WO2021117637A1 - スチレン系樹脂粒子の製造方法、スチレン系樹脂粒子、低誘電材用樹脂組成物及び成形体 - Google Patents

スチレン系樹脂粒子の製造方法、スチレン系樹脂粒子、低誘電材用樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2021117637A1
WO2021117637A1 PCT/JP2020/045292 JP2020045292W WO2021117637A1 WO 2021117637 A1 WO2021117637 A1 WO 2021117637A1 JP 2020045292 W JP2020045292 W JP 2020045292W WO 2021117637 A1 WO2021117637 A1 WO 2021117637A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
resin
based resin
resin particles
dielectric material
Prior art date
Application number
PCT/JP2020/045292
Other languages
English (en)
French (fr)
Inventor
壮弘 岩本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2021117637A1 publication Critical patent/WO2021117637A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a method for producing styrene-based resin particles, a resin composition for styrene-based resin particles and a low dielectric material, and a molded product.
  • Styrene-based resin having a syndiotactic structure (hereinafter, also referred to as SPS (syndiotactic polystyrene)) has heat resistance because it is crystalline in addition to excellent molding processability derived from the chemical structure of polystyrene. Since it has excellent properties such as chemical resistance, is lightweight, and has excellent electrical properties, it is being considered for practical use in a wide range of fields such as electrical / electronic parts, automobile parts, mechanical parts, and industrial parts. There is. Usually, when a molded product of SPS is obtained, it is often obtained by melt-kneading SPS pellets, but depending on the application, it may be required to be used in the form of particles. However, on the other hand, there are few examples of using SPS in the form of particles.
  • Patent Document 1 describes a styrene-based polymer powder having a syndiotactic structure and a thermoplastic resin, and the styrene-based polymer powder component is contained in the thermoplastic resin component.
  • a styrene-based resin composition characterized by being dispersed in a powder state is disclosed.
  • the powder there is no description about a specific method for adjusting the particle size, and the composition is characterized by having a small shrinkage rate and good moldability.
  • SPS SPS
  • the glass transition temperature is about 100 ° C. like ordinary styrene
  • heat generated during crushing when a general crushing method such as a media mill is used.
  • the elastic modulus of the resin decreases, making it difficult to make the resin finer.
  • productivity is lowered, impurities are mixed due to wear of the media, and the quality is deteriorated.
  • the first problem to be solved by the present invention is to efficiently use styrene-based resin particles having a syndiotactic structure having a small particle size, heat resistance, and substantially no impurities. It is an object of the present invention to provide styrene-based resin particles having a production method and a syndiotactic structure that can be obtained.
  • fluororesin particles and the like which are generally used for low-dielectric materials, have excellent electrical characteristics, but have poor affinity with other resins, and it is difficult to uniformly blend them. Further, since the fluororesin has a high density, the obtained resin composition is heavy and contains a halogen element, which causes a problem of environmental load at the time of disposal. Therefore, for electronic device parts such as electronic circuit boards and millimeter-wave radomes, resin compositions that are lightweight, have low dielectric constants and dielectric losses, and have excellent electrical characteristics are used, and have excellent strength. A molded body is required.
  • the second problem to be solved by the present invention is low dielectric constant and dielectric loss, excellent strength, and suitable for electronic device parts, particularly electronic circuit boards and millimeter-wave radomes. It is an object of the present invention to provide a resin composition for a low dielectric material and a molded product containing the resin composition.
  • the present inventors have found a method of pulverizing to a specific particle size by a specific crusher using pelletized SPS, and SPS particles having a specific particle size and melting point, and a specific molecular structure.
  • the first problem is solved.
  • SPS particles having a specific particle size and melting point, a specific molecular structure, a resin composition using the same, a molded product containing the resin composition, and a styrene resin having a crosslinked structure having a specific particle size It has been found that a resin composition using particles and a molded product containing the resin composition solve the second problem. That is, the present invention relates to the following [1] to [31].
  • a method for producing styrene resin particles which comprises a step of pulverizing a styrene resin having a pellet-shaped syndiotactic structure with an impact crusher to obtain particles having an average particle size of 0.5 to 90 ⁇ m.
  • the ratio of the heat absorption amount at 175 to 260 ° C. to the total heat absorption amount measured by raising the temperature at a heating rate of 20 ° C./min by differential scanning calorimetry is less than 30% [10].
  • (4a) Zirconium content is 100 ppm or less [11]
  • the resin (Y1) is epoxy resin, polyimide, liquid crystal polymer, polyethersulfone, polyarylate, polycarbonate, polyetheretherketone, polyetherimide, polyamideimide, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyphenylene oxide, polytetra.
  • Resin composition for use. [15] The average particle size of the styrene-based resin particles and the thickness of the molded product containing the resin composition for a low dielectric material according to any one of the above [12] to [14] and contained in the resin composition for a low dielectric material.
  • a method for producing a resin composition for a low dielectric material which comprises a step 2b of synthesizing a resin (Y1) in the presence of resin particles.
  • a method for reducing the dielectric constant of a resin composition wherein the styrene-based resin particles according to any one of [7] to [11] are added to the resin (Y1).
  • a resin composition for a low dielectric material which has an average particle size of 0.5 to 90 ⁇ m, contains 2 to 55% by volume of styrene resin particles (X2) made of a styrene resin having a crosslinked structure, and a resin (Y2). ..
  • the resin composition for a low-dielectric material according to the above [22], wherein the resin (Y2) is a thermoplastic resin or a thermosetting resin.
  • the resin (Y2) is epoxy resin, polyimide, liquid crystal polymer, polyethersulfone, polyarylate, polycarbonate, polyetheretherketone, polyetherimide, polyamideimide, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyphenylene oxide, polytetra.
  • Resin composition for use [25] The resin composition for a low-dielectric material according to any one of the above [22] to [24], wherein the styrene-based resin particles (X2) have an average particle size of 0.5 to 45 ⁇ m.
  • styrene-based resin particles having a small particle size, heat resistance, and a syndiotactic structure containing substantially no impurities can be efficiently obtained. Further, the styrene-based resin particles having the syndiotactic structure of the present invention have a small particle size and heat resistance.
  • the resin composition for low dielectric materials of the present invention and the molded product containing the resin composition are suitable for electronic device parts, particularly electronic circuit boards and millimeter-wave radomes, because they have low dielectric constant and dielectric loss and excellent strength. ing.
  • the present invention comprises a step of pulverizing a styrene-based resin having a pellet-shaped syndiotactic structure with an impact crusher to obtain particles having an average particle size of 0.5 to 90 ⁇ m, for producing styrene-based resin particles.
  • the method (first embodiment of the present invention).
  • the present invention is a low dielectric containing styrene resin particles made of a styrene resin having a syndiotactic structure satisfying the requirements described later, 2 to 55% by volume of the styrene resin particles, and a resin (Y1). It is a resin composition for materials (second embodiment of the present invention).
  • the present invention has a low dielectric content containing 2 to 55% by volume of styrene resin particles (X2) made of a styrene resin having a crosslinked structure having an average particle size of 0.5 to 90 ⁇ m and a resin (Y2). It is a resin composition for materials (third embodiment of the present invention). Hereinafter, a detailed description will be given.
  • a styrene-based resin having a pellet-shaped syndiotactic structure is pulverized using an impact crusher, and an average particle size of 0.5 to It has a step of obtaining 90 ⁇ m particles.
  • the racemic diad (r) fraction of the styrene resin (SPS) having a syndiotactic structure used in the production method of the present invention is preferably 75 mol% or more, more preferably 85 mol% or more, and 99 mol% or more. Is more preferable, and the fraction of lasemipentad (rrrr) is preferably 30 mol% or more, more preferably 50 mol% or more, further preferably 98.5 mol% or more, still more preferably 99.0 mol% or more.
  • Tacticity means the ratio of phenyl rings in adjacent styrene units to which the phenyl rings are arranged alternately with respect to the plane formed by the main chain of the polymer block. Syndiotacticity can be quantified by nuclear magnetic resonance spectroscopy ( 13 C-NMR method). Diad indicates syndiotacticity with two consecutive monomer units, and pentad indicates syndiotacticity with five monomer units.
  • poly (hydrocarbon-substituted styrene) examples include poly (methylstyrene), poly (ethylstyrene), poly (isopropylstyrene), poly (tert-butylstyrene), poly (phenyl) styrene, poly (vinylnaphthalene), and poly (poly). Vinyl styrene) and the like.
  • poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene) and poly (fluorostyrene).
  • poly (alkyl styrene halogenated) examples include poly (chloromethyl styrene).
  • poly (alkoxystyrene) examples include poly (methoxystyrene) and poly (ethoxystyrene).
  • an olefin monomer such as ethylene, propylene, butene, hexene and octene
  • a diene monomer such as butadiene and isoprene
  • a cyclic olefin monomer Cyclic diene monomers, methyl methacrylate, maleic anhydride and polar vinyl monomers such as acrylonitrile.
  • polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (p-tert-butylstyrene), poly (p-chlorostyrene), and poly (p-chlorostyrene) are particularly preferable.
  • m-chlorostyrene) and poly (p-fluorostyrene) can be mentioned.
  • a copolymer of styrene and p-methylstyrene a copolymer of styrene and p-tert-butylstyrene, a copolymer of styrene and divinylbenzene and the like can be mentioned.
  • the melting point of the styrene resin having a syndiotactic structure used in the production method of the present invention is preferably 240 ° C. or higher, more preferably 245 ° C. or higher, further preferably 265 ° C. or higher, still more preferably 269 ° C. or higher, and 270 ° C.
  • the above is even more preferable, and 271 ° C. or higher is even more preferable.
  • 265 to 275 ° C. is preferable
  • 265 to 273 ° C. is more preferable
  • 269 to 273 ° C. is further preferable
  • 271 to 273 ° C. is even more preferable.
  • the styrene-based resin having a syndiotactic structure used in the production method of the present invention has a weight average molecular weight of 10,000 or more from the viewpoint of ease of crushing the resin at the time of crushing and the strength of the molded product to which SPS particles are added. It is preferably 1,000,000 or less, and more preferably 50,000 or more and 500,000 or less. When the weight average molecular weight is 10,000 or more, a molded product having sufficient strength can be obtained. Further, when added to a resin varnish (more specifically, a polyimide varnish or the like), it is possible to suppress dissolution and swelling in an organic solvent contained in the varnish, and the molded body has sufficient strength and low dielectric constant as a molded body. Can be obtained.
  • a resin varnish more specifically, a polyimide varnish or the like
  • the weight average molecular weight uses a GPC apparatus (HLC-8321GPC / HT) manufactured by Tosoh Corporation and a GPC column (GMHHR-H (S) HT) manufactured by Tosoh Corporation. It is a value measured by gel permeation chromatography measurement at 145 ° C. using 1,2,4-trichlorobenzene as an eluent, and converted using a standard polystyrene calibration line. Sometimes abbreviated simply as "molecular weight”.
  • the styrene-based resin used in the production method of the present invention is described in [2-1. Styrene-based resin particles (second embodiment)] are more preferable, and the styrene-based resin constituting the styrene-based resin particles described in the section is more preferable, and the styrene-based resin particles described in the second embodiment of the present invention described later are formed.
  • the one obtained by the method for producing a styrene-based resin is more preferable.
  • any method may be used for pelletization for obtaining the pellet-shaped SPS used in the production method of the present invention, but it is preferable to produce strands by melt extrusion and obtain the strands by cutting them. ..
  • the method for performing melt extrusion include a method using a single-screw extruder, a twin-screw extruder, a kneader luder (a device in which a kneader is added to an extruder), and the like.
  • twin-screw extruder include TEX (manufactured by Japan Steel Works, Ltd.) and TEM (manufactured by Toshiba Machine Co., Ltd.).
  • pelletization method examples include a cold cut method, that is, a method in which strands extruded under the above conditions are cooled by water cooling, air cooling, or the like, and then cut by a pelletizer. If necessary, it may be extruded in a form other than a strand shape and cut into pellets.
  • a cold cut method that is, a method in which strands extruded under the above conditions are cooled by water cooling, air cooling, or the like, and then cut by a pelletizer. If necessary, it may be extruded in a form other than a strand shape and cut into pellets.
  • the styrene resin having the pellet-like syndiotactic structure obtained as described above is pulverized by using an impact type pulverizer described later, and particles having an average particle size of 0.5 to 90 ⁇ m are pulverized.
  • the pulverization step is a step of obtaining particles having an average particle size of 0.5 to 90 ⁇ m, preferably a step of obtaining particles having an average particle size of 70 ⁇ m or less, and preferably a step of obtaining particles having an average particle size of 60 ⁇ m or less.
  • it is a step of obtaining particles having an average particle size of 50 ⁇ m or less, further preferably, it is a step of obtaining particles having an average particle size of 45 ⁇ m or less, and it is a step of obtaining particles having an average particle size of 30 ⁇ m or less. It is even more preferable that the step of obtaining particles having an average particle size of 20 ⁇ m or less is even more preferable, and the step of obtaining particles having an average particle size of 10 ⁇ m or less is even more preferable.
  • a step of obtaining particles having an average particle size of 0.5 ⁇ m or more preferably a step of obtaining particles having an average particle size of 1.0 ⁇ m or more, and a step of obtaining particles having an average particle size of 1.5 ⁇ m or more. Is more preferable.
  • the impact-type crusher preferably used in the manufacturing method of the present invention is a hammer (blade rotor, crushing rotor) in which pellet-shaped SPS supplied into the crusher via a raw material supply pipe is rotating at high speed and its crusher. It is crushed with the surrounding liner.
  • Such an impact type crusher is also called a striking crusher or a hammer mill, and it is preferable to use a striking crusher in the manufacturing method of the present invention. It is also preferable to use a jet mill that uses a high-pressure gas as the impact crusher.
  • the impact type crusher preferably has a built-in classifier.
  • the SPS crushed between the hammer and the liner as described above is guided to the classification rotor by the air flow supplied through the air supply pipe, and particles below the upper limit particle size are discharged pipes.
  • the coarse powder that exceeds the upper limit particle size is returned to the crushed portion (hammer / liner portion) and re-crushed.
  • the guide ring distinguishes the air flow between the classification rotor and the crushed portion, and can efficiently separate the particles discharged from the classification rotor and the coarse powder.
  • the shape of the hammer is preferably a bar
  • the shape of the liner is preferably a groove
  • the model of the guide ring is preferably vertical.
  • the crushing conditions when the impact type crusher having the above mechanism is used are as follows from the viewpoint of obtaining SPS particles having a smaller particle size.
  • the rotation speed of the hammer (blade rotor, crushing rotor) is preferably 1000 to 10000 rpm, more preferably 3000 to 9500 rpm, further preferably 5000 to 9000 rpm, and even more preferably 7000 to 8000 rpm.
  • the rotation speed of the classification rotor is preferably 500 to 9000 rpm, more preferably 1500 to 8000 rpm, further preferably 3000 to 7000 rpm, still more preferably 4000 to 6000 rpm.
  • a suitable impact type crusher examples include ACM Pulverizer ACM15H (manufactured by Hosokawa Micron Co., Ltd.).
  • the impact crusher preferably has a cooling device.
  • the impact type crusher has a cooling device
  • first, the pellet-shaped SPS is pre-cooled by the freezer, and then supplied to the crusher and crushed.
  • the crusher is also cooled by the refrigerant and can be crushed at a low temperature.
  • Liquid nitrogen is preferable as the refrigerant used for cooling the freezer and the crusher. By using liquid nitrogen, even if heat is generated during pulverization, pelletized SPS and coarse powder of SPS can be maintained below the glass transition temperature, and after use, it is easily discharged to the outside of the system as nitrogen gas. can do.
  • the crushing conditions when the impact type crusher having the above mechanism is used are as follows from the viewpoint of obtaining SPS particles having a smaller particle size.
  • the rotation speed of the hammer (blade rotor, crushing rotor) is preferably 1000 to 15000 rpm, more preferably 4000 to 13000 rpm, and even more preferably 8000 to 12000 rpm.
  • the impact type crusher having a suitable cooling device examples include a Linlex mill (manufactured by Hosokawa Micron Co., Ltd.).
  • the amount of treatment in this production method is preferably 3 kg or more, more preferably 5 kg or more, further preferably 10 kg or more, further preferably 20 kg or more, still more preferably 30 kg or more. preferable.
  • the average particle size of the styrene resin particles obtained by this production method is 0.5 to 90 ⁇ m, preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, further preferably 50 ⁇ m or less, further preferably 45 ⁇ m or less, and further preferably 30 ⁇ m or less. Is even more preferable, 20 ⁇ m or less is even more preferable, and 10 ⁇ m or less is even more preferable. Further, it is 0.5 ⁇ m or more, preferably 1.0 ⁇ m or more, and more preferably 1.5 ⁇ m or more.
  • the dielectric constant and the dielectric loss can be lowered while maintaining sufficient strength when blended in a resin molded product or the like, which is excellent as an electronic material. It becomes a thing.
  • the styrene-based resin particles obtained by this production method are substantially free of impurities.
  • Styrene-based particles that are substantially free of impurities are as follows.
  • the content of the inorganic substance derived from the medium containing the inorganic oxide of the crusher in the styrene resin particles obtained by this production method is preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably 20 ppm or less. In the present specification, "ppm" indicates parts per million by mass. According to the production method of the present invention, styrene-based resin particles having a small particle size can be efficiently obtained without using a media mill that uses a medium such as an inorganic oxide.
  • the inorganic oxide contained in the media of the crusher examples include zirconia, alumina, glass and the like.
  • the content of zirconium in the styrene resin particles obtained by this production method is preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably 20 ppm or less. If it is 100 ppm or less, excellent electrical characteristics and mechanical properties can be maintained.
  • the styrene-based resin obtained by this production method may contain an aluminum component and a titanium component derived from a catalyst or the like used in the polymerization process.
  • the content of the aluminum content in the styrene-based resin particles obtained by this production method is preferably 800 ppm or less, more preferably 700 ppm or less, still more preferably 500 ppm or less.
  • the titanium content in the styrene resin particles obtained by this production method is preferably 12 ppm or less, more preferably 11 ppm or less, further preferably 10 ppm or less, and even more preferably 8 ppm or less.
  • the styrene-based resin particles obtained by this production method are described in [2-1.
  • the aluminum content and titanium content derived from the catalyst can be reduced, and the heat resistance can be reduced. It will be excellent in sex.
  • the styrene-based resin particles obtained by the production method of the present invention are the second embodiment of the present invention described later [2-1. Styrene-based resin particles] are more preferable. That is, in the method for producing styrene-based resin particles of the present invention, styrene-based resin having a pellet-shaped syndiotactic structure is crushed using an impact crusher to obtain particles having an average particle size of 0.5 to 90 ⁇ m. Although it has a step, the obtained resin particles are further composed of a styrene-based resin having a syndiotactic structure satisfying the following (1) and (2), and the average particle size is 0.5 to 90 ⁇ m. It is more preferable that the method is for producing styrene resin particles. (1) Melting point is 265 to 275 ° C (2) Racemic pentad fraction is 98.5 mol% or more
  • the styrene-based resin particles according to the second embodiment of the present invention are made of a styrene-based resin having a syndiotactic structure satisfying the following (1) and (2), and have an average particle size of 0.5 to 90 ⁇ m.
  • (1) Melting point is 265 to 275 ° C
  • (2) Lasemipentad fraction is 98.5 mol% or more
  • the fraction, (3) ratio of heat absorption, and (4) content of inorganic substances are all the melting point of the entire resin constituting the styrene resin particles, the racemic pentad fraction, the ratio of heat absorption, and the content of inorganic substances.
  • the melting point of the styrene resin particles of the present invention is 265 to 275 ° C, preferably 269 to 275 ° C, more preferably 270 to 275 ° C, further preferably 271 to 275 ° C, still more preferably 271 to 273 ° C.
  • the racemic pentad fraction of the styrene resin particles of the present invention is 98.5 mol% or more, preferably 99.0 mol% or more.
  • Tacticity means the ratio of phenyl rings in adjacent styrene units to which the phenyl rings are arranged alternately with respect to the plane formed by the main chain of the polymer block. Syndiotacticity can be quantified by nuclear magnetic resonance spectroscopy ( 13 C-NMR method). Pentad indicates syndiotacticity with 5 monomer units.
  • the average particle size of the styrene resin particles of the present invention is 0.5 to 90 ⁇ m, preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, further preferably 50 ⁇ m or less, further preferably 45 ⁇ m or less, and further preferably 30 ⁇ m or less. It is preferably 20 ⁇ m or less, and even more preferably 20 ⁇ m or less. Further, 1.0 ⁇ m or more is preferable, and 1.5 ⁇ m or more is more preferable.
  • the styrene-based resin particles according to the second embodiment of the present invention preferably further satisfy the following (3).
  • Ascend at a heating rate of 20 ° C./min according to the method described in JIS K7121: 1987 "When measuring the melting temperature after performing a certain heat treatment" by a differential scanning calorimetry (DSC measurement) device. Warm to obtain a DSC curve. Specifically, it is heated and melted to a temperature about 30 ° C. higher than the end of the melting peak, kept at that temperature for 10 minutes, and then cooled to a temperature at least about 50 ° C. lower than the appearing transition peak at a cooling rate of 5 ° C. or 5 ° C. per minute. After cooling at 10 ° C., the temperature is raised at a heating rate of 20 ° C./min to obtain a DSC curve.
  • the DSC curve is obtained by raising the temperature from 50 ° C. to 300 ° C. at a heating rate of 20 ° C./min after the cooling.
  • the total endothermic amount is calculated from the area of the total endothermic peak on the DSC curve. Further, the heat absorption amount of 175 to 260 ° C. is calculated from the area of the range surrounded by the baseline, the perpendicular line of 175 ° C., the vertical line of 260 ° C., and the DSC curve. The perpendicular line at 175 ° C. and the perpendicular line at 260 ° C. are straight lines that intersect at right angles to the baseline.
  • the ratio of each of the heat absorption amounts (heat absorption amount at 175 to 260 ° C./total heat absorption amount) is defined as the ratio of the heat absorption amount at 175 to 260 ° C. to the total heat absorption amount.
  • the ratio of the heat absorption amount at 175 to 260 ° C. to the total heat absorption amount is preferably less than 30%, more preferably 28% or less, still more preferably 27% or less.
  • the ratio of the low melting point component is less than 30%, the heat resistance is excellent, and it is possible to cope with a reflow soldering process in particular.
  • the styrene-based resin particles of the present invention can be obtained by granulating a styrene-based resin having a pellet-shaped syndiotactic structure.
  • particles can be formed by using a roller mill, a roll mill, a jet mill, a turbo mill, a cutter mill, a rod mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a ball mill, an attritor, a bead mill or the like.
  • jet mills and hammer mills are preferable because they can obtain styrene-based resin particles having a syndiotactic structure that is substantially free of impurities.
  • the pulverization may be performed by a dry type or a wet type, but is preferably a dry type because the process can be simplified, and can be performed at normal temperature or low temperature, but it is preferable to carry out at room temperature from the viewpoint of cost.
  • the above-mentioned [1. It is also preferable to obtain it by the method described in [Method for producing styrene-based resin particles]. That is, it is obtained by a production method having a step of pulverizing a styrene resin satisfying the following (1) and (2) and having a pellet-like syndiotactic structure using an impact crusher to obtain particles. More preferably, the styrene-based resin particles have an average particle size of 0.5 to 90 ⁇ m. (1) Melting point is 265 to 275 ° C (2) Racemic pentad fraction is 98.5% or more
  • the styrene-based resin particles of the present invention preferably further satisfy the following (4).
  • the content of the inorganic substance derived from the media of the crusher is 100 ppm or less
  • the content of the inorganic substance derived from the media of the crusher in the styrene resin particles is preferably 100 ppm or less, more preferably 50 ppm or less, and more preferably 20 ppm or less. Is more preferable.
  • the styrene-based resin particles of the present invention can be used in the above-mentioned [1.
  • a media mill using a medium such as an inorganic oxide is not used, so that styrene-based resin particles having a small amount of inorganic substances can be obtained.
  • the inorganic substance include zirconium, aluminum, silicon and the like.
  • the content of zirconium in the styrene resin particles of the present invention is more preferably 100 ppm. That is, it is more preferable that the styrene-based resin particles of the present invention further satisfy the following (4a).
  • (4a) Zirconium content is 100 ppm or less
  • the zirconium content is more preferably 100 ppm or less, still more preferably 50 ppm or less, and even more preferably 20 ppm or less.
  • the content of aluminum in the styrene resin particles of the present invention is preferably 800 ppm or less, more preferably 700 ppm or less, still more preferably 500 ppm or less.
  • the titanium content in the styrene resin particles of the present invention is preferably 12 ppm or less, more preferably 11 ppm or less, further preferably 10 ppm or less, and even more preferably 8 ppm or less.
  • the styrene-based resin particles of the present invention can reduce the aluminum content and the titanium content by using the styrene-based resin polymerized by the method described later, and have excellent heat resistance.
  • the lasemipentad (rrrr) fraction of the styrene resin (SPS) having a syndiotactic structure constituting the styrene resin particles of the present invention is preferably 98.5 mol% or more, preferably 99.0 mol% or more. Is more preferable.
