added during the PCR reaction, and (B) shows dbOligo during the PCR reaction indicates that is added.
  • dbOligo differentiation enhancing oligonucleotide
  • DNAP refers to a DNA polymerase
  • dbOligo refers to an oligonucleotide of unspecified sequence that is added in a double-stranded state or forms a double-stranded in a reaction solution.
  • K 1 ", K -1 " refer to the forward and reverse kinetic coefficients in a state in which dbOligo is not added in the reaction and the 3' end of the primer matches the template, respectively
  • K 1d denotes forward and reverse kinetic coefficients in a state in which dbOligo is added during each reaction and the 3' end of the primer matches the template.
  • K 2 refers to the forward and reverse kinetic coefficients in a state in which dbOligo is not added in the reaction and the 3' end of the primer does not match the template
  • K 2d refers to the forward and reverse kinetic coefficients in a state in which dbOligo is added in each reaction and the 3' end of the primer does not match the template.
  • DNAP DNA polymerase
  • P primer
  • 3' matching template DNA 3' mismatched template DNA
  • various factors such as hybrids (P/T 1 or P/T 2 ), DNA polymerase (DNAP), dNTPs, Mg ++ , and PPi of "T 2 ") are involved in enzyme kinetics.
  • K cat appears very differently depending on the 3' match (DNAP ⁇ P/T 1 ) or 3' mismatch (DNAP ⁇ P/T 2 ).
  • DNAP ⁇ P/T 1 3' match
  • DNAP ⁇ P/T 2 3' mismatch
  • K cat /Km is approximately 100 to 1000 times higher in the case of a 3' match than in the case of a mismatch of the 3' end of the primer. This is because, in the case of 3' mismatch, K cat is very low (about 10 times to about 600 times) and Km is slightly increased (up to about 3 times).
  • K cat2 and K cat2d are almost similar to each other (K cat2 and K cat2d, even if the value is lower than K cat1 or K cat1d, as in the case of 3' match with or without dbOligo addition) cat2 ⁇ K cat2d ⁇ K cat1 ⁇ K cat1d ) was predicted to happen.
  • polymerization reaction was significantly reduced when dbOligo was added (3'-mismatched (B) in FIG. 1), contrary to expectations.
  • the amplification curve can be clearly distinguished in the real-time PCR reaction depending on the purpose of the present invention, that is, whether 3' matches between alleles or mutant genes.
  • the present inventors conducted PCR to increase the differentiation of alleles or mutants by adding a discrimination boosting oligonucleotide (dbOligo) to "STexS ( SNP Typing with excellent specificity )" PCR.
  • dbOligo discrimination boosting oligonucleotide
  • PCR compositions and conditions used in Examples of the present invention are as follows.
  • Table 1 shows normal target template DNA or mutant target template DNA, forward primer, reverse primer, and hydrolysis probe for signal detection used in PCR.
  • the forward primer is each target gene EGFR c.2369 C>T (p.T790M); EGFR c.2573 T>G (p.L858R) and BRAF c.1799 rc.
  • A>T p.V600E
  • the enzyme As the enzyme, 2 units (0.05 ⁇ 0.08 uM) of Taq DNA polymerase (GenoTech) were used, and buffer (10 mM Tris, pH 9.0, 1.5 mM MgCl 2 , 60 mM KCl, 10 mM (NH 4 ) 2 SO 4 ) was carried out such that the total volume was 20 ul, and the reaction was performed by repeating 45 times at 95 °C for 30 seconds and 40 seconds at 55 °C after a reaction at 95 °C for 5 minutes using the ABI 7500 Real-Time PCR System. All tests reported the average of 3 replicates.
  • buffer 10 mM Tris, pH 9.0, 1.5 mM MgCl 2 , 60 mM KCl, 10 mM (NH 4 ) 2 SO 4
  • dbOligo single-stranded DNA (SD), double-stranded DNA with complementary sequences (DD), and single-stranded DNA with complementary sequences.
  • hairpin DNA; HD was added from 1 to 80 pmol according to the test (Tables 2, 3, 4).
  • the template DNA was prepared by artificially synthesizing the sequences of SEQ ID NOs: 44, 45, 46, 47, 48, 49 and inserting them into pTOP Blunt V2 (Enzynomics, Korea), transformed into E. coli, cultured, cut with appropriate restriction enzymes, and purified Plasmid DNA was quantified and used.
  • Target sequence EGFR c.2369 C>T (p.T790M)
  • Item SEQ ID NO: usage remark normal mold 44 1 x 10 7 copies mutant template 45 1 x 10 7 copies forward primer
  • One 20 pmol reverse primer 7 20 pmol hydrolysis probe 10
  • 10 pmol double cover (dual labelled)
  • Target sequence EGFR c.2573 T>G (p.L858R)
  • Item SEQ ID NO: usage remark normal mold 48 1 x 10 7 copies mutant template 49 1 x 10 7 copies forward primer 6
  • 20 pmol reverse primer 9 20 pmol hydrolysis probe 12 10 pmol double cover
  • ⁇ Ct1 Ct of mutant gene - Ct of normal gene
  • ⁇ Ct2 of 2.46 to 5.99 and ⁇ Ct of 0.30 to 3.51 were confirmed in both tests in which hairpin DNA (HD), which has a complementary nucleotide sequence in one strand and forms a double strand, was confirmed, similar to DD, a high differentiation improvement effect (Test No. 1 (SEQ ID NO: 16), Test No. 5 (SEQ ID NO: 16, 27, 13, 28, 29, 30, 31)) (Table 2).
  • test number dbOligo ⁇ Ct (Mutant Ct -Wild type Ct)*** ⁇ Ct ( ⁇ Ct2 - ⁇ Ct1) SEQ ID NO: Type, * Duplex no, ** T *** usage (pmol) ⁇ Ct1 # ⁇ Ct2 ##
  • DD 14/15 DD, 24, 68 20 2.23 6.79 4.56 16 HD, 24, 68 5.74 3.51 2 17/18 DD, 20, 64 20 1.48 3.04 1.56 19/20 DD, 22, 66 5.31 3.83 14/15 DD, 24, 68 4.57 3.09 21/22 DD, 26, 71 4.02 2.54 23/24 DD, 28, 72 5.66 4.18 25/26 DD, 30, 74 5.70 4.22 3 25/26 DD, 30, 74 10 1.57 4.58 3.01 20 5.67 4.10 40 7.26 5.69 60 8.26 6.69 80 15.07 13.5 4 25/26 DD, 30, 74 20 2.08 5.66 3.58 25 SD, 30, - 2.82 0.74 26 SD, 30, -
  • the differentiation according to the addition amount of the differentiation enhancing oligonucleotide (dbOligo) was tested (Table 2 (Test No. 3, Test No. 6)).
  • dbOligo the differentiation enhancing oligonucleotide
  • the HD type showed less variation due to repeated tests than the DD type, so PCR differentiation was stable.
  • 10 ⁇ 80 pmol was added to the PCR solution, the higher the amount added, the better the differentiation.
  • the maximum ⁇ Ct2 was 15.07, and the ⁇ Ct was 13.5 (Table 2; Test No. 3 (SEQ ID NO: 25/26) and Test No. 6 (SEQ ID NO: 13)) ( FIG. 2 ).
  • ARMS PCR is also a technique designed to improve the discrimination of 3'-mismatches of primers. Therefore, it was confirmed that the discrimination when the double-stranded oligonucleotide was added to PCR using the ARMS primer (Table 3, Test No. 11).
  • EGFR L858R T and G base division template DNA SEQ ID NOs: 46, 47
  • BRAF V600E rc
  • a and T base division template DNA SEQ ID NOs: 48, 49
  • Double-stranded oligonucleotides were added in real-time PCR for ⁇ Ct1 differed depending on the sequence of the template DNA or the type of 3' end base (T790M, 2.20; L858R, 8.14; V600E, 6.75), but ⁇ Ct2 with double-stranded oligonucleotide added was T790M, 4.48; L858R, 10.45; V600E, 11.43, ⁇ Ct is T790M, 2.28; L858R, 2.31; V600E, 4.68.
  • An improved enzyme can be used to increase the 3'-mismatch discrimination of PCR.
  • improvement of 3'-mismatch discrimination was tested using a mutant (R536K) Taq DNA polymerase known to enhance 3'-mismatch discrimination (Table 4, Test No. 13; FIG. 3 ).
  • Wt-Taq wild-type Taq DNA polymerase
  • ⁇ Ct2 8.21
  • ⁇ Ct 4.68.
  • primer 8 ctggctgacc taaagccacc tc r. primer 9 cacctcagat atatttcttc atgaagac probe 10 cggtggaggt gaggcagatg probe 11 taccatgcag aaggaggc probe 12 tagaccaaaa tcacctattt ttactg probe 13 gggacagtcg gaggactcgt aaaaacgag tcctcgact gtccc dbOligo 14 gggacagtcg gaggactcgt ctgg dbOligo 15 ccagacgagt cctcgactg tccc dbOligo 16 gggacagtcg gaggactcgt ctggaaaac cagacgagtc cccgactgt ccc dbOligo 16 ggga
  • the PCR kit or method for adding the differentiation enhancing oligonucleotide of the present invention remarkably improves the specificity and sensitivity not only in real-time PCR but also in general PCR, so that the presence and amplification of complementary or non-complementary mutation sites can be easily confirmed, so a small amount of variety It is easy to detect the allele in this mixed sample, so it is easy to detect the mutant gene in a sample containing a trace amount of mutation, and it can be widely used for genetic testing of agricultural, fishery, livestock products, etc., and for diagnosis in the medical field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 단일염기다형성 (single nucleotide polymorphism) 또는 체세포 돌연변이 (somatic mutation)와 같은 소수 대립유전자를 검출하기 위해서 많이 이용되는 중합효소 연쇄반응 (DNA polymerase chain reaction, PCR)의 특이도와 민감도를 높인 대립유전자 검출 방법 및 킷트에 관한 것이다. 좀 더 자세하게는, 본 발명은 부분적으로 또는 전체적으로 이중 가닥을 형성하는 구분성 증진 올리고뉴클레오타이드를 대립 유전자를 선별적으로 증폭하고자 하는 PCR 용액에 첨가함으로써 프라이머 3' 말단의 염기가 주형과 상보적 (3'-matched)일 때는 PCR 증폭에 영향이 없으나, 비상보적 (3'-mismatched)일 때는 PCR 증폭이 강하게 억제되는 PCR 기반의 단일염기변이 유전자형 분석(SNP genotyping) 및 체세포 돌연변이 검출(somatic mutation detection) 방법 및 킷트에 관한 것이다.

