WO2021117334A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021117334A1
WO2021117334A1 PCT/JP2020/038747 JP2020038747W WO2021117334A1 WO 2021117334 A1 WO2021117334 A1 WO 2021117334A1 JP 2020038747 W JP2020038747 W JP 2020038747W WO 2021117334 A1 WO2021117334 A1 WO 2021117334A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
solder
terminal
heat sink
semiconductor device
Prior art date
Application number
PCT/JP2020/038747
Other languages
English (en)
French (fr)
Inventor
俊介 荒井
雅由 西畑
真二 平光
規行 柿本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080085890.4A priority Critical patent/CN114846601A/zh
Publication of WO2021117334A1 publication Critical patent/WO2021117334A1/ja
Priority to US17/747,629 priority patent/US20220278030A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/117Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/182Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/186Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30101Resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change

Definitions

  • the disclosure in this specification relates to semiconductor devices.
  • Patent Document 1 has a double-sided heat-dissipating structure including a semiconductor element having main electrodes on both sides, and a wiring member including a heat-dissipating portion arranged so as to sandwich the semiconductor element and a terminal portion connected to the heat-dissipating portion as a conductor portion. Disclose semiconductor devices. The contents of the prior art document are incorporated by reference as an explanation of the technical elements in this specification.
  • the height variation caused by the dimensional tolerance, assembly tolerance, etc. of the elements constituting the semiconductor device depends on the joint material. Absorb. When the height varies toward the narrower distance between the two conductors, the excess bonding material overflows from the two opposing regions to absorb the height variation. If a groove as described in Patent Document 1 is provided on one of the conductor portions, excess bonding material can be accommodated. The groove is formed by press working. Further improvements are required of semiconductor devices in the above-mentioned viewpoints or in other viewpoints not mentioned.
  • One purpose to be disclosed is to provide a semiconductor device capable of accommodating a surplus bonding material with a simple configuration.
  • the semiconductor device disclosed herein is At least one semiconductor element having a main electrode on one surface and the back surface opposite to the one surface in the plate thickness direction. At least one set of heat radiating parts, which are arranged on one side and the back side so as to sandwich the semiconductor element in the plate thickness direction and are electrically connected to the corresponding main electrodes, and a plurality of terminal parts connected to the heat radiating part.
  • the wiring member includes a plurality of conductor portions including, and at least one joint portion formed by arranging a bonding material between the two conductor portions in the plate thickness direction.
  • the first conductor portion which is one of the conductor portions, has a highly wet region and a plan view in the plate thickness direction on the surface facing the second conductor portion, which is the other conductor portion. It has a low wet region which is provided adjacent to the high wet region so as to define the outer periphery of the high wet region and has a lower wettability to the joint material than the high wet region.
  • the highly wet region is a region that overlaps with the formation region of the joint portion in the second conductor portion in a plan view, and is connected to the overlap region in which the bonding material is arranged at least partially and the overlap region, and the joint portion of the second conductor portion is joined. It has a non-overlapping region, which is a region that does not overlap with the portion forming region.
  • the non-overlapping region includes at least a storage region for accommodating the excess joint material with respect to the joint portion.
  • the accommodating region which is a highly wet region, is connected to the overlapping region, and the surplus bonding material easily wets and spreads from the overlapping region to the accommodating region.
  • Excess joint material is restricted from spreading by the low wetting area. Therefore, the low wet area adjacent to the high wet area promotes the wet spread to the accommodation area and / or suppresses the wet spread to the outside of the accommodation area. Therefore, the surplus bonding material can be accommodated in the accommodating area without providing the groove.
  • FIG. 6 is a plan view of FIG. 6 viewed from the X1 direction. It is a top view which shows the state which omitted the heat sink on the emitter side. It is a top view which shows the semiconductor module which concerns on 1st Embodiment. 9 is a plan view of FIG.
  • FIG. 16 is a plan view of FIG. 16 as viewed from the X3 direction. This is a model of the upper and lower arms used to verify the position of the load line. It is a figure which shows the current which flows to each output terminal at the time of driving a switching element. It is an equivalent circuit diagram of the semiconductor module considering the wiring resistance.
  • FIG. 5 is a cross-sectional view taken along the line LVII-LVII shown in FIG. 55. It is a top view which shows the modification. It is a top view seen from the X4 direction of FIG. 58. It is an enlarged plan view around the joint part. It is a top view which shows the semiconductor device which concerns on 6th Embodiment. It is an equivalent circuit diagram of the semiconductor device which constitutes a lower arm.
  • the semiconductor device and the semiconductor module according to the present embodiment are applied to a power conversion device.
  • Power converters are applied, for example, to vehicle drive systems.
  • the power converter can be applied to vehicles such as electric vehicles (EVs) and hybrid vehicles (HVs).
  • EVs electric vehicles
  • HVs hybrid vehicles
  • an example applied to a hybrid vehicle will be described.
  • the vehicle drive system 1 includes a DC power supply 2, a motor generator 3, and a power conversion device 4.
  • the DC power supply 2 is a rechargeable secondary battery such as a lithium ion battery or a nickel hydrogen battery.
  • the motor generator 3 is a three-phase AC rotary electric machine.
  • the motor generator 3 functions as a traveling drive source of the vehicle, that is, an electric motor. It also functions as a generator during regeneration.
  • the vehicle includes an engine (not shown) and a motor generator 3 as a traveling drive source.
  • the power conversion device 4 performs power conversion between the DC power supply 2 and the motor generator 3.
  • the power conversion device 4 includes an inverter 5, a control circuit unit 6, and a smoothing capacitor Cs.
  • the inverter 5 is a power conversion unit.
  • the inverter 5 is a DC-AC converter.
  • the power conversion unit includes upper and lower arms 7.
  • the upper and lower arms 7 is a circuit in which the upper arm 7U and the lower arm 7L are connected in series.
  • Each of the upper arm 7U and the lower arm 7L has a plurality of switching elements provided with gate electrodes.
  • a plurality of switching elements are connected in parallel to each other.
  • an n-channel type IGBT is adopted as the switching element.
  • the upper arm 7U has two switching elements Q1.
  • a freewheeling diode D1 is individually connected to the two switching elements Q1.
  • the diode D1 is connected in antiparallel to the corresponding switching element Q1.
  • the two switching elements Q1 connected in parallel are controlled by a gate drive signal in which the high level and the low level are switched at the same timing.
  • the gate electrodes of the two switching elements Q1 are electrically connected to, for example, the same drive circuit unit (gate driver).
  • the upper arm 7U is composed of two semiconductor elements 31 which will be described later.
  • the lower arm 7L has two switching elements Q2.
  • a freewheeling diode D2 is individually connected to the two switching elements Q2.
  • the diode D2 is connected in antiparallel to the corresponding switching element Q2.
  • the two switching elements Q2 connected in parallel are controlled by a gate drive signal in which the high level and the low level are switched at the same timing.
  • the gate electrodes of the two switching elements Q2 are electrically connected to, for example, the same drive circuit unit.
  • the lower arm 7L is composed of two semiconductor elements 32, which will be described later.
  • the switching elements Q1 and Q2 are not limited to IGBTs.
  • MOSFETs can also be adopted.
  • Parasitic diodes can also be used as the diodes D1 and D2.
  • the upper arm 7U and the lower arm 7L are connected in series between the power lines 8P and 8N with the upper arm 7U on the power line 8P side.
  • the power line 8P is a power line on the high potential side.
  • the power line 8P is connected to the positive electrode of the DC power supply 2.
  • the power line 8P is connected to a terminal on the positive electrode side of the smoothing capacitor Cs.
  • the power line 8N is a power line on the low potential side.
  • the power line 8N is connected to the negative electrode of the DC power supply 2.
  • the power line 8N is connected to a terminal on the negative electrode side of the smoothing capacitor Cs.
  • the power line 8N is also referred to as a ground line.
  • the inverter 5 is connected to the DC power supply 2 via the smoothing capacitor Cs.
  • the inverter 5 has three sets of the above-mentioned upper and lower arms 7.
  • the inverter 5 has three-phase upper and lower arms 7.
  • the collector electrode of the switching element Q1 is connected to the power line 8P.
  • the emitter electrode of the switching element Q2 is connected to the power line 8N.
  • the emitter electrode of the switching element Q1 and the collector electrode of the switching element Q2 are connected to each other to form a connection point of the upper and lower arms 7.
  • connection point of the U-phase upper and lower arms 7 is connected to the U-phase winding provided in the stator of the motor generator 3.
  • connection point of the V-phase upper and lower arms 7 is connected to the V-phase winding of the motor generator 3.
  • connection point of the W-phase upper and lower arms 7 is connected to the W-phase winding of the motor generator 3.
  • the connection points of the upper and lower arms 7 of each phase are connected to the windings of the corresponding phases via load lines 9 provided for each phase.
  • the load line 9 is also referred to as an output line.
  • the inverter 5 converts the DC voltage into a three-phase AC voltage and outputs it to the motor generator 3 according to the switching control by the control circuit unit 6. As a result, the motor generator 3 is driven so as to generate a predetermined torque. During regenerative braking of the vehicle, the motor generator 3 generates a three-phase AC voltage by receiving the rotational force from the wheels.
  • the inverter 5 can also convert the three-phase AC voltage generated by the motor generator 3 into a DC voltage according to switching control by the control circuit unit 6 and output it to the power line 8P. In this way, the inverter 5 performs bidirectional power conversion between the DC power supply 2 and the motor generator 3.
  • the control circuit unit 6 is configured to include, for example, a microcomputer (microcomputer).
  • the control circuit unit 6 generates a drive command for operating the switching elements Q1 and Q2 of the inverter 5 and outputs the drive command to a drive circuit unit (not shown).
  • the control circuit unit 6 outputs a PWM signal as a drive command.
  • the drive command is, for example, the output duty ratio.
  • the control circuit unit 6 generates a drive command based on a torque request input from a higher-level ECU (not shown) and signals detected by various sensors.
  • the various sensors include a current sensor that detects the phase current flowing in the winding of each phase of the motor generator 3, a rotation angle sensor that detects the rotation angle of the rotor of the motor generator 3, and a voltage across the smoothing capacitor Cs, that is, a power line. There is a voltage sensor that detects a voltage of 8P.
  • the power converter 4 has these sensors (not shown).
  • the power conversion device 4 has a drive circuit unit (not shown).
  • the drive circuit unit generates a drive signal based on a drive command from the control circuit unit 6 and outputs the drive signal to the gate electrodes of the switching elements Q1 and Q2 of the corresponding upper and lower arms 7. As a result, the switching elements Q1 and Q2 are driven, that is, on-drive and off-drive.
  • the drive circuit unit is provided for each arm, for example.
  • the smoothing capacitors Cs are connected between the power lines 8P and 8N.
  • the smoothing capacitor Cs is provided between the DC power supply 2 and the inverter 5, and is connected in parallel with the inverter 5.
  • the smoothing capacitor Cs smoothes the DC voltage supplied from the DC power supply 2, for example, and stores the electric charge of the DC voltage.
  • the voltage between both ends of the smoothing capacitor Cs becomes a high DC voltage for driving the motor generator 3.
  • the power conversion device 4 may further include a converter, a filter capacitor, and the like, which are power conversion units.
  • the converter is a DC-DC converter that converts a DC voltage into a DC voltage of a different value.
  • the converter is provided between the DC power supply 2 and the smoothing capacitor Cs.
  • the converter boosts the DC voltage supplied from, for example, the DC power supply 2.