  • Tacticity means the ratio of phenyl rings in adjacent styrene units to which the phenyl rings are arranged alternately with respect to the plane formed by the main chain of the polymer block. Syndiotacticity can be quantified by nuclear magnetic resonance spectroscopy ( 13 C-NMR method). Pentad indicates syndiotacticity with 5 monomer units.
  • SPS constituting the resin particles of the present invention examples include polystyrene, poly (hydrocarbon-substituted styrene), poly (styrene halide), poly (alkyl styrene halide), poly (alkoxystyrene), and poly (vinyl benzoic acid ester). , Hydrocarbon polymers or mixtures thereof, copolymers containing these as main components, and the like.
  • poly (hydrocarbon-substituted styrene) examples include poly (methylstyrene), poly (ethylstyrene), poly (isopropylstyrene), poly (tert-butylstyrene), poly (phenyl) styrene, poly (vinylnaphthalene), and poly (poly). Vinyl styrene) and the like.
  • poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene) and poly (fluorostyrene).
  • poly (alkyl styrene halogenated) examples include poly (chloromethyl styrene).
  • poly (alkoxystyrene) examples include poly (methoxystyrene) and poly (ethoxystyrene).
  • olefin monomers such as ethylene, propylene, butene, hexene and octene
  • diene monomers such as butadiene and isoprene
  • cyclic olefin monomers Cyclic diene monomers, methyl methacrylate, maleic anhydride and polar vinyl monomers such as acrylonitrile.
  • polystyrene-based polymers polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (p-tert-butylstyrene), poly (p-chlorostyrene), and poly (p-chlorostyrene) are particularly preferable.
  • m-chlorostyrene) and poly (p-fluorostyrene) can be mentioned.
  • a copolymer of styrene and p-methylstyrene a copolymer of styrene and p-tert-butylstyrene, a copolymer of styrene and divinylbenzene and the like can be mentioned.
  • the SPS constituting the resin particles of the present invention has a weight average molecular weight of 10,000 or more and 1,000,000 or less from the viewpoint of the ease of crushing the resin at the time of crushing and the strength of the molded product to which the SPS particles are added. It is preferable, and it is more preferable that it is 50,000 or more and 500,000 or less. When the weight average molecular weight is 10,000 or more, a molded product having sufficient strength can be obtained. Further, when added to a resin varnish (more specifically, a polyimide varnish or the like), it is possible to suppress dissolution and swelling in an organic solvent contained in the varnish, and the molded body has sufficient strength and low dielectric constant as a molded body. Can be obtained.
  • a resin varnish more specifically, a polyimide varnish or the like
  • the weight average molecular weight uses a GPC apparatus (HLC-8321GPC / HT) manufactured by Tosoh Corporation and a GPC column (GMHHR-H (S) HT) manufactured by Tosoh Corporation. It is a value measured by gel permeation chromatography measurement at 145 ° C. using 1,2,4-trichlorobenzene as an eluent, and converted using a standard polystyrene calibration line. Sometimes abbreviated simply as "molecular weight”.
  • the styrene resin used for the styrene resin particles of the present invention is made of a styrene resin having a syndiotactic structure, and the resin satisfying the above (1) and (2) (melting point and racemic pentad fraction)
  • the method is not particularly limited as long as it can be obtained, but the following production method is preferable.
  • a half metallocene-based transition metal compound (A) having at least one selected from the group consisting of metals of Group 3 to 5 of the periodic table and lanthanoid-based transition metals, and a compound represented by the general formula (1).
  • a catalyst containing (B) and a compound (C) selected from at least one of the oxygen-containing compound (c1) and the compound (c2) capable of reacting with the transition metal compound to form an ionic complex is to add-polymerize the monomer of the styrene-based polymer and the comonomer component of the copolymer.
  • R 1 is a halogen atom, an aliphatic hydrocarbon group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, and 6 to 30 carbon atoms. It represents an aryloxy group, a thioalkoxy group having 1 to 30 carbon atoms, a thioaryloxy group having 6 to 30 carbon atoms, an amino group, an amide group, or a carboxyl group.
  • a plurality of R 1 may be the same or different from each other.
  • R 1 may form a ring structure, if necessary.
  • Q indicates an element of Group 14 of the periodic table
  • Y indicates an element of Group 16
  • Z indicates a metal element of Group 2 to 13.
  • R 2 represents a hydrocarbon group.
  • j represents an integer of the valence of the metal element Z
  • k represents an integer of 1 to (j-1). ]
  • the half metallocene transition metal compound (A) is a half metallocene transition metal compound having at least one central metal selected from the group consisting of metals of Groups 3 to 5 of the Periodic Table and lanthanoid transition metals. ..
  • the half metallocene transition metal compound (A) is, for example, the general formula (2).
  • R 3 MU a-1 L b (2) [In the formula, R 3 represents a ⁇ ligand.
  • M represents at least one selected from the group consisting of metals of groups 3 to 5 of the periodic table and lanthanoid transition metals, and U represents a monoanion ligand.
  • the plurality of Us may be the same or different from each other, or may be bonded to each other via an arbitrary group.
  • L is a Lewis base, a is a valence of M, and b is 0, 1 or 2.
  • the L's may be the same or different from each other.
  • It has a structure represented by.
  • R 3 is a ⁇ ligand, preferably a substituted or unsubstituted (hereinafter, may be referred to as (substitution)) cyclopentadienyl group, (substitution) indenyl group, cyclo.
  • substitution a substituted or unsubstituted
  • substitution indenyl group
  • cyclo A fused polycyclic cyclopentadienyl group in which at least one of the multi-membered rings to which the pentadienyl group is condensed and bonded is a saturated ring is shown.
  • Specific examples of R 3 include 4,5,6,7-tetrahydroindenyl group, 1-methyl-4,5,6,7-tetrahydroindenyl group, 2-methyl-4,5,6,7-.
  • Tetrahydroindenyl group 1,2-dimethyl-4,5,6,7-tetrahydroindenyl group, 1,3-dimethyl-4,5,6,7-tetrahydroindenyl group, 1,2,3-trimethyl -4,5,6,7-tetrahydroindenyl group, 1,2,3,4,5,6,7-heptamethyl-4,5,6,7-tetrahydroindenyl group, 1,2,4,5 , 6,7-Hexamethyl-4,5,6,7-Tetrahydroindenyl Group, 1,3,4,5,6,7-Hexamethyl-4,5,6,7-Tetrahydroindenyl Group, Octahydroflu Examples thereof include an olenyl group, a 1,2,3,4-tetrahydrofluorenyl group, a 9-methyl-1,2,3,4-tetrahydrofluorenyl group, a 9-methyl-octahydrofluorenyl group and the like. , 4,5,6,7-t
  • M is a metal of Group 3-5 of the Periodic Table, or a lanthanoid transition metal.
  • these metals include group 3 metals of the periodic table such as scandium and yttrium, group 4 metals of the periodic table such as titanium, zirconium and hafnium, transition metals of the lanthanoid system, and metals of group 5 of the periodic table such as niobium and tantalum.
  • group 3 or Group 4 metals of the periodic table are preferable, and scandium, yttrium, and titanium can be preferably used. Of these, titanium is more preferable from the viewpoint of handling.
  • U represents a monoanionic ligand, specifically, a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, and 1 to 20 carbon atoms. Examples thereof include an alkoxy group, an aryloxy group having 6 to 20 carbon atoms, a thioalkoxy group having 1 to 20 carbon atoms, a thioaryloxy group having 6 to 20 carbon atoms, an amino group, an amide group, a carboxyl group and an alkylsilyl group. ..
  • the plurality of U may be the same or different from each other, or may be bonded to each other via an arbitrary group.
  • U examples include hydrogen atom, chlorine atom, bromine atom, iodine atom, methyl group, benzyl group, phenyl group, trimethylsilylmethyl group, methoxy group, ethoxy group, phenoxy group, thiomethoxy group, thiophenoxy group and dimethylamino.
  • Groups, diisopropylamino groups and the like can be mentioned.
  • L represents a Lewis base, a is a valence of M, and b is 0, 1 or 2.
  • Compound (B) represented by the general formula (1) Among the compounds (B) represented by the general formula (1), the following compounds are preferably used.
  • Z is preferably aluminum, Q is carbon, Y is oxygen, and Z is aluminum, more preferably.
  • all three of R 1 are those preferably a hydrocarbon group having at least one carbon atom.
  • R 2 is an alkyl group having 2 or more carbon atoms.
  • the compound (B) is an aluminum compound with respect to 1 mol of the half metallocene-based transition metal compound (A) component
  • the compound (B) has an aluminum atom molar ratio of 0.5 to 1,000, preferably 1 to 1. Selected in the range of 100.
  • the compounds (B) represented by the general formula ( 1 ) are the compound (b1) represented by the general formula (R 1) 3- C-OR 33 and the compound represented by the general formula Z (R 2 ) j ( Those obtained by reacting with b2) are preferably used.
  • R 1 , Z, j and R 2 are as described above.
  • R 33 is a hydrogen atom, a halogen atom, an aliphatic hydrocarbon group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, and an aryl having 6 to 30 carbon atoms.
  • R 1 and R 33 may be the same or different from each other. Further, R 1 and R 33 may be bonded to each other as necessary to form a ring structure.
  • the compound of the formula (1) include at least one (b1) selected from alcohols, ethers, aldehydes, ketones, carboxylic acids, and carboxylic acid esters, and an aluminum compound (b2). Reaction products of. More preferably, it is a reaction product of alcohols (b1) and an aluminum compound (b2).
  • R 1 is preferably all three of the three R 1 is a hydrocarbon group having more than 1 carbon atoms and the three all aromatic hydrocarbon groups having 6 to 30 carbon atoms for R 1 still more preferably, it is even more preferable that all three of R 1 is a phenyl group.
  • the compound (b1): compound (b2) is preferably 1: 0.01 to 1: 100, more preferably 1: 0.5 to, in terms of molar ratio. It is in the range of 1:50, particularly preferably 1: 0.8 to 1:10. Further, the component (b2) is preferably 0.5 to 10,000 in terms of the molar ratio of aluminum atoms when the component (b2) is an aluminum compound with respect to 1 mol of the half metallocene transition metal compound (A). It is preferably in the range of 0.5 to 1,000, and most preferably in the range of 1 to 1,000.
  • reaction conditions of the compound (b1) and the compound (b2) are not particularly limited, but the reaction temperature is preferably ⁇ 80 ° C. to 300 ° C., more preferably ⁇ 10 ° C. to 50 ° C., and the solvent used during the reaction. Is preferably a solvent used during polymerization such as toluene and ethylbenzene.
  • the compound (b1) and the compound (b2) may be directly put into the field of catalyst synthesis or the field of polymerization instead of the compound (B) represented by the general formula (1), but ( It is preferable that the b1) component and the (b2) component are brought into contact with each other in advance before the other components are brought into contact with each other.
  • the compound (C) is selected from at least one of an oxygen-containing compound (c1) and a compound (c2) capable of reacting with a transition metal compound to form an ionic complex.
  • the oxygen-containing compound (c1) is preferable.
  • the molar ratio of the half metallocene-based transition metal compound (A) component to the compound (C) is usually 1 mol of the half metallocene-based transition metal compound (A) with respect to the compound (C).
  • Is an organoaluminum compound it is selected in the range of 10,000 to 10,000, preferably 10 to 1,000, in terms of the molar ratio of aluminum atoms.
  • the compound (C) is usually a boron compound with respect to 1 mol of the half metallocene-based transition metal compound (A).
  • the molar ratio of the boron atom is selected in the range of 0.5 to 10, preferably 0.8 to 5.
  • oxygen-containing compound (c1) examples include compounds represented by the following general formulas (c11) and / or general formulas (c12).
  • R 18 to R 24 each represent an alkyl group having 1 to 8 carbon atoms, and specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and various butyl groups. Groups, various pentyl groups, various hexyl groups, various heptyl groups and various octyl groups can be mentioned.
  • R 18 to R 22 may be the same or different from each other, and R 23 and R 24 may be the same or different from each other.
  • Z 1 to Z 5 each represent an element of Group 13 of the periodic table, and specific examples thereof include B, Al, Ga, In and Tl.
  • Z 1 to Z 3 may be the same or different from each other, and Z 4 and Z 5 may be the same or different from each other.
  • g, h, s and t are numbers from 0 to 50, respectively, but (g + h) and (s + t) are 1 or more, respectively.
  • the g, h, s and t are preferably in the range of 1 to 20, and particularly preferably in the range of 1 to 5.
  • alkylaluminoxane is preferable. Specific preferred examples include methylaluminoxane, methylisobutylaluminoxane, and isobutylaluminoxane.
  • Compound (c2) that can react with a transition metal compound to form an ionic complex examples include a coordination complex compound consisting of an anion and a cation in which a plurality of groups are bonded to a metal, or a Lewis acid.
  • a coordination complex compound consisting of an anion and a cation in which a plurality of groups are bonded to a metal, or a Lewis acid.
  • a compound represented by the following general formula (c21) or (c22) may be preferably used. it can.
  • L 2 is M 5 , R 25 R 26 M 6 or R 27 3 C described later
  • L 3 is a Lewis base
  • M 3 and M 4 are the numbers of the periodic table, respectively. It is a metal selected from the group consisting of groups 5 to 15.
  • X 3 is a hydrogen atom, a dialkylamino group, an alkoxy group, an aryloxy group, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, an arylalkyl group, a substituted alkyl group, and an organic metalloid. Indicates a group or halogen atom.
  • a plurality of X 3 may be the same or different from each other.
  • v indicates the valence of M 3 and M 4 , an integer of 1 to 7
  • u is an integer of 2 to 8
  • i indicates the ionic valence of [L 2 ] and [L 3 ⁇ H], and is an integer of 1 to 7.
  • Y is an integer of 1 or more
  • z y ⁇ i / (uv).
  • M 5 is a metal selected from the group consisting of groups 1 and 8 to 12 of the periodic table
  • M 6 is a metal selected from the group consisting of groups 8 to 10 of the periodic table.
  • R 25 and R 26 represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a fluorenyl group, respectively
  • R 27 represents an alkyl group or an aryl group.
  • M 3 and M 4 include B, Al, Si, P, As or Sb
  • specific examples of M 5 include Ag, Cu, Na and Li
  • specific examples of M 6 include Fe. Co, Ni and the like can be mentioned.
  • Specific examples of X 3 include, for example, a dimethylamino group and a diethylamino group as a dialkylamino group, a methoxy group, an ethoxy group and an n-butoxy group as an alkoxy group; a phenoxy group and a 2,6-dimethylphenoxy as an aryloxy group.
  • alkyl group having 1 to 20 carbon atoms such as a group and a naphthyloxy group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-octyl group, a 2-ethylhexyl group and the like; 20 aryl groups, alkylaryl groups or arylalkyl groups such as phenyl group, p-tolyl group, benzyl group, pentafluorophenyl group, 3,5-di (trifluoromethyl) phenyl group, 4-tert-butylphenyl group, 2,6-Dimethylphenyl group, 3,5-dimethylphenyl group, 2,4-dimethylphenyl group, 1,2-dimethylphenyl group, etc .; F, Cl, Br, I as halogen; pentamethylantimon as organic metalloid group Examples thereof include a group,
  • substituted cyclopentadienyl group represented by R 25 and R 26 include a methylcyclopentadienyl group, a butylcyclopentadienyl group, a pentamethylcyclopentadienyl group and the like.
  • the anion in which a plurality of groups are bonded to a metal B (C 6 F 5) 4 -, B (C 6 HF 4) 4 -, B (C 6 H 2 F 3) 4 -, B ( C 6 H 3 F 2) 4 -, B (C 6 H 4 F) 4 -, B [C 6 (CF 3) F 4] 4 -, B (C 6 H 5) 4 -, PF 6 -, P (C 6 F 5) 6 - , Al (C 6 HF 4) 4 - , and the like.
  • Cp represents a cyclopentadienyl group
  • Me represents a methyl group
  • Bu represents a butyl group.
  • cations include pyridinium, 2,4-dinitro-N, N-diethylanilinium, diphenylammonium, p-nitroanilinium, 2,5-dichloroanilinium, p-nitro-N, N-dimethylanilinium, etc.
  • Nitrogen-containing compounds such as quinolinium, N, N-dimethylanilinium, N, N-diethylanilinium; carbenium compounds such as triphenylcarbenium, tri (4-methylphenyl) carbenium, tri (4-methoxyphenyl) carbenium; CH 3 PH 3 + , C 2 H 5 PH 3 + , C 3 H 7 PH 3 + , (CH 3 ) 2 PH 2 + , (C 2 H 5 ) 2 PH 2 + , (C 3 H 7 ) 2 PH 2 + , (CH 3 ) 3 PH + , (C 2 H 5 ) 3 PH + , (C 3 H 7 ) 3 PH + , (CF 3 ) 3 PH + , (CH 3 ) 4 P + , (C 2) H 5 ) 4 P + , (C 3 H 7 ) 4 P + and other alkylphosphonium ions; and C 6 H 5 PH 3 + , (C 6 H 5 ) 2
  • compound (D) and / or compound (E) it is preferable to use the following compound (D) and / or compound (E).
  • the compound (D) and / or the compound (E) is an aluminum compound with respect to 1 mol of the half metallocene transition metal compound (A), aluminum
  • the molar ratio of atoms is selected in the range of 0.5 to 1,000, preferably 1 to 100.
  • Compound (D) is a compound represented by the following general formula (3).
  • R 4 and R 5 each represent an alkyl group having 1 to 8 carbon atoms, and X 1 represents a halogen atom. Further, p and q are 0 ⁇ p ⁇ 2, 0 ⁇ q ⁇ 2, and p + q ⁇ 2. ]
  • a dialkylaluminum hydride compound or a monoalkylaluminum hydride compound is preferable.
  • dialkylaluminum hydrides such as dimethylaluminum hydride, diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride; methylaluminum chlorohydride, ethylaluminum chlorohydride.
  • diisobutylaluminum hydride is preferable from the viewpoint of catalytic activity.
  • the compound (E) is a compound represented by the following general formula (4).
  • R 6 m Al (OR 7 ) n X 2 3-mn (4) [In the formula, R 6 and R 7 each represent an alkyl group having 1 to 8 carbon atoms, and X 2 represents a halogen atom. Further, m and n are 0 ⁇ m ⁇ 3, 0 ⁇ n ⁇ 3, and m + n ⁇ 3. ]
  • a trialkylaluminum or a dialkylaluminum compound is preferable from the viewpoint of catalytic activity.
  • trialkylaluminum such as trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum; dimethylaluminum chloride, diethylaluminum chloride, di-n-propyl
  • Dialkylaluminum halides such as aluminum chloride, diisopropylaluminum chloride, di-n-butylaluminum chloride, diisobutylaluminum chloride
  • dialkylaluminum alkoxides such as diethylaluminum methoxide and diethylaluminum ethoxide, among which triisobutylaluminum is preferable.
  • the above-mentioned polymerization catalyst can be used to preferably polymerize the monomer of the styrene-based polymer and the comonomer component of the copolymer.
  • Prepolymerization may be performed first using the catalyst. Prepolymerization can be carried out by contacting the catalyst with, for example, a small amount of monomer, but the method is not particularly limited and can be carried out by a known method.
  • the prepolymerization temperature is usually ⁇ 20 to 200 ° C., preferably -1 ° C. to 130 ° C.
  • an inert hydrocarbon, an aliphatic hydrocarbon, an aromatic hydrocarbon or the like can be used as the solvent.
  • the polymerization method in this polymerization step is not particularly limited, and a continuous polymerization method such as a slurry polymerization method, a powder bed polymerization method, a solution polymerization method, a vapor phase polymerization method, a massive polymerization method or a suspension polymerization method can be used. Can be adopted. Above all, from the viewpoint of industrial scale production, it is preferable to carry out continuous powder bed polymerization. After preparing the catalyst by mixing each component of the catalyst in advance, the monomer may be added, or each component of the catalyst and the monomer may be added to the place of polymerization in an arbitrary order.
  • the contact of the catalyst components can be performed in an inert gas such as nitrogen at a polymerization temperature or lower.
  • an inert gas such as nitrogen
  • it can be carried out in the range of ⁇ 30 to 200 ° C.
  • hydrogen can be added to the polymerization site in order to increase the catalytic activity.
  • hydrocarbons such as benzene, toluene, ethylbenzene, n-pentane, n-hexane, n-heptane, cyclohexane, methylene chloride, chloroform, 1,2-dichloroethane, and chlorobenzene, and halogenated hydrocarbons are used.
  • the solvent include hydrogens. These may be used alone or in combination of two or more. Further, depending on the type, the monomer itself used for polymerization can be used as a polymerization solvent.
  • the amount of the catalyst used in the polymerization reaction is selected so that the half metallocene-based transition metal compound (A) is usually in the range of 0.1 to 500 micromoles, preferably 0.5 to 100 micromoles per 1 mol of the monomer. It is advantageous in terms of polymerization activity and reactor efficiency.
  • Examples of the method for adjusting the molecular weight of the polymer include the type of each catalyst component, the amount used, the selection of the polymerization temperature, and the introduction of hydrogen.
  • Resin composition for low-dielectric material (resin composition for low-dielectric material containing styrene-based resin particles according to the second embodiment of the present invention)]
  • the resin composition for a low-dielectric material containing styrene-based resin particles according to the second embodiment of the present invention is described in the above [2-1.
  • Styrene-based resin particles] contains 2 to 55% by volume of the styrene-based resin particles and the resin (Y1). That is, styrene-based resin particles having a syndiotactic structure satisfying the following (1) and (2) and having an average particle size of 0.5 to 90 ⁇ m (hereinafter, styrene-based resin particles (X1)).
  • the racemic pentad fraction is 98.5 mol% or more.
  • the resin composition for a low dielectric material of the present invention is described in the above [1.
  • SPS fine particles having a high melting point SPS particles can be added to, for example, a thermosetting resin or a thermoplastic resin whose quality tends to deteriorate due to heat without melting. Further, by compression molding the SPS fine particles, it is possible to obtain a thin-walled molded product that is difficult to manufacture by injection molding. Further, by including SPS fine particles, a molded product having excellent strength can be easily obtained.
  • the styrene-based resin particles (X1) used in the resin composition for a low-dielectric material of the present invention have an average particle size of 0.5 to 90 ⁇ m.
  • the average particle size of the styrene-based resin particles (X1) is in this range, the styrene-based resin is compared with the resin composition for a low-dielectric material while maintaining the heat resistance and other characteristics of the matrix resin (Y1). It is possible to impart the electrical insulation property of.
  • the average particle size is preferably 0.5 to 60 ⁇ m, more preferably 0.5 to 50 ⁇ m, further preferably 0.5 to 45 ⁇ m, further preferably 1.0 to 30 ⁇ m, still more preferably 1.5 to 20 ⁇ m. ..
  • the average particle size of the styrene-based resin particles (X1) in the resin composition for low dielectric material is the amount of the added resin particles when the styrene-based resin in the particle shape is not melted or crushed in the process of manufacturing the resin composition. It is the average particle size, and when melted or crushed, it means the average particle size of the domain portion in the sea-island structure in which the styrene resin is the domain and the resin (Y1) is the matrix.
  • the content of the styrene resin particles (X1) used in the resin composition for a low dielectric material of the present invention in the resin composition is 2 to 55% by volume, preferably 6 to 55% by volume, and 10 to 55% by volume. % Is more preferable, 15 to 53% by volume is further preferable, and 20 to 50% by volume is even more preferable.
  • the resin (Y1) used in the resin composition for low-dielectric materials of the present invention is preferably a resin used for parts for electronic devices, and more preferably a resin used for an electronic circuit board and a millimeter-wave radome.
  • a thermoplastic resin or a thermosetting resin is preferable, and a thermosetting resin is more preferable from the viewpoint of heat resistance required for parts for electronic devices.
  • the thermosetting resins epoxy resin and polyimide are more preferable.
  • the resin (Y1) include epoxy resin, polyimide, liquid crystal polymer, polyethersulfone, polyarylate, polycarbonate, polyetheretherketone, polyetherimide, polyamideimide, polybutylene terephthalate, polyphenylene sulfide, polysulfone, and polyphenylene.
  • examples thereof include oxide, polytetrafluoroethylene, polymethylpentene, polyacetal, polyamide, polyethylene terephthalate, polyethylene naphthalate, and polyvinylidene fluoride, and it is preferable to contain one or more selected from these groups, and the epoxy resin, Polyimide and liquid crystal polymer are more preferable, epoxy resin and polyimide are more preferable, and epoxy resin is even more preferable.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, cyclic aliphatic type epoxy resin, long chain aliphatic type epoxy resin, glycidyl ester type epoxy resin, and glycidylamine type epoxy resin. Can be mentioned.
  • the epoxy oligomers used as raw materials include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, brominated bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and phenol.
  • examples thereof include novolac glycidyl ether, orthocresone novolac glycidyl ether, hexahydrophthalic acid glycidyl ester, tetraglycidyl diaminodiphenylmethane, triglycidyl isocyanurate, and 1,3-bis (N, N-diglycidyl aminomethyl) cyclohexane.
  • the resin (Y1) it is preferable to use a curing agent.
  • the curing agent include amine-based curing agents, acid anhydride-based curing agents, and polyamide-based curing agents. Specific examples thereof include diethylenetriamine, triethylenetetramine, isophoronediamine, diaminodiphenylmethane, diaminodiphenylsulfone, dicyandiamide, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methylnadic anhydride.
  • a reinforcing material may be further contained.
  • the reinforcing material include glass fiber, glass cloth, carbon fiber, carbon fiber cloth, and paper.
  • the content of the resin (Y1) used in the resin composition for a low-dielectric material of the present invention is preferably 45 to 98% by volume, more preferably 45 to 95% by volume, and 47 to 85% by volume. More preferably, 50 to 80% by volume is even more preferable.
  • the resin composition for a low-dielectric material of the present invention includes styrene-based resin particles (X1), as described in [1. Method for producing styrene-based resin particles]
  • the styrene-based resin particles obtained by the production method described in] and other components suitable for use in electronic devices and the like other than the resin (Y1) do not impair the effects of the present invention. It may be blended in a range. Examples of other components include antioxidants, flame retardants, mold release agents, colorants, inorganic fillers, organic fillers, flame retardants, antiblocking agents, ultraviolet absorbers, light stabilizers, weather resistant agents and the like. Further, it may be a composite with glass fiber, glass woven fabric, glass non-woven fabric, carbon fiber, carbon woven fabric, carbon non-woven fabric and the like.
  • the resin composition for a low dielectric material of the present invention may be produced by any method, but the step 2a of mixing the styrene-based resin particles (X1) and the resin (Y1) or the presence of the styrene-based resin particles (X1). It is preferable to have a step 2b for synthesizing the resin (Y1) below. In addition, the above [1. Method for producing styrene-based resin particles] The step 2a of mixing the styrene-based resin particles obtained by the production method described in the production method with the resin (Y1), or the above-mentioned [1. It is also preferable to have the step 2b of synthesizing the resin (Y1) in the presence of the styrene-based resin particles obtained by the production method described in [Method for producing styrene-based resin particles].
  • step 2a of mixing the styrene-based resin particles (X1) and the resin (Y1) a method of mixing the styrene-based resin particles (X1) with the molten resin (Y1) and kneading the styrene-based resin particles (X1).
  • -A method of performing cross-linking can be mentioned.
  • step 2a of mixing the styrene resin particles obtained by the production method described in [Method for producing styrene resin particles] with the resin (Y1) the molten resin (Y1) is combined with the above [1.
  • Method for producing styrene-based resin particles a method for mixing and kneading the styrene-based resin particles obtained by the production method described in the above [1.
  • Method for producing styrene-based resin particles a method of dry-blending pellet-shaped or particulate resin (Y1) with the styrene-based resin particles obtained by the manufacturing method described in [Method for producing styrene-based resin particles] and mixing them at the time of molding, a solution of the resin (Y1).