Description

[규칙 제26조에 의한 보정 06.01.2021] 대립 유전자의 구분성을 높이는 PCR 방법 및 PCR 킷트
본 발명은 단일염기다형성 (single nucleotide polymorphism) 또는 체세포 돌연변이 (somatic mutation)와 같은 소수 대립유전자를 검출하기 위해서 많이 이용되는 중합효소 연쇄반응 (DNA polymerase chain reaction, PCR)의 특이도와 민감도를 높인 대립유전자 검출 방법에 관한 것이다. 좀 더 자세하게는, 본 발명은 부분적으로 또는 전체적으로 이중 가닥을 형성하는 구분성 증진 올리고뉴클레오타이드 (discrimination boosting oligonucleotide; 이하 본 발명의 설명 및 도면에서 "dbOligo"와 혼용함)를 대립 유전자를 선별적으로 증폭하고자 하는 PCR 용액에 첨가함으로써 프라이머 3' 말단의 염기가 주형과 상보적 (3'-matched)일 때는 PCR 증폭에 영향이 미미하거나 영향이 없으나, 비상보적 (3'-mismatched)일 때는 PCR 증폭이 강하게 억제되는 PCR 기반의 단일염기변이 유전자형 분석 (SNP genotyping) 및/또는 체세포 돌연변이 검출 (somatic mutation detection) 기술에 관한 것이다.
유전병과 암 등의 질환에 관여하는 유전적 변이 즉, 단일염기 다형성, 부가-결실 등의 유전적 변이를 확인하는 것은 치료의 예측, 치료 방법의 결정, 치료 예후 및 재발의 관찰 등에 있어서 매우 중요하다. 또한, 이러한 유전적 변이 확인 또는 구별은 농·식품 분야에서 종의 육종 및 선별, 원산지 및 품종의 판별 등에 있어서 매우 유용하다.
유전적 변이는 생명체에게 태생적으로 존재하거나 혹은 성장과정 중에 환경적인 또는 내생적인 원인으로 발생할 수 있다. 인체 등의 유전적 변이 형태 중 가장 흔한 것은 단일 염기 다형성 (single nucleotide polymorphism, SNP)이다. 이하 발명의 설명에서 SNPs를 다양한 유전적 변이를 대표하여 예를 들어 설명한다.
인간을 포함하는 생명체가 지닌 SNPs의 판별에 사용되는 기술 방법 중 가장 보편적이며 경제적이고 간편한 방법은 중합효소를 활용한 유전자 증폭기술 즉, PCR (polymerase chain reaction) 기술이며, 특히 PCR 과정에서 실시간으로 그 변이 양을 측정할 수 있는 기술이 정량적 실시간 PCR (quantitative real time PCR; qPCR 또는 실시간 PCR)이다.
핵산의 정량적인 정성 및 정략적인 검출 기법인 실시간 PCR은 보건, 농업, 식품, 환경 등의 다양한 분야에서 응용되고 있다. 1990년 초 개발된 실시간 PCR은 지속적으로 기술적 한계점을 개선하여 좀 더 정확하고 정밀한 기법으로 발전해 오고 있다.
특히, 실시간 PCR을 이용한 유전자 판별 킷트 개발에 있어서 비특이적 신호의 발생, 그리고 돌연변이와 야생형 유전자 서열의 낮은 구분성은 실시간 PCR의 가장 대표적인 기술적 한계로 여겨진다.
특히 암, 감염원인 병원체 검출 등의 진단기술로서 실시간 PCR 기술의 개발을 위해서는 비특이적 신호의 제어가 필수적이다. 비특이적 신호로 인하여 위양성이 나타나는 경우 검사의 신뢰도가 저하가 되며, 특히 극소량의 검출이 필요한 비침습성 액체생검 (liquid biopsy)과 같은 진단 기술에서는 소량의 표적 변이를 정확하게 진단하기 위하여 PCR 효율성의 증대와 특이성 (specificity)을 높이는 기술이 매우 필요하다. PCR의 효율성과 특이성을 높이기 위해 PCR 용액에 첨가하는 조성물을 개발하거나, 특별한 프로브 (probes) 또는 프라이머 (primers)를 고안하거나, 효소를 개량하는 방법이 모색되어 왔다.
PCR의 효율성과 특이성을 높이기 위한 방법들을 예시하면 아래와 같다.
가. PCR 용액 첨가 조성물
PCR 용액에 첨가하는 조성물로는 주로 PCR의 반응성을 높이거나 프라이머 다이머 (primer dimers)의 생성, 또는 사용하는 프라이머가 비특이적 표적에 결합하여 생성되는 비특이적 PCR 산물의 생성, 또는 높은 GC 비율 및 특이 고차구조 형성에 등에 의한 PCR 효율의 감소를 해소하는 용도의 첨가 조성물이 연구되어 왔다. 이러한 조성물로는 DMSO (dimethylsulfoxide), 베타인 (betaine) 등이 있다. 그리고, 일명 “HotStart PCR”을 위해 낮은 온도에서 진행되는 반응을 차단하고 고온에서 PCR이 진행되도록 하여 비특이적 증폭을 막는 방법이 다수 보고되었다.
그중 “HotStart PCR” 방법으로는 DNA 중합효소 (DNA polymerase, DNAP) 특이적 단일클론 항체를 첨가하는 방법 {Biotechniques (1994) 16(6):1134-1137}, DNA 중합효소의 활성을 억제하는 단일 가닥 올리고뉴클레오타이드인 일명 “앱타머 (aptamer)”를 첨가하는 방법 {US/005693502A (1997); J. Mol. Biol. 271:100-111 (1997); Nucleic Acids Research Supplement No.3: 309-310 (2003)}, 또는 DNA 중합효소와 낮은 온도에서 결합능력을 지니며, DNA 중합효소의 활성을 억제하나, 특정온도 이상의 PCR 조건에서는 이중나선을 형성하지 아니하여 DNA 중합효소 활성을 억제하지 않는 이중 가닥 뉴클레오타이드를 사용하여 비특이적 DNA 합성을 억제하는 방법 {J. Mol Biol. 264(2):268-278 (1996); US 8,043,816 B2 (2011)}이 알려져 있다.
나. 효소의 개량
비특이적인 신호를 억제하거나 또는 대립 유전자의 구분성을 높이는 PCR에 용이하게 사용하기 위한 DNA 중합효소 개발도 다수 이루어졌다. PCR 기술에는 내열성 DNA 중합효소를 사용하는 것이 일반적이다. DNA 중합효소는 7가지 이상의 군 (family)으로 구분되지만 PCR 기술에 이용되는 내열성 중합효소는 A군에 속하는 Taq DNA 중합효소를 비롯한 내열성 세균 유래 효소군과 B군에 속하는 Pfu DNA 중합효소를 비롯한 고세균 유래 효소군에서 주로 선택된다.
그 중 Taq DNA 중합효소가 속하는 군에는 5'→3' 뉴클레이즈 (엑소뉴클레이즈 및 엔도뉴클레이즈 활성을 모두 가짐, 플랩 엔도뉴클레이즈 또는 FEN1이라고도 함) 활성이 존재하는 것이 일반적이며, 이 활성은 가수분해 프로브 (TaqMan probe)의 분해를 통한 특이 신호 (specific signal)의 방출에 매우 중요하다. Taq DNA 중합효소는 3'→5' 엑소뉴클레이즈 활성이 없으므로 3' 최종 말단이 주형 DNA와 비상보적인 프라이머를 사용하는 PCR에 매우 적합하다. 3' 말단이 비상보적인 AS (allele specific) 프라이머 또는 ARMS (amplification refractory mutation system) 프라이머의 경우 프라이머 3' 염기 (base)의 매치 또는 미스매치에 따라 돌연변이와 야생형 또는 두 대립 유전자의 증폭 효율이 결정되며 비교적 좋은 임상적 결과를 도출한다. 하지만, 많은 경우 3'이 미스매치된 프라이머의 경우도 일부 증폭되므로 다수의 야생형에 혼입된 돌연변이 검출을 위한 고감도 진단에서 종종 판별 오류의 원인이 된다.
그러므로, 효소의 3' 말단 매치와 미스매치의 구분은 SNP 또는 돌연변이 판별의 특이도를 높이는 데 매우 중요하다. 이에 따라 대립형질 특이 프라이머의 3' 말단 서열의 일치와 불일치를 구별하는 능력이 증대된 중합효소가 보고되었다 {PLos One. 9(5):e96640 (2014); KR 10-2017-0088373 (2017); US 0034879A1 (2013); WO 082449A2 (2015); US 9267120B2 (2016)}.
다. 특별한 프로브와 프라이머를 사용하는 방법
특별한 프로브와 프라이머는 증폭된 표적 산물을 특이적으로 검출하기 위한 것으로, 특이도가 높은 프로브를 사용하는 방법이 개발되었다. SYBR green I 또는 SYTO9와 같은 DNA 결합 형광체를 실시간 PCR에 사용하면 증폭된 산물 전체가 검출되므로 비특이적 신호가 종종 발생하는 문제점이 있다. 이러한 문제를 해결하기 위해 표적 서열 특이적 프로브 (target sequence specific probes)가 개발되었다. 개발된 프로브는 종류에 따라 TaqMan 프로브 (dual labelled signaling hydrolysis probe) {P Natl Acad Sci USA 88, 7276-280 (1991)}와 분자 비콘 (molecular beacons) {Methods. 25, 463-71 (2001)}, 스콜피온 프로브 (scorpion probes) {Nat Biotechnol. 17, 804-07 (1999)}, LUX (light upon extension) 프라이머 {Nucleic acids research. 30, e137 (2002)}, 앰플리플루오르 프라이머 (Amplifluor primers) {BioTechniques. 26, 552-58 (1999)} 등이 있다.
또한, 표적 변이 유전자를 선택적으로 증폭하기 위한 특이도가 높은 프라이머 또는 특수 올리고뉴클레오타이드 블로커 (oligonucleotides blocker)를 사용하는 방법 등이 개발되었다.
특이도가 높은 프라이머를 사용하는 방법으로는 3' 말단 하나의 염기 차이에 의해 구분이 되는 AS-PCR (allele specific PCR)을 중심으로 3' 말단에 변이 서열 하나 외에 추가의 인위적인 변이 서열을 첨가하는 ARMS-PCR (amplification refractory mutation system PCR)과 같은 방법 {Mol Cell Probes. 18. 349-352 (2004); Nucleic Acids Res 17. 2503-2516 (1989); Nat Biotechnol. 17. 804-807 (1999); Cytokine 71, 278-282 (2015)}이 있으며, 최근에는 어닐링의 안정성을 높이면서도 미스매치 구별을 유지하도록 두 개의 부분으로 분리된 프라이머를 사용하는 방법인 Seegene 사의 DPO (dual-priming oligonucleotide) {J. Am. Chem. Soc. 126, 4550-4556 (2004); Biomol. Detect. Quantif. 1 3-7 (2014); J. Clin. Microbiol. 49. 3154-3162 (2011)}와 Swift Biosciences의 myT 프라이머 (http://www.swiftbiosci.com/technology/myt-primers)가 개발되었다.
<선행기술문헌>
<특허문헌>
일본특허공개 2011-41572호 "핵산 합성의 감도 및 특이성 증대를 위한 조성물 및 방법"
미국특허 8,043,816호 "온도-의존적 핵산 합성 조성물 및 방법"
한국특허공개 10-2013-0138700호 "절단가능한 올리고뉴클레오티드 저해제에 의한 DNA 폴리머라제의 제어된 저해 및 재활성화"
<비특허문헌>
Kazunori Ikebukuro et al., Nucleic Acid Research Supplement No.3 309-310 "Screening of DNA Aptamersinhibiting Taq DNA Polymerase using algorithm mimicking evolution"
Yun Lin et al., J. Mol. Biol.(1997) 271, 100-111 "Inhibition of Multiple Thermostable DNA Polymerases by a Heterodimeric Aptamer"
Nick A. Rejali et al., Clinical Chemistry 64:5 000-000 (2018) "The Effect of Single Mismatches on Primer Extension"
Hao-Ching Wang et al., Biochemistry 2014, 53, 2865-2874 "DNA Mimic Proteins: Functions, Structures, and Bioinformatic Analysis"
BioTechniques 28:278-282 (February 2000) "Specificity-Enhanced Hot-Start PCR: Addition of Double-Stranded DNA Fragments Adapted to the Annealing Temperature"
암 진단 등을 위한 임상시료 중 생체 조직, 혈액, 분변, 타액 등의 검체 내 변이 유전자의 검출에는 극소량의 변이 DNA 외에 다수의 야생형 DNA가 혼입되어 있어 돌연변이 DNA를 특이적으로 검출하는 방법은 매우 어렵다. 다수의 야생형에 혼입되어 1% 이하의 극미으로 존재하는 변이를 검출할 수 있는 특이도 (specificity)를 보장할 수 있어야 하며, 임상적 적용을 위해서는 높은 견고성 (robustness)이 있어야 한다. 특히, 야생형 서열에 대한 낮은 위양성 및 돌연변이 서열에 대한 높은 특이도를 보여야 한다. 그러한 이유로, 암진단 등의 고감도 진단에 적합하도록, PCR 효율성과 특이성을 높이기 위해 PCR 용액 첨가 조성물을 개발하거나, 특별한 프로브 및/또는 프라이머를 고안하거나, 효소를 개량하는 방법이 모색되어 왔다.
DMSO, 베타인 등의 증폭효율 증대를 위한 시약, DNA 중합효소 억제용 단일클론 항체, 실온과 같은 낮은 온도에서 DNA 중합효소 활성을 억제하는 올리고핵산, 일명 앱타머의 첨가는 종종 DNA 증폭 효율을 증대하고, 비특이적 PCR 산물 증폭이나 프라이머 다이머 형성을 억제한다. 그러나 이들을 첨가했을 때 대립 유전자의 구분성을 증대시키기는 어렵다.
대립 유전자의 변이 서열에 따른 3' 미스매치 유무를 통해 대립 유전자를 구분할 수 있도록 AS 프라이머 또는 ARMS 프라이머를 사용할 경우 대립 유전자의 구분성이 향상되므로 이를 많이 채택하고 있다. 하나의 염기가 미스매치되는 AS 프라이머를 사용하는 경우 높은 PCR 효율에 비해 종종 대립 유전자의 구분성이 낮으며, 두 개 이상의 염기가 미스매치된 ARMS 프라이머의 경우 AS 프라이머 사용에 비해 대립 유전자의 구분성은 좋아지지만 PCR 증폭 효율이 낮아지므로 빈번하게 검출한계 (LOD; limit of detection)가 저하된다.
또한, 3' 미스매치와 매치의 구분성을 높인 돌연변이 DNA 중합효소를 사용하여 돌연변이 서열의 검출 특이도를 높일 수 있다. 그러나, 돌연변이 DNA 중합효소는 종종 효소 활성이 저하되고 이에 따라 검출 감도도 저하된다.
그러므로, 효율적으로 대립 유전자 또는 돌연변이 서열을 검출 및 진단하기 위해 상기 단점을 극복하는 기술 즉, PCR 효율이 감소하지 않으며, DNA 중합효소의 활성의 감소가 일어나지 않으면서도, 사용하는 프라이머 3' 말단과 주형 DNA 간의 매치와 미스매치의 구분성을 높이는 기술이 필요하다.
본 발명의 목적은 대립 유전자에 대해 프라이머의 3' 미스매치 또는 매치에 따른 구분성을 증대함으로써 대립 유전자 또는 돌연변이와 같은 서열 검출의 구분성 및/또는 특이도를 증대할 수 있는 PCR 완충액 조성물 또는 이 조성물을 이용한 PCR 방법을 제공하는 것이다. 이를 달성하기 위해 본 발명자들은 PCR 완충액에 이중나선을 형성하는 올리고뉴클레오타이드 즉, 구분성 증진 올리고뉴클레오타이드 (discrimination boosting oligonucleotide; "dbOligo")를 포함하는 PCR 완충액 및 이를 이용한 PCR 방법을 제시하고자 한다.
통상의 AS-PCR 또는 ARMS-PCR 수행시 프라이머의 3' 말단에 미스매치가 있음에도 불구하고 PCR 반응이 일어난다. 이는 PCR 반응에 사용되는 DNA 중합효소의 3' 미스매치에도 불구하고 DNA 중합효소에 의한 다음 단계의 dNTP 첨가가 일어나고, 한번 합성된 DNA는 그 다음 PCR 사이클부터는 프라이머와 불일치가 해소되어 매치되므로 원할한 합성이 이루어지게 되어 미스매치의 경우에도 PCR이 종종 이루어진다.