  • the converter can also have a step-down function.
  • the converter is configured to have, for example, upper and lower arms and a reactor.
  • the upper and lower arms of the converter may have the same configuration as the upper and lower arms 7.
  • the lower arm side of the converter may have the same configuration as the lower arm 7L of the inverter 5, and the upper arm side may be configured with a diode.
  • the filter capacitor is connected in parallel to the DC power supply 2.
  • the filter capacitor removes power supply noise from, for example, the DC power supply 2.
  • the semiconductor module 10 includes two types (two product numbers) of semiconductor devices 11 and 12 shown in FIGS. 2 to 8.
  • the semiconductor device 11 constitutes the upper arm 7U
  • the semiconductor device 12 constitutes the lower arm 7L.
  • the thickness directions of the respective semiconductor elements are orthogonal to the Z direction and the Z direction, and the directions in which at least two semiconductor elements are arranged side by side are the directions orthogonal to the X direction, the Z direction, and the X direction. Is the Y direction.
  • the shape along the XY plane defined by the X direction and the Y direction is a planar shape.
  • the two semiconductor devices 11 and 12 are shown side by side.
  • the sealing resin body is omitted.
  • the heat sink on the emitter side is omitted.
  • the state of the lead frame before removing unnecessary portions such as tie bars is shown.
  • the semiconductor device 11 on the upper arm 7U side will be described.
  • the end of the code number is "1".
  • the semiconductor device 11 includes a sealing resin body 21, a semiconductor element 31, heat sinks 41 and 51, a terminal 61, a main terminal 71, and a signal terminal 81.
  • the sealing resin body 21 seals the corresponding semiconductor element 31 and the like.
  • the sealing resin body 21 is made of, for example, an epoxy resin.
  • the sealing resin body 21 is molded by, for example, a transfer molding method. As shown in FIGS. 2 to 5, the sealing resin body 21 has a substantially rectangular parallelepiped shape.
  • the sealing resin body 21 has a substantially rectangular shape in a plane.
  • the semiconductor element 31 is formed by forming a switching element Q1 and a diode D1 on a semiconductor substrate.
  • An RC (Reverse Conducting) -IGBT is formed on the semiconductor element 31.
  • the semiconductor element 31 is also referred to as a semiconductor chip.
  • the semiconductor element 31 has a vertical structure in which a current flows in the Z direction.
  • the collector electrode 31c is formed on one surface (first main surface) of the semiconductor element 31, and the emitter electrode 31e is formed on the back surface (second main surface).
  • the collector electrode 31c also serves as the cathode electrode of the diode D1, and the emitter electrode 31e also serves as the anode electrode of the diode D1.
  • the collector electrode 31c is the electrode on the high potential side (main electrode), and the emitter electrode 31e is the electrode on the low potential side (main electrode).
  • a pad (not shown), which is an electrode for signals, is also formed on the emitter electrode forming surface. The pad is formed at an end portion of the emitter electrode 31e opposite to the forming region in the Y direction.
  • the semiconductor element 31 has five pads arranged along the X direction.
  • the pads are arranged in the order of the cathode potential of the temperature sensor (temperature sensitive diode) that detects the temperature of the semiconductor element 30, the anode potential, the gate electrode, the current sense, and the Kelvin emitter that detects the potential of the emitter electrode 31e. I'm out.
  • the temperature sensor temperature sensitive diode
  • the semiconductor device 11 has a plurality of semiconductor elements 31.
  • a plurality of semiconductor elements 31 are connected in parallel to form an upper arm 7U.
  • it has two semiconductor elements 31.
  • the two semiconductor elements 31 have structures that substantially coincide with each other, that is, have the same shape and the same size as each other.
  • the semiconductor element 31 has a substantially rectangular shape in a plane.
  • the two semiconductor elements 31 are arranged so that the collector electrodes 31c are on the same side in the Z direction.
  • the two semiconductor elements 31 are located at substantially the same height in the Z direction and are arranged side by side in the X direction.
  • the two semiconductor elements 31 are arranged line-symmetrically with the axis AX1 orthogonal to the X-direction and the Z-direction as the axis of symmetry.
  • the sealing resin body 21 has a substantially rectangular shape in a plane, and the two semiconductor elements 31 are arranged so that the axis AX1 substantially coincides with the center of the outer shape of the sealing resin body 21 in the X direction. ing.
  • the arrangement order of the pads is the same.
  • the heat sinks 41 and 51 have a function of dissipating the heat of the semiconductor element 31 to the outside of the semiconductor device 11.
  • the heat sinks 41 and 51 are also referred to as heat dissipation members.
  • the heat sinks 41 and 51 are electrically connected to the semiconductor element 31 and function as wiring.
  • the heat sinks 41 and 51 are also referred to as wiring members.
  • the heat sinks 41 and 51 are formed of a metal material such as copper.
  • the heat sinks 41 and 51 are also referred to as metal members.
  • the heat sinks 41 and 51 are arranged so as to sandwich the plurality of semiconductor elements 31.
  • the semiconductor element 31 is included in the heat sinks 41 and 51 in the projection view from the Z direction.
  • the plate thickness directions of the heat sinks 41 and 51 are substantially parallel to the Z direction.
  • the X direction is the longitudinal direction and the Y direction is the lateral direction.
  • the heat sinks 41 and 51 are electrically connected to the semiconductor element 31 via a joining member such as solder. As shown in FIG. 4, the heat sink 41 is connected to the collector electrode 31c via the solder 91a. The heat sink 51 is connected to the emitter electrode 31e via the solders 91b and 91c and the terminal 61.
  • the terminal 61 is a metal member that electrically relays the semiconductor element 31 and the heat sink 51.
  • the terminal 61 has a shape that substantially matches the emitter electrode 31e in the projection view from the Z direction.
  • the terminal 61 has a substantially rectangular shape in a plane.
  • the heat sink 51 is connected to the terminal 61 via the solder 91c.
  • the surface of the terminal 61 opposite to the heat sink 51 is connected to the emitter electrode 31e via the solder 91b.
  • the heat sink 51 has a main body portion 51a and a joint portion 51b.
  • a semiconductor element 31 is connected to one surface of the main body 51a via a terminal 61.
  • the joint portion 51b is connected to the main body portion 51a.
  • the joint portion 51b is integrally provided with the main body portion 51a as one member.
  • the joint portion 51b extends from one end of the main body portion 51a in the Y direction.
  • the joint portion 51b is thinner than the main body portion 51a.
  • the heat sinks 41 and 51 are covered with the sealing resin body 21. Of the surfaces of the heat sinks 41 and 51, the surface opposite to the semiconductor element 31 is exposed from the sealing resin body 21. In the Z direction, the heat sink 41 is exposed from one surface 21a of the sealing resin body 21, and the heat sink 51 is exposed from the back surface 21b opposite to the one surface 21a. The exposed surface of the heat sink 41 is substantially flush with the back surface 21a, and the exposed surface of the heat sink 51 is substantially flush with the back surface 21b.
  • the main terminal 71 is a terminal through which the main current flows among the external connection terminals.
  • the semiconductor device 11 includes three or more main terminals 71.
  • the main terminal 71 has a collector terminal C1 and an emitter terminal E1.
  • the collector terminal C1 is connected to the heat sink 41.
  • the collector terminal C1 is electrically connected to the collector electrode 41c via the heat sink 41.
  • the emitter terminal E1 is connected to the heat sink 51.
  • the emitter terminal E1 is electrically connected to the emitter electrode 31e via the heat sink 51 and the terminal 61.
  • the semiconductor device 11 has three main terminals 71. As shown in FIGS. 2, 3, 6, and 8, the main terminal 71 has one collector terminal C1 and two emitter terminals E1. As shown in FIG. 8, the lead frame 101 includes a heat sink 41, a collector terminal C1 and an emitter terminal E1 which are main terminals 71, and a signal terminal 81.
  • the heat sink 41 is thicker than the other parts of the lead frame 101, that is, the main terminal 71 and the signal terminal 81.
  • the main terminal 71 and the signal terminal 81 are substantially flush with each other on the element mounting surface of the heat sink 41.
  • the ends of the plurality of main terminals 71 on the same side are connected to the outer frame 101a.
  • the heat sink 41 is fixed to the outer frame 101a via the collector terminal C1 and the suspension lead 101b.
  • the signal terminal 81 is fixed to the suspension lead 101b via the tie bar 101c.
  • the lead frame 101 is provided with a plurality of reference holes 101d for positioning.
  • the collector terminal C1 is integrally provided with the heat sink 41 as one member.
  • the collector terminal C1 has a bent portion in the sealing resin body 21, and projects outward from the vicinity of the center in the Z direction on one side surface 21c of the sealing resin body 21.
  • the emitter terminal E1 has a portion E1a facing the joint portion 51b of the heat sink 51, respectively. As shown in FIG. 5, the facing portion E1a is connected to the joint portion 51b via the solder 91d.
  • the emitter terminal E1 has a bent portion in the sealing resin body 21, and projects outward from the vicinity of the center in the Z direction on the same side surface 21c as the collector terminal C1. All main terminals 71 project from the side surface 21c.
  • the heat sink 51 may be formed with, for example, an annular groove (not shown) so as to surround the connection portions with the solders 91c and 91d, respectively.
  • the overflowing solder is contained in the groove.
  • a roughened portion by roughening plating or laser light irradiation may be provided instead of the groove.
  • the protruding portions of the collector terminal C1 and the emitter terminal E1 extend in the Y direction.
  • the collector terminal C1 and the emitter terminal E1 are arranged side by side in the X direction, and their respective plate thickness directions substantially coincide with the Z direction.
  • the collector terminal C1 is arranged between the emitter terminals E1 in the X direction.
  • the arrangement order of the main terminals 71 is symmetrical with respect to the center of the arrangement.
  • the main terminals 71 are arranged side by side in the order of the emitter terminal E1, the collector terminal C1, and the emitter terminal E1.
  • each of the collector terminal C1 and the emitter terminal E1 are arranged line-symmetrically with the axis AX1 as the axis of symmetry.
  • the collector terminal C1 is arranged on the shaft AX1, and the center of the width of the collector terminal C1 substantially coincides with the shaft AX1.
  • the two emitter terminals E1 are arranged line-symmetrically with the axis AX1 as the axis of symmetry.
  • one of the semiconductor elements 31 may be referred to as a semiconductor element 31a, and the other one of the semiconductor elements 31 may be referred to as a semiconductor element 31b.
  • One of the emitter terminals E1 is biased toward the semiconductor element 31a with respect to the shaft AX1, and the other one of the emitter terminals E1 is biased toward the semiconductor element 31b with respect to the shaft AX1.
  • the signal terminal 81 is connected to the pad of the corresponding semiconductor element 31.
  • the signal terminal 81 is connected to the pad inside the sealing resin body 21 via a bonding wire 111.
  • the signal terminal 81 projects outward from the side surface of the sealing resin body 21, specifically, the side surface 21d opposite to the side surface 21c.
  • the signal terminal 81 projects in the Y direction and in the direction opposite to that of the main terminal 71.
  • the sealing resin body 21 integrally seals a part of each of the semiconductor element 31, the heat sink 41, and 51, and a part of each of the terminal 61, the main terminal 71, and the signal terminal 81. There is.
  • the semiconductor device 12 includes a sealing resin body 22, a semiconductor element 32, heat sinks 42 and 52, a terminal 62, a main terminal 72, and a signal terminal 82. Since the semiconductor device 12 has the same components as the semiconductor device 11 and has substantially the same structure, mainly different parts will be described.