  • Method for producing styrene-based resin particles a method of mixing the styrene-based resin particles obtained by the production method described in the production method to remove the solvent and the like can be mentioned.
  • Method for Producing Styrene-based Resin Particles In the step 2b of synthesizing the resin (Y1) in the presence of the styrene-based resin particles obtained by the production method, the monomer, oligomer, etc., which are the raw materials of the resin (Y1), and the above. [1. Method for Producing Styrene-based Resin Particles], a method of mixing the styrene-based resin particles obtained by the production method described in the above-described production method to carry out polymerization and cross-linking can be mentioned.
  • the molded product of the present invention is described in [2-2.
  • Particle size / thickness of molded product) is 0.55 or less. That is, the molded product of the present invention contains 2 to 55% by volume of the styrene resin particles (X1) and the resin (Y1), and has the average particle size of the styrene resin particles contained in the resin composition for a low dielectric material.
  • the ratio of the thickness of the molded product is preferably 0.55 or less. Further, the molded product of the present invention is described in the above [1. Method for producing styrene-based resin particles] styrene-based resin particles containing 2 to 55% by volume of styrene-based resin particles obtained by the production method described in the above method and resin (Y1), and contained in the resin composition for low dielectric material. It is also preferable that the ratio of the average particle size to the thickness of the molded body (average particle size / thickness of the molded body) is 0.55 or less. Styrene-based resin particles (X1) or the above-mentioned [1.
  • the ratio of the average particle size of the styrene-based resin particles obtained by the production method to the thickness of the molded product is 0.55 or less. It is preferably 0.50 or less, more preferably 0.40 or less, and even more preferably 0.20 or less. Within this range, the surface roughness can be reduced, and for example, excellent transmission characteristics can be obtained in a high-frequency substrate that forms a high-frequency / high-speed transmission circuit by plating the surface of the molded product.
  • the molded product of the present invention is the styrene resin particles (X1) or the above-mentioned [1.
  • Method for producing styrene-based resin particles It is preferable to have a sea-island structure in which the styrene-based resin particles obtained by the production method described in the production method are used as domains and the resin (Y1) is used as a matrix.
  • the preferred molding method differs depending on whether the resin (Y1) used is a thermosetting resin or a thermoplastic resin, but in the case of a thermosetting resin, casting molding, transfer molding, compression molding, etc. Injection molding and the like can be mentioned, and casting molding is preferable. In the case of a thermoplastic resin, injection molding, press molding, extrusion molding, stretch molding and the like can be mentioned.
  • the shape of the molded body of the present invention may be formed according to the intended use, and examples thereof include a flat plate shape, a corrugated plate shape, and a sheet shape, a film shape, and a plate shape having irregularities and curves.
  • the thickness thereof is defined as the thickness of the molded product. That is, the length of the molded product in the direction perpendicular to the surface of the sheet, film, or plate is the thickness.
  • the value obtained by dividing the volume of the molded body by the projected area on the mold at the time of molding is defined as the average thickness of the molded body, that is, the thickness of the molded body. ..
  • the low-dielectric material of the present invention is made of a molded product, and is preferably processed into a suitable shape depending on each application.
  • the low-dielectric material of the present invention can be used for millimeter-wave radome applications.
  • its thickness is preferably 1.0 to 7.0 mm, more preferably 1.5 to 5.0 mm, and even more preferably 2.0 to 2.5 mm.
  • the substrate for an electronic circuit of the present invention is described in the above [2-3. Molded body and low-dielectric material], which is made of the low-dielectric material, is used as an electrically insulating layer of an electronic circuit board, and also has a function as a support substrate.
  • the low-dielectric material of the present invention is used as a rigid electronic circuit board, it may be used as a single layer or a plurality of low-dielectric materials may be laminated and used in multiple layers, but the total thickness is 0.01 to 10 mm. Is preferable, 0.05 to 2.0 mm is more preferable, and 0.4 to 1.6 mm is further preferable.
  • the low-dielectric material of the present invention When used as a flexible electronic circuit board, it may be used as a single layer or a plurality of low-dielectric materials may be laminated and used in multiple layers, but the total thickness is 120 ⁇ m or less. Preferably, 100 ⁇ m or less is more preferable, 70 ⁇ m or less is further preferable, and 5 ⁇ m or more is preferable.
  • the electronic circuit board of the present invention is made of the electronic circuit board.
  • the electronic circuit board is manufactured by laminating a metal layer on one side or both sides of the electronic circuit board and patterning the metal layer. The patterning is preferably performed by etching the metal layer by a photolithography method.
  • the method for reducing the dielectric constant of the resin composition of the present invention is to add styrene-based resin particles, which is the second embodiment of the present invention, to the resin (Y1). That is, styrene resin particles (styrene resin particles (X1)) made of a styrene resin having a syndiotactic structure satisfying the following (1) and (2) and having an average particle size of 0.5 to 90 ⁇ m. , A method for reducing the dielectric constant of a resin composition, which is added to the resin (Y1).
  • Styrene-based resin particles (X1) having a racemic pentad fraction of 98.5 mol% or more and an average particle size of 0.5 to 90 ⁇ m as described above have characteristics such as heat resistance of the resin to be a matrix. It is possible to impart the electrical insulating property of the styrene-based resin to the resin composition for low dielectric material while maintaining the above, and to reduce the dielectric constant of the resin composition containing the styrene-based resin particles (X1). Can be done.
  • the resin composition of the present invention may contain the resin (Y1) contained in the low-dielectric resin composition in addition to the styrene-based resin particles (X1), and may contain the resin (Y1) contained in the above-mentioned [2-2.
  • a resin composition similar to the resin (Y1) used in [Resin composition for low dielectric material] is preferably used.
  • the styrene resin particles (X1) used in this method are described in the above [2-2.
  • the same as the styrene resin particles (X1) used in [Resin composition for low dielectric material] are preferably used, and the average particle size is preferably 0.5 to 60 ⁇ m, more preferably 0.5 to 50 ⁇ m. , 0.5 to 45 ⁇ m is even more preferable, 1.0 to 30 ⁇ m is even more preferable, and 1.5 to 20 ⁇ m is even more preferable.
  • the method for reducing the dielectric constant of the resin composition of the present invention includes the above [1.
  • Method for producing styrene-based resin particles the styrene-based resin particles obtained by the production method described in the above method are added to the resin (Y1). Similar to the case of using the styrene resin particles (X1), the above [1. Method for Producing Styrene-based Resin Particles], the styrene-based resin particles obtained by the production method described in] maintain styrene-based resin compositions for low-dielectric materials while maintaining properties such as heat resistance of the resin as the matrix. The electrical insulation of the based resin can be imparted, and the above [1. Method for producing styrene-based resin particles] can be used to reduce the dielectric constant of the resin composition containing the styrene-based resin particles obtained by the production method described in.
  • the resin composition for a low dielectric material according to the third embodiment of the present invention has a styrene resin particle (X2) 2 to 55 having an average particle size of 0.5 to 90 ⁇ m and being made of a styrene resin having a crosslinked structure. Contains% by volume and resin (Y2).
  • ⁇ Styrene-based resin particles (X2)> The styrene-based resin particles (X2) used in the resin composition for a low-dielectric material of the present invention have an average particle size of 0.5 to 90 ⁇ m. When the average particle size of the styrene-based resin particles (X2) is in this range, the styrene-based resin is compared with the resin composition for a low-dielectric material while maintaining the heat resistance and other characteristics of the matrix resin (Y2). It is possible to impart the electrical insulation property of.
  • the average particle size is preferably 0.5 to 60 ⁇ m, more preferably 0.5 to 50 ⁇ m, further preferably 0.5 to 45 ⁇ m, further preferably 1.0 to 30 ⁇ m, still more preferably 1.5 to 20 ⁇ m. ..
  • the average particle size of the styrene-based resin particles (X2) in the resin composition for low dielectric material is the amount of the added resin particles when the styrene-based resin in the particle shape is not melted or crushed in the process of manufacturing the resin composition. It is an average particle size, and when melted or crushed, it means the average particle size of the domain portion in the sea-island structure having a styrene resin as a domain and a resin (Y2) as a matrix.
  • the styrene-based resin constituting the styrene-based resin particles (X2) is a styrene-based resin having a crosslinked structure, and is polystyrene, poly (hydrocarbon-substituted styrene), poly (halogenated styrene), poly (halogenated alkylstyrene), Examples thereof include poly (alkoxystyrene), poly (vinyl benzoic acid ester), hydrides or mixtures thereof, or copolymers containing these as main components, which are crosslinked with a cross-linking agent.
  • poly (hydrocarbon-substituted styrene) examples include poly (methylstyrene), poly (ethylstyrene), poly (isopropylstyrene), poly (tert-butylstyrene), poly (phenyl) styrene, poly (vinylnaphthalene), and poly (poly). Vinyl styrene) and the like.
  • poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene) and poly (fluorostyrene).
  • poly (alkyl styrene halogenated) examples include poly (chloromethyl styrene).
  • poly (alkoxystyrene) examples include poly (methoxystyrene) and poly (ethoxystyrene).
  • an olefin monomer such as ethylene, propylene, butene, hexene and octene
  • a diene monomer such as butadiene and isoprene
  • a cyclic olefin monomer Cyclic diene monomers, methyl methacrylate, maleic anhydride and polar vinyl monomers such as acrylonitrile.
  • polystyrene-based polymers polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (p-tert-butylstyrene), poly (p-chlorostyrene), and poly (p-chlorostyrene) are particularly preferable.
  • m-chlorostyrene) and poly (p-fluorostyrene) can be mentioned.
  • a copolymer of styrene and p-methylstyrene, a copolymer of styrene and p-tert-butylstyrene, and the like can be mentioned.
  • cross-linking agent examples include polyfunctional vinyl monomers, and specific examples thereof include divinylbenzene, 1,5-hexadiene-3-in, hexatriene, divinyl ether, divinyl sulfone, alkylene glycol dimethacrylate, and alkylene glycol diacrylate. Can be mentioned.
  • the styrene-based resin particles (X2) are preferably obtained by emulsion polymerization or suspension polymerization of the monomer of the styrene-based polymer in the presence of the cross-linking agent, and the monomer of the styrene-based polymer is used as the cross-linking agent. It is more preferable to obtain it by suspension polymerization in the presence of.
  • the content of the styrene-based resin particles (X2) used in the resin composition for a low dielectric material of the present invention in the resin composition is 2 to 55% by volume, preferably 5 to 55% by volume, and 15 to 53% by volume. % Is more preferable, and 20 to 50% by volume is further preferable.
  • the resin (Y2) used in the resin composition for a low-dielectric material of the present invention is preferably a resin used for parts for electronic devices, and more preferably a resin used for an electronic circuit substrate.
  • a resin used for an electronic circuit substrate As the resin (Y2), a thermoplastic resin or a thermosetting resin is preferable, and a thermosetting resin is more preferable from the viewpoint of heat resistance required for parts for electronic devices.
  • the thermosetting resins epoxy resin and polyimide are more preferable.
  • the resin (Y2) include epoxy resin, polyimide, liquid crystal polymer, polyethersulfone, polyarylate, polycarbonate, polyetheretherketone, polyetherimide, polyamideimide, polybutylene terephthalate, polyphenylene sulfide, polysulfone, and polyphenylene.
  • examples thereof include oxide, polytetrafluoroethylene, polymethyltempen, polyacetal, polyamide, polyethylene terephthalate, polyethylene naphthalate, and polyvinylidene fluoride, and it is preferable that the epoxy resin contains one or more selected from the group consisting of these.
  • Polyimide and liquid crystal polymer are more preferable, epoxy resin and polyimide are more preferable, and epoxy resin is even more preferable.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, cyclic aliphatic type epoxy resin, long chain aliphatic type epoxy resin, glycidyl ester type epoxy resin, and glycidylamine type epoxy resin. Can be mentioned.
  • the epoxy oligomers used as raw materials include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, brominated bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and phenol.
  • examples thereof include novolac glycidyl ether, orthocresone novolac glycidyl ether, hexahydrophthalic acid glycidyl ester, tetraglycidyl diaminodiphenylmethane, triglycidyl isocyanurate, and 1,3-bis (N, N-diglycidyl aminomethyl) cyclohexane.
  • the resin (Y2) it is preferable to use a curing agent.
  • the curing agent include amine-based curing agents, acid anhydride-based curing agents, and polyamide-based curing agents. Specific examples thereof include diethylenetriamine, triethylenetetramine, isophoronediamine, diaminodiphenylmethane, diaminodiphenylsulfone, dicyandiamide, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methylnadic anhydride.
  • a reinforcing material may be further contained.
  • the reinforcing material include glass fiber, glass cloth, carbon fiber, carbon fiber cloth, and paper.
  • the content of the resin (Y2) used in the resin composition for a low-dielectric material of the present invention is preferably 45 to 98% by volume, more preferably 45 to 95% by volume, and 47 to 85% by volume. More preferably, 50 to 80% by volume is even more preferable.
  • the resin composition for a low-dielectric material of the present invention contains other components suitable for use in electronic devices and the like as long as the effects of the present invention are not impaired. You may. Examples of other components include antioxidants, flame retardants, mold release agents, colorants and the like. Further, it may be a composite with glass fiber, glass woven cloth or the like.
  • the molded product of the present invention is described in [3-1. Resin composition for low-dielectric material]. That is, the molded product of the present invention contains 2 to 55% by volume of styrene resin particles (X2) made of a styrene resin having a crosslinked structure and an average particle size of 0.5 to 90 ⁇ m, and a resin (Y2). Is preferable.
  • the molded product of the present invention preferably has a sea-island structure in which styrene-based resin particles (X2) are used as domains and resin (Y2) is used as a matrix.
  • the preferred molding method differs depending on whether the resin (Y2) used is a thermosetting resin or a thermoplastic resin, but in the case of a thermosetting resin, casting molding, transfer molding, compression molding, etc. Injection molding and the like can be mentioned, and casting molding is preferable. In the case of a thermoplastic resin, injection molding, press molding, extrusion molding, stretch molding and the like can be mentioned.
  • the low-dielectric material of the present invention is made of a molded product, and is preferably processed into a suitable shape depending on each application. In the present invention, for example, the low-dielectric material of the present invention can be used for millimeter-wave radome applications. When used as a resin plate for a millimeter wave radome, its thickness is preferably 1.0 to 7.0 mm, more preferably 1.5 to 5.0 mm, and even more preferably 2.0 to 2.5 mm.
  • the substrate for an electronic circuit of the present invention is described in the above [3-2. Molded body and low-dielectric material], which is made of the low-dielectric material, is used as an electrically insulating layer of an electronic circuit board, and also has a function as a support substrate.
  • the low-dielectric material of the present invention is used as a rigid electronic circuit board, it may be used as a single layer or a plurality of low-dielectric materials may be laminated and used in multiple layers, but the total thickness is 0.01 to 10 mm. Is preferable, 0.05 to 2.0 mm is more preferable, and 0.4 to 1.6 mm is further preferable.
  • the low-dielectric material of the present invention When used as a flexible electronic circuit board, it may be used as a single layer or a plurality of low-dielectric materials may be laminated and used in multiple layers, but the total thickness is 120 ⁇ m or less. Preferably, 100 ⁇ m or less is more preferable, 70 ⁇ m or less is further preferable, and 5 ⁇ m or more is preferable.
  • the electronic circuit board of the present invention is made of the electronic circuit board.
  • the electronic circuit board is manufactured by laminating a metal layer on one side or both sides of the electronic circuit board and patterning the metal layer. The patterning is preferably performed by etching the metal layer by a photolithography method.
  • An embodiment of the present invention also includes a method for reducing the dielectric constant of a resin composition using styrene-based resin particles (X2). That is, in the method for reducing the dielectric constant of the resin composition according to one embodiment of the present invention, styrene resin particles (X2) having an average particle size of 0.5 to 90 ⁇ m and having a crosslinked structure made of a styrene resin , Is added to the resin (Y2).
  • the styrene resin particles (X2) having an average particle size of 0.5 to 90 ⁇ m and having a crosslinked structure are resins for low dielectric materials while maintaining characteristics such as heat resistance of the resin as a matrix. It is possible to impart the electrical insulating property of the styrene-based resin to the composition, and it is possible to reduce the dielectric constant of the resin composition containing the styrene-based resin particles (X2).
  • the resin composition may contain the resin (Y2) contained in the low-dielectric resin composition in addition to the styrene-based resin particles (X2). A resin composition similar to the resin (Y2) used in [Resin composition for low dielectric material] is preferably used.
  • the styrene-based resin particles (X2) used in this method are described in the above [3-1.
  • the same as the styrene resin particles (X2) used in [Resin composition for low dielectric material] are preferably used, and the average particle size is preferably 0.5 to 60 ⁇ m, more preferably 2 to 50 ⁇ m, and 2 It is more preferably ⁇ 45 ⁇ m, further preferably 3 to 30 ⁇ m, even more preferably 5 to 20 ⁇ m.
  • the ratio of each of the above heat absorption amounts was defined as the ratio of the heat absorption amount at 175 to 260 ° C. to the total heat absorption amount.
  • the zirconium content was determined by the following ICP analysis. 0.25 g of the styrene-based resin particles obtained in Examples and Reference Examples were collected in a platinum dish, concentrated sulfuric acid was added, and the particles were heated on a hot plate for carbonization. The carbonized product was placed in an electric furnace and heated at 550 ° C. for 12 hours to incinerate. After allowing to cool, 0.1 g of a mixture of Li 2 B 4 O 7 and Li F in a mass ratio of 9/1 was added, and the mixture was heated in an electric furnace at 930 ° C. for 30 minutes to melt the ash.
  • SPS styrene resin
  • 60 kg of SPS was put into a complete mixing tank reactor (inner diameter 550 mm, height 1155 mm, internal volume 254 liters) having a double helical blade, and dried under a nitrogen stream. Subsequently, stirring was started and the temperature inside the reactor was adjusted to 70 ° C. Then, n-pentane was added as a styrene monomer, a catalyst, and a solvent. The obtained SPS was taken out as a powder from the bottom of the reactor.
  • the catalysts used contained the following (A) to (E) and were used in the following ratios.
  • the obtained SPS powder was pelletized using a twin-screw extruder to obtain pelletized SPS.
  • Examples 1-1 to 1-5 Manufacturing of styrene-based resin particles using an impact crusher
  • the pellet-shaped SPS obtained in Production Example 1 was pulverized using an impact crusher (ACM Pulverizer ACM15H, manufactured by Hosokawa Micron Co., Ltd., built-in classifier) to obtain styrene-based resin particles.
  • Crushing conditions crushing rotor rotation speed, classification rotor rotation speed, hammer shape, liner shape, guide ring model
  • processing amount production amount of styrene-based resin particles per hour
  • average particle size of the obtained styrene-based resin particles Is shown in Table 1.
  • the melting point of the obtained styrene-based resin particles was 271 ° C.
  • the rasemipentad fraction was 99.3 mol%
  • the ratio of the heat absorption amount at 175 to 260 ° C. to the total heat absorption amount was 20%.
  • Examples 1-6 and 1-7 Manufacture of styrene-based resin particles using an impact crusher having a cooling device
  • the pellet-shaped SPS obtained in Production Example 1 was pulverized using an impact crusher having a cooling device (Linlex Mill, manufactured by Hosokawa Micron Co., Ltd.) to obtain styrene-based resin particles.
  • Table 2 shows the crushing conditions (crushing rotor rotation speed), the processing amount (the amount of styrene-based resin particles produced per hour), and the average particle size of the obtained styrene-based resin particles.
  • the melting point of the obtained styrene-based resin particles was 271 ° C.
  • the rasemipentad fraction was 99.3 mol%
  • the ratio of the heat absorption amount at 175 to 260 ° C. to the total heat absorption amount was 20%.
  • the content of zirconium contained in the obtained styrene-based resin particles was less than 10 mass ppm in both Examples 1-6 and 1-7.
  • Comparative Example 1-1 Manufacturing of styrene-based resin particles using a disc mill
  • the pellet-shaped SPS obtained in Production Example 1 was pulverized using a disc mill (trade name: resin-dedicated crusher turbo disc mill TD-300, manufactured by Freund Turbo Co., Ltd.) to obtain styrene-based resin particles. Obtained.
  • Table 2 shows the crushing conditions (crushing rotor rotation speed), the processing amount (the amount of styrene-based resin particles produced per hour), and the average particle size of the obtained styrene-based resin particles.
  • Reference Example 1-1 Manufacturing of styrene-based resin particles using a bead mill
  • the bead mill used in this example is a batch type bead mill LNM-5, manufactured by IMEX Co., Ltd., which is equipped with the following container and a star-shaped impeller.
  • 250 g of the pellet-shaped SPS obtained in Production Example 1 and 2400 g of zirconia beads having a diameter of 5.0 mm are placed in a container having an inner diameter of 130 mm, the container is filled with liquid nitrogen, and while cooling, a star shape having a diameter of 120 mm is formed.
  • the mixture was stirred at 1000 rpm for 270 minutes.
  • Table 2 shows the treatment amount (production amount of styrene resin particles per hour) and the average particle size of the obtained styrene resin particles.
  • the content of zirconium contained in the obtained styrene-based resin particles was 150 mass ppm.
  • SPS particles having a very small particle size can be produced in a large amount in a short time without mixing impurities derived from the media. It is possible to efficiently obtain styrene-based resin particles having a syndiotactic structure having a small particle size and substantially no impurities. Further, since the SPS particles of the examples have high syndiotacticity, they have a high melting point and excellent heat resistance.
  • a millimeter-wave / microwave measuring device system (DPS10-02 type, manufactured by Keycom Co., Ltd.) equipped with a transmission attenuation measuring jig with a dielectric lens (manufactured by Keycom Co., Ltd.) for the free space frequency change method. Then, the transmission attenuation amount and the phase change amount were measured under the measurement conditions of 26 ° C. 60% RH and the measurement frequency 26.5 to 40 GHz. The relative permittivity ⁇ r and the dielectric loss tangent tan ⁇ were obtained from the thickness of the molded body, the amount of transmission attenuation, and the amount of phase change. The above process was repeated 3 times, and the average value was obtained.
  • the relative permittivity and dielectric loss tangent of the molded product made of the resin composition for a low dielectric material using a polyimide resin according to Examples 2-7 to 2-9 and Comparative Examples 2-4 to 2-5 are open type.
  • a resonance measuring device manufactured by Keycom Co., Ltd.
  • the relative permittivity and dielectric loss tangent around a frequency of 28 GHz were measured by the fabric perot method.
  • the resonance frequency and the Q value of each of the molded products obtained in Examples and Comparative Examples were measured in the set state and in the removed state.
  • the relative permittivity was obtained from the difference in resonance frequency, and the dielectric loss tangent was obtained by calculating from the difference in Q value based on the perturbation theory.
  • Example 2-1 (molded product made of a resin composition for a low dielectric material using an epoxy resin) 100 parts by mass of the epoxy resin main agent (jER828, manufactured by Mitsubishi Chemical Corporation) and 1 part by mass of the epoxy resin curing agent (IBM12, manufactured by Mitsubishi Chemical Corporation) were blended and stirred until uniform. Next, the SPS particles obtained in Example 1-6 were blended in a molded product obtained in an amount of 5% by volume, and stirred until uniform. The obtained mixture was placed in a rotation / revolution mixer and stirred while defoaming. The obtained mixture was poured into a mold made of polytetrafluoroethylene and cured at 80 ° C. for 3 hours to obtain a molded product (size: 120 mm ⁇ 120 mm ⁇ 3 mm) made of a resin composition for a low dielectric material. The evaluation results of the molded product are shown in Table 3.
  • Example 2-1 the blending amount of the SPS particles was changed, or the SPS particles obtained in Example 1-6 were changed to the SPS particles obtained in Example 1-7 or Comparative Example 1-1. Further, a molded product was obtained in the same manner as in Example 2-1 except that the blending amount of SPS particles was changed.
  • the evaluation results of the molded product are shown in Table 3.
  • Example 2-7 (molded product made of resin composition for low dielectric material using polyimide resin)
  • SPS particles obtained in Example 1-7 are blended with a polyimide varnish (Uimide varnish type CR, manufactured by Unitika Co., Ltd.) so as to be 10% by volume in the dried molded product, put into a rotation / revolution mixer, and removed. Stirred with foam.
  • the obtained mixture was applied to a glass plate with an applicator and vacuum dried at 350 ° C. for 10 minutes to obtain a molded product made of a resin composition for a low dielectric material.
  • Table 4 shows the evaluation results of the molded product.
  • Example 2-7 a molded product was obtained in the same manner as in Example 2-7, except that the blending amount of the SPS particles obtained in Example 1-7 was changed. Table 4 shows the evaluation results of the molded product.
  • Comparative Example 2-4 A molded product was obtained in the same manner as in Example 2-7 except that SPS particles were not blended in Example 2-7. Table 4 shows the evaluation results of the molded product.
  • Example 2-7 Comparative Example 2-5
  • the SPS particles obtained in Example 1-7 were changed to the SPS particles obtained in Example 1-6, and the blending amount was set to 30% by volume in the molded product.
  • a molded product was obtained in the same manner as in 2-7.
  • Table 4 shows the evaluation results of the molded product.
  • the molded product made of the resin composition of the example has low dielectric constant and dielectric loss, and is also excellent in mechanical strength. It can also be seen that a smooth molded product can be obtained with a small surface roughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