그러므로 PCR 반응 초기에 주형에 대해 프라이머 3' 말단의 염기가 미스매치된 상황에서 PCR 진행이 억제되어야 두 유전자의 구분이 극대화될 수 있다. 3' 미스매치에도 불구하고 PCR이 진행이 빈번한 것은 효율적인 PCR을 위해 과량의 DNA 중합효소 (약자 "DNAP"와 혼용함)를 초기에 투입하기 때문에 반응의 오류가 빈번하게 일어나는 것이다. 초기에 과량의 DNAP 투입은 프라이머 (약자 "P"와 혼용함)가 3' 미스매치 되는 주형 ("T2"와 혼용함) 과 결합 (hybridization)한 DNA (즉, P/T2) 및 DNAP의 기질 효소 복합체 즉 [P/T2·DNAP]의 농도가 높아지고, 이에 따라 빈번한 3' 미스매치 PCR 반응 오류가 일어날 것이다. 초기 효소 투입량을 줄임으로써 빈번한 [DNAP·P/T2] 복합체 형성을 줄일 수 있으나, 이 경우에는 지수적으로 증가하는 PCR 반응 산물의 효율적 증폭을 기대할 수 없다. 또한, 오염방지와 자동화를 위하여 폐쇄 환경 (closed system)을 유지해야 하는 PCR의 특성상 반응 진행과정 중에는 지속적으로 DNA 중합효소를 주입하는 것이 매우 어렵다.
그리하여 본 발명자들은 PCR 반응 용액 내에서 DNA 중합효소가 중합반응에 적절히 사용될 수 있도록 하는 조성물을 PCR 용액, PCR 킷트 또는 PCR 반응 혼합물에 포함시키는 방법에 착안하였다.
PCR 용액, PCR 킷트 또는 PCR 반응 혼합물에는 DNA 중합효소와 가역적인 결합을 할 수 있는 조성물, 바람직하게는 핵산, 단백질, 기타 유기화합물 등을 가할 수 있다. 더욱 바람직하게는 PCR 반응 동안 DNA 중합효소의 활성을 억제하지 않는 물질이 포함될 수 있다. DNA 중합효소와 결합할 수 있는 단백질은 DNA 구조와 유사한 단백질 (DNA Mimic Proteins) (Biochemistry 53, 2865-2874 (2014))이 될 수 있으며, DNA 중합효소와 결합할 수 있는 핵산으로는 이중 가닥을 형성하는 올리고뉴클레오타이드를 들 수 있고, 더욱 바람직하게는 DNA 중합효소에 쉽게 결합하는 이중 가닥 DNA가 적절할 수 있다.
이에 착안하여 본 발명자들은 DNA 중합효소와 특정 온도, 바람직하게는 PCR 반응 단계에서 가장 낮은 온도 (어닐링 온도)보다 높은 Tm (melting temperature)을 가지는 이중 가닥 올리고뉴클레오타이드 또는 이중 가닥 올리고뉴클레오타이드 단편 또는 이중 가닥을 형성할 수 있는 올리고뉴클레오타이드, 즉, 구분성 증진 올리고뉴클레오타이드를 PCR 용액에 포함하는 방법으로 3' 미스매치 PCR시 증폭을 억제하고 이에 따라 대립 유전자 또는 돌연변이 유전자와 정상 유전자의 구분성을 높이는 방법을 발명하였다.
본 발명은
(가) 잠재적 돌연변이 위치를 가진 표적 DNA 서열을 포함하는 하나 이상의 주형에 대한 정방향 프라이머 및 역방향 프라이머;
(나) 상기 주형에 결합하는 상기 정방향 프라이머 및 역방향 프라이머로부터 DNA를 중합하는 DNA 중합효소; 및
(다) 상기 주형, 정방향 프라이머 및 역방향 프라이머와 상보적이지 않으며, 상기 DNA 중합효소와 가역적인 결합이 가능하고, 부분적으로 또는 전체적으로 이중 가닥을 형성하는 1종 또는 2종 이상의 구분성 증진 올리고뉴클레오타이드;를 포함하는, 표적 DNA 서열의 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은 (라) 잠재적 돌연변이 위치를 가진 표적 DNA 서열을 포함하는 하나 이상의 주형을 더 포함하는, 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은 상기 정방향 프라이머 3' 말단의 첫 번째 염기가 표적 DNA 서열의 잠재적 돌연변이 위치와 대응하는 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은 상기 정방향 프라이머가 AS (allele specific) 프라이머 또는 ARMS (amplification refractory mutation system) 프라이머인 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은 상기 구분성 증진 올리고뉴클레오타이드 (dbOligo)가 DNA 이중 가닥, RNA/DNA 하이브리드 이중 가닥, 이중 가닥 올리고뉴클레오타이드, 또는 부분적으로 또는 전체적으로 DNA 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥(들), 부분적으로 또는 전체적으로 DNA/RNA 하이브리드 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥(들), 부분적으로 또는 전체적으로 이중 가닥 올리고뉴클레오타이드를 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥(들) 및 부분적으로 또는 완전하게 헤어핀 이중 가닥을 형성할 수 있는 올리고뉴클레오타이드 중 선택된 하나 이상인 것을 특징으로 하는 돌연변이 검출용 PCR 킷트에 관한 것이다. 상기 구분성 증진 올리고뉴클레오타이드는 PCR 반응시 PCR 반응을 거의 저해하지 않으면서 SNP 또는 체세포 돌연변이와 같은 돌연변이 간 구분성을 증진한다. 상기 구분성 증진 올리고뉴클레오타이드에서 부분적으로 또는 전체적으로 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥 또는 단일 가닥들은 자기-상보적 (self-complementary) 단일 가닥일 수 있으며, 또는 2종 이상의 부분적 또는 전체적으로 상보적인 서열을 포함하는 올리고뉴클레오타이드 단일 가닥들일 수 있다.
또한, 본 발명은 상기 구분성 증진 올리고뉴클레오타이드가 임의의 서열인 것을 특징으로 하는 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은 표적 DNA 서열의 돌연변이가 단일염기 다형성인 것을 특징으로 하는 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은 상기 DNA 중합효소가 내열성 DNA 중합효소인 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은 상기 DNA 중합효소가 야생형 또는 변이형 DNA 중합효소인 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은 구분성 증진 올리고뉴클레오타이드가 10 염기 이상 100 염기 이하, 또는 10 염기 이상 90 염기 이하, 또는 10 염기 이상 80 염기 이하, 또는 10 염기 이상 70 염기 이하, 또는 10 염기 이상 60 염기 이하, 바람직하게는 15 염기 이상 50 염기 이하, 또는 15 염기 이상 40 염기 이하, 또는 15 염기 이상 30 염기 이하인 돌연변이 검출용 PCR 킷트에 관한 것이다. 올리고뉴클레오타이드가 10 염기 미만이거나 100 염기를 초과하는 경우에는 대립 유전자의 구분성 향상 효과가 크지 않다.
또한, 본 발명은 구분성 증진 올리고뉴클레오타이드의 Tm 값이 PCR 반응의 어닐링 온도와 같거나 높은 돌연변이 검출용 PCR 킷트에 관한 것이다. 구분성 증진 올리고뉴클레오타이드의 Tm 값이 어닐링 온도보다 낮은 경우에는 대립 유전자의 구분성 향상 효과가 크지 않다.
또한, 본 발명은 구분성 증진 올리고뉴클레오타이드의 Tm 값이 50 ~ 85℃인 돌연변이 검출용 PCR 킷트에 관한 것이다. 올리고뉴클레오타이드의 Tm 값이 50 ~ 85℃인 경우에 대립 유전자의 구분성 향상 효과가 우수하다.
또한, 본 발명은 상기 주형에 대한 프로브로서 형광 공명 에너지 전이가 가능한 프로를 가하는 방법 또는 SYBR Green I과 같은 증폭 핵산에 결합하는 물질을 첨가하는 방법 또는 일반적인 전기영동을 통해 증폭 산물을 확인하는 방법 중 하나를 택하는 PCR 킷트 또는 방법에 관한 것이다.
또한, 본 발명은 상기 주형에 대한 프로브로서 형광 공명 에너지 전이가 가능한 프로브, 예컨대 형광 공명에너지 전이가 가능한, 리포터와 퀀처로 수식된 프로브를 더 포함하는 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은 SYBR Green I 등과 같이 증폭 산물에 결합하는 물질을 더 포함하는 돌연변이 검출용 PCR 킷트에 관한 것이다.
또한, 본 발명은
가) 잠재적 돌연변이 위치를 가진 표적 DNA 서열을 포함하는 주형과, 상기 주형에 결합하는 정방향 프라이머와 역방향 프라이머, 상기 주형, 정방향 프라이머 및 역방향 프라이머와 상보적이지 않으며, 상기 DNA 중합효소와 가역적인 결합이 가능하고, 중합효소 연쇄반응 동안 DNA 중합효소의 활성을 거의 억제하지 않거나 전혀 억제하지 않는 구분성 증진 올리고뉴클레오타이드 및 DNA 중합효소를 제공하는 단계; 및
나) 상기 주형, 상기 정방향 프라이머, 상기 역방향 프라이버, 상기 DNA 중합효소 및 상기 구분성 증진 올리고뉴클레오타이드 존재 하에 상기 DNA 중합효소를 이용하여 중합효소 연쇄반응을 수행하는 단계; 및
다) 상기 나)의 반응으로부터 증폭 곡선을 얻는 단계;를 포함를 포함하는 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은
라) 상기 다)에서 얻은 증폭 곡선으로부터 상기 표적 DNA 서열이 돌연변이를 포함하는지를 판별하는 단계:를 더 포함하는 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 가) 단계 또는 나) 단계에서 상기 주형에 대한 프로브를 더 제공하는, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 가) 단계 또는 나) 단계에서 SYBR Green I과 같이 증폭 산물에 결합하는 물질을 더 포함하는, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 정방향 프라이머 3' 말단의 첫 번째 염기가 표적 DNA 서열의 잠재적 돌연변이 위치와 대응하는, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 정방향 프라이머가 AS (allele specific) 프라이머 또는 ARMS (amplification refractory mutation system) 프라이머인, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 구분성 증진 올리고뉴클레오타이드가 DNA 이중 가닥, RNA/DNA 하이브리드 이중 가닥, 이중 가닥 올리고뉴클레오타이드, 또는 부분적으로 또는 전체적으로 DNA 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥, 부분적으로 또는 전체적으로 DNA/RNA 하이브리드 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥, 부분적으로 또는 전체적으로 이중 가닥 올리고뉴클레오타이드를 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥 및 부분적으로 또는 완전하게 헤어핀 이중 가닥을 형성할 수 있는 올리고뉴클레오타이드 중 1종 이상인 것을 특징으로 하는, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 구분성 증진 올리고뉴클레오타이드가 임의의 서열인 것을 특징으로 하는, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 돌연변이가 단일염기 다형성인, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 DNA 중합효소가 내열성 DNA 중합효소인, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 DNA 중합효소가 야생형 또는 변이형 DNA 중합효소인, 유전자 돌연변이를 검출하는 방법에 관한 것이다. PCR을 통한 대립 유전자의 구분성을 높이기 위해 DNA 중합효소의 일부 아미노산을 치환, 결실 및/또는 삽입한 변이형 DNA 중합효소가 개발되고 있다. 이와 같은 변이형 DNA 중합효소를 사용하는 경우에도 본 발명의 구분성 증진 올리고뉴클레오타이드를 가하면 대립 유전자의 구분성이 더욱 향상된다.
또한, 본 발명은 구분성 증진 올리고뉴클레오타이드가 10 염기 이상 100 염기 이하, 또는 10 염기 이상 90 염기 이하, 또는 10 염기 이상 80 염기 이하, 또는 10 염기 이상 70 염기 이하, 또는 10 염기 이상 60 염기 이하, 바람직하게는 15 염기 이상 50 염기 이하, 또는 15 염기 이상 40 염기 이하, 또는 15 염기 이상 30 염기 이하인, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 구분성 증진 올리고뉴클레오타이드의 Tm 값이 중합효소 연쇄반응의 어닐링 온도와 같거나 높은, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 구분성 증진 올리고뉴클레오타이드의 Tm 값이 50 ~ 85℃인, 유전자 돌연변이를 검출하는 방법에 관한 것이다.
또한, 본 발명은 상기 주형에 대한 프로브로서 형광 공명 에너지 전이가 가능한 프로를 가하는 방법 또는 SYBR Green I과 같은 증폭 핵산에 결합하는 물질을 첨가하는 방법 또는 일반적인 전기영동을 통해 증폭 산물을 확인하는 방법 중 하나를 택하는 PCR 킷트 또는 방법에 관한 것이다.
본 발명의 킷트 또는 방법에 따르면, 단일염기다형성 (single nucleotide polymorphism) 또는 체세포 돌연변이 (somatic mutation)와 같은 소수 대립 유전자 검출에 이용되는 중합효소 연쇄반응의 특이도 및 민감도를 현저히 높일 수 있다. 즉, 구분성 증진 올리고뉴클레오타이드를 PCR 용액에 첨가하였을 때 프라이머 3' 말단의 염기가 주형과 비상보적일 때는 PCR 증폭이 억제되고, 상보적일 때는 PCR 증폭이 강화되어 구분성 증진 올리고뉴클레오타이드를 가하지 않았을 때와 비교하여 특이도와 민감도가 현저히 향상된다.
본 발명의 구분성 증진 올리고뉴클레오타이드를 부가하는 PCR 킷트 또는 방법은 실시간 PCR뿐만 아니라 일반 PCR에서도 특이도와 민감도를 현저히 향상시킨다.
본 발명의 구분성 증진 올리고뉴클레오타이드를 부가하는 PCR 킷트 또는 방법은 형광 신호를 내는 가수분해 프로브 외에도 증폭 산물을 탐지할 수 있는 물질을 이용하는 등의 수단으로 상보적 또는 비상보적 변이 위치의 존재 및 증폭 여부를 쉽게 확인할 수 있다.
따라서, 본 발명의 킷트 또는 방법을 이용하면, 소량 다품종이 혼합된 시료 중의 대립 유전자 검출이 용이하다.
또한, 본 발명의 킷트 또는 방법을 이용하면, 미량의 돌연변이를 포함하는 시료 중의 돌연변이 유전자 검출이 용이하다.
도 1은 구분성 증진 올리고뉴클레오타이드 ("dbOligo") 첨가에 따른 PCR 반응의 동역학을 나타내는 개념도 (I) 및 dbOligo 첨가 유무에 따라 얻어진 AS-PCR의 증폭 곡선 (II)이다.
(A), dbOligo 무첨가구 AS-PCR; (B), dbOligo 첨가구 AS-PCR
Kcat1, K1 및 K-1: dbOligo 무첨가구 (A)의 3' 말단 매치 프라이머 사용시 각 표시된 단계별 효소의 반응상수,
Kcat1d, K1d 및 K-1d: dbOligo 첨가구 (B)의 3' 말단 매치 프라이머 사용시 각 표시된 단계별 효소의 반응상수,
Kcat2, K2 및 K-2: dbOligo 무첨가구 (A)의 3' 말단 미스매치 프라이머 사용시 각 표시된 단계별 효소의 반응상수,
Kcat2d, K2d 및 K-2d: dbOligo 첨가구 (B)의 3' 말단 미스매치 프라이머 사용시 각 표시된 단계별 효소의 반응상수.
반응시 첨가된 dbOligo는 서열번호 14와 15로서 각각 20 pmol씩 첨가하거나 첨가하지 않았음 (시험번호 1).
특이 증폭비 (amplification ratio)는 2ΔCt로 계산함,