  • the sealing resin body 22 seals the semiconductor element 32 and the like.
  • the collector electrode 32c is formed on one surface of the semiconductor element 32
  • the emitter electrode 32e is formed on the back surface.
  • the semiconductor device 12 also has a plurality of semiconductor elements 32.
  • a plurality of semiconductor elements 32 are connected in parallel to form a lower arm 7L. In this embodiment, it has two semiconductor elements 32.
  • the two semiconductor elements 32 have the same structure.
  • the two semiconductor elements 32 are located at substantially the same height in the Z direction and are arranged side by side in the X direction.
  • the two semiconductor elements 32 are arranged line-symmetrically with the axis AX2 orthogonal to the X-direction and the Z-direction as the axis of symmetry.
  • the sealing resin body 22 has a substantially rectangular shape in a plane, and the two semiconductor elements 32 are arranged so that the axis AX2 substantially coincides with the center of the outer shape of the sealing resin body 22 in the X direction. ing.
  • the heat sinks 42 and 52 are arranged so as to sandwich the plurality of semiconductor elements 32.
  • the plate thickness directions of the heat sinks 42 and 52 are substantially parallel to the Z direction.
  • the X direction is the longitudinal direction and the Y direction is the lateral direction.
  • the heat sink 42 is connected to the collector electrode 32c via the solder 92a.
  • the heat sink 52 is connected to the emitter electrode 32e via the solders 92b and 92c and the terminal 62.
  • the heat sink 52 has a main body portion 52a to which the semiconductor element 32 is connected via the terminal 62, and a joint portion 52b connected to the main body portion 52a.
  • the joint portion 52b extends from one end of the main body portion 52a in the Y direction.
  • the joint portion 52b is thinner than the main body portion 52a.
  • the heat sink 42 is exposed from one surface 22a of the sealing resin body 22, and the heat sink 52 is exposed from the back surface 22b opposite to the one surface 22a.
  • the exposed surface of the heat sink 42 is substantially flush with the back surface 22a, and the exposed surface of the heat sink 52 is substantially flush with the back surface 22b.
  • the semiconductor device 12 includes three or more main terminals 72.
  • the main terminal 72 has a collector terminal C2 and an emitter terminal E2.
  • the collector terminal C2 is electrically connected to the collector electrode 42c via the heat sink 42.
  • the emitter terminal E2 is electrically connected to the emitter electrode 32e via the heat sink 52 and the terminal 62.
  • the semiconductor device 12 has the same number of main terminals 72 as the semiconductor device 11.
  • the main terminal 72 has two collector terminals C2 and one emitter terminal E2.
  • the lead frame 102 includes a heat sink 42, a collector terminal C2 and an emitter terminal E2 which are main terminals 72, and a signal terminal 82.
  • Reference numeral 102a shown in FIG. 8 is an outer frame
  • reference numeral 102b is a hanging lead
  • reference numeral 102c is a tie bar
  • reference numeral 102d is a reference hole.
  • the collector terminal C2 is integrally provided with the heat sink 42 as one member.
  • the collector terminal C2 has a bent portion in the sealing resin body 21, and projects outward from the vicinity of the center in the Z direction on one side surface 22c of the sealing resin body 22.
  • the emitter terminal E2 has a portion E2a facing the joint portion 52b of the heat sink 52.
  • the facing portion E2a is connected to the joint portion 52b via the solder 92d.
  • the emitter terminal E2 has a bent portion in the sealing resin body 22, and projects outward from the vicinity of the center in the Z direction on the same side surface 22c as the collector terminal C2.
  • the heat sink 52 may be formed with, for example, an annular groove so as to surround the connection portions with the solders 92c and 92d, respectively.
  • the protruding portions of the collector terminal C2 and the emitter terminal E2 extend in the Y direction.
  • the collector terminal C2 and the emitter terminal E2 are arranged side by side in the X direction, and their respective plate thickness directions substantially coincide with the Z direction.
  • the emitter terminal E2 is arranged between the collector terminals C2 in the X direction.
  • the arrangement order of the main terminals 72 is symmetrical with respect to the center of the arrangement.
  • the main terminals 72 are arranged side by side in the order of the collector terminal C2, the emitter terminal E2, and the collector terminal C2.
  • the order of the main terminals 72 and the main terminals 71 is reversed from each other.
  • each of the collector terminal C2 and the emitter terminal E2 are arranged line-symmetrically with the axis AX2 as the axis of symmetry.
  • the emitter terminal E2 is arranged on the shaft AX2, and the center of the width of the emitter terminal E2 substantially coincides with the shaft AX2.
  • the two collector terminals C2 are arranged line-symmetrically with the axis AX2 as the axis of symmetry.
  • one of the semiconductor elements 32 may be referred to as a semiconductor element 32a, and the other one of the semiconductor elements 32 may be referred to as a semiconductor element 32b.
  • One of the collector terminals C2 is biased toward the semiconductor element 32a with respect to the shaft AX2, and the other one of the collector terminals C2 is biased toward the semiconductor element 32b with respect to the shaft AX2.
  • the signal terminal 81 is connected to the pad of the semiconductor element 32 via the bonding wire 112 inside the sealing resin body 22.
  • the signal terminal 82 projects outward from the side surface 22d opposite to the side surface 22c in the sealing resin body 21.
  • each element constituting the semiconductor device 11 is prepared.
  • the lead frame 101 shown in FIG. 8 is prepared. Further, the semiconductor element 31, the terminal 61, and the heat sink 51 are prepared.
  • the semiconductor element 31 is arranged on the mounting surface of the heat sink 41 of the lead frame 101 via the solder 91a.
  • the semiconductor element 31 is arranged on the solder 91a so that the collector electrode 31c is on the mounting surface side.
  • the terminal 61 is arranged on the emitter electrode 31e via the solder 91b.
  • the solder 91c is arranged on the surface of the terminal 61 opposite to the semiconductor element 31.
  • the solder 91c is arranged in an amount capable of absorbing the height variation in the semiconductor device 11.
  • the solders 91b and 91c may be provided in advance at the terminal 61 as solder.
  • the solder 91d is arranged on the facing portion E1a of the emitter terminal E1.
  • the solder 91d is also arranged in an amount capable of absorbing the height variation in the semiconductor device 11.
  • the collector electrode 31c of the semiconductor element 31 and the heat sink 41 are connected via the solder 91a.
  • the emitter electrode 31e of the semiconductor element 31 and the corresponding terminal 61 are connected via the solder 91b. That is, it is possible to obtain a connector in which the lead frame 101, the semiconductor element 31, and the terminal 61 are integrated.
  • the solders 91c and 91d serve as the receiving solder used in the subsequent process in the connecting body.
  • the pad of the semiconductor element 31 and the signal terminal 81 are electrically connected.
  • the pad of the semiconductor element 31 and the signal terminal 81 are connected by the bonding wire 111.
  • the heat sink 41 is placed on a pedestal (not shown) so that the terminal 61 side faces up. Then, the heat sink 51 is arranged on the heat sink 41 so that the mounting surface on the terminal 61 side is on the bottom. In this arrangement state, 2nd reflow is performed. By the 2nd reflow, the heat sink 51 is integrated with the connection body including the lead frame 101.
  • the sealing resin body 21 is formed.
  • the transfer mold method is adopted.
  • a connecting body including the lead frame 101 is placed in the mold to form the sealing resin body 21.
  • the sealing resin body 21 is molded so that the heat sinks 41 and 51 are completely covered.
  • the inverter 5 is composed of three semiconductor modules. As shown in FIGS. 9 and 10, the semiconductor module 10 includes the above-mentioned semiconductor devices 11 and 12, a connecting member 13, and a cooler 14. In FIG. 9, the cooler 14 is omitted for convenience.
  • the cooler 14 is formed by using a metal material having excellent thermal conductivity, for example, an aluminum-based material.
  • the cooler 14 has a flat tubular body as a whole.
  • the semiconductor devices 11 and 12 and the cooler 14 are alternately laminated.
  • the semiconductor devices 11 and 12 and the cooler 14 are arranged side by side in the Z direction.
  • Each of the semiconductor devices 11 and 12 is sandwiched by the cooler 14.
  • the semiconductor devices 11 and 12 are cooled from both sides by the cooler 14.
  • An introduction pipe and a discharge pipe are connected to the cooler 14.
  • the refrigerant is supplied to the introduction pipe by a pump (not shown)
  • the refrigerant flows through the flow path in the stacked coolers 14.
  • each of the semiconductor devices 11 and 12 is cooled by the refrigerant.
  • the refrigerant flowing through each of the coolers 14 is discharged through the discharge pipe.
  • the collector terminal C1 on the high potential side is electrically connected to the power line 8P.
  • the emitter terminal E1 on the low potential side is an output terminal.
  • the collector terminal C1 is also referred to as a P terminal or a positive electrode terminal, and the output terminal is also referred to as an O terminal.
  • the collector terminal C2 on the high potential side is an output terminal.
  • the emitter terminal E2 on the low potential side is electrically connected to the power line 8N.
  • the collector terminal C2 is also referred to as an O terminal, and the emitter terminal E2 is also referred to as an N terminal or a negative electrode terminal.
  • a set of semiconductor devices 11 and 12 constituting the upper and lower arms 7 are arranged so as to be adjacent to each other via the cooler 14.
  • the semiconductor devices 11 and 12 are arranged so that the collector terminal C1 and the emitter terminal E2 face each other, and the emitter terminal E1 and the collector terminal C2 face each other.
  • Opposing is a state in which the plate surfaces face each other at least a part of the protruding portions from the corresponding sealing resin bodies 21 and 22.
  • the protruding portions from the corresponding sealing resin bodies 21 and 22 face each other in almost the entire area.
  • the connecting member 13 is a member that connects the semiconductor devices 11 and 12.
  • the connecting member 13 is a wiring that electrically connects the upper arm 7U and the lower arm 7L.
  • the connecting member 13 electrically connects the emitter terminal E1 and the collector terminal C2, which are output terminals.
  • One semiconductor module 10 includes two connecting members 13 for connecting two sets of output terminals.
  • the connecting member 13 is formed by processing, for example, a metal plate.
  • the connecting member 13 is also referred to as a cross-linking member or a connecting bus bar.
  • the connecting member 13 is connected to the emitter terminal E1 and the collector terminal C2 by welding, for example.
  • the connecting member 13 of the present embodiment has a substantially U-shape (substantially U-shape).
  • the emitter terminal E1 is connected to one end of the connecting member 13, and the collector terminal C2 is connected to the other end.
  • the connecting member 13 is arranged so that the corresponding output terminals and the plate surfaces face each other, and are connected in this arranged state.
  • the two connecting members 13 have the same structure.
  • FIG. 11 is an equivalent circuit diagram in consideration of the wiring inductance (parasitic inductance) of the semiconductor module 10, that is, the upper and lower arms 7.
  • the switching elements Q1 the switching element formed on the semiconductor element 31a
  • the switching element formed on the semiconductor element 31b is shown as Q1b
  • the switching element formed on the semiconductor element 31b is shown as Q1b
  • the switching element formed on the semiconductor element 32a is referred to as Q2a
  • the switching element formed on the semiconductor element 32b is referred to as Q2b.
  • Lc11, Lc12, Le11, and Le12 indicate the wiring inductance of the parallel circuit of the switching element Q1.