ペレット状のシンジオタクチック構造を有するスチレン系樹脂を、衝撃式粉砕機を用いて粉砕し、平均粒径0.5~90μmの粒子を得る工程を有する、スチレン系樹脂粒子の製造方法、融点が265~275℃であり、ラセミペンタッド分率が98.5モル%以上であるシンジオタクチック構造を有するスチレン系樹脂からなり、平均粒径が0.5~90μmである、スチレン系樹脂粒子、当該スチレン系樹脂粒子2~55体積%と、樹脂(Y1)を含有する、低誘電材用樹脂組成物、平均粒径が0.5~90μmである架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子(X2)2~55体積%と、樹脂(Y2)を含有する、低誘電材用樹脂組成物、及び前記低誘電材用樹脂組成物を含む成形体。

Description

スチレン系樹脂粒子の製造方法、スチレン系樹脂粒子、低誘電材用樹脂組成物及び成形体
 本発明は、スチレン系樹脂粒子の製造方法、スチレン系樹脂粒子及び低誘電材用樹脂組成物及び成形体に関する。
 シンジオタクチック構造を有するスチレン系樹脂(以下、SPS(シンジオタクチックポリスチレン)ともいう。)は、ポリスチレンの化学構造に由来する優れた成形加工性に加えて、結晶性であることから、耐熱性、耐薬品性等の優れた特性を有し、また軽量で、電気特性にも優れることから、電気・電子部品、自動車部品、機械部品及び工業部品等、幅広い分野への実用化が検討されている。通常、SPSの成形体を得る場合は、SPSペレットを溶融混練させることにより得ることが多いが、用途によっては粒子状にして使用することが要求される場合もある。しかしその一方で、SPSを粒子状にして使用した例は少ない。
 SPSを粒子状にして使用した例として、たとえば、特許文献1には、シンジオタクチック構造を有するスチレン系重合体粉末及び熱可塑性樹脂からなり、スチレン系重合体粉末成分が熱可塑性樹脂成分中に粉末状態で分散していることを特徴とするスチレン系樹脂組成物が開示されている。しかし、粉末については、その粒径を調整する具体的な方法に関する記載はなく、当該組成物は収縮率が小さく、成形性が良好であることを特徴とするものである。
特開平03-100036号公報
 SPSを粒子として配合する際には、まず、SPSを微粒子として得る必要がある。SPSは高融点であることから、耐熱性には優れるが、ガラス転移温度は通常のスチレン同様、約100℃であるため、メディアミル等の一般的な粉砕方法を用いると、粉砕時に発生する熱によって樹脂の弾性率が低下し、微粒子化が困難である。また、発熱を避けるために、少量の樹脂を長時間粉砕すると、生産性が低下し、メディアの摩耗等による不純物の混入が起こり、品質が低下する懸念がある。
 そこで、第一に本発明が解決しようとする課題(第一の課題)は、小粒径かつ耐熱性を有し、実質的に不純物を含まないシンジオタクチック構造を有するスチレン系樹脂粒子を効率的に得ることができる製造方法及びシンジオタクチック構造を有するスチレン系樹脂粒子を提供することである。
 一方、一般的に低誘電材に用いられるフッ素樹脂粒子等は、電気特性には優れるものの、他の樹脂との親和性に乏しく、均一に配合することが難しい。また、フッ素樹脂は密度が高いため、得られる樹脂組成物が重く、ハロゲン元素を含むため、廃棄時の環境負荷が問題となっている。
 そのため、電子回路基板やミリ波レドームをはじめとする、電子機器用部品には、軽量で、誘電率や誘電損失等が低く、電気特性に優れる樹脂粒子を用いた、強度に優れる樹脂組成物の成形体が求められている。
 そこで、第二に本発明が解決しようとする課題(第二の課題)は、誘電率と誘電損失が低く、強度にも優れ、電子機器用部品、特に電子回路基板、ミリ波レドームに適した低誘電材用樹脂組成物及び当該樹脂組成物を含む成形体を提供することである。
 本発明者等は鋭意検討の結果、ペレット状のSPSを用いて、特定の粉砕機によって特定粒径まで粉砕する方法、及び特定の粒径と融点、更に特定の分子構造を有するSPS粒子が、前記第一の課題を解決することを見出した。
 更に、特定の粒径と融点、更に特定の分子構造を有するSPS粒子、それを用いた樹脂組成物及び当該樹脂組成物を含む成形体、並びに特定の粒径を有する架橋構造を有するスチレン系樹脂粒子を用いた樹脂組成物と及び当該樹脂組成物を含む成形体が、第二の課題を解決することを見出した。
 すなわち、本発明は下記[1]~[31]に関する。
[1]
 ペレット状のシンジオタクチック構造を有するスチレン系樹脂を、衝撃式粉砕機を用いて粉砕し、平均粒径0.5~90μmの粒子を得る工程を有する、スチレン系樹脂粒子の製造方法。
[2]
 衝撃式粉砕機が分級機を内蔵する、前記[1]に記載のスチレン系樹脂粒子の製造方法。
[3]
 衝撃式粉砕機が冷却装置を有する、前記[1]又は[2]に記載のスチレン系樹脂粒子の製造方法。
[4]
 前記シンジオタクチック構造を有するスチレン系樹脂のラセミペンタッド分率が98.5モル%以上である、前記[1]~[3]のいずれか1つに記載のスチレン系樹脂粒子の製造方法。
[5]
 前記シンジオタクチック構造を有するスチレン系樹脂の融点が265~275℃である、前記[1]~[4]のいずれか1つに記載のスチレン系樹脂粒子の製造方法。
[6]
 前記工程が、平均粒径0.5~45μmの粒子を得る工程である、前記[1]~[5]のいずれか1つに記載のスチレン系樹脂粒子の製造方法。
[7]
 前記[1]~[6]のいずれか1つに記載の製造方法で得られた、スチレン系樹脂粒子。
[8]
 下記(1)及び(2)を満たすシンジオタクチック構造を有するスチレン系樹脂からなり、平均粒径が0.5~90μmである、スチレン系樹脂粒子。
 (1)融点が265~275℃
 (2)ラセミペンタッド分率が98.5モル%以上
[9]
 更に下記(3)を満たす、前記[8]のスチレン系樹脂粒子。
 (3)示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量に対する、175~260℃の吸熱量の割合が30%未満
[10]
 下記(4a)を更に満たす、前記[8]又は[9]のスチレン系樹脂粒子。
 (4a)ジルコニウムの含有量が100ppm以下
[11]
 平均粒径が0.5~45μmである、前記[8]~[10]のいずれか1つに記載のスチレン系樹脂粒子。
[12]
 前記[7]~[11]のいずれか1つに記載のスチレン系樹脂粒子2~55体積%と、樹脂(Y1)を含有する、低誘電材用樹脂組成物。
[13]
 樹脂(Y1)が、熱可塑性樹脂又は熱硬化性樹脂である、前記[12]に記載の低誘電材用樹脂組成物。
[14]
 樹脂(Y1)が、エポキシ樹脂、ポリイミド、液晶ポリマー、ポリエーテルサルフォン、ポリアリレート、ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルフォン、ポリフェニレンオキサイド、ポリテトラフルオロエチレン、ポリメチルペンテン、ポリアセタール、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリビニリデンフルオライドからなる群から選ばれる1種以上を含有する、前記[12]又は[13]に記載の低誘電材用樹脂組成物。
[15]
 前記[12]~[14]のいずれか1つに記載の低誘電材用樹脂組成物を含み、低誘電材用樹脂組成物に含有されるスチレン系樹脂粒子の平均粒径と成形体の厚さの比(平均粒径/成形体厚さ)が0.55以下である、成形体。
[16]
 前記スチレン系樹脂粒子をドメインとし、樹脂(Y1)をマトリックスとする海島構造を有する、前記[15]に記載の成形体。
[17]
 前記[15]又は[16]に記載の成形体からなる低誘電材。
[18]
 前記[17]に記載の低誘電材からなる電子回路用基板。
[19]
 前記[18]に記載の電子回路用基板からなる電子回路基板。
[20]
 前記[7]~[11]のいずれか1つに記載のスチレン系樹脂粒子と樹脂(Y1)を混合する工程2a、又は前記[7]~[11]のいずれか1つに記載のスチレン系樹脂粒子存在下で樹脂(Y1)を合成する工程2bを有する、低誘電材用樹脂組成物の製造方法。
[21]
 前記[7]~[11]のいずれか1つに記載のスチレン系樹脂粒子を、樹脂(Y1)に添加する、樹脂組成物の低誘電率化方法。
[22]
 平均粒径が0.5~90μmであり、架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子(X2)2~55体積%と、樹脂(Y2)を含有する、低誘電材用樹脂組成物。
[23]
 樹脂(Y2)が、熱可塑性樹脂又は熱硬化性樹脂である、前記[22]に記載の低誘電材用樹脂組成物。
[24]
 樹脂(Y2)が、エポキシ樹脂、ポリイミド、液晶ポリマー、ポリエーテルサルフォン、ポリアリレート、ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルフォン、ポリフェニレンオキサイド、ポリテトラフルオロエチレン、ポリメチルペンテン、ポリアセタール、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリビニリデンフルオライドからなる群から選ばれる1種以上を含有する、前記[22]又は[23]に記載の低誘電材用樹脂組成物。
[25]
 スチレン系樹脂粒子(X2)の平均粒径が0.5~45μmである、前記[22]~[24]のいずれか1つに記載の低誘電材用樹脂組成物。
[26]
 前記[22]~[25]のいずれか1つに記載の低誘電材用樹脂組成物を含む、成形体。
[27]
 スチレン系樹脂粒子(X2)をドメインとし、樹脂(Y2)をマトリックスとする海島構造を有する、前記[26]に記載の成形体。
[28]
 前記[26]又は[27]に記載の成形体からなる低誘電材。
[29]
 前記[28]に記載の低誘電材からなる電子回路用基板。
[30]
 前記[29]に記載の電子回路用基板からなる電子回路基板。
[31]
 平均粒径が0.5~90μmであり、架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子(X2)を、樹脂(Y2)に添加する、樹脂組成物の低誘電率化方法。
 本発明の製造方法によれば、小粒径かつ耐熱性を有し、実質的に不純物を含まないシンジオタクチック構造を有するスチレン系樹脂粒子を効率的に得ることができる。また、本発明のシンジオタクチック構造を有するスチレン系樹脂粒子は、小粒径かつ耐熱性を有する。
 本発明の低誘電材用樹脂組成物及び当該樹脂組成物を含む成形体は、誘電率と誘電損失が低く、強度にも優れるため、電子機器用部品、特に電子回路基板、ミリ波レドームに適している。
 本発明は、ペレット状のシンジオタクチック構造を有するスチレン系樹脂を、衝撃式粉砕機を用いて粉砕し、平均粒径0.5~90μmの粒子を得る工程を有する、スチレン系樹脂粒子の製造方法である(本発明の第一の実施形態)。
 また、本発明は、後述する要件を満たすシンジオタクチック構造を有するスチレン系樹脂からなるスチレン系樹脂粒子、及び当該スチレン系樹脂粒子2~55体積%と、樹脂(Y1)を含有する、低誘電材用樹脂組成物である(本発明の第二の実施形態)。
 更に、本発明は、平均粒径が0.5~90μmである架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子(X2)2~55体積%と、樹脂(Y2)を含有する、低誘電材用樹脂組成物である(本発明の第三の実施形態)。
 以下、詳細に説明する。
[1.スチレン系樹脂粒子の製造方法(本発明の第一の実施形態)]
 本発明の第一の実施形態であるスチレン系樹脂粒子の製造方法は、ペレット状のシンジオタクチック構造を有するスチレン系樹脂を、衝撃式粉砕機を用いて粉砕し、平均粒径0.5~90μmの粒子を得る工程を有する。
<ペレット状のシンジオタクチック構造を有するスチレン系樹脂>
 本発明の製造方法に用いられるシンジオタクチック構造を有するスチレン系樹脂(SPS)のラセミダイアッド(r)分率は、75モル%以上が好ましく、85モル%以上がより好ましく、99モル%以上が更に好ましく、ラセミペンタッド(rrrr)分率は、30モル%以上が好ましく、50モル%以上がより好ましく、98.5モル%以上が更に好ましく、99.0モル%以上がより更に好ましい。
 タクティシティは、隣り合うスチレン単位におけるフェニル環が、重合体ブロックの主鎖によって形成される平面に対して交互に配置されている割合のことを意味する。シンジオタクティシティは、核磁気共鳴法(13C-NMR法)により定量できる。ダイアッドは連続した2つのモノマーユニット、ペンタッドは5つのモノマーユニットでのシンジオタクティシティを示す。
 本発明の製造方法に用いられるSPSとしては、ポリスチレン、ポリ(炭化水素置換スチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、これらの水素化重合体若しくは混合物、又はこれらを主成分とする共重合体等が挙げられる。
 ポリ(炭化水素置換スチレン)としては、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソプロピルスチレン)、ポリ(tert-ブチルスチレン)、ポリ(フェニル)スチレン、ポリ(ビニルナフタレン)及びポリ(ビニルスチレン)等を挙げることができる。ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)及びポリ(フルオロスチレン)等を挙げることができる。ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)等を挙げることができる。ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)及びポリ(エトキシスチレン)等を挙げることができる。
 上記の構成単位を含む共重合体のコモノマー成分としては、上記スチレン系重合体のモノマーの他、エチレン、プロピレン、ブテン、ヘキセン及びオクテン等のオレフィンモノマー;ブタジエン、イソプレン等のジエンモノマー;環状オレフィンモノマー、環状ジエンモノマー、メタクリル酸メチル、無水マレイン酸及びアクリロニトリル等の極性ビニルモノマーが挙げられる。
 上記スチレン系重合体のうち特に好ましいものとして、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-tert-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)を挙げることができる。
 さらにはスチレンとp-メチルスチレンとの共重合体、スチレンとp-tert-ブチルスチレンとの共重合体、スチレンとジビニルベンゼンとの共重合体等を挙げることができる。
 本発明の製造方法に用いられるシンジオタクチック構造を有するスチレン系樹脂の融点は240℃以上が好ましく、245℃以上がより好ましく、265℃以上が更に好ましく、269℃以上がより更に好ましく、270℃以上がより更に好ましく、271℃以上がより更に好ましい。また、265~275℃が好ましく、265~273℃がより好ましく、269~273℃が更に好ましく、271~273℃がより更に好ましい。融点が前記の範囲であると樹脂粒子の耐熱性が高く、本発明の樹脂粒子を配合する樹脂組成物あるいは成形体等に耐熱性を付与することができる。
 本発明の製造方法に用いられるシンジオタクチック構造を有するスチレン系樹脂は、粉砕時の樹脂の粉砕し易さ及びSPS粒子を添加した成形体の強度の観点から、重量平均分子量が10,000以上1,000,000以下であることが好ましく、50,000以上500,000以下であることがより好ましい。重量平均分子量が10,000以上であれば、十分な強度を有する成形品を得ることができる。また、樹脂ワニス(より具体的には、ポリイミドワニスなど)に添加した際、ワニスに含まれる有機溶剤に対する溶解、膨潤を抑えることが出来、成形体として十分な強度、低誘電率を有する成形体を得ることが出来る。一方、重量平均分子量が1,000,000以下であれば成形時の粉砕のし易さにも問題がない。
 本明細書において、重量平均分子量とは、特段の記載がない限り、東ソー株式会社製GPC装置(HLC-8321GPC/HT)、東ソー株式会社製GPCカラム(GMHHR-H(S)HT)を用い、溶離液として1,2,4-トリクロロベンゼンを用いて145℃でゲル浸透クロマトグラフィー測定法により測定し、標準ポリスチレンの検量線を用いて換算した値である。単に「分子量」と略すことがある。
 本発明の製造方法に用いられるスチレン系樹脂は、前記に記載したもののほか、後述の[2-1.スチレン系樹脂粒子(第二の実施形態)]の項に記載したスチレン系樹脂粒子を構成するスチレン系樹脂がより好ましく、後述の本発明の第二の実施形態に記載したスチレン系樹脂粒子を構成するスチレン系樹脂の製造方法で得られるものがより好ましい。
 本発明の製造方法に用いられるペレット状のSPSを得るためのペレット化はいかなる方法を用いてもよいが、溶融押出を行うことにより、ストランドを製造し、これを切断することによって得ることが好ましい。
 溶融押出を行う方法としては、一軸押出機、二軸押出機、ニーダールーダー(押出機にニーダーを付加した装置)等を用いた方法が挙げられる。
 二軸押出機としては、TEX(株式会社日本製鋼所製)、TEM(東芝機械株式会社製)等が挙げられる。
 ペレット化方法の例としては、コールドカット法、すなわち、上記条件で押出されたストランドを水冷或いは空冷などにより冷却した後、ペレタイザーにより切断する方法などが挙げられる。
 なお、必要に応じてストランド状以外の形態で押し出し、これをカットしてペレットとしてもよい。
<粉砕工程>
 本製造方法においては、前記のようにして得られたペレット状のシンジオタクチック構造を有するスチレン系樹脂を、後述の衝撃式粉砕機を用いて粉砕し、平均粒径0.5~90μmの粒子を得る、粉砕工程を有する。
 粉砕工程は、平均粒径0.5~90μmの粒子を得る工程であり、平均粒径70μm以下の粒子を得る工程であることが好ましく、平均粒径60μm以下の粒子を得る工程であることがより好ましく、平均粒径50μm以下の粒子を得る工程であることが更に好ましく、平均粒径45μm以下の粒子を得る工程であることがより更に好ましく、平均粒径30μm以下の粒子を得る工程であることがより更に好ましく、平均粒径20μm以下の粒子を得る工程であることがより更に好ましく、平均粒径10μm以下の粒子を得る工程であることがより更に好ましい。また、平均粒径0.5μm以上の粒子を得る工程であり、平均粒径1.0μm以上の粒子を得る工程であることが好ましく、平均粒径1.5μm以上の粒子を得る工程であることがより好ましい。
<衝撃式粉砕機>
 本発明の製造方法に好適に用いられる衝撃式粉砕機は、原料供給管を介して、粉砕機内に供給されたペレット状のSPSが、高速回転しているハンマ(ブレードロータ、粉砕ロータ)とその周囲のライナとの間で粉砕される。このような衝撃式粉砕機は、打撃式粉砕機又はハンマーミルとも呼ばれ、本発明の製造方法において、打撃式粉砕機を用いることが好ましい。
 また、衝撃式粉砕機として、高圧の気体を用いるジェットミルを用いることも好ましい。
 衝撃式粉砕機は、分級機を内蔵することが好ましい。ハンマーミルを用いる場合、前記のようにハンマとライナとの間で粉砕されたSPSは、空気供給管を介して供給される空気流によって、分級ロータに導かれ、上限粒度以下の粒子は排出管を介して外部に排出され、上限粒度を超える粗粉は粉砕部(ハンマ・ライナ部)に戻って再粉砕される。
 分級ロータと粉砕部との間にはガイドリングを設置することが好ましい。ガイドリングによって、分級ロータと粉砕部の空気流を区別し、分級ロータから排出される粒子と粗粉の分離を効率的に行うことができる。
 粉砕機の各部について、ハンマの形状はバーが好ましく、ライナの形状はミゾが好ましく、ガイドリングの型式は垂直が好ましい。
 前記の機構を有する衝撃式粉砕機を用いた場合の粉砕条件は、より小粒径のSPS粒子を得る観点から、次の通りである。ハンマ(ブレードロータ、粉砕ロータ)の回転数は、1000~10000rpmが好ましく、3000~9500rpmがより好ましく、5000~9000rpmが更に好ましく、7000~8000rpmがより更に好ましい。分級ロータの回転数は、500~9000rpmが好ましく、1500~8000rpmがより好ましく、3000~7000rpmが更に好ましく、4000~6000rpmがより更に好ましい。
 好適な衝撃式粉砕機の具体例としては、ACMパルベライザACM15H(ホソカワミクロン株式会社製)などが挙げられる。
 衝撃式粉砕機は、冷却装置を有することが好ましい。
 衝撃式粉砕機が、冷却装置を有する場合、まず、フリーザにてペレット状のSPSが予備冷却された後、粉砕機に供給され、粉砕される。粉砕機も冷媒によって冷却され、低温下で粉砕することができる。
 フリーザ及び粉砕機の冷却に用いられる冷媒としては、液体窒素が好ましい。液体窒素を用いることで、粉砕時に熱が発生したとしても、ペレット状のSPS及びSPSの粗粉をガラス転移温度以下に維持することができ、更に使用後は窒素ガスとして容易に系外に排出することができる。
 前記の機構を有する衝撃式粉砕機を用いた場合の粉砕条件は、より小粒径のSPS粒子を得る観点から、次の通りである。ハンマ(ブレードロータ、粉砕ロータ)の回転数は、1000~15000rpmが好ましく、4000~13000rpmがより好ましく、8000~12000rpmが更に好ましい。
 好適な冷却装置を有する衝撃式粉砕機の具体例としては、リンレックスミル(ホソカワミクロン株式会社製)などが挙げられる。
 本製造方法における処理量、すなわち1時間あたりのスチレン系樹脂粒子の生産量は、3kg以上が好ましく、5kg以上がより好ましく、10kg以上が更に好ましく、20kg以上がより更に好ましく、30kg以上がより更に好ましい。
<スチレン系樹脂粒子の特性等>
 本製造方法で得られるスチレン系樹脂粒子の平均粒径は、0.5~90μmであり、70μm以下が好ましく、60μm以下がより好ましく、50μm以下が更に好ましく、45μm以下がより更に好ましく、30μm以下がより更に好ましく、20μm以下がより更に好ましく、10μm以下がより更に好ましい。また、0.5μm以上であり、1.0μm以上が好ましく、1.5μm以上がより好ましい。
 スチレン系樹脂粒子の平均粒径が前記の範囲であると、樹脂成形体等に配合した際に、十分な強度を維持しつつ、誘電率や誘電損失を低くすることができ、電子材料として優れるものとなる。
 本製造方法で得られるスチレン系樹脂粒子には、実質的に不純物を含まない。実質的に不純物を含まないスチレン系粒子は、以下のようなものである。
 本製造方法で得られるスチレン系樹脂粒子中の粉砕機の無機酸化物を含むメディアに由来する無機物の含有量は、100ppm以下が好ましく、50ppm以下がより好ましく、20ppm以下が更に好ましい。
 本明細書において、「ppm」は質量百万分率を示す。
 本発明の製造方法によれば、無機酸化物等のメディアを使用するメディアミルを使用しなくても、効率的に粒径の小さなスチレン系樹脂粒子を得ることができる。
 粉砕機のメディアに含まれる無機酸化物としては、ジルコニア、アルミナ、ガラス等が挙げられる。
 なかでも、本製造方法で得られるスチレン系樹脂粒子中のジルコニウムの含有量は、100ppm以下が好ましく、50ppm以下がより好ましく、20ppm以下が更に好ましい。100ppm以下であれば、優れた電気特性と機械物性を維持することができる。
 また、本製造方法で得られるスチレン系樹脂は、その重合過程で用いる触媒等に由来するアルミニウム分及びチタン分を含みうる。
 本製造方法で得られるスチレン系樹脂粒子中のアルミニウム分の含有量は、800ppm以下が好ましく、700ppm以下がより好ましく、500ppm以下が更に好ましい。
 また、本製造方法で得られるスチレン系樹脂粒子中のチタン分の含有量は、12ppm以下が好ましく、11ppm以下がより好ましく、10ppm以下が更に好ましく、8ppm以下がより更に好ましい。