특이 증폭비 (amplification ratio) = 3' 매치 DNA의 증폭 (amplification of 3'matched DNA)/3' 미스매치 DNA의 증폭 (amplification of 3'mismatched DNA).
도 2는 dbOligo 첨가량에 따른 대립형질 특이적 PCR의 구분성을 나타내는 증폭 곡선들이다.
m, 돌연변이 주형 (mutated template) (프라이머의 3' 말단과 매치됨);
w, 정상 주형 (wild type template) (프라이머의 3' 말단과 미스매치됨).
첨가된 dbOligo는 서열번호 13의 서열을 가지며, 첨가량은 각각 0, 10, 20, 40, 60, 80 pmol이다.
도 3은 개량형 taq DNA 중합효소와 야생형 taq DNA 중합효소에 대한 dbOligo의 효과를 나타내는 증폭 곡선들이다. 첨가된 dbOligo는 서열번호 13의 서열을 나타내며, 첨가량은 각각 40 pmol이다.
Wt-Taq, 야생형 Taq DNA 중합효소; Mut-Taq, 개량형 (R536K 돌연변이) Taq DNA 중합효소,
m, 돌연변이 주형 (mutated template) (프라이머의 3' 말단과 매치됨);
w, 정상 주형 (wild type template) (프라이머의 3' 말단과 미스매치됨).
도 4는 가수분해 프로브를 사용하지 않은 PCR에서 dbOligo의 첨가효과를 나타내는 증폭 곡선과 전기영동 사진이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 개시내용은 본 개시내용의 일부를 형성하는, 첨부 도면 및 실시예와 관련하여 이루어진 아래 상세한 설명을 참조함으로써 좀 더 쉽게 이해될 수 있다. 본 명세서, 도면 및 청구범위에 사용된 용어는 단지 특정한 실시양태를 기재하려는 목적을 위한 것일 뿐, 제한하려는 의도를 갖지 않는다는 것을 이해해야 한다. 본 명세서 및 첨부된 특허청구범위에서 사용된 바와 같은 단수 형태는 내용상 달리 명백히 지시되지 않는 한 복수 대상물을 포함한다.
본 발명에서 다른 언급이 없는 한 본 발명의 실시는 본 발명이 속하는 기술분야에서 통상적으로 알려진 분자생물학적 방법들을 이용한다.
본 발명에서 "염기 (base)"는 퓨린, 피리미딘 또는 이들의 변형된 형태를 포함하는 천연 또는 합성 염기 또는 염기 유사체 또는 염기 유도체를 말하며, 대표적으로는 아데닌, 구아닌, 사이토신, 우라실 또는 티민 등을 말하지만, 이에 한정되는 것은 아니다.
본 발명에서 "뉴클레오타이드"는 핵산을 구성하는 단위체 분자로서, 당과 염기 및 인산으로 이루어져 있으며, 당은 리보스 또는 디옥시리보스이고, 당의 C-1' 탄소에 염기가 연결되고, 당의 C-5' 탄소에 인산이 연결된 화합물이다. 본 발명에서 용어 "뉴클레오타이드"는 뉴클레오타이드 유사체를 포함한다. 당은 다른 구조 유사체로 치환 또는 비치환될 수 있다. 이러한 화합물 등으로 구성된 핵산 유사체로는 phosphorothioate DNA, PNA(peptide nucleic acid), phosphoramidate DNA, morpholino, LNA(Locked nucleic acid) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 "핵산", "폴리뉴클레오타이드", "올리고뉴클레오타이드", "올리고머" 또는 이와 균등한 용어는 디옥시리보핵산, 리보핵산, 포스포티오에이트 함유 핵산, LNA (Locked nucleic acid), PNA (peptide nucleic acid) 등과 같은 단량체들의 조합과 같이 뉴클레오타이드 염기에 상응하는 단량체의 중합체를 포함할 수 있으며, 다양한 종류의 단량체의 중합체를 포함할 수 있고, 이들과 유사한 구조를 형성하는 폴리머 (예컨대, morpholinos)를 포함할 수 있다.
본 발명에서 "올리고뉴클레오타이드"는 짧은 폴리뉴클레오타이드를 의미한다. 올리고뉴클레오타이드는 약 250개 뉴클레오타이드 이하, 또는 약 200개 뉴클레오타이드 이하, 또는 약 100개 뉴클레오타이드 이하를 말한다.
본 발명에서 “올리고뉴클레오타이드”는 구조가 변형(modified)된 올리고뉴클레오타이드를 포함할 수 있다. 변형이란 함은 염기의 변형 (예로 퓨린 아날로그, 피리미딘 아날로그, inverted base, methylated 아날로그, fluoro아날로그 등), 뉴클레오사이드의 결합 영역의 (linker)의 변형 (예컨대, amino (NH2) linker, carboxyl linker, thiol(SH) linker 등), 인산기의 변형 및/또는 올리고 뉴클레오타이드의 5'-말단 또는 3'-말단 또는 내부 염기의 변형을 포함할 수 있으며, 또는 이러한 변형의 조합을 포함할 수 있다.
본 발명에서 "주형"은 "주형 핵산"을 의미하며, PCR 반응에서 증폭을 위한 주형으로 사용되는 핵산을 말한다. "주형"은 천연에 존재하거나 천연적으로 생성된 것 또는 합성된 것을 모두 포함할 수 있다.
본 발명에서 "표적"은 분석 대상이 되는 주형의 핵산을 의미한다.
일반적으로 PCR 완충액에는 Mg++, dNTP와 같은 필수적인 요소들 외에, DMSO, 베타인, 앱타머 또는 항체와 같은 비필수적인 첨가 조성물이 포함될 수 있다.
본 발명에서는 3' 미스매치 여부에 따라 두 대립 유전자를 구분하는 프라이머, 바람직하게는 AS 프라이머 또는 ARMS 프라이머를 사용하는 PCR에 DNA 이중 가닥, RNA/DNA 하이브리드 이중 가닥, 이중 가닥 올리고뉴클레오타이드, 또는 부분적으로 또는 전체적으로 DNA 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥, 부분적으로 또는 전체적으로 DNA/RNA 하이브리드 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥, 부분적으로 또는 전체적으로 이중 가닥 올리고뉴클레오타이드를 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥 및 부분적으로 또는 완전하게 헤어핀 이중 가닥을 형성할 수 있는 올리고뉴클레오타이드 중 1종 이상과 같은 구분성 증진 올리고뉴클레오타이드를 PCR 완충액에 조성물로 첨가하는 방법으로 대립 유전자의 구분성 (ΔCt 또는 ΔCp, ΔCq)을 더욱 높일 수 있다.
또한, 본 발명에서 PCR 반응시 첨가되는 구분성 증진 올리고뉴클레오타이드에는 예컨대 소랄렌 (psoralen) 또는 그와 유사한 구조의 화합물, 또는 화학적 링커 (예컨대 disulfied linker, bismalemide linker 등)를 사용하여 부분적 또는 전체적으로 상보적인 서열을 갖는 2종 또는 그 이상의 단일 가닥 올리고뉴클레오타이드를 화학적으로 결합시키는 방법 또는 올리고뉴클레오타이드의 말단을 화학적인 방법으로 연결하거나 합성하여 헤어핀 루프와 같은 구조로 단일 가닥 내에 상보적 서열을 구성하는 방법 등으로 이중 가닥을 형성할 수 있는 올리고뉴클레오타이드를 포함할 수 있다. 이 중 가장 바람직한 예는 한 가닥의 올리고뉴클레오타이드 내에 상보적 서열을 구성하여 이중 가닥을 용이하게 형성하는 것이다. 부분적으로 또는 전체적으로 상보적인 서열을 갖는 두 개의 가닥이 분리되어 있는 경우보다 완충액 내에서 분산되지 않은 형태의 한 가닥 올리고뉴클레오타이드가 부분적 또는 전체적으로 자기 상보적 서열을 갖는 경우 이중 가닥을 형성하기 수월하기 때문이다. 그러므로 상보적인 두 서열이 물리적으로 분리되지 않도록 화학적 방법 또는 단일 가닥 내에 상보적 서열이 존재하도록 하는 방법으로 이중 가닥을 쉽게 형성하는 것이 본 발명의 목적 달성에 더욱 유리하다.
본 발명의 목적을 달성하기 위해 구분성 증진 올리고뉴클레오타이드는 그것을 구성하는 염기서열의 순서, 핵산의 종류 또는 길이에 따라 DNA 중합효소에 대한 결합력에서 차이가 날 수 있으나, 본 발명에서는 특정한 염기서열, 특정한 핵산 종류 또는 특정 범위의 올리고뉴클레오타이드 길이로 한정되는 것은 아니다.
이중 가닥을 형성하는 상보 서열이 지나치게 길거나, 또는 PCR 반응액 내의 상보 올리고뉴클레오타이드 쌍이 여러 종류일 경우 PCR 과정 중에 이중 가닥 형성을 상호 방해하거나 비특이적 이중 가닥 형성을 야기하여 본 발명의 목적을 달성하지 못할 수 있다. 예컨대 게놈 DNA는 PCR 과정 중에 변성되면 염기서열이 지나치게 길어 정확한 이중 가닥 형성이 쉽지 않으며, 이에 따라 본 발명의 목적을 달성하기 어렵다. 그러므로 본 발명의 목적을 달성하기 위한 이중 가닥을 형성하는 상보 서열의 길이는 10 염기 이상이 바람직하며, 15 내지 50 염기가 더욱 바람직하지만, 상보 서열 및 핵산의 종류는 특정 서열이나 특정 핵산으로 한정되지 아니한다.
본 발명의 목적을 달성하기 위하여 PCR 반응액 조성물에 포함되는 구분성 증진 올리고뉴클레오타이드는 PCR 반응액 20 ul 내에 0.01~1,000 pnol, 또는 0.1~500 pmol, 또는 0.1~400 pmol, 또는 0.1~300 pmol, 또는 0.1~200 pmol, 또는 0.1~100 pmol, 또는 1~80 pmol인 것이 바람직하다. 그러나 구분성 증진 올리고뉴클레오타이드 양은 검출 대상 유전자의 서열, 시료 및 PCR의 조건에 따라 변화 가능하며, 특정한 농도로 한정되지는 아니한다.
본 발명은 DNA 중합효소를 사용하는 PCR에 적용 가능하며, 바람직하게는 중합효소 A 군 (E. coli Pol I 계열)을 이용하는 PCR에 적용할 수 있다. 이 중합효소는 내열성 세균, 바람직하게는 내열성 진정세균 (eubacteria) 유래의 DNA 중합효소에서 선택될 수 있으며, 더욱 바람직하게는 써머스 (Thermus) 종, 써모토가 (Thermotoga)종, 써모코커스 (Thermococcus) 종, 데이노코커스 (Deinococcus) 종, 바실러스 (Bacillus) 종 등 유래의 DNA 중합효소에서 선택될 수 있다.
본 발명에서는 첨가되는 구분성 증진 올리고뉴클레오타이드 중 이중 가닥을 형성하는 부위의 녹는점 (Tm)이 일반적인 PCR의 어닐링 온도보다 높은 것이 본 발명의 목적 달성에 용이하다. 예컨대 PCR 수행시 어닐링 온도보다 구분성 증진 올리고뉴클레오타이드 이중 가닥의 Tm이 낮으면 구분성 증진 올리고뉴클레오타이드의 이중 가닥 형성이 저하되므로 DNA 중합효소의 결합능력이 저해되고, 따라서 본 발명의 목적을 달성하기 어려워질 수 있다. 그러므로 본 발명에 사용되는 구분성 증진 올리고뉴클레오타이드는 이중 가닥 영역의 Tm이 일반적인 PCR의 어닐링 온도보다 높아지도록 염기서열을 구성하는 것이 바람직하다.
본 발명의 효과는 도 1과 같은 기작에 의해 이루어지는 것으로 설명될 수 있다. 이 기작은 발명을 좀 더 정확하게 이해하기 위한 것이며 발명의 전부를 완벽하게 설명하는 것이 아닐 수 있다. 그러나, 본 발명의 기작에 관한 설명이 완전하지 않더라도 이것을 이유로 본 발명의 효과가 부정되어서는 안 된다.
도 1은 프라이머의 3' 말단이 주형과 매치하는 경우 (왼쪽, "3'-matched"로 표시함)와 매치하지 않는 경우 (오른쪽; "3'-mismatched"로 표기함)로 나누어 동력학 계수를 설명한다. 또한, 3'-matched와 3'-mismatched의 경우는 각각 두 가지로 나누어지는데, (A)는 PCR 반응시 구분성 증진 올리고뉴클레오타이드 (dbOligo)를 가하지 않은 것을 나타내고, (B)는 PCR 반응시 dbOligo를 가한 것을 나타낸다. "DNAP"는 DNA 중합효소를 나타내며, "dbOligo"는 서열이 특정되지 않은 올리고뉴클레오타이드로서 이중 가닥 상태로 가하거나 반응액 내에서 이중 가닥을 형성하는 것을 말한다. "K1", "K-1"은 각각 반응시 dbOligo를 가하지 않고, 프라이머의 3' 말단이 주형과 매치되는 상태에서의 정방향 및 역방향 동역학 계수를 말하며, "K1d", "K-1d"는 각각 반응시 dbOligo를 가하고, 프라이머의 3' 말단이 주형과 매치되는 상태에서의 정방향 및 역방향 동역학 계수를 말한다. "K2", "K-2"는 각각 반응시 dbOligo를 가하지 않고, 프라이머의 3' 말단이 주형과 매치되지 않는 상태에서의 정방향 및 역방향 동역학 계수를 말하며, "K2d", "K-2d"는 각각 반응시 dbOligo를 가하고, 프라이머의 3' 말단이 주형과 매치되지 않는 상태에서의 정방향 및 역방향 동역학 계수를 말한다.
주형과 프라이머 3'의 미스매치 여부에 따라 DNA 중합효소 (이하 "DNAP"와 혼용한다)의 DNA 합성 과정은 매우 복잡하다. 기질 (substrate)이 되는 프라이머 (이하 "P"라는 약칭과 혼용한다)와 주형 (template) DNA (이하, 3'이 매치되는 주형 DNA를 편의상 "T1", 3'이 미스매치되는 주형 DNA를 편의상 "T2"라 한다)의 혼성체 (P/T1 또는 P/T2), DNA 중합효소 (DNAP), dNTPs, Mg++, PPi 등 다양한 요소가 효소동력학 (kinetics)에 관여한다.
DNAP·P/T 복합체 형성시 Kcat은 3' 매치 (DNAP·P/T1) 또는 3' 미스매치 (DNAP·P/T2)에 따라 매우 다르게 나타난다. 문헌 보고에 따르면 PCR 반응시 프라이머의 3' 말단이 주형과 매치되는 경우 3'이 미스매치되는 경우보다 중합효소 연쇄반응이 매우 빨리 일어난다 {Clin Chem. 64(5):801-809 (2018)}. 이 보고에 따르면 프라이머의 3' 말단이 미스매치되는 경우보다 3'이 매치되는 경우에 Kcat/Km이 대략 100 내지 1000배 높다. 이는 3' 미스매치의 경우 Kcat이 매우 낮아지고 (약 10배 내지 약 600배) Km이 조금 증대 (최대 약 3배)했기 때문이다.
상기 문헌에 따라 유추해 보면 프라이머의 3' 말단이 주형과 매치되는 경우 DNAP·P/T1 복합체 형성 후 높은 Kcat1을 바탕으로 중합반응이 끝날 때까지 효소의 탈착이 없이 지속적으로 dNTPs를 사용한 중합과정이 반복하여 일어나지만, 프라이머의 3' 말단이 주형과 미스매치인 경우 DNAP·P/T2 복합체 형성은 낮은 Kcat2 (Kcat1 >>> Kcat2)로 인해 DNA 중합효소의 탈착과 부착이 빈번해질 것이다.
본 발명에서 실시간 PCR 반응시 이중 가닥 올리고뉴클레오타이드를 첨가하였을 때 3' 매치의 경우와 3' 미스매치의 경우 실시간 PCR 반응에 현저한 차이가 나타난다 (도 1의 II, 증폭 곡선).
3' 매치의 경우 dbOligo를 첨가하거나 첨가하지 않았을 때 모두 유사한 Ct 값을 나타내었고, 이에 비추어 볼 때 dbOligo를 첨가한 경우와 첨가하지 않은 경우 반응속도가 유사하고 (Kcat1 ≒ Kcat1d), DNA 중합효소의 주형 DNA에 대한 탈착 및 부착비 (K-1/K1 ≒ K-1d/K1d)가 유사하여 dbOligo의 첨가가 PCR 반응에 큰 영향을 주지 않았다고 추론할 수 있다. 즉, 프라이머 3' 말단이 주형과 매치되는 경우에는 dbOligo 첨가시에도 무첨가 대조구와 유사하게 높은 반응성을 나타내며, 이는 dbOligo에 의한 DNA 중합효소 활성의 변화가 거의 없거나 매우 적음을 보여주는 것이다.
본 발명자들은 프라이머 3' 말단이 주형과 미스매치되는 경우 dbOligo 첨가 유무와 상관없이 3' 매치의 경우와 같이 비록 그 값이 Kcat1이나 Kcat1d보다 낮더라도 Kcat2와 Kcat2d가 서로 거의 유사 (Kcat2 ≒ Kcat2d <<< Kcat1 ≒ Kcat1d )할 것으로 예측하였다. 그러나 예상과는 달리 3' 미스매치의 경우 dbOligo를 첨가하였을 때 (도 1의 3'-mismatched (B)) 중합반응이 현저히 감소하였다. 그 이유는 DNAP·P/T2를 형성함에 있어서, dbOligo를 가하지 않은 경우에 비하여 dbOligo를 가한 경우, DNA 중합효소의 부착반응상수 (K2d)가 감소하거나, 혹은 탈착반응상수 (K-2d)의 증가가 일어난 것으로 추론할 수 있다. 즉, PCR 반응액에 dbOligo를 가함으로써 주형 DNA 또는 산물 DNA에 대한 DNA 중합효소의 탈착 및 부착비가 크게 변했을 것으로 (K-2/K2 <<< K-2d/K2d) 추정된다. 이러한 반응계수의 차이로 인하여 dbOligo를 첨가한 PCR 반응에서 3' 매치와 3' 미스매치 간의 구분성이 높아지는 것으로 추론된다.