  • Lc21, Lc22, Le21, and Le22 indicate the wiring inductance of the parallel circuit of the switching element Q2.
  • the semiconductor devices 11 and 12 are provided with three or more main terminals 71 and 72, respectively. That is, the semiconductor device 11 includes a plurality of at least one of the collector terminal C1 and the emitter terminal E1. Further, the semiconductor device 12 includes a plurality of at least one of the collector terminal C2 and the emitter terminal E2. Multiple main terminals of the same type are used in parallel. For example, the emitter terminal E1 is parallelized and the collector terminal C2 is parallelized. As a result, the inductance of the main terminal can be reduced.
  • the main circuit is a circuit including a smoothing capacitor Cs and an upper and lower arm 7.
  • the order of the collector terminal C1 and the emitter terminal E1 is symmetrical with respect to the center of the arrangement.
  • the wiring inductances Lc11 and Lc12 can be brought closer to each other, and the wiring inductances Le11 and Le12 can be brought closer to each other.
  • the arrangement order of the collector terminal C2 and the emitter terminal E2 is symmetrical with respect to the center of the arrangement.
  • the wiring inductances Lc21 and Lc22 can be brought closer to each other, and the wiring inductances Le21 and Lc22 can be brought closer to each other.
  • the inductance can be reduced by the effect of canceling the magnetic flux. Similarly, in the semiconductor device 12, the inductance can be reduced.
  • a plurality of semiconductor elements 31 are arranged line-symmetrically with respect to the axis AX1 orthogonal to the X direction, which is the arrangement direction.
  • the collector terminal C1 and the emitter terminal E1 are arranged line-symmetrically with the axis AX1 as the axis of symmetry.
  • the current path of the collector terminal C1 ⁇ the switching element Q1a ⁇ the emitter terminal E2 and the current path of the collector terminal C1 ⁇ the switching element Q1b ⁇ the emitter terminal E2 become substantially line symmetric with the axis AX1 as the axis of symmetry. That is, the wiring inductances Lc11 and Lc12 are substantially equal to each other.
  • the wiring inductances Le11 and Le12 are substantially equal to each other. Therefore, in the semiconductor device 11, the imbalance of AC current can be effectively suppressed.
  • the plurality of semiconductor elements 32 are arranged line-symmetrically with respect to the axis AX2 orthogonal to the X direction, which is the arrangement direction.
  • the collector terminal C2 and the emitter terminal E2 are arranged line-symmetrically with the axis AX2 as the axis of symmetry.
  • the current path of the collector terminal C2 ⁇ the switching element Q2a ⁇ the emitter terminal E2 and the current path of the collector terminal C2 ⁇ the switching element Q2b ⁇ the emitter terminal E2 become substantially line symmetric with the axis AX2 as the axis of symmetry. That is, the wiring inductances Lc21 and Lc22 are substantially equal to each other.
  • the wiring inductances Le21 and Le22 are substantially equal to each other. Therefore, in the semiconductor device 12, the imbalance of the AC current can be effectively suppressed.
  • the centers of the semiconductor elements 31 arranged side by side are completely aligned in the Y direction. Further, the centers of the semiconductor elements 32 arranged side by side are completely aligned in the Y direction. According to this, the imbalance of the AC current can be suppressed more effectively. However, it is not limited to the exact coincidence of the center. If there is a slight deviation in the Y direction, an effect similar to the above effect can be obtained.
  • a bus bar or the like is connected to the main terminals 71 and 72 for electrical connection with the smoothing capacitor Cs and the motor generator 3. Busbars are welded, for example. Therefore, the above effect can be obtained if at least the portion forming the current path, that is, the portion up to the connection position with the bus bar is line-symmetrical with respect to each of the main terminals 71 and 72.
  • the shaft AX1 substantially coincides with the center of the outer shape of the sealing resin body 21 in the X direction. As a result, the above effect can be achieved while reducing the size of the semiconductor device 11.
  • the shaft AX2 substantially coincides with the center of the outer shape of the sealing resin body 22 in the X direction. As a result, the above effect can be achieved while reducing the size of the semiconductor device 12.
  • the semiconductor devices 11 and 12 are connected by a plurality of connecting members 13. By increasing the connection paths between the upper arm 7U and the lower arm 7L, the inductance of the main circuit wiring can be reduced.
  • All the main terminals 71 project from the side surface 21c of the sealing resin body 21 and are arranged along the X direction. All the main terminals 72 project from the side surface 22c of the sealing resin body 22 and are arranged along the X direction.
  • the protruding portions of the collector terminal C1 and the emitter terminal E2 face each other in almost the entire area, and the protruding portions of the emitter terminal E1 and the collector terminal C2 face each other in almost the entire area. Therefore, the inductance of the main circuit wiring can be effectively reduced.
  • the heat sinks 41 and 51 are shared by a plurality of semiconductor elements 31. Therefore, the voltage fluctuation between the switching elements Q1 can be suppressed. Similarly, since the heat sinks 42 and 52 are shared by the semiconductor elements 32, voltage fluctuations between the switching elements Q2 can be suppressed. Furthermore, the number of parts can be reduced.
  • FIG. 12 corresponds to FIG. 2, and the elements in the sealing resin bodies 21 and 22 are shown by broken lines.
  • the semiconductor module 10 includes semiconductor devices 11 and 12 having three or more main terminals 71 and 72. All of the main terminals 71 and 72 are configured in the lead frames 101 and 102 for the purpose of position accuracy during molding of the sealing resin body. The order of the main terminals 71 and 72 is reversed, and the semiconductor devices 11 and 12 have a difference in the connection structure between the emitter terminals E1 and E2 and the heat sinks 51 and 52. This may complicate the manufacturing process, that is, reduce the productivity.
  • the heat sink 51 side is not clamped by the mold, but only the heat sink 41 (lead frame 101) side is clamped. Since only one member is clamped, the position accuracy when molding the sealing resin body 21 is improved. For example, resin leakage can be suppressed. The same applies to the lead frame 102.
  • the sealing resin bodies 21 and 22 and the protruding portions of the main terminals 71 and 72 At least the root portions 71r and 72r have the same structure as each other.
  • the sealing resin bodies 21 and 22 have the same shape and the same size as each other.
  • the appearances of the sealing resin bodies 21 and 22 are the same.
  • the root portions 71r and 72r have the same shape and the same size as each other.
  • the base portions 71r and 72r of the collector terminal C1 and the emitter terminal E2 have the same structure.
  • the base portions 71r and 72r of the emitter terminal E1 and the collector terminal C2 have the same structure.
  • the arrangement (position) of the root portions 71r and 72r with respect to the sealing resin bodies 21 and 22 is also the same as each other. From the above, the sealing resin bodies 21 and 22 can be molded using the same mold. Productivity can be improved by standardizing the mold. For example, mold exchange can be eliminated.
  • the root portions 71r and 72r are the portions of the main terminals 71 and 72 that are clamped by the mold when the sealing resin bodies 21 and 22 are molded. It is a portion within a predetermined range (for example, about 1 mm) from the side surfaces 21c and 22c of the sealing resin bodies 21 and 22.
  • the same arrangement means that the root portions 71r and 72r almost completely overlap each other when projected from the Z direction in a state where the semiconductor devices 11 and 12 are laminated so that the sealing resin bodies 21 and 22 coincide with each other. It is a positional relationship.
  • solder joint portion 121 is formed between the heat sink 51 and the emitter terminal E1 via a solder 91d.
  • a solder joint portion 122 is formed between the heat sink 52 and the emitter terminal E2 via a solder 92d.
  • at least one of the sealing resin bodies 21 and 22 and the root portions 71r and 72r is used as a position reference for the semiconductor devices 11 and 12, and at least a part of the solder joint portions 121 and 122 is provided at the same position in the Y direction. There is. As shown in FIG. 12, solder joints 121 and 122 are provided on the virtual line L1 parallel to the X direction, respectively.
  • the semiconductor module 10 it is possible to improve productivity while providing two types (two product numbers) of semiconductor devices 11 and 12.
  • the centers of the solder joints 121 and 122 in the Y direction coincide with each other. As a result, productivity can be further improved.
  • the other clamp portions in the lead frames 101 and 102 have the same structure as each other, and the arrangements with respect to the sealing resin bodies 21 and 22 are also the same as each other.
  • the root portions 81r and 82r have the same structure, and the arrangements (positions) with respect to the sealing resin bodies 21 and 22 are also the same.
  • the root portions 101br and 102br have the same structure, and the arrangements (positions) with respect to the sealing resin bodies 21 and 22 are also the same.
  • the same structure and arrangement are the same for the entire protruding portions of the main terminals 71 and 72.
  • the potentials (collectors / emitters) of the main terminals 71 and 72 are opposite to each other, the semiconductor devices 11 and 12 have the same appearance. According to this, productivity can be further improved. For example, it is easy to manufacture under the same process and conditions. For example, the connection with the smoothing capacitor Cs can be performed in the same process and conditions.
  • the solder joints 121 are arranged line-symmetrically with the axis AX1 as the axis of symmetry.
  • the semiconductor element 31 and the solder joint portion 121 are arranged line-symmetrically with the axis AX1 as the axis of symmetry.
  • the solder joints 122 are arranged line-symmetrically with the axis AX2 as the axis of symmetry.
  • the semiconductor element 32 and the solder joint portion 122 are arranged line-symmetrically with the axis AX2 as the axis of symmetry.
  • the positioning reference holes 101d and 102d provided in the lead frames 101 and 102 are also positioned at the same position with the sealing resin bodies 21 and 22 as the position reference.
  • a positioning pin (not shown) is positioned according to the reference holes 101d and 102d. Therefore, the positions of the corresponding elements in the semiconductor devices 11 and 12 can be accurately aligned.
  • the width W1 of the plurality of main terminals 71 and the width W2 of the plurality of main terminals 72 are equal to each other.
  • the widths of the lead frames 101 and 102 in the X direction are equal to each other.
  • the heat sinks 41 and 42 which are thick portions, have the same structure. Since the heat capacities 41 and 42 have the same heat capacity, solder bonding can be performed under the same reflow process and conditions when forming the semiconductor devices 11 and 12. For example, the 1st reflow can be performed under the same process and conditions.
  • heat sinks 51 and 52 having the same structure may be adopted.
  • the heat sinks 51 and 52 have the same shape and size.
  • the heat sinks 51 and 52 have the same heat capacity. Thereby, the 2nd reflow can be stabilized. Further, by sharing the heat sinks 51 and 52, the number of parts can be reduced.
  • At least one of the semiconductor devices 11 and 12 may be provided with a mark for distinguishing from the others.
  • the mark may be provided on the protruding tip side of the portion to which the bus bar or the like is connected. That is, it is preferable to provide the upper and lower arms 7 in a portion that does not affect the current operation.
  • a notch 71 m which is a mark, is provided in one of the emitter terminals E1 of the semiconductor device 11.
  • the position of the notch 71 m is not limited to the emitter terminal E1.
  • another notch may be provided at different positions of the semiconductor device 12.
  • a notch may be provided at the protruding tip of the emitter terminal E2.
  • a mark different from the notch may be used.
  • a mark formed by printing, laser processing, or the like can be adopted.
  • the above-mentioned notch is preferable.
  • the notch can be formed, for example, when the lead frames 101 and 102 are formed, or when the tie bars 101c and 102c are removed (lead cut).
  • the semiconductor devices 11 and 12 are provided with three main terminals 71 and 72, respectively, but the present invention is not limited to this.