 本製造方法で得られるスチレン系樹脂粒子は、後述の[2-1.スチレン系樹脂粒子(本発明の第二の実施形態)]の項に記載の方法によって重合されたスチレン系樹脂を用いることで、触媒に由来するアルミニウム分及びチタン分を低減することができ、耐熱性に優れるものとなる。
 このように、本発明の製造方法において得られたスチレン系樹脂粒子は、後述の、本発明の第二の実施形態である[2-1.スチレン系樹脂粒子]に記載したスチレン系樹脂粒子であることがより好ましい。
 すなわち、本発明のスチレン系樹脂粒子の製造方法は、ペレット状のシンジオタクチック構造を有するスチレン系樹脂を、衝撃式粉砕機を用いて粉砕し、平均粒径0.5~90μmの粒子を得る工程を有するものであるが、得られた樹脂粒子が更に下記(1)及び(2)を満たすシンジオタクチック構造を有するスチレン系樹脂からなり、平均粒径が0.5~90μmである、スチレン系樹脂粒子の製造方法であることがより好ましい。
 (1)融点が265~275℃
 (2)ラセミペンタッド分率が98.5モル%以上
[2-1.スチレン系樹脂粒子(本発明の第二の実施形態)]
 本発明の第二の実施形態であるスチレン系樹脂粒子は、下記(1)及び(2)を満たすシンジオタクチック構造を有するスチレン系樹脂からなり、平均粒径が0.5~90μmである。
 (1)融点が265~275℃
 (2)ラセミペンタッド分率が98.5モル%以上
 なお、本明細書において、前記(1)融点、(2)ラセミペンタッド分率、及び後述のスチレン系樹脂粒子の融点、ラセミペンタッド分率、(3)吸熱量の割合、(4)無機物の含有量は、いずれもスチレン系樹脂粒子を構成する樹脂全体の融点、ラセミペンタッド分率、吸熱量の割合、無機物の含有量のことをいう。
 本発明のスチレン系樹脂粒子の融点は、265~275℃であり、269~275℃が好ましく、270~275℃がより好ましく、271~275℃が更に好ましく、271~273℃がより更に好ましい。融点が前記の範囲であると樹脂粒子の耐熱性が高く、本発明の樹脂粒子を配合する樹脂組成物あるいは成形体等に耐熱性を付与することができる。
 本発明のスチレン系樹脂粒子のラセミペンタッド分率は98.5モル%以上であり、99.0モル%以上であることが好ましい。
 タクティシティは、隣り合うスチレン単位におけるフェニル環が、重合体ブロックの主鎖によって形成される平面に対して交互に配置されている割合のことを意味する。シンジオタクティシティは、核磁気共鳴法(13C-NMR法)により定量できる。ペンタッドは5つのモノマーユニットでのシンジオタクティシティを示す。
 本発明のスチレン系樹脂粒子の平均粒径は、0.5~90μmであり、70μm以下が好ましく、60μm以下がより好ましく、50μm以下が更に好ましく、45μm以下がより更に好ましく、30μm以下がより更に好ましく、20μm以下がより更に好ましい。また、1.0μm以上が好ましく、1.5μm以上がより好ましい。
 本発明の第二の実施形態であるスチレン系樹脂粒子は、下記(3)を更に満たすことが好ましい。
 (3)示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量に対する175~260℃の吸熱量の割合が30%未満
 以下に(3)の条件について、説明する。
 示差走査熱量測定(DSC測定)装置によりJIS K7121:1987の「一定の熱処理を行った後、融解温度を測定する場合」に記載される方法に準じて、20℃/分の昇温速度で昇温してDSC曲線を得る。
 具体的には、融解ピーク終了時より約30℃高い温度まで加熱溶融させ、その温度に10分間保った後、出現する転移ピークより少なくとも約50℃低い温度まで冷却速度毎分5℃又は毎分10℃で冷却し、その後、20℃/分の昇温速度で昇温してDSC曲線を得る。
 すなわち、本発明の第二の実施形態であるスチレン系樹脂粒子の場合、前記冷却後に50℃から300℃まで20℃/分の昇温速度で昇温してDSC曲線を得る。
 次にDSC曲線上の全吸熱ピークの面積より、全吸熱量を算出する。また、ベースライン、175℃の垂線、260℃の垂線、DSC曲線で囲まれた範囲の面積より、175~260℃の吸熱量を算出する。なお、175℃の垂線及び260℃の垂線は、ベースラインと直角に交わる直線である。
 前記それぞれの吸熱量の比(175~260℃の吸熱量/全吸熱量)を全吸熱量に対する175~260℃の吸熱量の割合とする。
 全吸熱量に対する175~260℃の吸熱量の割合は、30%未満が好ましく、28%以下がより好ましく、27%以下が更に好ましい。低融点成分の割合が30%未満であると、耐熱性に優れ、特にリフローはんだ工程にも対応することができる。
 本発明のスチレン系樹脂粒子は、ペレット状のシンジオタクチック構造を有するスチレン系樹脂を粒子化することで得ることができる。例えば、ローラミル、ロールミル、ジェットミル、ターボミル、カッターミル、ロッドミル、ハンマーミル、ピンミル、回転ミル、振動ミル、ボールミル、アトライター、ビーズミル等を用いることで粒子化することができる。中でも、ジェットミル、ハンマーミルが実質的に不純物を含まないシンジオタクチック構造を有するスチレン系樹脂粒子を得ることができ、好ましい。粉砕は乾式でも湿式でもよいが、工程を簡略化できることから乾式であることが好ましく、常温下でも低温下でも行うことができるが、常温下で行う方がコスト面から好ましい。前述の[1.スチレン系樹脂粒子の製造方法]に記載した方法で得ることも好ましい。すなわち、下記(1)及び(2)を満たし、かつ、ペレット状のシンジオタクチック構造を有するスチレン系樹脂を、衝撃式粉砕機を用いて粉砕し、粒子を得る工程を有する製造方法で得られた平均粒径が0.5~90μmである、スチレン系樹脂粒子であることがより好ましい。
 (1)融点が265~275℃
 (2)ラセミペンタッド分率が98.5%以上
 本発明のスチレン系樹脂粒子は、下記(4)を更に満たすことが好ましい。
 (4)粉砕機のメディア由来である無機物の含有量が100ppm以下
 前記スチレン系樹脂粒子中の粉砕機のメディア由来である無機物の含有量は、100ppm以下が好ましく、50ppm以下がより好ましく、20ppm以下が更に好ましい。
 特に本発明のスチレン系樹脂粒子を、前述の[1.スチレン系樹脂粒子の製造方法]に記載した方法で製造した場合、無機酸化物等のメディアを使用するメディアミルを使用することがないため、無機物が少ないスチレン系樹脂粒子を得ることができる。
 無機物としては、ジルコニウム、アルミニウム、ケイ素等が挙げられる。
 なかでも、本発明のスチレン系樹脂粒子中のジルコニウムの含有量が、100ppmであることがより好ましい。すなわち、本発明のスチレン系樹脂粒子は、以下の(4a)を更に満たすことがより好ましい。
 (4a)ジルコニウムの含有量が100ppm以下
 前記のようにジルコニウムの含有量は、100ppm以下がより好ましいが、50ppm以下が更に好ましく、20ppm以下がより更に好ましい。
 また、本発明のスチレン系樹脂粒子中のアルミニウム分の含有量は、800ppm以下が好ましく、700ppm以下がより好ましく、500ppm以下が更に好ましい。
 また、本発明のスチレン系樹脂粒子中のチタン分の含有量は、12ppm以下が好ましく、11ppm以下がより好ましく、10ppm以下が更に好ましく、8ppm以下がより更に好ましい。
 本発明のスチレン系樹脂粒子は、後述の方法によって重合されたスチレン系樹脂を用いることでアルミニウム分及びチタン分を低減することができ、耐熱性に優れるものとなる。
<シンジオタクチック構造を有するスチレン系樹脂>
 本発明のスチレン系樹脂粒子を構成するシンジオタクチック構造を有するスチレン系樹脂(SPS)のラセミペンタッド(rrrr)分率は98.5モル%以上であることが好ましく、99.0モル%以上がより好ましい。
 タクティシティは、隣り合うスチレン単位におけるフェニル環が、重合体ブロックの主鎖によって形成される平面に対して交互に配置されている割合のことを意味する。シンジオタクティシティは、核磁気共鳴法(13C-NMR法)により定量できる。ペンタッドは5つのモノマーユニットでのシンジオタクティシティを示す。
 本発明の樹脂粒子を構成するSPSとしては、ポリスチレン、ポリ(炭化水素置換スチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、これらの水素化重合体若しくは混合物、又はこれらを主成分とする共重合体等が挙げられる。
 ポリ(炭化水素置換スチレン)としては、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソプロピルスチレン)、ポリ(tert-ブチルスチレン)、ポリ(フェニル)スチレン、ポリ(ビニルナフタレン)及びポリ(ビニルスチレン)等を挙げることができる。ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)及びポリ(フルオロスチレン)等を挙げることができる。ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)等を挙げることができる。ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)及びポリ(エトキシスチレン)等を挙げることができる。
 前記の構成単位を含む共重合体のコモノマー成分としては、上記スチレン系重合体のモノマーの他、エチレン、プロピレン、ブテン、ヘキセン及びオクテン等のオレフィンモノマー;ブタジエン、イソプレン等のジエンモノマー;環状オレフィンモノマー、環状ジエンモノマー、メタクリル酸メチル、無水マレイン酸及びアクリロニトリル等の極性ビニルモノマーが挙げられる。
 前記スチレン系重合体のうち特に好ましいものとして、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-tert-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)を挙げることができる。
 さらにはスチレンとp-メチルスチレンとの共重合体、スチレンとp-tert-ブチルスチレンとの共重合体、スチレンとジビニルベンゼンとの共重合体等を挙げることができる。
 本発明の樹脂粒子を構成するSPSは、粉砕時の樹脂の粉砕し易さ及びSPS粒子を添加した成形体の強度の観点から、重量平均分子量が10,000以上1,000,000以下であることが好ましく、50,000以上500,000以下であることがより好ましい。重量平均分子量が10,000以上であれば、十分な強度を有する成形品を得ることができる。また、樹脂ワニス(より具体的には、ポリイミドワニスなど)に添加した際、ワニスに含まれる有機溶剤に対する溶解、膨潤を抑えることが出来、成形体として十分な強度、低誘電率を有する成形体を得ることが出来る。一方、重量平均分子量が1,000,000以下であれば成形時の粉砕のし易さにも問題がない。
 本明細書において、重量平均分子量とは、特段の記載がない限り、東ソー株式会社製GPC装置(HLC-8321GPC/HT)、東ソー株式会社製GPCカラム(GMHHR-H(S)HT)を用い、溶離液として1,2,4-トリクロロベンゼンを用いて145℃でゲル浸透クロマトグラフィー測定法により測定し、標準ポリスチレンの検量線を用いて換算した値である。単に「分子量」と略すことがある。
<スチレン系樹脂の製造>
 本発明のスチレン系樹脂粒子に用いられるスチレン系樹脂の製造は、シンジオタクチック構造を有するスチレン系樹脂からなり、前記(1)及び(2)(融点及びラセミペンタッド分率)を満たす樹脂が得られる方法であれば、特に制限はないが、以下の製造方法で行うことが好ましい。
 中心金属として、周期律表第3~5族の金属及びランタノイド系遷移金属からなる群から選ばれる少なくとも1種を有するハーフメタロセン系遷移金属化合物(A)と、一般式(1)で示される化合物(B)と、酸素含有化合物(c1)及び遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)の少なくとも1種から選択される化合物(C)とを含む触媒の存在下で、前記スチレン系重合体のモノマー及び共重合体のコモノマー成分を付加重合させる工程を有する。
  ((R13-Q-Y)k-Z-(R2j-k  (1)
[式中、R1は、ハロゲン原子、炭素数1~30の脂肪族炭化水素基、炭素数6~30の芳香族炭化水素基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のチオアルコキシ基、炭素数6~30のチオアリールオキシ基、アミノ基、アミド基、又はカルボキシル基を示す。複数のR1は相互に同一でも異なっていてもよい。また、複数のR1は必要に応じて結合して環構造を形成していてもよい。Qは周期律表第14族の元素を、Yは第16族の元素を示し、Zは、第2族~第13族の金属元素を示す。R2は炭化水素基を示す。jは金属元素Zの価数の整数を示し、kは、1~(j-1)の整数を示す。]
(ハーフメタロセン系遷移金属化合物(A))
 ハーフメタロセン系遷移金属化合物(A)は、中心金属が、周期律表第3~5族の金属、及びランタノイド系遷移金属からなる群から選ばれる少なくとも1種を有するハーフメタロセン系遷移金属化合物である。
 当該ハーフメタロセン系遷移金属化合物(A)は、例えば、一般式(2)
   R3MUa-1b   (2)
[式中、R3はπ配位子を示す。Mは周期律表第3~5族の金属及びランタノイド系遷移金属からなる群から選ばれる少なくとも1種を示し、Uはモノアニオン配位子を示す。複数のUは互いに同一でも異なっていてもよく、また、互いに任意の基を介して結合していてもよい。Lはルイス塩基、aはMの価数、bは0、1又は2を示す。Lが複数の場合、Lは互いに同一でも異なっていてもよい。]
で表される構造を有するものである。
 一般式(2)において、R3はπ配位子であり、好ましくは、置換または無置換の(以下、(置換)と示すことがある)シクロペンタジエニル基、(置換)インデニル基、シクロペンタジエニル基が縮合結合している多員環の少なくとも一つが飽和環である縮合多環式シクロペンタジエニル基を示す。
 R3の具体例としては、4,5,6,7-テトラヒドロインデニル基、1-メチル-4,5,6,7-テトラヒドロインデニル基、2-メチル-4,5,6,7-テトラヒドロインデニル基;1,2-ジメチル-4,5,6,7-テトラヒドロインデニル基、1,3-ジメチル-4,5,6,7-テトラヒドロインデニル基、1,2,3-トリメチル-4,5,6,7-テトラヒドロインデニル基、1,2,3,4,5,6,7-ヘプタメチル-4,5,6,7-テトラヒドロインデニル基、1,2,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニル基、1,3,4,5,6,7-ヘキサメチル-4,5,6,7-テトラヒドロインデニル基、オクタヒドロフルオレニル基、1,2,3,4-テトラヒドロフルオレニル基、9-メチル-1,2,3,4-テトラヒドロフルオレニル基、9-メチル-オクタヒドロフルオレニル基等が挙げられ、触媒活性及び合成が容易な点から、4,5,6,7-テトラヒドロインデニル基類が好ましい。
 Mは周期律表第3~5族の金属、又はランタノイド系遷移金属である。これらの金属としては、スカンジウム及びイットリウムなど周期律表第3族金属、チタン、ジルコニウム及びハフニウムなどの周期律表第4族金属、ランタノイド系遷移金属、ニオブ及びタンタルなどの周期律表第5族金属が挙げられる。触媒活性の点から、周期律表第3族金属又は第4族金属が好適であり、スカンジウム、イットリウム、チタンを好ましくは用いることができる。中でもハンドリングの観点からチタンがより好適である。
 Uはモノアニオン配位子を示し、具体的には水素原子、ハロゲン原子、炭素数1~20の脂肪族炭化水素基、炭素数6~20の芳香族炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~20のチオアルコキシ基、炭素数6~20のチオアリールオキシ基、アミノ基、アミド基、カルボキシル基及びアルキルシリル基などが挙げられる。複数のUは互いに同一でも異なっていてもよく、また互いに任意の基を介して結合していてもよい。Uの具体例としては、水素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、ベンジル基、フェニル基、トリメチルシリルメチル基、メトキシ基、エトキシ基、フェノキシ基、チオメトキシ基、チオフェノキシ基、ジメチルアミノ基、ジイソプロピルアミノ基などを挙げることができる。Lはルイス塩基を示し、aはMの価数、bは0、1又は2である。
(一般式(1)で示される化合物(B))
 前記一般式(1)で示される化合物(B)の中でも、次のものが好ましく用いられる。
(1)Zがアルミニウムであるものが好ましく、Qが炭素であり、Yが酸素であり、Zがアルミニウムであるものがより好ましい。
(2)3個のR1のすべてが炭素数1以上の炭化水素基であるものが好ましい。
(3)3個のR1のうち、少なくとも1つが炭素数6~30の芳香族炭化水素基であるものが好ましく、3個のR1のすべてが炭素数6~30の芳香族炭化水素基であるものがより好ましく、3個のR1のすべてがフェニル基であるものが更に好ましい。
(4)R2が炭素数2以上のアルキル基である。
 化合物(B)は、ハーフメタロセン系遷移金属化合物(A)成分1モルに対し、化合物(B)がアルミニウム化合物の場合は、アルミニウム原子のモル比で0.5~1,000、好ましくは1~100の範囲で選ばれる。
 一般式(1)で示される化合物(B)は、一般式(R13-C-OR33で表される化合物(b1)と、一般式Z(R2jで表される化合物(b2)とを反応させることにより得られたものが好適に用いられる。
 ここで、R1、Z、j及びR2は前記の通りである。R33は、水素原子、ハロゲン原子、炭素数1~30の脂肪族炭化水素基、炭素数6~30の芳香族炭化水素基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のチオアルコキシ基、炭素数6~30のチオアリールオキシ基、アミノ基、アミド基又はカルボキシル基を示す。R1及びR33はそれぞれ相互に同一でも、異なっていてもよい。また、R1及びR33はそれぞれ必要に応じて結合し、環構造を形成してもよい。
 式(1)の化合物として、具体的には、アルコール類、エーテル類、アルデヒド類、ケトン類、カルボン酸類、カルボン酸エステル類から選ばれた少なくとも1種(b1)と、アルミニウム化合物(b2)との反応生成物が挙げられる。より好ましくはアルコール類(b1)とアルミニウム化合物(b2)との反応生成物である。この場合においても、(1)(R13における3個のR1のうち、少なくとも1つが炭素数6~30の芳香族炭化水素基であることが好ましい。(2)(R13における3個のR1のすべてが炭素数1以上の炭化水素基であることが好ましく、3個のR1のすべてが炭素数6~30の芳香族炭化水素基であることが更に好ましく、3個のR1のすべてがフェニル基であることがより更に好ましい。(3)R2が炭素数2以上のアルキル基であることが好ましい。Rがすべてフェニル基であり、Qが炭素、Yが酸素、Zがアルミニウムであり、k=1であり、R2がイソブチル基であるものがより更に好ましい。即ち、トリフェニルメタノール(b1)とトリイソブチルアルミニウム(b2)との反応生成物が最も好ましい。
 化合物(b1)と化合物(b2)の配合比については、モル比で、化合物(b1):化合物(b2)が好ましくは1:0.01~1:100、より好ましくは1:0.5~1:50の範囲であり、特に好ましくは1:0.8~1:10である。また、(b2)成分は、ハーフメタロセン系遷移金属化合物(A)1モルに対し、(b2)成分がアルミニウム化合物の場合は、アルミニウム原子のモル比で好ましくは0.5~10,000、より好ましくは0.5~1,000の範囲であり、最も好ましくは、1~1,000の範囲で選ばれる。化合物(b1)と化合物(b2)のの反応条件としては特に制限はないが、反応温度は好ましくは-80℃~300℃、より好ましくは-10℃~50℃であり、反応時に使用する溶媒は、トルエン、エチルベンゼン等重合時に使用される溶媒が好ましく用いられる。
 さらには、一般式(1)で示される化合物(B)としてではなく、化合物(b1)と化合物(b2)とを直接触媒合成の場に、又は重合の場に投入してもよいが、(b1)成分と(b2)成分については、他の成分を接触させる前に予め接触させておくのが好適である。
(化合物(C))
 化合物(C)は、酸素含有化合物(c1)及び遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)の少なくとも1種から選択される。中でも、酸素含有化合物(c1)が好適である。
 ハーフメタロセン系遷移金属化合物(A)成分と化合物(C)のモル比は、化合物(C)として酸素含有化合物を用いる場合、通常ハーフメタロセン系遷移金属化合物(A)1モルに対し、化合物(C)が有機アルミニウム化合物の場合は、アルミニウム原子のモル比で1~10,000、好ましくは、10~1,000の範囲で選ばれる。また化合物(C)成分として遷移金属化合物と反応してイオン性の錯体を形成しうる化合物を用いる場合、通常ハーフメタロセン系遷移金属化合物(A)1モルに対し、化合物(C)がホウ素化合物の場合は、ホウ素原子のモル比で0.5~10、好ましくは、0.8~5の範囲で選ばれる。
(酸素含有化合物(c1))
 酸素含有化合物としては、たとえば、下記一般式(c11)及び/又は一般式(c12)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 前記一般式(c11)及び(c12)において、R18~R24はそれぞれ炭素数1~8のアルキル基を示し、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基及び各種オクチル基が挙げられる。R18~R22は互いに同一でも異なっていてもよく、R23及びR24は互いに同一でも異なっていてもよい。Z1~Z5はそれぞれ周期律表13族元素を示し、具体的にはB、Al、Ga、In及びTlが挙げられるが、中でもB及びAlが好適であり、Alがより好適である。Z1~Z3は互いに同一でも異なっていてもよく、Z4及びZ5は互いに同一でも異なっていてもよい。g、h、s及びtはそれぞれ0~50の数であるが、(g+h)及び(s+t)はそれぞれ1以上である。g、h、s及びtとしてはそれぞれ1~20の範囲が好ましく、特に1~5の範囲が好ましい。
 前記酸素含有化合物としては、アルキルアルミノキサンが好ましい。具体的な好適例としては、メチルアルミノキサン、メチルイソブチルアルミノキサン、及びイソブチルアルミノキサンが挙げられる。
(遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2))
 遷移金属化合物と反応してイオン性の錯体を形成しうる化合物(c2)としては、複数の基が金属に結合したアニオンとカチオンとからなる配位錯化合物又はルイス酸を挙げることができる。複数の基が金属に結合したアニオンとカチオンとからなる配位錯化合物としては様々なものがあるが、例えば下記一般式(c21)又は(c22)で表される化合物を好適に使用することができる。
  ([L2i+y([M33 u(u-v)-z   (c21)
  ([L3-H]i+y([M43 u(u-v)-z (c22)
 式(c21)及び(c22)において、L2は後述のM5、R25266又はR27 3Cであり、L3はルイス塩基、M3及びM4はそれぞれ周期律表の第5族~第15族からなる群から選ばれる金属である。
 X3はそれぞれ水素原子、ジアルキルアミノ基、アルコキシ基、アリールオキシ基、炭素数1~20のアルキル基、炭素数6~20のアリール基、アルキルアリール基、アリールアルキル基、置換アルキル基、有機メタロイド基又はハロゲン原子を示す。複数のX3は互いに同一でも異なっていてもよい。