이러한 결과, 본 발명이 달성하고자 하는 목적, 즉 대립 유전자 또는 변이 유전자 간의 3' 매치 여부에 따라 실시간 PCR 반응에서 증폭 곡선의 확연한 구분이 가능해진다.
또한, 3' 매치된 주형 DNA에서 실시간 PCR이 효율적으로 진행되어 지수적인 증폭이 이루어지면 합성된 DNA 증폭 산물이 새로운 주형이 되므로 효소의 기질이 급격히 증가하게 된다. 즉, PCR 반응 초기에는 [P/T1] ≒ [P/T2] <<< [dbOligo]이지만, PCR 증폭 과정이 반복하여 일어나면 [P/T1]이 지수적으로 증가하므로 상대적으로 [dbOligo]의 [P/T1]에 대한 경쟁 우위 효과가 없어져 PCR 진행이 더욱 원활하게 될 것이다. 반면, 프라이머의 3' 말단과 미스매치되는 DNA 주형의 경우 [dbOligo]의 [P/T2]에 대한 우위 효과가 지속적으로 유지되어 PCR 반응이 지속적으로 억제되기 때문에 증폭 곡선에서 더욱 구분성이 높아지는 효과를 얻을 수 있다.
아래에서는 구체적인 실시예를 들어 본 발명의 구성을 좀 더 자세히 설명한다. 그러나 본 발명의 범위가 실시예의 기재에만 한정되는 것이 아님은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.
상기 설명과 같이 구분성증진 올리고뉴클레오타이드 (discrimination boosting oligonucleotide; dbOligo)를 첨가하여 대립 유전자 또는 변이 유전자의 구분성을 높이는 PCR을 본 발명자들은 "STexS (SNP Typing with excellent specificity)" PCR로 명명하였다.
아래에서는 구체적인 예를 들어 본 발명의 "STexS' PCR을 더욱 자세히 설명한다.
< PCR의 조건>
하기 실시예에 별도 언급이 없을 경우 본 발명의 실시예에 사용한 PCR 조성물 및 조건은 아래와 같다.
PCR에 사용한 정상 표적 주형 DNA 또는 돌연변이 표적 주형 DNA, 정방향 프라이머, 역방향 프라이머, 신호 검출용 가수분해 프로브 (hydrolysis probe)는 표 1과 같다.
이때 정방향 프라이머는 각 표적 유전자 EGFR c.2369 C>T (p.T790M); EGFR c.2573 T>G (p.L858R)와 BRAF c.1799 rc. A>T (p.V600E) 돌연변이의 변이검출을 위해 정방향 프라이머 3' 말단 염기가 변이 유전자와 매치되고, 정방향 프라이머 3' 말단의 1 염기가 정상 유전자와 미스매치되도록 설계한 AS 프라이머이다.
효소는 Taq DNA 중합효소 (GenoTech)를 2단위 (0.05~0.08 uM) 사용하였으며, 완충용액 (10 mM Tris, pH 9.0, 1.5 mM MgCl2, 60 mM KCl, 10 mM (NH4)2SO4)을 전체 부피 20 ul가 되도록 하여 수행하였으며, ABI 7500 Real-Time PCR System을 사용하여 95℃, 5분 반응 후 95℃로 30초, 55℃로 40초를 45회 반복하여 반응을 수행하였다. 모든 시험은 3 반복한 평균값을 적시하였다.
PCR시 구분성 증진을 확인하기 위해 여러 가지 타입의 dbOligo 즉, 단일가닥 DNA (single stranded DNA; SD), 상보적인 서열의 두 가닥 DNA (double stranded DNA; DD), 상보적인 서열을 가진 한 가닥 DNA (hairpin DNA; HD)를 시험에 따라 1 내지 80 pmol 첨가하였다 (표 2, 3, 4).
주형 DNA는 서열번호 44, 45, 46, 47, 48, 49 서열을 인공합성하여 pTOP Blunt V2 (Enzynomics, Korea)에 삽입하여 제작하여 대장균에 형질전환 후, 배양하여 적절한 제한효소로 절단 후 정제된 플라스미드 DNA를 정량하여 사용하였다.
표적 서열: EGFR c.2369 C>T (p.T790M)
항목 서열번호 사용량 비고
정상 주형 44 1 x 107 copies
돌연변이 주형 45 1 x 107 copies
정방향 프라이머 1 20 pmol
역방향 프라이머 7 20 pmol
가수분해 프로브 10 10 pmol 이중 표지
(dual labelled)
표적 서열: EGFR c.2573 T>G (p.L858R)
항목 서열번호 사용량 비고
정상 주형 46 1 x 107 copies
돌연변이 주형 47 1 x 107 copies
정방향 프라이머 5 20 pmol
역방향 프라이머 8 20 pmol
가수분해 프로브 11 10 pmol 이중 표지
표적 서열: BRAF c.1799 rc. A>T (p.V600E)
항목 서열번호 사용량 비고
정상 주형 48 1 x 107 copies
돌연변이 주형 49 1 x 107 copies
정방향 프라이머 6 20 pmol
역방향 프라이머 9 20 pmol
가수분해 프로브 12 10 pmol 이중 표지
< 실시예 1> dbOligo의 첨가에 따른 3'- 미스매치 구분성 증대
EGFR T790M의 구분을 위한 AS 프라이머 (정방향 프라이머: 서열번호 1, 역방향 프라이머: 서열번호 7)를 이용한 PCR에 의한 구분성 ΔCt1 (ΔCt1 =돌연변이 유전자의 Ct - 정상 유전자의 Ct)은 1.48 ~ 2.16으로 매우 낮았다 (표 2의 시험번호 1 ~ 6).
PCR 반응시 dbOligo로서 임의의 서열로 합성한 상보적 서열의 두 가닥 DNA (DD)를 20 pmol 이 되도록 첨가하였을 때 (시험번호 1 (서열번호 14/15), 시험번호 2 (서열번호 17/18, 19/20, 14/15, 21/22, 23/24, 25/26)), ΔCt2 (ΔCt2 = dbOligo 첨가시 돌연변이 유전자의 Ct - dbOligo 첨가시 정상 유전자의 Ct)가 3.04 ~ 6.79, ΔΔCt (ΔΔCt = ΔCt2-ΔCt1)가 1.56 ~ 4.56으로 구분성이 크게 향상되었다 (표 2의 시험번호 1, 2, 도 1의 II; 시험번호 1).
반면, 상기 DD형의 하나의 가닥과 서열이 동일한 단일 가닥 DNA (SD)를 20 ~ 40 pmol 첨가한 시험구의 경우 (시험번호 4 (서열번호 25, 서열번호 26)) ΔCt2가 2.28 ~ 2.82이며, ΔΔCt가 0.20 ~ 0.74로 상보적인 두 가닥 DNA (DD) 첨가구 [시험번호 4 (서열번호 25/26)]의 ΔCt2 = 5.66, ΔΔCt = 3.58에 비해 구분성 향상 효과가 미미했다 (표 2). 이는 구분성 증진 올리고뉴클레오타이드 (dbOligo)가 구분성 증대에 매우 중요함을 보여주는 결과이다.
또한, 하나의 가닥 내에 상보적 염기서열을 가져 이중 가닥을 형성하는 헤어핀 DNA (HD)를 첨가한 시험 모두 2.46 ~ 5.99의 ΔCt2와 0.30 ~ 3.51의 ΔΔCt가 확인되어, DD와 마찬가지로 높은 구분성 향상 효과를 보였다 (시험번호 1 (서열번호 16), 시험번호 5 (서열번호 16, 27, 13, 28, 29, 30, 31)) (표 2).
시험번호 dbOligo ΔCt
(Mutant Ct -Wild type Ct)***
ΔΔCt
(ΔCt2 - ΔCt1)
서열번호 Type,*
Duplex no,**
Tm***
사용량
(pmol)
ΔCt1# ΔCt2##
1 14/15 DD, 24, 68 20 2.23 6.79 4.56
16 HD, 24, 68 5.74 3.51
2 17/18 DD, 20, 64 20 1.48 3.04 1.56
19/20 DD, 22, 66 5.31 3.83
14/15 DD, 24, 68 4.57 3.09
21/22 DD, 26, 71 4.02 2.54
23/24 DD, 28, 72 5.66 4.18
25/26 DD, 30, 74 5.70 4.22
3 25/26 DD, 30, 74 10 1.57 4.58 3.01
20 5.67 4.10
40 7.26 5.69
60 8.26 6.69
80 15.07 13.5
4 25/26 DD, 30, 74 20 2.08 5.66 3.58
25 SD, 30, - 2.82 0.74
26 SD, 30, - 2.46 0.38
25 SD, 30, - 40 2.28 0.20
26 SD, 30, - 2.37 0.29
5 16 HD, 24, 68 20 2.16 5.52 3.36
27 HD, 22, 66 5.52 3.36
13 HD, 20, 64 5.99 3.83
28 HD, 18, 60 5.68 3.52
29 HD, 16, 58 3.70 1.54
30 HD, 14, 54 3.15 0.99
31 HD, 12, 47 2.46 0.30
6 13 HD, 20, 64 10 1.23 3.69 2.46
20 4.84 3.61
40 6.72 5.49
60 7.34 6.11
80 9.05 7.82
* dbOligo type: SD, 단일가닥 DNA; DD, 이중가닥 DNA; HD, 헤어핀 구조 DNA,** Duplex no: 이중 가닥을 형성하는 염기 수,*** Tm: 이중 가닥 올리고뉴클레오타이드의 녹는점,
# ΔCt1: dbOligo를 가하지 않은 경우의 ΔCt 값,
## ΔCt2: dbOligo를 가한 경우의 ΔCt 값.
< 실시예 2> dbOligo의 농도별 첨가에 따른 3'- 미스매치 구분성
구분성 증진 올리고뉴클레오타이드 (dbOligo)의 첨가량에 따른 구분성을 시험하였다 (표 2 (시험번호 3, 시험번호 6)). dbOligo 첨가시 HD형이 DD형보다 반복적인 시험에 따른 편차가 적어 PCR 구분성이 안정적인 것으로 나타났으며, 두 경우 모두 10 ~ 80 pmol로 PCR 용액에 첨가하였을 때 첨가량이 많을수록 구분성이 향상되었으며, ΔCt2는 최대 15.07, ΔΔCt는 13.5로 나타났다 (표 2; 시험번호 3 (서열번호 25/26)과 시험번호 6 (서열 번호 13))(도 2).
< 실시예 3> dbOligo의 이중 가닥 길이 또는 Tm에 따른 3'- 미스매치 구분성
이중 가닥을 형성하는 dbOligo의 이중 가닥 길이 또는 녹는점 (Tm)과 3'-미스매치 구분성 증대의 연관성을 확인하였다 (표 2 (시험번호 2, 시험번호 5)).
DD 형에서 이중 가닥 형성 길이를 20에서 30 염기쌍으로, 그리고 Tm을 64℃에서 74℃로 증대할 경우, 구분성이 ΔCt2 = 3.04 (ΔΔCt = 1.56)에서 ΔCt2 = 5.70 (ΔΔCt = 4.22)로 향상되었다 (표 2; 시험번호 2 (서열번호, 17/18, 19/20, 14/15, 21/22, 23/24, 25/26)).
HD 형에서도 유사하게 이중 가닥을 형성하는 염기 길이가 24 염기에서 12 염기로 감소할수록 (이에 따라 Tm도 68℃에서 47℃로 낮아짐) (표 2; 시험번호 5 (서열번호 16, 27, 13, 28, 29, 30, 31)) 구분성이 감소하여 ΔCt2가 2.46, ΔΔCt가 0.30으로 낮아졌다. 이는 PCR 수행시 어닐링 온도인 55℃보다 현저히 Tm (47℃)이 낮은 이중 가닥 DNA (서열번호 31)의 경우 구분성 증대 효과가 급격히 감소하였다.
두 결과는 Tm 값이 높은 이중 가닥 올리고뉴클레오타이드 또는 이중 가닥을 형성하는 염기쌍 수가 많은 이중 가닥 올리고뉴클레오타이드를 dbOligo로서 첨가시 구분성이 증대하고, 그 반대의 경우 구분성 증대 효과가 낮아짐을 보여주는 것이다.
< 실시예 4> 헤어핀 구조 dbOligo의 서열에 따른 구분성
HD 형에서 비상보적 영역 즉, 이중 가닥을 형성하지 않는 중간 서열의 서열종류를 임의로 변화시켰을 경우 dbOligo의 뉴클레오타이드의 종류에 따라서 ΔCt2 = 6.12 (ΔΔCt = 3.85) 내지 ΔCt2 = 7.42 (ΔΔCt = 5.15) 로 크게 영향을 받지 아니하였다 (표 3; 시험번호 7 (서열번호 13, 32, 33, 34, 35)).
또한, HD 형에서 비상보적 영역의 수를 증가시켰을 경우, 예컨대 아데닌 염기를 3개에서 10개로 증가시킨 경우, 비상보적 서열의 증가에 따라 구분성이 부분적으로 조금 감소하였으나 dbOligo를 넣지 않은 대조구에 비해 구분성은 여전히 높았다 (표 3; 시험번호 8 (서열번호 36, 37, 38, 39)).
또한, dbOligo의 상보적 서열의 종류를 변화시켰을 경우 ΔCt2 = 4.00 (ΔΔCt = 1.60) 내지 ΔCt2 = 6.04 (ΔΔCt = 3.64)로 차이가 있었다. 폴리 A/T 또는 폴리 G/C와 같은 극단적인 중복서열에서도 비록 향상 효과가 크지 아니하나 구분성 향상 효과가 나타났으며, dbOligo의 상보적 서열에 따라 구분성의 효율이 다를 수 있음을 확인하였다 (표 3; 시험번호 9 (서열번호 13, 40, 41, 42, 43)).
시험번호 시험내용 dbOligo ΔCt
(Mutant Ct -Wild type Ct)
ΔΔCt
(ΔCt2 - ΔCt1)
서열번호 Type,*
Duplex no,**
Tm***
사용량 ΔCt1# ΔCt2##
7 HD 비상보서열- 종류 (A)5 13 HD, 20, 64 20 2.27 6.12 3.85
(T)5 32 6.92 4.65
(C)5 33 6.91 4.64
(G)5 34 8.97 6.70
AGAGAC 35 7.42 5.15
8 HD 비상보서열-수 (A)3 36 HD, 20, 64 20 1.76 6.16 4.40
(A)5 13 6.66 4.90
(A)7 37 5.72 3.96
(A)9 38 4.80 3.04
(A)10 39 4.43 2.67
9 HD 상보서열 random 13 HD, 20, 64 20 2.40 6.04 3.64
random 40 HD, 20, 57 5.89 3.49
random 41 HD, 20, 55 5.13 2.73
polyA/T 42 HD, 22, 38 4.00 1.60
polyG/C 43 HD, 20, 85 4.76 2.36
* dbOligo type: HD, 헤어핀 구조 DNA,** Duplex no: 이중 가닥을 형성하는 염기 수,
*** Tm: 이중 가닥 올리고뉴클레오타이드의 녹는점,
# ΔCt1: dbOligo를 가하지 않은 경우의 ΔCt 값,
## ΔCt2: dbOligo를 가한 경우의 ΔCt 값.
< 실시예 5> dbOligo 첨가시 주형 농도에 따른 3'- 미스매치 구분성
EGFR T790M 변이 검출에 주형 DNA 양을 1 x 104 내지 1 x 107로 달리하여 시험하였을 때 (표 4; 시험번호 10), dbOligo 무첨가 대조구의 ΔCt1은 1.15 ~ 1.50으로 그리 크지 않았으나, 첨가 시험구의 ΔCt2는 7.53 ~ 8.83 (ΔΔCt는 6.38 ~ 7.33) 으로 매우 크며, 주형 DNA 양에 따라 구분성 정도가 크게 차이가 나지 않았다. 이 결과는 다양한 농도의 주형 DNA를 사용하는 시험구에서도 3'-미스매치 구분성을 용이하게 향상시킬 수 있음을 제시한다.
< 실시예 6> ARMS PCR에서의 dbOligo의 첨가에 따른 3'- 미스매치 구분성
ARMS PCR 또한 프라이머의 3'-미스매치의 구분성을 높이도록 고안된 기술이다. 그러므로 ARMS 프라이머를 이용하는 PCR에 이중 가닥 올리고뉴클레오타이드를 첨가하였을 때의 구분성을 확인해 보았다 (표 3, 시험번호 11). 3종류의 ARMS 프라이머 (서열번호 2, 3, 4) 모두 AS 프라이머 (서열번호 1)에 비해 높은 ΔCt1 (6.50 ~ 7.67)을 보였지만, dbOligo (서열번호 13)를 첨가하였을 때 ΔCt2가 10.06 ~ 10.57로 확인되었으며, 반응시 이중 가닥 올리고뉴클레오타이드를 첨가하는 경우 추가적으로 구분성이 향상되는 효과 (ΔΔCt 가 2.39 내지 3.24)를 보였다. 즉, 이 결과는 AS PCR뿐만 아니라, ARMS PCR에서도 이중 가닥 올리고뉴클레오타이드가 3'-미스매치의 구분성을 향상시킬 수 있음을 말해준다.
< 실시예 7> dbOligo의 첨가시 표적 유전자 변이의 염기 종류에 따른 3'- 미스매치 구분성