  • a configuration may be configured in which four or more main terminals 71 and 72 are provided.
  • the semiconductor devices 11 and 12 are provided with seven corresponding main terminals 71 and 72.
  • the semiconductor device 11 includes three collector terminals C1 and four emitter terminals E1.
  • the collector terminal C1 and the emitter terminal E1 are arranged alternately in the X direction.
  • the semiconductor device 12 includes four collector terminals C2 and three emitter terminals E2.
  • the collector terminal C2 and the emitter terminal E2 are arranged alternately in the X direction.
  • the arrangement order of the main terminals 71 and 72 is symmetrical with respect to the center of the arrangement.
  • the order of arrangement of the main terminals 71 and 72 as viewed from the center is opposite to each other.
  • the heat sinks 51 and 52 have the same structure as in FIG.
  • the semiconductor devices 11 and 12 include two corresponding semiconductor elements 31 and 32, but the present invention is not limited to this. Three or more semiconductor elements 31 and 32 may be provided.
  • the configuration may not include terminals 61 and 62.
  • the heat sinks 41, 42, 51 and 52 are exposed from the corresponding sealing resin bodies 21 and 22, the heat sinks 41, 42, 51 and 52 may not be exposed from the sealing resin bodies 21 and 22.
  • the heat sinks 41, 42, 51, 52 may be divided into a plurality of heat sinks 41, 42, 51, 52 according to the number of semiconductor elements 31, 32, for example. However, productivity can be improved by integrating them. Moreover, the fluctuation of the voltage can be suppressed in the parallel circuit.
  • the semiconductor module 10 further includes a load line 9.
  • the load line 9 is formed by using a metal material such as copper.
  • the load line 9 is formed in a plate shape, for example.
  • the load line 9 is also referred to as a bus bar.
  • the semiconductor module 10 includes, as the connecting member 13, a connecting member 13a in which the load lines 9 are connected and a connecting member 13b in which the load lines 9 are not connected.
  • the load line 9 may be provided integrally with the connecting member 13a or may be connected to the connecting member 13a.
  • the load line 9 is connected to a predetermined position of the connecting member 13a. In FIGS. 16 and 17, the cooler 14 is omitted for convenience.
  • the connection structure with the motor generator 3 can be simplified. Further, the connection between the collector terminal C1 and the emitter terminal E2 and the smoothing capacitor Cs can be simplified.
  • the basic configuration of the semiconductor devices 11 and 12 is the same as that of the prior embodiment.
  • the semiconductor device 11 includes one collector terminal C1 and two emitter terminals E1.
  • the semiconductor device 12 includes two collector terminals C2 and one emitter terminal E2.
  • the emitter terminals E1 and E2 of the semiconductor devices 11 and 12 are solder-bonded to the corresponding heat sinks 51 and 52.
  • one of the emitter terminals E1 may be referred to as an emitter terminal E11, and the other one may be referred to as an emitter terminal E12.
  • One of the collector terminals C2 may be referred to as a collector terminal C21, and the other one may be referred to as a collector terminal C22.
  • the emitter terminal E11 is arranged on the semiconductor element 31a side
  • the emitter terminal E12 is arranged on the semiconductor element 31b side
  • the collector terminal C21 is arranged on the semiconductor element 32a side
  • the collector terminal C22 is arranged on the semiconductor element 32b side.
  • FIG. 18 is a circuit model of the upper and lower arms 7 in consideration of wiring resistance in order to verify the continuous position of the load lines 9.
  • the load shown in FIG. 18 corresponds to the stator winding of the motor generator 3.
  • the load is an inductive load (L load).
  • the collector terminal C1 which is a P terminal may be simply referred to as P
  • the emitter terminal E2 which is an N terminal may be simply indicated as N
  • the load line 9 which is an output line may be simply referred to as O.
  • the upper and lower arms 7 have a first path F1 and a second path F2 as paths for connecting the upper arm 7U and the lower arm 7L. In the following, it may be simply referred to as routes F1 and F2.
  • the first path F1 has a connecting member 13a, an emitter terminal E11, and a collector terminal C21.
  • the connecting member 13a is welded to the emitter terminal E11 and the collector terminal C21 which are output terminals.
  • the resistance R1 of the welded portion between the emitter terminal E11 and the connecting member 13a, the resistors R2 and R3 which are the wiring resistances of the connecting member 13a itself, the collector terminal C21 and the connecting member 13a Has a resistance R4 of the welded portion of.
  • the second path F2 has a connecting member 13b, an emitter terminal E12, and a collector terminal C22.
  • the connecting member 13b is welded to the emitter terminal E12 and the collector terminal C22, which are output terminals.
  • the resistance R5 of the welded portion between the emitter terminal E12 and the connecting member 13b, the resistors R6 and R7 which are the wiring resistances of the connecting member 13b itself, and the collector terminal C22 and the connecting member 13b Has a resistance R8 of the welded portion of.
  • the load lines 9 are connected closer to the upper arm 7U and the resistors R2 and R3 are on the lower arm 7L side from the position where the load lines 9 are connected in the first path F1.
  • the DC current is a current that flows not at the time of switching but at the steady state when the switching element is turned on.
  • CP1 and CP2 indicated by solid arrows in FIG. 18 are main current paths when driving the switching elements Q1 (Q1a, Q1b) on the upper arm 7U side.
  • CP3 and CP4 indicated by the broken line arrows are the main current paths when the switching elements Q2 (Q2a, Q2b) on the lower arm 7L side are driven.
  • the current path CP1 is collector terminal C1 (P) ⁇ heat sink 41 ⁇ switching element Q1a, Q1b ⁇ heat sink 51 ⁇ emitter terminal E11 ⁇ connecting member 13a ⁇ load line 9 (O).
  • the current path CP2 is the collector terminal C1 (P) ⁇ heat sink 41 ⁇ switching elements Q1a, Q1b ⁇ heat sink 51 ⁇ emitter terminal E12 ⁇ connecting member 13b ⁇ collector terminal C22 ⁇ heat sink 42 ⁇ collector terminal C21 ⁇ connecting member 13a ⁇ load line 9 (O).
  • the current path CP3 is a load line 9 (O) ⁇ a connecting member 13a ⁇ a collector terminal C21 ⁇ a heat sink 42 ⁇ switching elements Q2a and Q2b ⁇ a heat sink 52 ⁇ an emitter terminal E2 (N).
  • the current path CP4 is a load line 9 (O) ⁇ connecting member 13a ⁇ emitter terminal E11 ⁇ heat sink 51 ⁇ emitter terminal E12 ⁇ connecting member 13b ⁇ collector terminal C22 ⁇ heat sink 42 ⁇ switching elements Q2a and Q2b ⁇ heat sink 52 ⁇ emitter terminal E2. (N).
  • the resistance components of the main circuit wiring are different between the current paths CP3 and CP4, there is a risk of DC current imbalance.
  • FIG. 19 shows the simulation result of the current flowing through the output terminal when the motor lock occurs in the model shown in FIG.
  • FIG. 19A shows the current flowing through each output terminal when the upper arm 7U side is being driven.
  • FIG. 19B shows the current flowing through each output terminal when the lower arm 7L side is being driven.
  • the current flowing through the emitter terminal E11 is shown by a solid line
  • the current flowing through the collector terminal C21 is shown by a broken line
  • the current flowing through the emitter terminal E12 and the collector terminal C22 is shown by a dashed line.
  • the load current was 1000 [A]
  • the duty ratio of the output waveform of the upper and lower arms 7 was 55%.
  • the values of the resistors R1 to R8 were set to r, which are equal values to each other.
  • the resistance value of the current path CP1 is r
  • the resistance value of the current path CP2 is 7r
  • the resistance value of the current path CP3 is 3r
  • the resistance value of the current path CP4 is 5r with respect to the total resistance values of the paths F1 and F2 of 8r.
  • the current path CP1 is easier for the current to flow than the current path CP2.
  • the switching element Q1 is driven, a larger current flows in the emitter terminal E11 than in the emitter terminal E12.
  • the current path CP3 is easier for the current to flow than the current path CP4.
  • the switching element Q2 is driven, a larger current flows in the collector terminal C21 than in the collector terminal C22. In this way, the current is concentrated on the output terminals constituting the path F1, specifically, the emitter terminal E11 and the collector terminal C21.
  • a current flows from the upper and lower arms 7 to the load.
  • a current flows from the collector terminal C1 (P) to the load line 9 (O) via the switching element Q1 during the ON period of the PWM cycle.
  • a current flows from the emitter terminal E2 (N) to the load line 9 (O) via the diode D2.
  • the current flowing through the emitter terminal E11 is a rectangular wave of 875 [A] (duty ratio 55%) and 375 [A] (duty ratio 45%).
  • a current of 696 [A] flows through the emitter terminal E11 in terms of effective value.
  • a current flows from the load to the upper and lower arms 7.
  • a current flows from the load line 9 (O) to the emitter terminal E2 (N) via the switching element Q2.
  • a current flows from the load line 9 (O) to the collector terminal C1 (P) via the diode D1.
  • the current flowing through the collector terminal C21 is a rectangular wave of 625 [A] (duty ratio 45%) and 125 [A] (duty ratio 55%).
  • a current of 429 [A] flows through the collector terminal C21 in terms of effective value.
  • the DC current balance of the upper arm 7U is worse than that of the lower arm 7L. Therefore, among the emitter terminal E11 and the collector terminal C21 in which the current is concentrated due to the imbalance of the DC current, a large current flows particularly in the emitter terminal E11.
  • the emitter terminal E11 has a larger energizing stress.
  • the semiconductor module 10 of this embodiment has a solder joint portion 121 and a solder joint portion 122 as joint portions between the heat sinks 51 and 52 and the main terminals 71 and 72, as in the previous embodiment.
  • the solder joint portion 121 is formed between the heat sink 51 and the emitter terminals E11 and E12, respectively.
  • the solder joint portion 122 is formed between the heat sink 52 and the emitter terminal E2.
  • the emitter terminal E11 and the collector terminal C21 where the current is concentrated the emitter terminal E11 is formed with a solder joint portion 121, and the collector terminal C21 is not formed with a solder joint portion.
  • the collector terminal C21 is continuously provided with the heat sink 42 as one member. For example, the electromigration effect increases as the flowing current increases.
  • the emitter terminal E11 has lower resistance to energization stress than the collector terminal C21.
  • the value of the wiring resistance from the continuous position of the load lines 9 (hereinafter referred to as the reference position) to the heat sink 51 via the emitter terminal E11 is determined from the reference position via the collector terminal C21.
  • the reference position is set so as to be larger than the value of the wiring resistance up to the heat sink 42.
  • the load line 9 is formed on the welded portion of the connecting member 13a having a substantially U-shape with the collector terminal C21. It is in a row.
  • the reference position is also called the output branch point.
  • FIG. 20 is an equivalent circuit diagram of the semiconductor module 10 shown in FIGS. 16 and 17.
  • the reference position BP to which the load lines 9 are connected is provided closer to the lower arm 7L.
  • the wiring resistance between the reference position BP and the resistor R4 of the welded portion between the collector terminal C21 is set to zero, and the reference position BP is set between the wiring resistors R2, R3 and the resistor R4 of the connecting member 13a. It is provided in.
  • the resistance value (first resistance value) of the wiring portion from the reference position BP to the heat sink 51 via the emitter terminal E11 and the solder joint portion 121 is the total value of the resistors R1, R2, and R3.
  • the resistance value (second resistance value) of the wiring portion from the reference position BP to the heat sink 42 via the collector terminal C21 is the value of the resistor R4.