 vはM3及びM4の原子価を示し1~7の整数、uは2~8の整数、iは[L2]及び[L3-H]のイオン価数を示し1~7の整数、yは1以上の整数であり、z=y×i/(u-v)である。
 M5は周期律表の第1族及び第8族~第12族からなる群から選ばれる金属であり、M6は周期律表の第8族~第10族からなる群から選ばれる金属である。
 R25及びR26はそれぞれシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又はフルオレニル基を示し、R27はアルキル基またはアリール基を示す。
 M3及びM4の具体例としては、B、Al、Si、P、As又はSbを、M5の具体例としてはAg、Cu、Na、Li等を、M6の具体例としてはFe、Co、Ni等を挙げることができる。X3の具体例としては、例えば、ジアルキルアミノ基としてジメチルアミノ基、ジエチルアミノ基等、アルコキシ基としてメトキシ基、エトキシ基、n-ブトキシ基など;アリールオキシ基としてフェノキシ基、2,6-ジメチルフェノキシ基、ナフチルオキシ基など、炭素数1~20のアルキル基としてメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-オクチル基、2-エチルヘキシル基等;炭素数6~20のアリール基、アルキルアリール基若しくはアリールアルキル基としてフェニル基、p-トリル基、ベンジル基、ペンタフルオロフェニル基、3,5-ジ(トリフルオロメチル)フェニル基、4-tert-ブチルフェニル基、2,6-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4-ジメチルフェニル基、1,2-ジメチルフェニル基等;ハロゲンとしてF、Cl、Br、I;有機メタロイド基としてペンタメチルアンチモン基、トリメチルシリル基、トリメチルゲルミル基、ジフェニルアルシン基、ジシクロヘキシルアンチモン基、ジフェニルホウ素基等が挙げられる。R25及びR26で表される置換シクロペンタジエニル基の具体例としては、メチルシクロペンタジエニル基、ブチルシクロペンタジエニル基及びペンタメチルシクロペンタジエニル基等が挙げられる。
 本発明において、複数の基が金属に結合したアニオンとしては、B(C654 -、B(C6HF44 -、B(C6234 -、B(C6324 -、B(C64F)4 -、B[C6(CF3)F44 -、B(C654 -、PF6 -、P(C656 -、Al(C6HF44 -などが挙げられる。金属カチオンとしては、Cp2Fe、(MeCp)2Fe+、(tBuCp)2Fe+、(Me2Cp)2Fe+、(Me3Cp)2Fe+、(Me4Cp)2Fe+、(Me5Cp)2Fe+、Ag+、Na+、Li+等が挙げられる。上記式中、Cpはシクロペンタジエニル基を、Meはメチル基を、Buはブチル基を示す。その他カチオンとしては、ピリジニウム、2,4-ジニトロ-N,N-ジエチルアニリニウム、ジフェニルアンモニウム、p-ニトロアニリニウム、2,5-ジクロロアニリニウム、p-ニトロ-N,N-ジメチルアニリニウム、キノリニウム、N,N-ジメチルアニリニウム、N,N-ジエチルアニリニウム等の窒素含有化合物;トリフェニルカルベニウム、トリ(4-メチルフェニル)カルベニウム、トリ(4-メトキシフェニル)カルベニウム等のカルベニウム化合物;CH3PH3 +、C25PH3 +、C37PH3 +、(CH32PH2 +、(C252PH2 +、(C372PH2 +、(CH33PH+、(C253PH+、(C373PH+、(CF33PH+、(CH34+、(C254+、(C374+等のアルキルホスホニウムイオン;及びC65PH3 +、(C652PH2 +、(C653PH+、(C654+、(C252(C65)PH+、(CH3)(C65)PH2 +、(CH32(C65)PH+、(C252(C652+等のアリールホスホニウムイオンなどが挙げられる。
 化合物(A)、化合物(B)及び化合物(C)に加えて、以下の化合物(D)及び/または化合物(E)を用いることが好ましい。
 化合物(D)及び/または化合物(E)の配合量については、ハーフメタロセン系遷移金属化合物(A)1モルに対し、化合物(D)及び/または化合物(E)がアルミニウム化合物の場合は、アルミニウム原子のモル比で0.5~1,000、好ましくは、1~100の範囲で選ばれる。
(化合物(D))
 化合物(D)は下記一般式(3)で表される化合物である。
    R4 pAl(OR5q1 2-p-qH     (3)
[式中、R4及びR5は、それぞれ炭素数1~8のアルキル基を示し、X1はハロゲン原子を示す。また、p、qは0<p≦2、0≦q<2、p+q≦2である。]
 一般式(3)で示される化合物(D)として、ジアルキルアルミニウムヒドリド化合物やモノアルキルアルミニウムヒドリド化合物が好ましい。
 具体的にはジメチルアルミニウムヒドリド、ジエチルアルミニウムヒドリド、ジ-n-プロピルアルミニウムヒドリド、ジイソプロピルアルミニウムヒドリド、ジ-n-ブチルアルミニウムヒドリド、ジイソブチルアルミニウムヒドリド等のジアルキルアルミニウムヒドリド;メチルアルミニウムクロロヒドリド、エチルアルミニウムクロロヒドリド、n-プロピルアルミニウムクロロヒドリド、イソプロピルアルミニウムクロロヒドリド、n-ブチルアルミニウムクロロヒドリド、イソブチルアルミニウムクロロヒドリド等のアルキルアルミニウムハロヒドリド;エチルアルミニウムメトキシヒドリド、エチルアルミニウムエトキシヒドリド等のアルキルアルミニウムアルコキシヒドリド等が挙げられる。中でも触媒活性の観点から、ジイソブチルアルミニウムヒドリドが好ましい。
(化合物(E))
 化合物(E)は下記一般式(4)で表される化合物である。
    R6 mAl(OR7n2 3-m-n     (4)
[式中、R6及びR7は、それぞれ炭素数1~8のアルキル基を示し、X2はハロゲン原子を示す。また、m、nは0<m≦3、0≦n<3、m+n≦3である。]
 一般式(4)で示される化合物(E)として、触媒活性の観点から、トリアルキルアルミニウムやジアルキルアルミニウム化合物が好ましい。
 具体的にはトリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジ-n-プロピルアルミニウムクロリド、ジイソプロピルアルミニウムクロリド、ジ-n-ブチルアルミニウムクロリド、ジイソブチルアルミニウムクロリド等のジアルキルアルミニウムハライド;ジエチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド等のジアルキルアルミニウムアルコキシド等が挙げられ、中でもトリイソブチルアルミニウムが好ましい。
(重合工程)
 次に、上記触媒を用いて実際にスチレン系樹脂を製造する工程について詳述する。本発明のスチレン系重合体の製造方法においては、上述した重合用触媒を用いて、前記スチレン系重合体のモノマー及び共重合体のコモノマー成分の重合を好適に行うことができる。
 前記触媒を用いて、まず予備重合を行ってもよい。予備重合は、上記触媒に、例えば少量のモノマーを接触させることにより行うことができるが、その方法には特に制限はなく、公知の方法で行うことができる。
予備重合温度は、通常-20~200℃、好ましくは-1℃~130℃である。予備重合において、溶媒としては、不活性炭化水素、脂肪族炭化水素、芳香族炭化水素等を用いることができる。
 本重合工程における重合方法については特に制限はなく、スラリー重合法、粉体床重合、溶液重合法、気相重合法、塊状重合法または懸濁重合法等の任意の方法での連続重合法を採用することができる。中でも、工業的規模での製造の観点から、粉体床連続重合を行なうことが好ましい。
 触媒の各成分を予め混合して触媒を調製したのち、モノマーを投入してもよく、触媒の各成分とモノマーとを任意の順序で重合の場に投入してもよい。
 触媒の各成分を予め混合して触媒を調製する場合、触媒成分の接触は、窒素等の不活性気体中、重合温度以下で行なうことができる。一例として、-30~200℃の範囲で行うことができる。
 また、触媒活性を高めるために、重合場に水素を添加することができる。
 重合時に溶媒を用いる場合には、ベンゼン、トルエン、エチルベンゼン、n-ペンタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン等の炭化水素類やハロゲン化炭化水素類等が溶媒として挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、種類によっては、重合に用いるモノマー自体を重合溶媒として使用することができる。
 重合反応における触媒の使用量は、モノマー1モル当たり、ハーフメタロセン系遷移金属化合物(A)が通常0.1~500マイクロモル、好ましくは0.5~100マイクロモルの範囲となるように選択すると、重合活性および反応器効率の面から有利である。
 重合体の分子量の調節方法としては、各触媒成分の種類、使用量、重合温度の選択および水素の導入などが挙げられる。
[2-2.低誘電材用樹脂組成物(本発明の第二の実施形態であるスチレン系樹脂粒子を含有する低誘電材用樹脂組成物)]
 本発明の第二の実施形態であるスチレン系樹脂粒子を含有する低誘電材用樹脂組成物は、前記[2-1.スチレン系樹脂粒子]に記載したスチレン系樹脂粒子2~55体積%と、樹脂(Y1)を含有する。
 すなわち、下記(1)及び(2)を満たすシンジオタクチック構造を有するスチレン系樹脂からなり、平均粒径が0.5~90μmである、スチレン系樹脂粒子(以下、スチレン系樹脂粒子(X1)ともいう)2~55体積%と、樹脂(Y1)を含有する。
 (1)融点が265~275℃
 (2)ラセミペンタッド分率が98.5モル%以上
 また、本発明の低誘電材用樹脂組成物には、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子2~55体積%と、樹脂(Y1)を含有する、低誘電材用樹脂組成物も含まれる。
 高融点であるSPS微粒子を用いることにより、例えば熱硬化性樹脂や、熱によって品質が低下しやすい熱可塑性樹脂へ、SPS粒子を溶融させることなく添加させることができる。また、SPS微粒子を圧縮成型することで、射出成形では製造しにくい薄肉成形品を得ることができる。さらに、SPS微粒子を含ませることで、強度に優れる成形体を容易に得ることができる。
 本発明の低誘電材用樹脂組成物に用いられるスチレン系樹脂粒子(X1)は、平均粒径が0.5~90μmである。スチレン系樹脂粒子(X1)の平均粒径がこの範囲であると、マトリックスとなる樹脂(Y1)の耐熱性等の特性を維持しつつ、低誘電材用樹脂組成物に対して、スチレン系樹脂の電気絶縁性を付与することができる。平均粒径は、0.5~60μmが好ましく、0.5~50μmがより好ましく、0.5~45μmが更に好ましく、1.0~30μmがより更に好ましく、1.5~20μmがより更に好ましい。
 低誘電材用樹脂組成物中のスチレン系樹脂粒子(X1)の平均粒径は、樹脂組成物の製造過程において、粒子形状のスチレン系樹脂が溶融あるいは粉砕しない場合には、添加した樹脂粒子の平均粒径であり、溶融あるいは粉砕した場合には、スチレン系樹脂をドメインとし、樹脂(Y1)をマトリックスとする海島構造におけるドメイン部分の平均粒径をいう。
 本発明の低誘電材用樹脂組成物に用いられるスチレン系樹脂粒子(X1)の樹脂組成物中の含有量は、2~55体積%であり、6~55体積%が好ましく、10~55体積%がより好ましく、15~53体積%が更に好ましく、20~50体積%がより更に好ましい。
<樹脂(Y1)>
 本発明の低誘電材用樹脂組成物に用いられる樹脂(Y1)は、電子機器用部品に用いられる樹脂が好ましく、なかでも電子回路基板、ミリ波レドームに用いられる樹脂がより好ましい。
 樹脂(Y1)としては、熱可塑性樹脂又は熱硬化性樹脂が好ましく、電子機器用部品に必要とされる耐熱性の観点から、熱硬化性樹脂がより好ましい。
 熱硬化性樹脂のなかでもエポキシ樹脂、ポリイミドが更に好ましい。
 樹脂(Y1)の具体例としては、エポキシ樹脂、ポリイミド、液晶ポリマー、ポリエーテルサルフォン、ポリアリレート、ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルフォン、ポリフェニレンオキサイド、ポリテトラフルオロエチレン、ポリメチルペンテン、ポリアセタール、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリビニリデンフルオライドが挙げられ、これらの群から選ばれる1種以上を含有することが好ましく、エポキシ樹脂、ポリイミド、液晶ポリマーがより好ましく、エポキシ樹脂、ポリイミドが更に好ましく、エポキシ樹脂がより更に好ましい。
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられる。
 樹脂(Y1)として、エポキシ樹脂を用いる場合、原料として用いられるエポキシオリゴマーとしては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、フェノールノボラックグリシジルエーテル、オルソクレソーンノボラックグリシジルエーテル、ヘキサヒドロフタル酸グリシジルエステル、テトラグリシジルジアミノジフェニルメタン、トリグリシジルイソシアヌレート、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンなどが挙げられる。これらのエポキシオリゴマーは1種のみを単独で用いることもできるし、2種以上を組み合わせて用いることができる。
 樹脂(Y1)として、エポキシ樹脂を用いる場合、硬化剤を用いることが好ましい。硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等が挙げられる。具体的には、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジシアンジアミド、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸等が挙げられる。硬化剤は1種のみを単独で用いてもできるし、2種以上を組み合わせて用いることができる。
 樹脂(Y1)として、エポキシ樹脂を用いる場合、更に補強材を含有してもよい。補強材としてはガラスファイバー、ガラスクロス、カーボンファイバー、カーボンファイバークロス、紙等が挙げられる。
 本発明の低誘電材用樹脂組成物に用いられる樹脂(Y1)の樹脂組成物中の含有量は、45~98体積%が好ましく、45~95体積%がより好ましく、47~85体積%が更に好ましく、50~80体積%がより更に好ましい。
<その他の成分>
 本発明の低誘電材用樹脂組成物には、スチレン系樹脂粒子(X1)、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子、及び樹脂(Y1)以外に電子機器等に用いる際に好適なその他の成分を、本発明の効果を損なわない範囲で配合してもよい。その他の成分としては、酸化防止剤、難燃剤、離型剤、着色剤、無機フィラー、有機フィラー、難燃助剤、アンチブロッキング剤、紫外線吸収剤、光安定剤、耐候剤等が挙げられる。また、ガラス繊維、ガラス織布、ガラス不織布、カーボン繊維、カーボン織布、カーボン不織布等との複合体としてもよい。
<低誘電材用樹脂組成物の製造方法>
 本発明の低誘電材用樹脂組成物はいかなる方法によって製造してもよいが、前記スチレン系樹脂粒子(X1)と樹脂(Y1)を混合する工程2a、又は前記スチレン系樹脂粒子(X1)存在下で樹脂(Y1)を合成する工程2bを有することが好ましい。
 また、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子と、樹脂(Y1)を混合する工程2a、又は前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子存在下で樹脂(Y1)を合成する工程2bを有することも好ましい。
 スチレン系樹脂粒子(X1)と樹脂(Y1)を混合する工程2aにおいては、溶融した樹脂(Y1)にスチレン系樹脂粒子(X1)を混合して、混練する方法、スチレン系樹脂粒子(X1)と、ペレット状あるいは粒子状の樹脂(Y1)をドライブレンドして成形時に混合する方法、樹脂(Y1)の溶液にスチレン系樹脂粒子(X1)を混合して、溶媒を除去する方法等が挙げられる。
 また、スチレン系樹脂粒子(X1)存在下で樹脂(Y1)を合成する工程2bにおいては、樹脂(Y1)の原料となるモノマー、オリゴマー等とスチレン系樹脂粒子(X1)を混合して、重合・架橋を行う方法が挙げられる。
 スチレン系樹脂粒子(X1)に替えて、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子を用いた場合も同様に、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子と樹脂(Y1)を混合する工程2aにおいては、溶融した樹脂(Y1)に前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子を混合して、混練する方法、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子と、ペレット状あるいは粒子状の樹脂(Y1)をドライブレンドして成形時に混合する方法、樹脂(Y1)の溶液に前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子を混合して、溶媒を除去する方法等が挙げられる。
 また、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子存在下で樹脂(Y1)を合成する工程2bにおいては、樹脂(Y1)の原料となるモノマー、オリゴマー等と前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子を混合して、重合・架橋を行う方法が挙げられる。
[2-3.成形体及び低誘電材]
 本発明の成形体は、前記の[2-2.低誘電材用樹脂組成物]に記載した低誘電材用樹脂組成物を含み、低誘電材用樹脂組成物に含有されるスチレン系樹脂粒子の平均粒径と成形体の厚さの比(平均粒径/成形体厚さ)が0.55以下である。
 すなわち、本発明の成形体は、スチレン系樹脂粒子(X1)2~55体積%と、樹脂(Y1)を含み、低誘電材用樹脂組成物に含有されるスチレン系樹脂粒子の平均粒径と成形体の厚さの比(平均粒径/成形体厚さ)が0.55以下であることが好ましい。また、本発明の成形体は、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子2~55体積%と、樹脂(Y1)を含み、低誘電材用樹脂組成物に含有されるスチレン系樹脂粒子の平均粒径と成形体の厚さの比(平均粒径/成形体厚さ)が0.55以下であることも好ましい。
 本発明の成形体における、スチレン系樹脂粒子(X1)又は前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子の平均粒径と、成形体の厚さの比(平均粒径/成形体厚さ)は0.55以下であることが好ましく、0.50以下であることがより好ましく、0.40以下であることが更に好ましく、0.20以下であることがより更に好ましい。この範囲にすることで、表面粗さを小さくすることができ、例えば、成形体表面にメッキ処理を施すことで高周波・高速伝送回路を形成する高周波基板において優れた伝送特性を得ることが出来る。本発明の成形体は、スチレン系樹脂粒子(X1)又は前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子をドメインとし、樹脂(Y1)をマトリックスとする海島構造を有することが好ましい。
 成形方法は、使用する樹脂(Y1)が熱硬化性樹脂であるか、熱可塑性樹脂であるかによって好ましい成形方法は異なるが、熱硬化性樹脂の場合、注型成形、トランスファー成形、圧縮成形、射出成形等が挙げられ、注型成形が好ましい。熱可塑性樹脂の場合、射出成形、プレス成形、押出成形、延伸成形等が挙げられる。
 本発明の成形体の形状は、用途に応じた形状に成形すればよいが、例えば、平板状、波板状、あるいは凹凸や湾曲等を有するシート状、フィルム状、板状の成形体が挙げられ、その厚さを成形体の厚さとする。つまりシート、フィルム、板の面に対して垂直方向の成形体の長さが厚さである。
 なお、成形体がシート状、フィルム状、板状でない場合、成形体の体積を成形時の金型への投影面積で割った値を成形体の平均の厚さ、即ち成形体の厚さとする。
 また、本発明の低誘電材は成形体からなり、各用途によって、適した形状に加工されることが好ましい。
 本発明では、例えばミリ波レドーム用途として、本発明の低誘電材を用いることができる。ミリ波レドーム用途の樹脂板として用いる場合、その厚さは1.0~7.0mmが好ましく、1.5~5.0mmがより好ましく、2.0~2.5mmが更に好ましい。
[2-4.電子回路用基板及び電子回路基板]
 本発明の電子回路用基板は、前記[2-3.成形体及び低誘電材]に記載した低誘電材からなり、電子回路基板の電気絶縁層として用いられ、支持基板としての機能も有する。
 本発明の低誘電材をリジットの電子回路用基板として用いる場合、単層で用いても複数の低誘電材を積層させて多層で用いてもよいが、合計の厚さは0.01~10mmが好ましく、0.05~2.0mmがより好ましく、0.4~1.6mmが更に好ましい。また、本発明の低誘電材をフレキシブルの電子回路用基板として用いる場合、単層で用いても複数の低誘電材を積層させて多層で用いてもよいが、合計の厚さは120μm以下が好ましく、100μm以下がより好ましく、70μm以下が更に好ましく、また、5μm以上が好ましい。
 また、本発明の電子回路基板は、前記電子回路用基板からなる。
 電子回路基板は、電子回路用基板の片面あるいは両面に金属層を積層させ、金属層をパターニングすることにより製造される。パターニングは、フォトリソ法により金属層をエッチングすることにより行うことが好ましい。
[2-5.樹脂組成物の低誘電率化方法(本発明の第二の実施形態であるスチレン系樹脂粒子を用いる樹脂組成物の低誘電率化方法)]
 本発明の樹脂組成物の低誘電率化方法は、本発明の第二の実施形態であるスチレン系樹脂粒子を、樹脂(Y1)に添加するものである。
 すなわち、下記(1)及び(2)を満たすシンジオタクチック構造を有するスチレン系樹脂からなり、平均粒径が0.5~90μmである、スチレン系樹脂粒子(スチレン系樹脂粒子(X1))を、樹脂(Y1)に添加する、樹脂組成物の低誘電率化方法である。
 (1)融点が265~275℃
 (2)ラセミペンタッド分率が98.5モル%以上
 前記のように、平均粒径が0.5~90μmであるスチレン系樹脂粒子(X1)は、マトリックスとなる樹脂の耐熱性等の特性を維持しつつ、低誘電材用樹脂組成物に対して、スチレン系樹脂の電気絶縁性を付与することができ、スチレン系樹脂粒子(X1)が含まれる樹脂組成物を低誘電率化することができる。
 本発明の樹脂組成物には、スチレン系樹脂粒子(X1)以外に前記の低誘電用樹脂組成物に含まれる樹脂(Y1)を含むことができ、前記[2-2.低誘電材用樹脂組成物]で用いた樹脂(Y1)と同様のものが好適に用いられる。
 本方法で用いられるスチレン系樹脂粒子(X1)は、前記[2-2.低誘電材用樹脂組成物]で用いたスチレン系樹脂粒子(X1)と同様のものが好適に用いられ、特に平均粒径は、0.5~60μmが好ましく、0.5~50μmがより好ましく、0.5~45μmが更に好ましく、1.0~30μmがより更に好ましく、1.5~20μmがより更に好ましい。
 また、本発明の樹脂組成物の低誘電率化方法には、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子を、樹脂(Y1)に添加するものも含まれる。スチレン系樹脂粒子(X1)を用いる場合と同様に、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子は、マトリックスとなる樹脂の耐熱性等の特性を維持しつつ、低誘電材用樹脂組成物に対して、スチレン系樹脂の電気絶縁性を付与することができ、前記[1.スチレン系樹脂粒子の製造方法]に記載の製造方法で得られたスチレン系樹脂粒子が含まれる樹脂組成物を低誘電率化することができる。