생명체 내의 SNP에는 많은 종류의 염기의 미스매치가 있다. 상기 실시예 1 ~ 6은 T790M 즉 C 와 T 염기를 구분하는 시험 (주형 DNA 서열번호 44, 45)을 대상으로 dbOligo의 첨가에 따른 3'-미스매치 구분성을 확인하였다. 본 실시예에서는 C/T 염기 구분 외에 추가로 EGFR L858R의 T와 G 염기 구분 (주형 DNA 서열번호 46, 47)과 BRAF V600E (rc)의 A와 T 염기 구분 (주형 DNA 서열번호 48, 49)을 위한 실시간 PCR에서 이중 가닥 올리고뉴클레오타이드를 부가하고 적절한 AS 프라이머를 사용하여 구분성이 향상되는지를 시험하였다. 주형 DNA의 서열 또는 3' 말단 염기의 종류에 따라 ΔCt1이 차이가 있었지만 (T790M, 2.20; L858R, 8.14; V600E, 6.75), 이중 가닥 올리고뉴클레오타이드를 가한 ΔCt2는 T790M, 4.48; L858R, 10.45; V600E, 11.43으로, ΔΔCt는 T790M, 2.28; L858R, 2.31; V600E, 4.68로 나타났다. 즉, 대상유전자의 서열 또는 3' 미스매치 염기의 종류에 따라 부분적인 구분성 정도의 차이는 있지만, 이중 가닥 올리고뉴클레오타이드를 첨가함으로써 구분성이 향상되는 것은 모든 시험구에서 확인되었다 (표 4, 시험번호 12).
< 실시예 8> dbOligo 첨가시 DNA 중합효소 종류에 따른 3'- 미스매치 구분성
PCR의 3'-미스매치 구분성을 높이기 위해 개량된 효소가 사용될 수 있다. 본 실시예에서는 3'-미스매치 구분성을 높이는 것으로 알려진 변이 (R536K) Taq DNA 중합효소를 사용하여 3'-미스매치 구분성 향상을 시험하였다 (표 4, 시험 번호 13; 도 3). 돌연번이 Taq DNA 중합효소 (Mut Taq (R536K))를 사용한 경우 야생형 Taq DNA 중합효소 (Wt-Taq)의 ΔCt1 = 2.78에 비해 약간 증가한 ΔCt1 = 3.53을 나타내었으며, 또한, dbOligo 첨가시 ΔCt2 = 8.21, ΔΔCt = 4.68을 나타냈다. 이는 비록 돌연변이 Taq DNA 중합효소에 의해 3'-미스매치 구분성이 일부 증대하지만, dbOligo의 첨가에 의해 3'-미스매치 구분이 더욱 향상됨을 보여준다. 특히, 개량되지 않은 야생형 중합효소의 경우도 dbOligo 무첨가구의 ΔCt1 = 2.78에서 첨가 시험구 ΔCt2 = 7.56 (ΔΔCt = 4.78)으로 구분성이 크게 향상되었다. 이는 효소의 개량 없이도 dbOligo 첨가만으로 높은 수준의 3'-미스매치 구분성을 보여주는 결과이다. (도 3). 또한, 이러한 결과는 야생형 중합효소나 개량형 중합효소에 관계 없이 실시간 PCR 반응시 이중 가닥 올리고뉴클레오타이드를 사용하는 경우 구분성을 높일 수 있음을 말해준다.
시험 번호 시험내용 dbOligo ΔCt
(Mutant Ct -Wild type Ct)
ΔΔCt
(ΔCt2 - ΔCt1)
서열번호 Type,*
Duplex no,**
Tm***
사용량 ΔCt of dbOligo (-)
(ΔCt1)
ΔCt of dbOligo (+)
(ΔCt2)
10 주형 DNA (copies) 1 x 10^7 13 HD, 20, 64 80 1.47 7.98 6.51
1 x 10^6 1.15 7.53 6.38
1 x 10^5 1.31 8.46 7.15
1 x 10^4 1.50 8.83 7.33
11 ARMS
프라이머
(서열번호)
2 13 HD, 20, 64 20 7.67 10.06 2.39
3 6.50 10.47 3.97
4 7.33 10.57 3.24
12 검출변이염기
(변이유전자, 정상>변이 염기)
T790M C>T 13 HD, 20, 64 20 2.20 4.48 2.28
L858R T>G 8.14 10.45 2.31
V600E(rC)
A>T
6.75 11.43 4.68
13 중합효소 Taq-WT 13 HD, 20, 64 40 2.78 7.56 4.78
Mut-Taq
(R536K)
3.53 8.21 4.68
* dbOligo type: HD, 헤어핀 구조 DNA,** Duplex no: 이중 가닥을 형성하는 염기 수,
*** Tm: 이중 가닥 올리고뉴클레오타이드의 녹는점,
# ΔCt1: dbOligo를 가하지 않은 경우의 ΔCt 값,
## ΔCt2: dbOligo를 가한 경우의 ΔCt 값.
< 실시예 9> 가수분해 프로브를 사용하지 않는 PCR에 dbOligo 첨가
가수분해 프로브를 사용하지 않는 조건에서도 이중가닥 올리고뉴클레오타이드의 3'-미스매치 구분성 향상 효과가 나타나는지를 확인하고자 하였다. 가수분해 프로브를 첨가하지 않고, SYBR Green I을 첨가하여 주형으로 BRAF V600E (rc)의 주형 DNA (서열번호 48, 49)를 사용하였으며, 이중가닥 올리고뉴클레오타이드 (서열 번호 13) 20 pmol을 첨가하여 CFX96™ Real-Time PCR Detection System을 사용하여 PCR을 수행하였다. 그 결과, 가수분해 프로브를 사용하지 않은 조건에서도 dbOligo 첨가에 의해 3'-미스매치 구분성이 향상되었다 (도 4의 증폭 곡선). 이와 더불어, SYBR Green I을 첨가하지 않은 일반적인 PCR을 수행한 후 아가로즈 젤 전기영동으로 PCR 산물을 직접 확인한 결과 또한 dbOligo 첨가시 명확히 구분성이 향상되었다 (도 4의 전기영동 사진).
No. sequence remarks
1 agccgaaggg catgagctgc a f. primer
2 agccgaaggg catgagctac a f. primer
3 agccgaaggg catgagctgt a f. primer
4 agccgaaggg catgagcatc a f. primer
5 gcatgtcaag atcacagatt ttgggcg f. primer
6 ggacccactc catcgagatt tct f. primer
7 agtgtggaca acccccacgt gtgc r. primer
8 ctggctgacc taaagccacc tc r. primer
9 cacctcagat atatttcttc atgaagac probe
10 cggtggaggt gaggcagatg probe
11 taccatgcag aaggaggc probe
12 tagaccaaaa tcacctattt ttactg probe
13 gggacagtcg gaggactcgt aaaaaacgag tcctccgact gtccc dbOligo
14 gggacagtcg gaggactcgt ctgg dbOligo
15 ccagacgagt cctccgactg tccc dbOligo
16 gggacagtcg gaggactcgt ctggaaaaac cagacgagtc ctccgactgt ccc dbOligo
17 gggacagtcg gaggactcgt dbOligo
18 acgagtcctc cgactgtccc dbOligo
19 gggacagtcg gaggactcgt ct dbOligo
20 agacgagtcc tccgactgtc cc dbOligo
21 gggacagtcg gaggactcgt ctggca dbOligo
22 tgccagacga gtcctccgac tgtccc dbOligo
23 gggacagtcg gaggactcgt ctggcaca dbOligo
24 tgtgccagac gagtcctccg actgtccc dbOligo
25 gggacagtcg gaggactcgt ctggcacagg dbOligo
26 cctgtgccag acgagtcctc cgactgtccc dbOligo
27 gggacagtcg gaggactcgt ctaaaaaaga cgagtcctcc gactgtccc dbOligo
28 gggacagtcg gaggactcaa aaagagtcct ccgactgtcc c dbOligo
29 gggacagtcg gaggacaaaa agtcctccga ctgtccc dbOligo
30 gggacagtcg gaggaaaaac ctccgactgt ccc dbOligo
31 gggacagtcg gaaaaaatcc gactgtccc dbOligo
32 gggacagtcg gaggactcgt tttttacgag tcctccgact gtccc dbOligo
33 gggacagtcg gaggactcgt cccccacgag tcctccgact gtccc dbOligo
34 gggacagtcg gaggactcgt gggggacgag tcctccgact gtccc dbOligo
35 gggacagtcg gaggactcgt agagcacgag tcctccgact gtccc dbOligo
36 gggacagtcg gaggactcgt aaaacgagtc ctccgactgt ccc dbOligo
37 gggacagtcg gaggactcgt aaaaaaaacg agtcctccga ctgtccc dbOligo
38 gggacagtcg gaggactcgt aaaaaaaaaa cgagtcctcc gactgtccc dbOligo
39 gggacagtcg gaggactcgt aaaaaaaaaa acgagtcctc cgactgtccc dbOligo
40 ggagatacgt gacaggactc aaaaagagtc ctgtcacgta tctcc dbOligo
41 gaaccctcgg taaacagaag aaaaaacttc tgtttaccga gggttc dbOligo
42 aaaaaaaaaa aaaaaaaaaa aacccccctt tttttttttt tttttttttt dbOligo
43 gggggggggg gggggggggg aaaaaccccc cccccccccc ccccc dbOligo
44 cacgcacaca catatcccca tggcaaactc ttgctatccc aggagcgcag accgcatgtg 60
aggatcctgg ctccttatct cccctccccg tatctccctt ccctgattac ctttgcgatc 120
tgcacacacc agttgagcag gtactgggag ccaatattgt ctttgtgttc ccggacatag 180
tccaggaggc agccgaaggg catgagctgc gtgatgagct gcacggtgga ggtgaggcag 240
atgcccagca ggcggcacac gtgggggttg tccacgctgg ccatcacgta ggcttcctgg 300
agggagggag aggcacgtca gtgtggcttc gcatggtggc cagaaggagg ggcacatgga 360
ccccttccag gtgaagacgc atgaatgcga tcttgagttt caaaatacgt actcatggag 420
gaaaagctgt gcctgcaaaa gacctagc
template
45 cacgcacaca catatcccca tggcaaactc ttgctatccc aggagcgcag accgcatgtg 60
aggatcctgg ctccttatct cccctccccg tatctccctt ccctgattac ctttgcgatc 120
tgcacacacc agttgagcag gtactgggag ccaatattgt ctttgtgttc ccggacatag 180
tccaggaggc agccgaaggg catgagctgc atgatgagct gcacggtgga ggtgaggcag 240
atgcccagca ggcggcacac gtgggggttg tccacgctgg ccatcacgta ggcttcctgg 300
agggagggag aggcacgtca gtgtggcttc gcatggtggc cagaaggagg ggcacatgga 360
ccccttccag gtgaagacgc atgaatgcga tcttgagttt caaaatacgt actcatggag 420
gaaaagctgt gcctgcaaaa gacctagc
template
46 cgccagccat aagtcctcga cgtggagagg ctcagagcct ggcatgaaca tgaccctgaa 60
ttcggatgca gagcttcttc ccatgatgat ctgtccctca cagcagggtc ttctctgttt 120
cagggcatga actacttgga ggaccgtcgc ttggtgcacc gcgacctggc agccaggaac 180
gtactggtga aaacaccgca gcatgtcaag atcacagatt ttgggctggc caaactgctg 240
ggtgcggaag agaaagaata ccatgcagaa ggaggcaaag taaggaggtg gctttaggtc 300
agccagcatt ttcctgacac cagggaccag gctgccttcc cactagctgt attgtttaac
template
47 cgccagccat aagtcctcga cgtggagagg ctcagagcct ggcatgaaca tgaccctgaa 60
ttcggatgca gagcttcttc ccatgatgat ctgtccctca cagcagggtc ttctctgttt 120
cagggcatga actacttgga ggaccgtcgc ttggtgcacc gcgacctggc agccaggaac 180
gtactggtga aaacaccgca gcatgtcaag atcacagatt ttgggcgggc caaactgctg 240
ggtgcggaag agaaagaata ccatgcagaa ggaggcaaag taaggaggtg gctttaggtc 300
agccagcatt ttcctgacac cagggaccag gctgccttcc cactagctgt attgtttaac 360
template
48 aaaatattcg ttttaagggt aaagaaaaaa gttaaaaaat ctatttacat aaaaaataag 60
aacactgatt tttgtgaata ctgggaacta tgaaaatact atagttgaga ccttcaatga 120
ctttctagta actcagcagc atctcagggc caaaaattta atcagtggaa aaatagcctc 180
aattcttacc atccacaaaa tggatccaga caactgttca aactgatggg acccactcca 240
tcgagatttc actgtagcta gaccaaaatc acctattttt actgtgaggt cttcatgaag 300
aaatatatct gaggtgtagt aagtaaagga aaacagtaga tctcattttc ctatcagagc 360
aagcattatg aagagtttag gtaagagatc taatttctat aattctgtaa tataatattc 420
tttaaaacat agtacttcat ctttcctctt agagtcaata agtatgtcta aaacaatgat 480
tagttctatt tagcctatat a
template
49 aaaatattcg ttttaagggt aaagaaaaaa gttaaaaaat ctatttacat aaaaaataag 60
aacactgatt tttgtgaata ctgggaacta tgaaaatact atagttgaga ccttcaatga 120
ctttctagta actcagcagc atctcagggc caaaaattta atcagtggaa aaatagcctc 180
aattcttacc atccacaaaa tggatccaga caactgttca aactgatggg acccactcca 240
tcgagatttc tctgtagcta gaccaaaatc acctattttt actgtgaggt cttcatgaag 300
aaatatatct gaggtgtagt aagtaaagga aaacagtaga tctcattttc ctatcagagc 360
aagcattatg aagagtttag gtaagagatc taatttctat aattctgtaa tataatattc 420
tttaaaacat agtacttcat ctttcctctt agagtcaata agtatgtcta aaacaatgat 480
tagttctatt tagcctatat a
template
본 발명의 구분성 증진 올리고뉴클레오타이드를 부가하는 PCR 킷트 또는 방법은 실시간 PCR뿐만 아니라 일반 PCR에서도 특이도와 민감도를 현저히 향상시켜 상보적 또는 비상보적 변이 위치의 존재 및 증폭 여부를 쉽게 확인할 수 있으므로, 소량 다품종이 혼합된 시료 중의 대립 유전자 검출이 용이하여 미량의 돌연변이를 포함하는 시료 중의 돌연변이 유전자 검출이 용이하며, 농, 수, 축산물 등의 유전자 검사나 의학 분야의 진단 등에 폭넓게 이용할 수 있다.
전자파일 첨부하였음