  • the first resistance value is 3r and the second resistance value is r.
  • the semiconductor device 11 on the emitter terminal E11 side having low resistance to current stress it is possible to suppress the imbalance of the DC currents of the emitter terminals E11 and E12.
  • the degree of DC current imbalance between the emitter terminals E11 and E12 can be reduced.
  • current concentration on the solder joint portion 121 formed at the emitter terminal E11 can be suppressed.
  • the current flowing through the solder joint 121 can be reduced. Therefore, the reliability of the semiconductor module 10 including the two types (two product numbers) of the semiconductor devices 11 and 12 can be improved.
  • the degree of DC current imbalance on the collector terminal C2 side increases, and the current flowing through the collector terminal C21 increases.
  • the collector terminal C21 has a higher resistance to energization stress than the emitter terminal E11. Therefore, the reliability of the semiconductor module 10 as a whole can be improved.
  • the emitter terminal E11 has lower resistance to energization stress than the collector terminal C21 depending on the presence or absence of solder bonding, but the present invention is not limited to this.
  • the collector terminal C21 may be solder-bonded to the heat sink 42, and the area of the solder-bonded portion of the collector terminal C21 may be larger than the area of the solder-bonded portion 121 of the emitter terminal E11.
  • the magnitude of resistance to energization stress is determined by the presence or absence of solder joints, the area of solder joints, and the like.
  • the collector terminal C21 on the lower arm 7L side may have a lower resistance to energization stress than the emitter terminal E11 on the upper arm 7U side.
  • the load line 9 may be provided in the path F1 so that the wiring resistance value from the reference position BP to the heat sink 42 is larger than the wiring resistance value from the reference position BP to the heat sink 51.
  • the reference position BP may be provided near the upper arm 7U in the connecting member 13a.
  • the connecting members 13a and 13b have the same structure. According to this, it is easy to adjust the imbalance of the DC current by the reference position BP of the load line 9. By using the connecting members 13a and 13b having the same structure and performing welding in the same manner, the resistance value of the entire path F1 and the resistance value of the entire path F2 can be made substantially equal.
  • the resistance ratio x at the cross point between the current flowing through the emitter terminal E11 and the current flowing through the collector terminal C21 is substantially the same as the duty ratio of the output waveform set when the motor is locked. Became clear.
  • FIG. 21 shows the relationship between the resistance ratio x and the ratio of the effective value currents of the emitter terminal E11 and the collector terminal C21 at various duty ratios set when the motor is locked. In the following, for the sake of distinction, the resistance ratio of the cross points is shown as x0.
  • the resistance ratio x is the ratio of the first resistance value to the resistance value of the entire path F1.
  • the duty ratio at the time of motor lock is generally set to about 50% (for example, in the range of 40 to 60%).
  • the duty ratio is 50% in FIG. 21 (a), 55% in FIG. 21 (b), and 60% in FIG. 21 (c).
  • the above simulation result is the result when the resistance ratio x is 0.25 in FIG. 21 (b).
  • the resistance ratio x 0.25, the ratio of the effective value current between the emitter terminal E11 and the collector terminal C21 is 0.62: 0.38.
  • the resistance ratio x0 of the cross point and the duty ratio Rd match at any duty ratio.
  • the resistance ratio x0 is 0.55.
  • the resistance ratio x0 is 0.5.
  • the resistance ratio x0 is 0.6.
  • the effective value current of the emitter terminal E11 can be made equal to or less than the effective value current of the collector terminal C21. Thereby, the reliability of the semiconductor module 10 can be improved.
  • the effective value current of the emitter terminal E11 can be made smaller than the effective value current of the collector terminal C21. Thereby, the reliability of the semiconductor module 10 can be further improved.
  • the collector terminal C21 has a lower resistance to energization stress, it is advisable to set the resistance ratio x, that is, the reference position BP so as to satisfy x ⁇ Rd.
  • the effective value current of the collector terminal C21 can be made equal to or less than the effective value current of the emitter terminal E11. Thereby, the reliability of the semiconductor module 10 can be improved.
  • x ⁇ Rd the effective value current of the collector terminal C21 can be made smaller than the effective value current of the emitter terminal E11. Thereby, the reliability of the semiconductor module 10 can be further improved.
  • the connecting members 13a and 13b have shown an example of the same structure, but the present invention is not limited to this.
  • An example is shown in which the resistance values of the paths F1 and F2 are almost the same, but the present invention is not limited to this. It can also be applied to configurations in which the structures of the connecting members 13a and 13b are different. It can also be applied to configurations in which the resistance values of the paths F1 and F2 are different.
  • at least one of width, thickness, and length may be different in at least a part of the connecting members 13a and 13b.
  • the resistance values of the paths F1 and F2 may be different by using different welding resistances (resistors R1, R4, R5, R8) while using the connecting members 13a and 13b having the same structure.
  • the connection between the connecting members 13a and 13b and the output terminal is not limited to welding. Fixing means other than welding, for example, fixing with a joining member, fastening, or the like may be used.
  • the duty ratio is 50% in FIG. 22 (a), 55% in FIG. 22 (b), and 60% in FIG. 22 (c).
  • the cross point resistance ratio x0 coincides with the duty ratio Rd.
  • the duty ratios are 55% and 60%, there is a discrepancy between the resistance ratio x0 and the duty ratio Rd.
  • the resistance ratio x0 is larger than the duty ratio Rd.
  • the duty ratio is 55%, the resistance ratio x0 is 0.6.
  • the resistance ratio x0 is 0.7.
  • the effective value current of the emitter terminal E11 can be made equal to or less than the effective value current of the collector terminal C21.
  • the effective value current of the emitter terminal E11 can be made smaller than the effective value current of the collector terminal C21.
  • the resistance ratio x that is, the reference position BP may be set so as to satisfy the following equation 4. (Equation 4) x ⁇ ⁇ (Rd-0.5) ⁇ k + 0.5 ⁇
  • the effective value current of the collector terminal C21 can be made equal to or less than the effective value current of the emitter terminal E11.
  • the effective value current of the collector terminal C21 can be made smaller than the effective value current of the emitter terminal E11. (Equation 5) x ⁇ ⁇ (Rd-0.5) xk + 0.5 ⁇
  • the duty ratio is 50% in FIG. 23 (a), 55% in FIG. 23 (b), and 60% in FIG. 23 (c).
  • the duty ratio is 50%
  • the cross point resistance ratio x0 coincides with the duty ratio Rd.
  • the duty ratio is 55%
  • the resistance ratio x0 is 0.575.
  • the resistance ratio x0 is 0.65.
  • the cross point resistance ratio x0 agrees with the value calculated by the above equation 1.
  • the duty ratio is 50% in FIG. 24 (a), 55% in FIG. 24 (b), and 60% in FIG. 24 (c).
  • the duty ratio is 50%
  • the cross point resistance ratio x0 coincides with the duty ratio Rd.
  • the duty ratio is 55%
  • the resistance ratio x0 is 0.525.
  • the duty ratio is 60%
  • the resistance ratio x0 is 0.55.
  • the cross point resistance ratio x0 agrees with the value calculated by the above equation 1.
  • the position of the load line 9 is not limited to the above example.
  • the connecting member 13a is extended from the connecting portion with the collector terminal C21, and the load line 9 is extended to this extending portion. It may be a continuous configuration.
  • the load line 9 may be connected to the connecting portion connecting the connecting portion between the emitter terminal E11 and the collector terminal C21 in the connecting member 13a having a substantially U shape.
  • the welding resistance may be different and / or the width of the connecting portion in the connecting member 13a may be different.
  • the connecting member 13a may be inverted in the Y direction.
  • the present invention is not limited to this.
  • the connecting member 13a is connected to the collector terminal C21 on the front and back sides in the plate thickness direction.
  • the structures of the connecting members 13a and 13b are different from each other.
  • the collector terminal C21 has two connecting portions, and the emitter terminal E11 has one connecting portion. Due to the two connection portions, the connection area of the collector terminal C21 is large. As a result, the value of the resistor R4 is smaller than the value of the resistor R1.
  • the connecting members 13a and 13b may be electrically connected by a thin wire 15 such as a wire.
  • the resistance value of the thin wire 15 is sufficiently larger than the resistance value of the other elements constituting the current paths CP1, CP2, CP3, and CP4.
  • the thin wire 15 does not significantly affect the balance of DC current.
  • Reference numeral B1 shown in FIG. 30 is a bus bar on the positive electrode side
  • reference numeral B2 is a bus bar on the negative electrode side
  • the collector terminal C1 is connected to the terminal on the positive electrode side of the smoothing capacitor Cs via the bus bar B1.
  • the emitter terminal E2 is connected to the terminal on the negative electrode side of the smoothing capacitor Cs via the bus bar B2.
  • some of the elements of the semiconductor devices 11 and 12, such as the sealing resin bodies 21 and 22, are omitted.
  • the structures of the semiconductor devices 11 and 12 are not limited to the double-sided heat dissipation structure. It can also be applied to a single-sided heat dissipation structure. Further, the present invention is not limited to the switching element having a vertical structure, and can be applied to a switching element having a horizontal structure (for example, LDMOS). In the case of a single-sided heat dissipation structure, for example, a connection structure in a flat state can be adopted.
  • the semiconductor devices 11 and 12 include a plurality of semiconductor elements 31 and 32, but the present invention is not limited to this.
  • a configuration including one semiconductor element 31 and 32 having a plurality of paths, for example, two paths F1 and F2, may cause an imbalance of DC current. Therefore, it can be applied to a configuration in which the semiconductor devices 11 and 12 include only one semiconductor element 31 and 32.
  • the semiconductor devices 11 and 12 include the sealing resin bodies 21 and 22, but the present invention is not limited to this.
  • the configuration may not include the sealing resin bodies 21 and 22.
  • FIG. 31 shows semiconductor devices 11 and 12 according to this embodiment.
  • the two semiconductor devices 11 and 12 are shown side by side.
  • the elements in the sealing resin bodies 21 and 22 are shown by broken lines.
  • the basic configuration of the semiconductor devices 11 and 12 is the same as that of the prior embodiment.
  • the semiconductor devices 11 and 12 have a double-sided heat dissipation structure.
  • the areas of the heat sinks 51 and 52 are smaller than the areas of the corresponding heat sinks 41 and 42.
  • Two semiconductor elements 31 are arranged side by side in the longitudinal direction of the heat sink 51 (main body 51a).
  • two semiconductor elements 32 are arranged side by side in the longitudinal direction of the heat sink 52 (main body 52a).
  • the semiconductor device 11 has a solder joint portion 121.
  • the solder joint portion 121 is formed between each of the emitter terminals E1 and the heat sink 51.
  • the semiconductor device 12 has a solder joint portion 122.
  • the solder joint portion 122 is formed between the emitter terminal E2 and the heat sink 52.
  • the semiconductor devices 11 and 12 further have solder joints 131 and 132.
  • the solder joint 131 is formed between each of the terminals 61 and the heat sink 51.
  • Solder joints 132 are formed between each of the terminals 62 and the heat sink 52. In FIG. 31, the solder joints 121, 122, 131, and 132 are hatched to distinguish them from the others.
  • the solder joint on the heat sinks 51 and 52 side is formed by the 2nd reflow as described above.
  • the connector including the heat sink 42 is arranged on the pedestal 200 so that the solders 92c and 92d are on the top.