[3-1.低誘電材用樹脂組成物(本発明の第三の実施形態)]
 本発明の第三の実施形態である低誘電材用樹脂組成物は、平均粒径が0.5~90μmであり、架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子(X2)2~55体積%と、樹脂(Y2)を含有する。
<スチレン系樹脂粒子(X2)>
 本発明の低誘電材用樹脂組成物に用いられるスチレン系樹脂粒子(X2)は、平均粒径が0.5~90μmである。スチレン系樹脂粒子(X2)の平均粒径がこの範囲であると、マトリックスとなる樹脂(Y2)の耐熱性等の特性を維持しつつ、低誘電材用樹脂組成物に対して、スチレン系樹脂の電気絶縁性を付与することができる。平均粒径は、0.5~60μmが好ましく、0.5~50μmがより好ましく、0.5~45μmが更に好ましく、1.0~30μmがより更に好ましく、1.5~20μmがより更に好ましい。
 低誘電材用樹脂組成物中のスチレン系樹脂粒子(X2)の平均粒径は、樹脂組成物の製造過程において、粒子形状のスチレン系樹脂が溶融あるいは粉砕しない場合には、添加した樹脂粒子の平均粒径であり、溶融あるいは粉砕した場合には、スチレン系樹脂をドメインとし、樹脂(Y2)をマトリックスとする海島構造におけるドメイン部分の平均粒径をいう。
 スチレン系樹脂粒子(X2)を構成するスチレン系樹脂は、架橋構造を有するスチレン系樹脂であり、ポリスチレン、ポリ(炭化水素置換スチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、これらの水素化重合体若しくは混合物、又はこれらを主成分とする共重合体等が架橋剤によって架橋された樹脂が挙げられる。
 ポリ(炭化水素置換スチレン)としては、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソプロピルスチレン)、ポリ(tert-ブチルスチレン)、ポリ(フェニル)スチレン、ポリ(ビニルナフタレン)及びポリ(ビニルスチレン)等を挙げることができる。ポリ(ハロゲン化スチレン)としては、ポリ(クロロスチレン)、ポリ(ブロモスチレン)及びポリ(フルオロスチレン)等を挙げることができる。ポリ(ハロゲン化アルキルスチレン)としては、ポリ(クロロメチルスチレン)等を挙げることができる。ポリ(アルコキシスチレン)としては、ポリ(メトキシスチレン)及びポリ(エトキシスチレン)等を挙げることができる。
 前記の構成単位を含む共重合体のコモノマー成分としては、前記スチレン系重合体のモノマーの他、エチレン、プロピレン、ブテン、ヘキセン及びオクテン等のオレフィンモノマー;ブタジエン、イソプレン等のジエンモノマー;環状オレフィンモノマー、環状ジエンモノマー、メタクリル酸メチル、無水マレイン酸及びアクリロニトリル等の極性ビニルモノマーが挙げられる。
 前記スチレン系重合体のうち特に好ましいものとして、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-tert-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)を挙げることができる。
 さらにはスチレンとp-メチルスチレンとの共重合体、スチレンとp-tert-ブチルスチレンとの共重合体等を挙げることができる。
 架橋剤としては、多官能ビニルモノマーが挙げられ、具体的には、ジビニルベンゼン、1,5-ヘキサジエン-3-イン、ヘキサトリエン、ジビニルエーテル、ジビニルスルホン、アルキレングリコールジメタクリレート、アルキレングリコールジアクリレート等が挙げられる。
 スチレン系樹脂粒子(X2)は、前記スチレン系重合体のモノマーを前記架橋剤の存在下で、乳化重合又は懸濁重合させることにより得ることが好ましく、前記スチレン系重合体のモノマーを前記架橋剤の存在下で、懸濁重合させることにより得ることがより好ましい。
 本発明の低誘電材用樹脂組成物に用いられるスチレン系樹脂粒子(X2)の樹脂組成物中の含有量は、2~55体積%であり、5~55体積%が好ましく、15~53体積%がより好ましく、20~50体積%が更に好ましい。
<樹脂(Y2)>
 本発明の低誘電材用樹脂組成物に用いられる樹脂(Y2)は、電子機器用部品に用いられる樹脂が好ましく、なかでも電子回路基板に用いられる樹脂がより好ましい。
 樹脂(Y2)としては、熱可塑性樹脂又は熱硬化性樹脂が好ましく、電子機器用部品に必要とされる耐熱性の観点から、熱硬化性樹脂がより好ましい。
 熱硬化性樹脂のなかでもエポキシ樹脂、ポリイミドが更に好ましい。
 樹脂(Y2)の具体例としては、エポキシ樹脂、ポリイミド、液晶ポリマー、ポリエーテルサルフォン、ポリアリレート、ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルフォン、ポリフェニレンオキサイド、ポリテトラフルオロエチレン、ポリメチルテンペン、ポリアセタール、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリビニリデンフルオライドが挙げられ、これらからなる群から選ばれる1種以上を含有することが好ましく、エポキシ樹脂、ポリイミド、液晶ポリマーがより好ましく、エポキシ樹脂、ポリイミドが更に好ましく、エポキシ樹脂がより更に好ましい。
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられる。
 樹脂(Y2)として、エポキシ樹脂を用いる場合、原料として用いられるエポキシオリゴマーとしては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、フェノールノボラックグリシジルエーテル、オルソクレソーンノボラックグリシジルエーテル、ヘキサヒドロフタル酸グリシジルエステル、テトラグリシジルジアミノジフェニルメタン、トリグリシジルイソシアヌレート、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンなどが挙げられる。これらのエポキシオリゴマーは1種のみを単独で用いることもできるし、2種以上を組み合わせて用いることができる。
 樹脂(Y2)として、エポキシ樹脂を用いる場合、硬化剤を用いることが好ましい。硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等が挙げられる。具体的には、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジシアンジアミド、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸等が挙げられる。硬化剤は1種のみを単独で用いてもできるし、2種以上を組み合わせて用いることができる。
 樹脂(Y2)として、エポキシ樹脂を用いる場合、更に補強材を含有してもよい。補強材としてはガラスファイバー、ガラスクロス、カーボンファイバー、カーボンファイバークロス、紙等が挙げられる。
 本発明の低誘電材用樹脂組成物に用いられる樹脂(Y2)の樹脂組成物中の含有量は、45~98体積%が好ましく、45~95体積%がより好ましく、47~85体積%が更に好ましく、50~80体積%がより更に好ましい。
<その他の成分>
 本発明の低誘電材用樹脂組成物には、樹脂粒子(X2)及び樹脂(Y2)以外に電子機器等に用いる際に好適なその他の成分を、本発明の効果を損なわない範囲で配合してもよい。その他の成分としては、酸化防止剤、難燃剤、離型剤、着色剤等が挙げられる。また、ガラス繊維、ガラス織布等との複合体としてもよい。
[3-2.成形体及び低誘電材]
 本発明の成形体は、前記の[3-1.低誘電材用樹脂組成物]に記載した低誘電材用樹脂組成物を含む。すなわち、本発明の成形体は、平均粒径が0.5~90μmであり、架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子(X2)2~55体積%と、樹脂(Y2)を含むことが好ましい。
 本発明の成形体は、スチレン系樹脂粒子(X2)をドメインとし、樹脂(Y2)をマトリックスとする海島構造を有することが好ましい。
 成形方法は、使用する樹脂(Y2)が熱硬化性樹脂であるか、熱可塑性樹脂であるかによって好ましい成形方法は異なるが、熱硬化性樹脂の場合、注型成形、トランスファー成形、圧縮成形、射出成形等が挙げられ、注型成形が好ましい。熱可塑性樹脂の場合、射出成形、プレス成形、押出成形、延伸成形等が挙げられる。
 また、本発明の低誘電材は成形体からなり、各用途によって、適した形状に加工されることが好ましい。
 本発明では、例えばミリ波レドーム用途として、本発明の低誘電材を用いることができる。ミリ波レドーム用途の樹脂板として用いる場合、その厚さは1.0~7.0mmが好ましく、1.5~5.0mmがより好ましく、2.0~2.5mmが更に好ましい。
[3-3.電子回路用基板及び電子回路基板]
 本発明の電子回路用基板は、前記[3-2.成形体及び低誘電材]に記載した低誘電材からなり、電子回路基板の電気絶縁層として用いられ、支持基板としての機能も有する。
 本発明の低誘電材をリジットの電子回路用基板として用いる場合、単層で用いても複数の低誘電材を積層させて多層で用いてもよいが、合計の厚さは0.01~10mmが好ましく、0.05~2.0mmがより好ましく、0.4~1.6mmが更に好ましい。また、本発明の低誘電材をフレキシブルの電子回路用基板として用いる場合、単層で用いても複数の低誘電材を積層させて多層で用いてもよいが、合計の厚さは120μm以下が好ましく、100μm以下がより好ましく、70μm以下が更に好ましく、また、5μm以上が好ましい。
 また、本発明の電子回路基板は、前記電子回路用基板からなる。
 電子回路基板は、電子回路用基板の片面あるいは両面に金属層を積層させ、金属層をパターニングすることにより製造される。パターニングは、フォトリソ法により金属層をエッチングすることにより行うことが好ましい。
[3-4.樹脂組成物の低誘電率化方法(架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子を用いる樹脂組成物の低誘電率化方法)]
 スチレン系樹脂粒子(X2)を用いる樹脂組成物の低誘電率化方法も、本発明の実施形態に含まれる。すなわち、本発明の1実施形態である樹脂組成物の低誘電率化方法は、平均粒径が0.5~90μmであり、架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子(X2)を、樹脂(Y2)に添加するものである。
 前記のように、平均粒径が0.5~90μmであり、架橋構造を有するスチレン系樹脂粒子(X2)は、マトリックスとなる樹脂の耐熱性等の特性を維持しつつ、低誘電材用樹脂組成物に対して、スチレン系樹脂の電気絶縁性を付与することができ、スチレン系樹脂粒子(X2)が含まれる樹脂組成物を低誘電率化することができる。
 樹脂組成物には、スチレン系樹脂粒子(X2)以外に前記の低誘電用樹脂組成物に含まれる樹脂(Y2)を含むことができ、前記[3-1.低誘電材用樹脂組成物]で用いた樹脂(Y2)と同様のものが好適に用いられる。
 本方法で用いられるスチレン系樹脂粒子(X2)は、前記[3-1.低誘電材用樹脂組成物]で用いたスチレン系樹脂粒子(X2)と同様のものが好適に用いられ、特に平均粒径は、0.5~60μmが好ましく、2~50μmがより好ましく、2~45μmが更に好ましく、3~30μmがより更に好ましく、5~20μmがより更に好ましい。
 本発明を実施例によりさらに具体的に説明するが、本発明はこれらに何ら制限されるものではない。
(1-1)スチレン系樹脂粒子の平均粒径
 実施例及び比較例で得られたスチレン系樹脂粒子の粒径は、レーザー回折式粒度分布測定装置マスターサイザー3000(Malvern社製)を用いて、Fraunhofer回折理論により、分散圧2bar、散乱強度2~10%の条件で測定した。この条件で得られた体積基準の累積粒度分布曲線の50%累積値に相当する粒径を、スチレン系樹脂粒子の平均粒径とした。
(1-2)スチレン系樹脂の融点
 示差走査熱量測定(DSC測定)装置によりJIS K7121:1987の「一定の熱処理を行った後、融解温度を測定する場合」に記載される方法に準じて、20℃/分の昇温速度で昇温してDSC曲線を得た。その後、同じくJIS K7121:1987の「融解温度の求め方」に従って導いた、融解ピーク温度を融点とした。
(1-3)スチレン系樹脂の全吸熱量に対する175~260℃の吸熱量
 示差走査熱量測定(DSC測定)装置(PerkinElmer社製、DSC8500)によりJIS K7121:1987の「一定の熱処理を行った後、融解温度を測定する場合」に記載される方法に準じて、20℃/分の昇温速度で昇温してDSC曲線を得た。次に175℃から285℃までベースラインを引き、DSC曲線とベースラインで囲まれた部分の面積から、全吸熱量を算出した。次にベースライン、175℃の垂線、260℃の垂線、DSC曲線で囲まれた範囲の面積より、175~260℃の吸熱量を算出した。
 前記のそれぞれの吸熱量の比(175~260℃の吸熱量/全吸熱量)を全吸熱量に対する175~260℃の吸熱量の割合とした。
(1-4)スチレン系樹脂のラセミペンタッド分率
 13C-NMR測定によって得られたスペクトルにおける、芳香環のC1炭素及びポリスチレンの主鎖に帰属されるピークの積分比により算出した。
(1-5)ジルコニウムの含有量
 ジルコニウムの含有量は、以下のICP分析により求めた。
 実施例及び参考例で得られたスチレン系樹脂粒子0.25gを白金皿に採取し、濃硫酸を添加して、ホットプレート上で加熱して炭化処理した。炭化処理品を電気炉に入れ、550℃で12時間加熱し、灰化した。放冷後、Li247とLiFの質量比9/1の混合物を0.1g添加し、電気炉にて930℃で30分間加熱し、灰化物を融解した。更に酒石酸と硝酸の混合液15mLを添加し、ホットプレートで加熱し、撹拌して溶解した。放冷後、超純水で25mLとなるように希釈し、ICP測定用溶液を得た。
 測定は、ICP発光分光分析装置(Agilent 5100 ICP-OES、アジレント・テクノロジー株式会社製)を用いて行い、定量は濃度既知のジルコニウム標準液によって作成した検量線によって行った。
製造例1(ペレット状のシンジオタクチック構造を有するスチレン系樹脂(SPS)の製造(粉体床連続重合による製造))
 ダブルヘリカル翼を有する完全混合槽型反応器(内径550mm、高さ1155mm、内容積254リットル)にSPS60kgを投入し、窒素気流下で乾燥させた。続いて攪拌を開始し、反応器内の温度を70℃に調節した。その後、スチレンモノマー、触媒、溶媒としてn-ペンタンを投入した。
 得られたSPSは反応器の底部から粉状物として取り出した。
 用いた触媒は、下記(A)~(E)を含み、以下の通りの比率で用いた。
 (A)オクタヒドロフルオレニルチタニウムメトキシド
 (B)トリフェニルメタノールとトリイソブチルアルミニウムとの1:1.2反応生成物
 (C)メチルアルミノキサン
 (E)トリイソブチルアルミニウム
  スチレンモノマー/チタン比(モル):83300
  トリフェニルメタノール/チタン比(モル):4.80
  (A)~(E)の比(モル)[(A)/(C)/(E)]:1/50/25
 次に、得られたSPS粉状物を、二軸スクリュー押出機を用いてペレット化を行い、ペレット状のSPSを得た。
実施例1-1~1-5(衝撃式粉砕機を用いたスチレン系樹脂粒子の製造)
 前記製造例1で得られたペレット状のSPSを、衝撃式粉砕機(ACMパルベライザACM15H、ホソカワミクロン株式会社製、分級機内蔵)を用いて粉砕し、スチレン系樹脂粒子を得た。粉砕条件(粉砕ロータ回転数、分級ロータ回転数、ハンマ形状、ライナ形状、ガイドリング型式)、処理量(時間あたりのスチレン系樹脂粒子の生産量)及び得られたスチレン系樹脂粒子の平均粒径を表1に示す。
 得られたスチレン系樹脂粒子の融点は271℃であり、ラセミペンタッド分率は99.3モル%であり、全吸熱量に対する175~260℃の吸熱量の割合は20%であった。
Figure JPOXMLDOC01-appb-T000002
実施例1-6及び1-7(冷却装置を有する衝撃式粉砕機を用いたスチレン系樹脂粒子の製造)
 前記製造例1で得られたペレット状のSPSを、冷却装置を有する衝撃式粉砕機(リンレックスミル、ホソカワミクロン株式会社製)を用いて粉砕し、スチレン系樹脂粒子を得た。粉砕条件(粉砕ロータ回転数)、処理量(時間あたりのスチレン系樹脂粒子の生産量)及び得られたスチレン系樹脂粒子の平均粒径を表2に示す。
 得られたスチレン系樹脂粒子の融点は271℃であり、ラセミペンタッド分率は99.3モル%であり、全吸熱量に対する175~260℃の吸熱量の割合は20%であった。
 なお、得られたスチレン系樹脂粒子に含まれるジルコニウムの含有量は実施例1-6及び実施例1-7ともに10質量ppm未満であった。
比較例1-1(ディスクミルを用いたスチレン系樹脂粒子の製造)
 前記製造例1で得られたペレット状のSPSを、ディスクミル(商品名:樹脂専用粉砕機ターボディスクミルTD-300型、フロイント・ターボ株式会社製)を用いて粉砕し、スチレン系樹脂粒子を得た。粉砕条件(粉砕ロータ回転数)、処理量(時間あたりのスチレン系樹脂粒子の生産量)及び得られたスチレン系樹脂粒子の平均粒径を表2に示す。
参考例1-1(ビーズミルを用いたスチレン系樹脂粒子の製造)
 本例で用いたビーズミルは、下記容器と星形インペラを備えた、商品名バッチ式ビーズミルLNM-5、アイメックス株式会社製である。
 前記製造例1で得られたペレット状のSPS250gと、直径5.0mmのジルコニアビーズ2400gを、内径130mmの容器に入れ、容器内に液体窒素を充填して、冷却しながら、直径120mmの星形インペラを用い、1000rpmで270分攪拌した。
 次に内容物にエタノールを入れて分散した後、ジルコニアビーズを濾別し、エタノールを乾燥除去してスチレン系樹脂粒子を得た。処理量(時間あたりのスチレン系樹脂粒子の生産量)及び得られたスチレン系樹脂粒子の平均粒径を表2に示す。
 なお、得られたスチレン系樹脂粒子に含まれるジルコニウムの含有量は150質量ppmであった。
Figure JPOXMLDOC01-appb-T000003
 実施例の結果から明らかなように本発明の製造方法によれば、粒径が非常に小さなSPS粒子を短時間で大量に、かつ、メディア由来の不純物を混入させることなく生産することができるため、効率的に小粒径で実質的に不純物を含まないシンジオタクチック構造を有するスチレン系樹脂粒子を得ることができる。また、実施例のSPS粒子はシンジオタクティシティが高いため、融点が高く、耐熱性にも優れる。
(2-1)成形体の厚さ
 実施例及び比較例で得られた成形体の厚さはマイクロメータで測定した。
(2-2)比誘電率及び誘電損失(誘電正接)
 実施例2-1~2-6、比較例2-1~2-3に記載の、エポキシ樹脂を用いた低誘電材用樹脂組成物からなる成形体の比誘電率及び誘電正接は、周波数変化法にて求めた。
 具体的には、実施例及び比較例で得られた成形体を100mm径の試料台に設置し、ミリ波モジュール(WR10-VNAX型、Virginia Diodes社製)、ネットワークアナライザー(N5227A型、KEYSIGHT社製)、及び誘電体レンズ付き透過減衰測定治具(キーコム株式会社製)を備えたミリ波・マイクロ波測定装置システム(DPS10-02型、キーコム株式会社製)を用いて、フリースペース周波数変化法にて、26℃60%RH、測定周波数26.5~40GHzの測定条件で、透過減衰量と位相変化量を測定した。成形体の厚さ、透過減衰量及び位相変化量から、比誘電率εrと誘電正接tanδを求めた。上記工程を3回繰り返し、その平均値を求めた。
 実施例2-7~2-9、比較例2-4~2-5に記載の、ポリイミド樹脂を用いた低誘電材用樹脂組成物からなる成形体の比誘電率及び誘電正接は、開放型共振測定装置(キーコム株式会社製)を用い、ファブリペロー法により周波数28GHz付近の比誘電率と誘電正接を測定した。具体的には、実施例及び比較例で得られた成形体をセットした状態と、外した状態で、それぞれの共振周波数及びQ値を測定した。共振周波数の差から比誘電率を求め、Q値の差から摂動理論に基づいて計算することで誘電正接を求めた。
(2-3)シャルピー衝撃強さ
 実施例及び比較例の成形体のシャルピー衝撃強さは、JIS K7111-1に準拠して行った。測定条件は、ノッチ有り、打撃方向はエッジワイズ、平行衝撃とした。
(2-4)表面粗さ
 実施例及び比較例の成形体の表面粗さは、共焦点レーザー顕微鏡(OPTELICS H1200、レーザーテック社製)を用いて面粗さを計測し、Ra(算術平均粗さ)とRz(最大高さ)を求めた。
(2-5)引張強度及び引張弾性率
 実施例及び比較例の成形体の引張強度及び引張弾性率は、ISO 527-1:2012(第2版)に準拠して、材料試験用万能試験機(AUTOGRAPH AG-X 株式会社島津製作所製)を用いて測定した。測定条件は、ロードセルは500N、試験片の形状はJIS K6301記載の引張試験用3号型ダンベル、引張速度は500mm/分とした。
実施例2-1(エポキシ樹脂を用いた低誘電材用樹脂組成物からなる成形体)
 エポキシ樹脂主剤(jER828、三菱ケミカル株式会社製)100質量部、エポキシ樹脂硬化剤(IBM12、三菱ケミカル株式会社製)1質量部をブレンドし、均一になるまで攪拌した。次に、実施例1-6で得られたSPS粒子を得られる成形体中に5体積%となるようにブレンドし、均一になるまで攪拌した。得られた混合物を自転公転ミキサーに入れ、脱泡しながら攪拌した。得られた混合物をポリテトラフルオロエチレン製の型に流し込み、80℃で3時間硬化させ、低誘電材用樹脂組成物からなる成形体(大きさ:120mm×120mm×3mm)を得た。
 成形体の評価結果を表3に示す。
実施例2-2~2-6及び比較例2-1~2-3
 実施例2-1において、SPS粒子の配合量を変更するか、実施例1-6で得られたSPS粒子を実施例1-7又は比較例1-1で得られたSPS粒子に変更し、更にSPS粒子の配合量を変更した以外は、実施例2-1と同様にして成形体を得た。成形体の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
実施例2-7(ポリイミド樹脂を用いた低誘電材用樹脂組成物からなる成形体)
 ポリイミドワニス(Uイミドワニス タイプCR、ユニチカ株式会社製)に、実施例1-7で得られたSPS粒子を乾燥後の成形体中10体積%となるようにブレンドし、自転公転ミキサーに入れ、脱泡しながら攪拌した。得られた混合物をアプリケータでガラス板に塗布し、350℃で10分間真空乾燥し、低誘電材用樹脂組成物からなる成形体を得た。成形体の評価結果を表4に示す。
実施例2-8及び2-9
 実施例2-7において、実施例1-7で得られたSPS粒子の配合量を変更した以外は、実施例2-7と同様にして成形体を得た。成形体の評価結果を表4に示す。
比較例2-4
 実施例2-7において、SPS粒子を配合しなかった以外は、実施例2-7と同様にして成形体を得た。成形体の評価結果を表4に示す。
比較例2-5
 実施例2-7において、実施例1-7で得られたSPS粒子を実施例1-6で得られたSPS粒子に変更し、配合量を成形体中30体積%とした以外は、実施例2-7と同様にして成形体を得た。成形体の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 表3及び4の結果から明らかなように、実施例の樹脂組成物からなる成形体は、誘電率と誘電損失が低く、力学的な強度にも優れることがわかる。また、表面粗さが小さく、平滑な成形体を得ることができることもわかる。 