Claims (28)

  1. (가) 잠재적 돌연변이 위치를 가진 표적 DNA 서열을 포함하는 하나 이상의 주형에 대한 정방향 프라이머 및 역방향 프라이머;
    (나) 상기 주형에 결합하는 상기 정방향 프라이머 및 역방향 프라이머로부터 DNA를 중합하는 DNA 중합효소; 및
    (다) 상기 주형, 정방향 프라이머 및 역방향 프라이머와 상보적이지 않으며, 상기 DNA 중합효소와 가역적인 결합이 가능하고, 부분적으로 또는 전체적으로 이중 가닥을 형성하는 구분성 증진 올리고뉴클레오타이드;를 포함하는, 표적 DNA 서열의 돌연변이 검출용 PCR 킷트.
  2. 청구항 1에 있어서,
    (라) 잠재적 돌연변이 위치를 가진 표적 DNA 서열을 포함하는 하나 이상의 주형을 더 포함하는, 돌연변이 검출용 PCR 킷트.
  3. 상기 정방향 프라이머는 3' 말단의 첫 번째 염기가 표적 DNA 서열의 잠재적 돌연변이 위치와 대응하는, 돌연변이 검출용 PCR 킷트.
  4. 청구항 1에 있어서,
    상기 정방향 프라이머는 AS (allele specific) 프라이머 또는 ARMS (amplification refractory mutation system) 프라이머인, 돌연변이 검출용 PCR 킷트.
  5. 청구항 1에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 DNA 이중 가닥, RNA/DNA 하이브리드 이중 가닥, 이중 가닥 올리고뉴클레오타이드, 또는 부분적으로 또는 전체적으로 DNA 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥, 부분적으로 또는 전체적으로 DNA/RNA 하이브리드 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥, 부분적으로 또는 전체적으로 이중 가닥 올리고뉴클레오타이드를 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥 및 부분적으로 또는 완전하게 헤어핀 이중 가닥을 형성할 수 있는 올리고뉴클레오타이드 중 선택된 하나 이상인, 돌연변이 검출용 PCR 킷트.
  6. 청구항 1에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 임의의 서열인, 돌연변이 검출용 PCR 킷트.
  7. 청구항 1에 있어서,
    상기 표적 DNA 서열의 돌연변이는 단일염기 다형성인, 돌연변이 검출용 PCR 킷트.
  8. 청구항 1에 있어서,
    상기 DNA 중합효소는 내열성 DNA 중합효소인, 돌연변이 검출용 PCR 킷트.
  9. 청구항 8에 있어서,
    상기 DNA 중합효소는 야생형 또는 변이형 DNA 중합효소인, 돌연변이 검출용 PCR 킷트.
  10. 청구항 1에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 10 염기 이상 100 염기 이하인, 돌연변이 검출용 PCR 킷트.
  11. 청구항 1에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 15 염기 이상 50 염기 이하인, 돌연변이 검출용 PCR 킷트.
  12. 청구항 1에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 Tm 값이 PCR 반응의 어닐링 온도와 같거나 높은, 돌연변이 검출용 PCR 킷트.
  13. 청구항 1에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 Tm 값이 50 ~ 85℃인, 돌연변이 검출용 PCR 킷트.
  14. 청구항 1에 있어서,
    형광 공명에너지 전이가 가능한, 리포터와 퀀처로 수식된 프로브를 더 포함하는, 돌연변이 검출용 PCR 킷트.
  15. 가) 잠재적 돌연변이 위치를 가진 표적 DNA 서열을 포함하는 주형과, 상기 주형에 결합하는 정방향 프라이머와 역방향 프라이머, 상기 정방향 프라이머와 역방향 프라이머로부터 DNA를 중합하는 DNA 중합효소, 및 상기 주형, 정방향 프라이머 및 역방향 프라이머와 상보적이지 않으며, 상기 DNA 중합효소와 가역적인 결합이 가능하고, 부분적으로 또는 전체적으로 이중 가닥을 형성하는 구분성 증진 올리고뉴클레오타이드를 제공하는 단계; 및
    나) 상기 구분성 증진 올리고뉴클레오타이드 존재 하에 상기 DNA 중합효소를 이용하여 중합효소 연쇄반응을 수행하는 단계; 및
    다) 상기 나)의 반응으로부터 증폭 곡선을 얻는 단계;를 포함하는 유전자 돌연변이를 검출하는 방법.
  16. 청구항 15에 있어서,
    라) 상기 다)에서 얻은 증폭 곡선으로부터 상기 표적 DNA 서열이 돌연변이를 포함하는지를 판별하는 단계:를 더포함하는 유전자 돌연변이를 검출하는 방법.
  17. 청구항 15에 있어서,
    상기 정방향 프라이머는 3' 말단의 첫 번째 염기가 표적 DNA 서열의 잠재적 돌연변이 위치와 대응하는, 유전자 돌연변이를 검출하는 방법.
  18. 청구항 15에 있어서,
    상기 정방향 프라이머는 AS (allele specific) 프라이머 또는 ARMS (amplification refractory mutation system) 프라이머인, 유전자 돌연변이를 검출하는 방법.
  19. 청구항 15에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 DNA 이중 가닥, RNA/DNA 하이브리드 이중 가닥, 이중 가닥 올리고뉴클레오타이드, 또는 부분적으로 또는 전체적으로 DNA 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥, 부분적으로 또는 전체적으로 DNA/RNA 하이브리드 이중 가닥을 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥, 부분적으로 또는 전체적으로 이중 가닥 올리고뉴클레오타이드를 형성할 수 있는 부분적으로 또는 전체적으로 상보적인 올리고뉴클레오타이드 단일 가닥 및 부분적으로 또는 완전하게 헤어핀 이중 가닥을 형성할 수 있는 올리고뉴클레오타이드 중 1종 이상인, 유전자 돌연변이를 검출하는 방법.
  20. 청구항 15에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 임의의 서열인, 유전자 돌연변이를 검출하는 방법.
  21. 청구항 15에 있어서,
    상기 유전자 돌연변이는 단일염기 다형성인, 유전자 돌연변이를 검출하는 방법.
  22. 청구항 15에 있어서,
    상기 DNA 중합효소는 내열성 DNA 중합효소인, 유전자 돌연변이를 검출하는 방법.
  23. 청구항 15에 있어서,
    상기 DNA 중합효소는 야생형 또는 변이형 DNA 중합효소인, 유전자 돌연변이를 검출하는 방법.
  24. 청구항 15에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 10 염기 이상 100 염기 이하인, 유전자 돌연변이를 검출하는 방법.
  25. 청구항 15에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 15 염기 이상 50 염기 이하인, 유전자 돌연변이를 검출하는 방법.
  26. 청구항 15에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 Tm 값이 중합효소 연쇄반응의 어닐링 온도와 같거나 높은, 유전자 돌연변이를 검출하는 방법.
  27. 청구항 15에 있어서,
    상기 구분성 증진 올리고뉴클레오타이드는 Tm 값이 50 ~ 85℃인, 유전자 돌연변이를 검출하는 방법.
  28. 청구항 15 또는 청구항 16에 있어서,
    상기 가) 단계 및 나) 단계에서 형광 공명 에너지 전이가 가능한, 리포터와 퀀처로 수식된 프로브를 더 포함하는, 유전자 돌연변이를 검출하는 방법.
PCT/KR2020/018147 2019-12-11 2020-12-11 대립 유전자의 구분성을 높이는 pcr 방법 및 pcr 킷트 WO2021118288A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080085848.2A CN114787383A (zh) 2019-12-11 2020-12-11 一种提高等位基因区分力的pcr方法及pcr试剂盒
JP2022560843A JP7541586B2 (ja) 2019-12-11 2020-12-11 対立遺伝子の区分性を高めるpcr方法及びpcrキット
US17/784,530 US20230046513A1 (en) 2019-12-11 2020-12-11 Pcr method and pcr kit for increasing allelic discrimination
CA3164057A CA3164057A1 (en) 2019-12-11 2020-12-11 Pcr method and pcr kit for increasing allelic discrimination
EP20897780.1A EP4074840A4 (en) 2019-12-11 2020-12-11 PCR PROCEDURE AND PCR KIT TO INCREASE ALLELE DIFFERENTIATION
AU2020401936A AU2020401936A1 (en) 2019-12-11 2020-12-11 PCR method and PCR kit for increasing allelic discrimination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190164776A KR102275038B1 (ko) 2019-12-11 2019-12-11 대립 유전자의 구분성을 높이는 pcr 방법 및 pcr 킷트
KR10-2019-0164776 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021118288A1 true WO2021118288A1 (ko) 2021-06-17