  • the heat sink 52 is arranged. In this arrangement state, 2nd reflow is performed. At that time, the position of the heat sink 42 is determined by the weight of the member, the jig, etc., with the pedestal 200 as the position reference in the Z direction.
  • the heat sink 52 is positioned and arranged on the pedestal 200 by the jig 201, it is free in the Z direction when the solder is melted.
  • the relationship between the center of gravity Cg2 of the heat sink 52 and the surface tension of the solder connected to the heat sink 52 may cause the heat sink 52 to tilt.
  • the solders 92c and 92d do not harden at the same timing.
  • the volume change from the liquid phase to the solid phase of the solder may affect the inclination.
  • the semiconductor device 11 heat sink 51.
  • FIG. 32 attention is paid to the heat sinks 42 and 52 and the solders 92c and 92d, and for convenience, other elements are shown integrally with the heat sink 42.
  • the main solder joints of the heat sink 51 are arranged line-symmetrically with the axis AX11 passing through the center of gravity Cg1 of the heat sink 51 as the axis of symmetry.
  • the axis AX11 is orthogonal to the longitudinal direction of the heat sink 51, that is, the X direction and the Z direction, which is the plate thickness direction of the semiconductor element 31.
  • the main solder joints are arranged line-symmetrically with the axis AX12 passing through the center of gravity Cg2 of the heat sink 52 as the axis of symmetry.
  • the axis AX12 is orthogonal to the longitudinal direction of the heat sink 52, that is, the X direction and the Z direction, which is the plate thickness direction of the semiconductor element 32.
  • the amount of displacement is larger in the longitudinal direction than in the lateral direction. According to this embodiment, the amount of displacement can be suppressed. By suppressing the inclination, for example, heat dissipation can be ensured. In the semiconductor elements 31 and 32 connected in parallel, the deviation of the wiring inductance can be suppressed.
  • the semiconductor device 11 electrically connects the solder joint portion 131 that electrically connects the heat sink 51 and the semiconductor element 31 and the heat sink 51 and the emitter terminal E1 as the solder joint portion formed on the heat sink 51. It has a solder joint 121 connected to.
  • the solder joint 131 is formed to include the solder 91c
  • the solder joint 121 is formed to include the solder 91d.
  • the semiconductor device 11 has two solder joints 131 and two solder joints 121.
  • the two solder joints 131 are arranged line-symmetrically with the axis AX11 as the axis of symmetry. As a result, the surface tension of the solder 91c can be balanced in the longitudinal direction of the heat sink 51.
  • the two solder joints 121 are arranged line-symmetrically with the axis AX11 as the axis of symmetry. As a result, the surface tension of the solder 91d can be balanced in the longitudinal direction of the heat sink 51. As described above, it is possible to prevent the heat sink 51 from being tilted in the longitudinal direction.
  • the semiconductor device 12 electrically connects the solder joint portion 132 that electrically connects the heat sink 52 and the semiconductor element 32, and the heat sink 52 and the emitter terminal E2 as the solder joint portion formed on the heat sink 52. It has a solder joint 122.
  • the solder joint portion 132 is formed to include the solder 92c, and the solder joint portion 122 is formed to include the solder 92d.
  • the semiconductor device 12 has two solder joints 132 and one solder joint 122.
  • the two solder joints 132 are arranged line-symmetrically with the axis AX12 as the axis of symmetry. As a result, the surface tension of the solder 92c can be balanced in the longitudinal direction of the heat sink 52.
  • the solder joints 122 are arranged line-symmetrically with the axis AX12 as the axis of symmetry. As a result, the surface tension of the solder 92d can be balanced in the longitudinal direction of the heat sink 52. As described above, it is possible to prevent the heat sink 52 from being tilted in the longitudinal direction.
  • At least the upper two solder joints are provided so as to overlap the shaft AX21 in the lateral direction of the heat sink 51 in descending order of the connection area with the heat sink 51.
  • the axis AX21 is orthogonal to the lateral direction of the heat sink 51, that is, the Y direction and the Z direction, and passes through the center of gravity Cg1. Since the surface tension works at a position close to the axis AX21, the torque that causes tilt can be reduced in the lateral direction. As a result, it is possible to prevent the heat sink 51 from being tilted in the lateral direction.
  • all the solder joints 131 are provided on the shaft AX21.
  • the upper two solder joints are provided so as to overlap the shaft AX22 in the lateral direction of the heat sink 52 in descending order of the connection area with the heat sink 52.
  • the axis AX22 is orthogonal to the lateral direction of the heat sink 52, that is, the Y direction and the Z direction, and passes through the center of gravity Cg2. Since the surface tension works at a position close to the axis AX22, the torque that causes tilt can be reduced in the lateral direction. As a result, it is possible to prevent the heat sink 52 from being tilted in the lateral direction.
  • all the solder joints 132 are provided on the shaft AX22.
  • the solder joints 121 and 122 are provided at positions separated from the shafts AX21 and AX22 in the lateral direction so as not to overlap the shafts AX21 and AX22. This makes it possible to simplify the connection structure between the heat sinks 51 and 52, the semiconductor elements 31 and 32, and the emitter terminals E1 and E2. In particular, in the semiconductor device 11, since the two solder joints 121 are arranged on the same side with respect to the shaft AX21, the structure can be simplified.
  • the center 131c of the solder joint portion 131 is provided at a position farther from the solder joint portion 121 than the shaft AX21 in the lateral direction.
  • the center 131c substantially coincides with the center of the emitter electrode 31e.
  • the center 132c of the solder joint portion 132 is provided at a position farther from the solder joint portion 122 than the shaft AX22 in the lateral direction.
  • the surface tension of the solder 92c can be applied to the side that cancels the torque due to the surface tension of the solder 92d. Therefore, the inclination of the heat sink 52 in the lateral direction can be effectively suppressed.
  • the center 132c substantially coincides with the center of the emitter electrode 32e.
  • the heat sinks 41, 42, 51, and 52 correspond to the heat radiating members.
  • the heat sinks 41 and 42 correspond to the first member, and the heat sinks 51 and 52 correspond to the second member.
  • Solder joints 121, 122, 131, 132 correspond to a plurality of solder joints.
  • the solder joints 131 and 132 correspond to the first joint, and the solder joints 121 and 122 correspond to the second joint.
  • the shafts AX11 and AX12 correspond to the shaft and the first shaft.
  • the axes AX21 and AX22 correspond to the second axis.
  • heat sinks 41, 42, 51, and 52 are shown as heat radiating members, but the heat radiating member is not limited to this.
  • a DBC (Direct Bonded Copper) substrate can be used as at least one of the heat sinks 41 and 42 and the heat sinks 51 and 52.
  • the number and arrangement of the semiconductor elements 31 included in the semiconductor device 11 are not limited to the above examples.
  • the number and arrangement of the semiconductor elements 32 included in the semiconductor device 12 are not limited to the above examples. Three or more semiconductor elements 31 and 32 may be provided.
  • the semiconductor device 11 has four solder joints 131.
  • the plurality of solder joints 131 and 132 may be arranged line-symmetrically with respect to the axes AX11 and AX12.
  • the semiconductor device 11 has three solder joints 131. The two solder joints 131 are arranged side by side in the X direction so as to be line-symmetrical with respect to the axis AX11.
  • solder joints 131 are arranged so as to be offset in the Y direction with respect to the other two, and are arranged line-symmetrically with respect to the axis AX11.
  • the signal terminal 81, the suspension lead 101b, and the like are omitted for convenience.
  • the semiconductor device 11 is shown in FIGS. 33 and 34, it can also be applied to the semiconductor device 12.
  • the semiconductor devices 11 and 12 include the sealing resin bodies 21 and 22, but the present invention is not limited to this.
  • the configuration may be such that the sealing resin bodies 21 and 22 are not provided.
  • the semiconductor device 11 shown in the preceding embodiment has a solder joint portion 121 between the heat sink 51 and the main terminal 71.
  • the semiconductor device 12 has a solder joint portion 122 between the heat sink 52 and the main terminal 72.
  • FIG. 35 as an example, the periphery of the solder joint portion 122 of the semiconductor device 12 is schematically shown. In FIG. 35, the current flow is indicated by a solid arrow.
  • the solder 92d is interposed between the joint portion 52b of the heat sink 52 and the facing portion E2a of the emitter terminal E2, and the solder joint portion 122 is formed. If the current does not flow more easily in the facing portion E2a than in the joint portion 52b, the movement of the solder joint portion 122 to flow farther in the joint portion 52b having a low resistance is strengthened. As a result, in the solder 92d, the current density on the back side of the solder 92d is higher than that on the front side in the flow direction. As described above, in the solder 92d, the current tends to be locally concentrated.
  • Both the heat sink 52 and the emitter terminal E2 are formed of a metal material such as copper.
  • the heat sink 52 and the emitter terminal E2 have at least the same main component metal. For example, if the facing portion E2a is thinner than the joint portion 52b, the facing portion E2a is less likely to flow, so that the movement flow of the solder joint portion 122 that tries to flow farther in the joint portion 52b is strengthened.
  • the plate surfaces of the joint portion 52b and the facing portion E2a face each other.
  • the solder 92d is interposed between the plate surfaces of the joint portion 52b and the facing portion E2a.
  • the terminal arrangement surface (opposing surface) of the joint portion 52b is larger than the facing portion E2a in the projection view from the opposite direction, the flow of the solder joint portion 122 trying to flow farther in the joint portion 52b is strengthened. ..
  • the same problem occurs in the semiconductor device 11.
  • the current is locally concentrated in the solders 91d and 92d, for example, electromigration is a concern.
  • FIG. 36 is a cross-sectional view taken along the line XXXVII-XXXVII of FIG. In FIG. 37, the sealing resin bodies 21 and 22 are also shown. FIG. 37 corresponds to FIG. 5 of the prior embodiment.
  • the heat sink 51 of the semiconductor device 11 has a main body portion 51a and a joint portion 51b.
  • the two emitter terminals E1 have an opposing portion E1a and an extending portion E1b, respectively.
  • the facing portion E1a is arranged on the joint portion 51b so that the plate surfaces face each other.
  • the facing portion E1a is connected to the joint portion 51b via the solder 91d.
  • the extension portion E1b is connected to the facing portion E1a.
  • the extension portion E1b extends in the Y direction and away from the joint portion 51b. As shown in FIG.
  • the thickness tb1 is at least the thickness ta1 (tb1 ⁇ ta1) at least in the solder joint portion 121.
  • the thickness of the joint portion 51b is made substantially uniform over the entire area. Further, the thickness of the facing portion E1a is made substantially uniform over the entire area. The thickness tb1 of the facing portion E1a is thicker than the thickness ta1 of the joint portion 51b (tb1> ta1). The arrangement surface of the emitter terminal E1 in the joint portion 51b is made larger than that of the facing portion E1a.
  • the joint portion 51b has two convex portions 51c corresponding to the two facing portions E1a. The convex portion 51c projects in the Y direction and away from the main body portion 51a.
  • Arrangement regions 51d of the facing portion E1a are provided at both ends of the joint portion 51b in the X direction.
  • the region facing the collector terminal C1 is a non-arranged region 51e in which the facing portion E1a is not arranged.
  • the arrangement area 51d, the non-arrangement area 51e, and the arrangement area 51d are provided in this order.
  • the width Wa1 of the arrangement region 51d and the width of the convex portion 51c are the same.
  • the width Wa1 is the length in the X direction.