Claims (31)

  1.  ペレット状のシンジオタクチック構造を有するスチレン系樹脂を、衝撃式粉砕機を用いて粉砕し、平均粒径0.5~90μmの粒子を得る工程を有する、スチレン系樹脂粒子の製造方法。
  2.  衝撃式粉砕機が分級機を内蔵する、請求項1に記載のスチレン系樹脂粒子の製造方法。
  3.  衝撃式粉砕機が冷却装置を有する、請求項1又は2に記載のスチレン系樹脂粒子の製造方法。
  4.  前記シンジオタクチック構造を有するスチレン系樹脂のラセミペンタッド分率が98.5モル%以上である、請求項1~3のいずれか1つに記載のスチレン系樹脂粒子の製造方法。
  5.  前記シンジオタクチック構造を有するスチレン系樹脂の融点が265~275℃である、請求項1~4のいずれか1つに記載のスチレン系樹脂粒子の製造方法。
  6.  前記工程が、平均粒径0.5~45μmの粒子を得る工程である、請求項1~5のいずれか1つに記載のスチレン系樹脂粒子の製造方法。
  7.  請求項1~6のいずれか1つに記載の製造方法で得られた、スチレン系樹脂粒子。
  8.  下記(1)及び(2)を満たすシンジオタクチック構造を有するスチレン系樹脂からなり、平均粒径が0.5~90μmである、スチレン系樹脂粒子。
     (1)融点が265~275℃
     (2)ラセミペンタッド分率が98.5モル%以上
  9.  下記(3)を更に満たす、請求項8のスチレン系樹脂粒子。
     (3)示差走査熱量測定によって20℃/分の昇温速度で昇温して測定された全吸熱量に対する、175~260℃の吸熱量の割合が30%未満
  10.  下記(4a)を更に満たす、請求項8又は9のスチレン系樹脂粒子。
     (4a)ジルコニウムの含有量が100ppm以下
  11.  平均粒径が0.5~45μmである、請求項8~10のいずれか1つに記載のスチレン系樹脂粒子。
  12.  請求項7~11のいずれか1つに記載のスチレン系樹脂粒子2~55体積%と、樹脂(Y1)を含有する、低誘電材用樹脂組成物。
  13.  樹脂(Y1)が、熱可塑性樹脂又は熱硬化性樹脂である、請求項12に記載の低誘電材用樹脂組成物。
  14.  樹脂(Y1)が、エポキシ樹脂、ポリイミド、液晶ポリマー、ポリエーテルサルフォン、ポリアリレート、ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルフォン、ポリフェニレンオキサイド、ポリテトラフルオロエチレン、ポリメチルペンテン、ポリアセタール、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリビニリデンフルオライドからなる群から選ばれる1種以上を含有する、請求項12又は13に記載の低誘電材用樹脂組成物。
  15.  請求項12~14のいずれか1つに記載の低誘電材用樹脂組成物を含み、低誘電材用樹脂組成物に含有されるスチレン系樹脂粒子の平均粒径と成形体の厚さの比(平均粒径/成形体厚さ)が0.55以下である、成形体。
  16.  前記スチレン系樹脂粒子をドメインとし、樹脂(Y1)をマトリックスとする海島構造を有する、請求項15に記載の成形体。
  17.  請求項15又は16に記載の成形体からなる低誘電材。
  18.  請求項17に記載の低誘電材からなる電子回路用基板。
  19.  請求項18に記載の電子回路用基板からなる電子回路基板。
  20.  請求項7~11のいずれか1つに記載のスチレン系樹脂粒子と樹脂(Y1)を混合する工程2a、又は請求項7~11のいずれか1つに記載のスチレン系樹脂粒子存在下で樹脂(Y1)を合成する工程2bを有する、低誘電材用樹脂組成物の製造方法。
  21.  請求項7~11のいずれか1つに記載のスチレン系樹脂粒子を、樹脂(Y1)に添加する、樹脂組成物の低誘電率化方法。
  22.  平均粒径が0.5~90μmであり、架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子(X2)2~55体積%と、樹脂(Y2)を含有する、低誘電材用樹脂組成物。
  23.  樹脂(Y2)が、熱可塑性樹脂又は熱硬化性樹脂である、請求項22に記載の低誘電材用樹脂組成物。
  24.  樹脂(Y2)が、エポキシ樹脂、ポリイミド、液晶ポリマー、ポリエーテルサルフォン、ポリアリレート、ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルフォン、ポリフェニレンオキサイド、ポリテトラフルオロエチレン、ポリメチルペンテン、ポリアセタール、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリビニリデンフルオライドからなる群から選ばれる1種以上を含有する、請求項22又は23に記載の低誘電材用樹脂組成物。
  25.  スチレン系樹脂粒子(X2)の平均粒径が0.5~45μmである、請求項22~24のいずれか1つに記載の低誘電材用樹脂組成物。
  26.  請求項22~25のいずれか1つに記載の低誘電材用樹脂組成物を含む、成形体。
  27.  スチレン系樹脂粒子(X2)をドメインとし、樹脂(Y2)をマトリックスとする海島構造を有する、請求項26に記載の成形体。
  28.  請求項26又は27に記載の成形体からなる低誘電材。
  29.  請求項28に記載の低誘電材からなる電子回路用基板。
  30.  請求項29に記載の電子回路用基板からなる電子回路基板。
  31.  平均粒径が0.5~90μmであり、架橋構造を有するスチレン系樹脂からなるスチレン系樹脂粒子(X2)を、樹脂(Y2)に添加する、樹脂組成物の低誘電率化方法。 
PCT/JP2020/045292 2019-12-10 2020-12-04 スチレン系樹脂粒子の製造方法、スチレン系樹脂粒子、低誘電材用樹脂組成物及び成形体 WO2021117637A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-223142 2019-12-10
JP2019223142A JP2021091791A (ja) 2019-12-10 2019-12-10 スチレン系樹脂粒子の製造方法、スチレン系樹脂粒子、低誘電材用樹脂組成物及び成形体

Publications (1)

Publication Number Publication Date
WO2021117637A1 true WO2021117637A1 (ja) 2021-06-17

Family

ID=76312990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045292 WO2021117637A1 (ja) 2019-12-10 2020-12-04 スチレン系樹脂粒子の製造方法、スチレン系樹脂粒子、低誘電材用樹脂組成物及び成形体

Country Status (3)

Country Link
JP (1) JP2021091791A (ja)
TW (1) TW202132076A (ja)
WO (1) WO2021117637A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100036A (ja) * 1989-09-13 1991-04-25 Idemitsu Kosan Co Ltd スチレン系樹脂組成物
JP2003520896A (ja) * 2000-01-29 2003-07-08 クラリアント・インターナシヨナル・リミテッド 渦様色柄効果を有する成形品の製造方法
JP2014504659A (ja) * 2010-12-30 2014-02-24 ナノ アクティブ フィルム ソチエタ レスポンサビリタ リミテ 無秩序ナノ多孔質結晶形ジンジオタクチックポリスチレン、その調製方法及びこれを含む物品
JP2016148005A (ja) * 2015-02-13 2016-08-18 出光興産株式会社 有機アルミニウム組成物、重合触媒及び芳香族ビニル化合物系重合体の製造方法
JP2016540034A (ja) * 2013-10-12 2016-12-22 チャンチュン インスティテュート オブ アプライド ケミストリー, チャイニーズ アカデミー オブ サイエンス メタロセン錯体及びその製造方法、触媒組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100036A (ja) * 1989-09-13 1991-04-25 Idemitsu Kosan Co Ltd スチレン系樹脂組成物
JP2003520896A (ja) * 2000-01-29 2003-07-08 クラリアント・インターナシヨナル・リミテッド 渦様色柄効果を有する成形品の製造方法
JP2014504659A (ja) * 2010-12-30 2014-02-24 ナノ アクティブ フィルム ソチエタ レスポンサビリタ リミテ 無秩序ナノ多孔質結晶形ジンジオタクチックポリスチレン、その調製方法及びこれを含む物品
JP2016540034A (ja) * 2013-10-12 2016-12-22 チャンチュン インスティテュート オブ アプライド ケミストリー, チャイニーズ アカデミー オブ サイエンス メタロセン錯体及びその製造方法、触媒組成物
JP2016148005A (ja) * 2015-02-13 2016-08-18 出光興産株式会社 有機アルミニウム組成物、重合触媒及び芳香族ビニル化合物系重合体の製造方法

Also Published As

Publication number Publication date
TW202132076A (zh) 2021-09-01
JP2021091791A (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
TWI454489B (zh) 具改良之耐衝擊力之乙烯共聚物
EP1399491B1 (en) Supported dual transition metal catalyst systems
US6943224B2 (en) Process for preparing supported transition metal catalyst systems and catalyst systems prepared thereby
JP7569392B2 (ja) 組成物及び硬化体
TWI601751B (zh) 具改良彈性及加工性之乙烯共聚物
US10513569B2 (en) Bridged metallocene complex for olefin polymerization
JP2023024811A (ja) スチレン系樹脂、スチレン系樹脂組成物及びその成形品、並びにスチレン系樹脂の製造方法
JP2009161743A (ja) 後硬化性樹脂組成物及びそれを用いた高周波用電気絶縁材料
JP5648462B2 (ja) ブロー容器
KR101590998B1 (ko) 올레핀의 연속 용액중합 방법 및 이를 위한 반응 장치
WO2021117637A1 (ja) スチレン系樹脂粒子の製造方法、スチレン系樹脂粒子、低誘電材用樹脂組成物及び成形体
JP2022041942A (ja) フィルム
CN114507309B (zh) 用于二次电池隔膜的聚乙烯树脂、制造其的方法以及应用其的隔膜
JPH10114807A (ja) ビニル芳香族単量体による実質的にシンジオタクチックであり、且つ半結晶性の重合体の製造法、重合体の使用法、並びにその製造のための装置
EP1698653B1 (en) Method of granulating soft polyolefin resin and granule thereof
JP6894263B2 (ja) エチレン系重合体組成物およびフィルム
JP2010189473A (ja) エチレン系重合体からなる延伸フィルム
JP6661386B2 (ja) エチレン系重合体
JPWO2019022058A1 (ja) ポリエチレン組成物
JP7544825B2 (ja) 樹脂組成物および成形体
EP4345115A2 (en) Polyolefin resin prepared using heterogeneous catalyst and method of preparing same
JP7433108B2 (ja) フィルム
EP4067390A1 (en) Polyolefin resin and preparation method thereof
JP7248511B2 (ja) 繊維複合材組成物およびそれを含む成形体
KR20230018438A (ko) 수지 입자 및 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900375

Country of ref document: EP

Kind code of ref document: A1