Family

ID=76328967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018147 WO2021118288A1 (ko) 2019-12-11 2020-12-11 대립 유전자의 구분성을 높이는 pcr 방법 및 pcr 킷트

Country Status (8)

Country Link
US (1) US20230046513A1 (ko)
EP (1) EP4074840A4 (ko)
JP (1) JP7541586B2 (ko)
KR (1) KR102275038B1 (ko)
CN (1) CN114787383A (ko)
AU (1) AU2020401936A1 (ko)
CA (1) CA3164057A1 (ko)
WO (1) WO2021118288A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014734A1 (ko) * 2022-07-12 2024-01-18 (주)제노텍 특이도 및 민감도가 향상된 qpcr 방법 및 킷트

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34879A (en) 1862-04-08 Improvement in instruments for measuring distances
US4381693A (en) 1979-07-27 1983-05-03 Hispano-Suiza Military equipment comprising a turret carrying an external large caliber gun
US5693502A (en) 1990-06-11 1997-12-02 Nexstar Pharmaceuticals, Inc. Nucleic acid ligand inhibitors to DNA polymerases
WO2008002449A2 (en) 2006-06-23 2008-01-03 Glycomimetics, Inc. Glycomimetic inhibitors of siglec-8
JP2011041572A (ja) 1999-07-02 2011-03-03 Life Technologies Corp 核酸合成の感度および特異性の増大のための組成物および方法
US8043816B2 (en) 1999-07-02 2011-10-25 Life Technologies Corporation Compositions and methods for temperature-dependent nucleic acid synthesis
KR20120046018A (ko) * 2010-10-04 2012-05-09 삼성테크윈 주식회사 단일 뉴클레오티드 다형성의 실시간 pcr 검출
JP2013022003A (ja) * 2011-07-26 2013-02-04 Panasonic Corp Snp判別方法
KR20130138700A (ko) 2012-06-11 2013-12-19 삼성테크윈 주식회사 절단가능한 올리고뉴클레오티드 저해제에 의한 dna 폴리머라제의 제어된 저해 및 재활성화
US9267120B2 (en) 2010-06-18 2016-02-23 Roche Molecular Systems, Inc. DNA polymerases with increased 3'-mismatch discrimination
KR20170088373A (ko) 2014-12-18 2017-08-01 티쎈크로프 마리네 지스템스 게엠베하 침수된 물체를 로케이팅하는 방법
KR101775953B1 (ko) * 2016-03-22 2017-09-07 (주) 제노텍 돌연변이 유전자 검사 방법 및 킷트
KR20190054585A (ko) * 2017-11-14 2019-05-22 동의대학교 산학협력단 돌연변이 검출용 조성물 및 돌연변이 검출방법
KR20190103934A (ko) * 2018-02-28 2019-09-05 (주) 제노텍 정성적 또는 정량적 돌연변이 유전형 분석방법 및 이 방법을 수행하기 위한 실시간 pcr 키트

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ554701A (en) * 2004-10-18 2010-03-26 Univ Brandeis Reagents and methods for improving reproducibility and reducing mispriming in PCR amplification
WO2012055069A1 (en) * 2010-10-27 2012-05-03 Capitalbio Corporation Luminophore-labeled molecules coupled with particles for microarray-based assays
WO2019168261A1 (ko) * 2018-02-28 2019-09-06 (주)제노텍 정성적 또는 정량적 돌연변이 유전형 분석방법 및 이 방법을 수행하기 위한 실시간 pcr 키트

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34879A (en) 1862-04-08 Improvement in instruments for measuring distances
US4381693A (en) 1979-07-27 1983-05-03 Hispano-Suiza Military equipment comprising a turret carrying an external large caliber gun
US5693502A (en) 1990-06-11 1997-12-02 Nexstar Pharmaceuticals, Inc. Nucleic acid ligand inhibitors to DNA polymerases
JP2011041572A (ja) 1999-07-02 2011-03-03 Life Technologies Corp 核酸合成の感度および特異性の増大のための組成物および方法
US8043816B2 (en) 1999-07-02 2011-10-25 Life Technologies Corporation Compositions and methods for temperature-dependent nucleic acid synthesis
WO2008002449A2 (en) 2006-06-23 2008-01-03 Glycomimetics, Inc. Glycomimetic inhibitors of siglec-8
US9267120B2 (en) 2010-06-18 2016-02-23 Roche Molecular Systems, Inc. DNA polymerases with increased 3'-mismatch discrimination
KR20120046018A (ko) * 2010-10-04 2012-05-09 삼성테크윈 주식회사 단일 뉴클레오티드 다형성의 실시간 pcr 검출
JP2013022003A (ja) * 2011-07-26 2013-02-04 Panasonic Corp Snp判別方法
KR20130138700A (ko) 2012-06-11 2013-12-19 삼성테크윈 주식회사 절단가능한 올리고뉴클레오티드 저해제에 의한 dna 폴리머라제의 제어된 저해 및 재활성화
KR20170088373A (ko) 2014-12-18 2017-08-01 티쎈크로프 마리네 지스템스 게엠베하 침수된 물체를 로케이팅하는 방법
KR101775953B1 (ko) * 2016-03-22 2017-09-07 (주) 제노텍 돌연변이 유전자 검사 방법 및 킷트
KR20190054585A (ko) * 2017-11-14 2019-05-22 동의대학교 산학협력단 돌연변이 검출용 조성물 및 돌연변이 검출방법
KR20190103934A (ko) * 2018-02-28 2019-09-05 (주) 제노텍 정성적 또는 정량적 돌연변이 유전형 분석방법 및 이 방법을 수행하기 위한 실시간 pcr 키트

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
"Specificity-Enhanced Hot-Start PCR: Addition of Double-Stranded DNA Fragments Adapted to the Annealing Temperature", BIOTECHNIQUES, vol. 28, February 2000 (2000-02-01), pages 278 - 282
BIOCHEMISTRY, vol. 53, 2014, pages 2865 - 2874
BIOMOL. DETECT. QUANTIF., vol. 1, 2014, pages 3 - 7
BIOTECHNIQUES, vol. 16, no. 6, 1994, pages 1134 - 1137
BIOTECHNIQUES, vol. 26, 1999, pages 552 - 58
CLIN CHEM., vol. 64, no. 5, 2018, pages 801 - 809
CYTOKINE, vol. 71, 2015, pages 278 - 282
HAO-CHING WANG ET AL.: "DNA Mimic Proteins: Functions, Structures, and Bioinformatic Analysis", BIOCHEMISTRY, vol. 53, 2014, pages 2865 - 2874
J. AM. CHEM. SOC., vol. 126, 2004, pages 4550 - 4556
J. CLIN. MICROBIOL., vol. 49, 2011, pages 3154 - 3162
J. MOL BIOL., vol. 264, no. 2, 1996, pages 268 - 278
KAZUNORI IKEBUKURO ET AL.: "Screening of DNA Aptamers inhibiting Taq DNA Polymerase using algorithm mimicking evolution", NUCLEIC ACID RESEARCH SUPPLEMENT
LI KAI, ROLLINS JASON, YAN ERJIA: "Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis", SCIENTOMETRICS, SPRINGER NETHERLANDS, DORDRECHT, 1 April 2018 (2018-04-01), Dordrecht, pages 3871 - 3880, XP055819859, Retrieved from the Internet <URL:https://link.springer.com/content/pdf/10.1007/s00216-019-01865-4.pdf> [retrieved on 20210630], DOI: 10.1007/s11192-017-2622-5 *
METHODS., vol. 25, 2001, pages 463 - 71
MOL CELL PROBES., vol. 18, 2004, pages 349 - 352
NAT BIOTECHNOL., vol. 17, 1999, pages 804 - 807
NICK A. REJALI ET AL.: "The Effect of Single Mismatches on Primer Extension", CLINICAL CHEMISTRY, vol. 64, 2018, XP055730075, DOI: 10.1373/clinchem.2017.282285
NUCLEIC ACIDS RES, vol. 17, 1989, pages 2503 - 2516
NUCLEIC ACIDS RESEARCH, 2003, pages 309 - 310
NUCLEIC ACIDS RESEARCH, vol. 30, 2002, pages e137
P NATL ACAD SCI USA, vol. 88, 1991, pages 7276 - 280
PLOS ONE, vol. 9, no. 5, 2014, pages e96640
See also references of EP4074840A4
YUN LIN ET AL.: "Inhibition of Multiple Thermostable DNA Polymerases by a Heterodimeric Aptamer", J. MOL. BIOL., vol. 271, 1997, pages 100 - 111

Also Published As

Publication number Publication date
US20230046513A1 (en) 2023-02-16
EP4074840A1 (en) 2022-10-19
KR20210073947A (ko) 2021-06-21
CA3164057A1 (en) 2021-06-17
CN114787383A (zh) 2022-07-22
JP2023505398A (ja) 2023-02-08
KR102275038B1 (ko) 2021-07-08
EP4074840A4 (en) 2024-05-15
AU2020401936A1 (en) 2022-06-23
JP7541586B2 (ja) 2024-08-28

Similar Documents

Publication Publication Date Title
US20180245135A1 (en) Methods and compositions for multiplex pcr
EP2966180B1 (en) Methods and compositions for multiplex pcr
CA2233079C (en) Method for characterizing nucleic acid molecules
WO2017122896A1 (ko) 수산생물전염병 원인바이러스의 판별 및 검출용 유전자 마커,및 이를 이용한 원인바이러스의 판별 및 검출 방법
EP0369360A2 (en) Differentiation of nucleic acid segments on the basis of nucleotide differences
WO2019107893A2 (ko) 표적핵산 증폭방법 및 표적핵산 증폭용 조성물
WO2024080731A1 (ko) 췌장암 진단을 위한 메틸화 마커 유전자 및 이의 용도
WO2021075555A1 (ja) 標的核酸の検出方法、核酸結合分子の検出方法、及び核酸結合能の評価方法
JP2005518216A (ja) 融解温度依存dna増幅
WO2021118288A1 (ko) 대립 유전자의 구분성을 높이는 pcr 방법 및 pcr 킷트
CN108456716A (zh) 用于检测靶基因突变体变异的方法、组合物和试剂盒
US9260757B2 (en) Human single nucleotide polymorphisms
Hummelshoj et al. Locked nucleic acid inhibits amplification of contaminating DNA in real-time PCR
WO2020145711A1 (ko) Egfr 돌연변이 검출을 위한 dna 중합효소 및 이를 포함하는 키트
WO2020145734A1 (ko) Braf 돌연변이 검출을 위한 dna 중합효소 및 이를 포함하는 키트
WO2024144237A1 (ko) 폐암 특이적 메틸화 마커 유전자를 이용한 폐암 검출 방법
WO2022114720A1 (ko) 높은 특이도의 표적핵산 증폭방법 및 이를 이용한 표적핵산 증폭용 조성물
WO2023132626A1 (ko) 특정 유전자의 cpg 메틸화 변화를 이용한 전립선암 진단용 조성물 및 이의 용도
WO2020256293A1 (ko) Sdc2 유전자의 메틸화 검출방법
WO2017155416A1 (en) Genotyping method
KR20230141826A (ko) 합성 폴리뉴클레오티드 및 대립유전자를 선택적으로 증폭하기 위한 방법
EP1903117A1 (en) Methods for the detection of mutations by means of primers that hybridize contiguously
AU2004201351A1 (en) CRH and POMC effects on animal growth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3164057

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022560843

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020401936

Country of ref document: AU

Date of ref document: 20201211

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897780

Country of ref document: EP

Effective date: 20220711