  • the width Wa1 is the length in the plate thickness direction of the joint portion 51b and in the direction orthogonal to the main flow direction of the current in the joint portion 51b.
  • the width Wa1 is a length in a direction orthogonal to the plate thickness direction and the extending direction of the joint portion 51b from the main body portion 51a.
  • a part of the arrangement region 51d in the Y direction, specifically, a portion away from the main body 51a forms a convex portion 51c.
  • Each of the arrangement regions 51d has a substantially rectangular shape in a plane. In the XY plane, the solder 91d is connected to the central portion of the arrangement region 51d, and the solder 91d is not connected to the peripheral portion surrounding the central portion.
  • Solder 91d is connected to a part of the facing portion E1a.
  • the junction portion is provided at one end of the emitter terminal E1 in the longitudinal direction.
  • the width Wb1 of the facing portion E1a is narrower than the width Wa1 of the arrangement region 51d of the joint portion 51b. That is, the width Wa1 is wider than the width Wb1 (Wa1> Wb1).
  • the width Wb1 is the length in the X direction including the joint portion.
  • the width Wb1 is a length in a direction orthogonal to the plate thickness direction and the longitudinal direction of the emitter terminal E1.
  • the heat sink 52 of the semiconductor device 12 has a main body portion 52a and a joint portion 52b.
  • One emitter terminal E2 has a facing portion E2a and an extending portion E2b, respectively.
  • the facing portion E2a is arranged on the joint portion 52b so that the plate surfaces face each other.
  • the facing portion E2a is connected to the joint portion 52b via the solder 92d.
  • the extension portion E2b is connected to the facing portion E2a.
  • the extension portion E2b extends in the Y direction and away from the joint portion 52b. As shown in FIG.
  • the thickness tb2 is at least the thickness ta2 (tb2 ⁇ ta2) at least in the solder joint portion 122.
  • the thickness of the joint portion 52b is made substantially uniform over the entire area. Further, the thickness of the facing portion E2a is made substantially uniform over the entire area. The thickness tb2 of the facing portion E2a is thicker than the thickness ta2 of the joint portion 52b (tb2> ta2). The arrangement surface of the emitter terminal E2 in the joint portion 52b is made larger than that of the facing portion E2a.
  • the joint portion 52b has one convex portion 52c corresponding to the facing portion E2a. The convex portion 52c projects in the Y direction and away from the main body portion 52a.
  • An arrangement area 52d of the facing portion E2a is provided at the center of the joint portion 52b in the X direction.
  • the region facing the collector terminal C2 is a non-arranged region 52e in which the facing portion E2a is not arranged.
  • the non-arranged area 52e, the arranged area 52d, and the non-arranged area 52e are provided in this order.
  • the width Wa2 of the arrangement region 52d and the width of the convex portion 52c are the same.
  • the width Wa2 is the length in the X direction.
  • the width Wa2 is the length in the plate thickness direction of the joint portion 52b and in the direction orthogonal to the main flow direction of the current in the joint portion 52b.
  • the width Wa2 is a length in a direction orthogonal to the plate thickness direction and the extending direction of the joint portion 52b with respect to the main body portion 52a.
  • a part of the arrangement region 52d in the Y direction, specifically, a portion away from the main body 52a forms a convex portion 52c.
  • the arrangement area 52d has a substantially rectangular shape in a plane. In the XY plane, the solder 92d is connected to the central portion of the arrangement region 52d, and the solder 92d is not connected to the peripheral portion surrounding the central portion.
  • Solder 92d is connected to a part of the facing portion E2a.
  • the junction portion is provided at one end of the emitter terminal E2 in the longitudinal direction.
  • the width Wb2 of the facing portion E2a is narrower than the width Wa2 of the arrangement region 52d of the joint portion 52b. That is, the width Wa2 is wider than the width Wb2 (Wa2> Wb2).
  • the width Wb2 is the length in the X direction including the joint portion.
  • the width Wb2 is a length in a direction orthogonal to the plate thickness direction and the longitudinal direction of the emitter terminal E2.
  • the thickness tb1 of the facing portion E1a is set to be equal to or larger than the thickness ta1 of the joint portion 51b. Since the current easily flows through the facing portion E1a as compared with the configuration in which the facing portion E1a is thinner than the joint portion 51b, it is possible to suppress the local concentration of the current in the solder 91d. Therefore, the reliability of the semiconductor device 11 can be improved. Similarly, the thickness tb2 of the facing portion E2a is set to be equal to or greater than the thickness ta2 of the joint portion 52b. Therefore, the reliability of the semiconductor device 12 can be improved.
  • the arrangement surface of the emitter terminal E1 in the joint portion 51b is made larger than that of the facing portion E1a.
  • the width Wa1 of the arrangement region 51d is wider than the width Wb1 of the facing portion E1a.
  • the reliability of the semiconductor device 11 can be improved by satisfying the above-mentioned relationship of tb1 ⁇ ta1.
  • the arrangement surface of the emitter terminal E2 in the joint portion 52b is made larger than that of the facing portion E2a.
  • the width Wa2 of the arrangement area 52d is wider than the width Wb2 of the facing portion E2a.
  • the semiconductor devices 11 and 12 are provided with a plurality of corresponding semiconductor elements 31 and 32.
  • a plurality of semiconductor elements 31 are connected to the same main body 51a via solders 91b and 91c.
  • the reliability of the semiconductor device 11 can be improved by satisfying the above-mentioned relationship of tb1 ⁇ ta1.
  • a plurality of semiconductor elements 32 are connected to the same main body 52a via solders 92b and 92c.
  • the reliability of the semiconductor device 12 can be improved by satisfying the above-mentioned relationship of tb2 ⁇ ta2.
  • the number of emitter terminals E2 is smaller than the number of semiconductor elements 32.
  • the number of emitter terminals E2 is smaller than the number of collector terminals C2.
  • the semiconductor device 12 includes two semiconductor elements 32 and one emitter terminal E2. As described above, the reliability of the semiconductor device 11 is improved by satisfying the above-mentioned relationship of tb1 ⁇ ta1 while having a configuration in which the current tends to be locally concentrated on the emitter terminal E2, that is, the solder 92d of the solder joint portion 122. can do.
  • the thickness of the facing portion E1a of the emitter terminal E1 is made thicker than the thickness of the collector terminal C1.
  • the thickness of the facing portion E2a of the emitter terminal E2 is made thicker than the thickness of the collector terminal C2.
  • FIG. 38 shows the model used in the simulation.
  • FIG. 39 shows the simulation results.
  • the periphery of the solder joint 122 of the semiconductor device 12 was simplified and used as a model.
  • the main flow of current is indicated by a solid arrow.
  • FIG. 38 (a) the main flow direction of the current flowing through the joint portion 52b and the main flow direction of the current flowing through the emitter terminal E2 are the same. That is, the angle ⁇ formed by the current is 0 °.
  • is 90 °
  • FIG. 38 (c) ⁇ is 180 °.
  • the width of the solder joint portion 122 substantially coincides with the width Wb2 of the emitter terminal E2.
  • the width Wa2 was set to 13 mm and the width Wb2 was set to 10 mm. Further, the thickness ta2 of the joint portion 52b was set to 0.5 mm. Then, the thickness tb2 of the emitter terminal E2 was variously changed to obtain the maximum value of the current density at the solder joint portion 122.
  • the thickness tb2 is thicker than the thickness ta2 within a range of twice ⁇ having the lowest point as the apex. This range is represented by the following equation 7. (Equation 7) ta2 ⁇ tb2 ⁇ ta2 ⁇ ⁇ (2 ⁇ Wa2-Wb2) / Wb2 ⁇
  • the maximum value of the current density can be made smaller. That is, it is possible to effectively suppress the local concentration of the current in the solder joint portion 122.
  • the maximum value of the current density was shown at tb2 ⁇ ta2.
  • the thicker the thickness tb2 the smaller the maximum value of the current density.
  • the maximum value of the current density was shown at tb2 ⁇ ta2.
  • the thicker the thickness tb2 the smaller the maximum value of the current density.
  • the maximum value of the current density decreases as the thickness tb2 increases in the range of tb2 ⁇ ta2.
  • tb2> ta2 it is possible to effectively suppress the local concentration of the current. The same effect can be obtained with the semiconductor device 11.
  • the thicknesses of the opposing portions E1a and E2a of the emitter terminals E1 and E2 may be substantially equal to the thicknesses of the extending portions E1b and E2b.
  • the emitter terminals E1 and E2 may be configured to have the same total length and thickness.
  • the thickness of the facing portion E1a may be thicker than the thickness of the extending portion E1b.
  • the thickness of the extension portion E1b is thinner than the thickness ta1 of the joint portion 51b.
  • the facing portion E1a is thickened and the extending portion E1b is thinned.
  • the local concentration of the current can be suppressed without changing the connection condition with the bus bar or the like.
  • the cost can be reduced as compared with the configuration in which the total length has the same thickness. The same applies to the emitter terminal E2.
  • the semiconductor devices 11 and 12 according to the present embodiment are provided with at least a semiconductor element, a metal member having a main body portion and a joint portion electrically connected to the semiconductor element, and terminals solder-bonded to the joint portion. Good.
  • the semiconductor devices 11 and 12 are provided with two corresponding semiconductor elements 31 and 32, but the present invention is not limited to this. Only one semiconductor element 31 or 32 may be provided, or three or more semiconductor elements 31 or 32 may be provided. For example, as shown in FIG. 33, the four semiconductor elements 31 may be electrically connected to the same heat sinks 41 and 51.
  • the arrangement of the plurality of semiconductor elements 31 and 32 is not limited to the above example.
  • the configuration is not limited to the configuration in which all the semiconductor elements 31 and 32 are arranged side by side in the X direction. It can also be applied to a configuration in which a part of the semiconductor element 31 is arranged so as to be displaced in the Y direction with respect to the other semiconductor element 31. It can also be applied to a configuration in which a part of the semiconductor element 32 is arranged so as to be displaced in the Y direction with respect to the other semiconductor element 32.
  • the configuration shown in FIG. 34 may be used.
  • the semiconductor devices 11 and 12 include the sealing resin bodies 21 and 22, but the present invention is not limited to this.
  • the configuration may not include the sealing resin bodies 21 and 22.
  • the structures of the semiconductor devices 11 and 12 are not limited to the double-sided heat dissipation structure. It can also be applied to a single-sided heat dissipation structure. Further, the present invention is not limited to the switching element having a vertical structure, and can be applied to a switching element having a horizontal structure (for example, LDMOS).
  • the basic configurations of the semiconductor devices 11 and 12 of the present embodiment are the same as the configurations described in the preceding embodiments.
  • the semiconductor devices 11 and 12 include wiring members.
  • the wiring member is electrically connected to the semiconductor elements 31 and 32 to provide a wiring function.
  • the wiring member has a plurality of conductor portions and a joint portion formed between the two conductor portions.
  • the conductor portion includes at least one set of heat radiating portions arranged so as to sandwich the semiconductor elements 31 and 32, and a plurality of terminal portions connected to the heat radiating portion.
  • the heat sinks 41, 42, 51, 52 correspond to the heat radiating portion
  • the main terminals 71, 72 correspond to the terminal portions.
  • the solder joints 121 and 122 correspond to the joints
  • the solders 91d and 92d correspond to the joints.
  • the heat sinks 41, 42, 51, 52 and the main terminals 71, 72 correspond to the wiring members.
  • FIG. 41 shows the heat sinks 51 and 52 on the emitter side in the semiconductor devices 11 and 12 of the present embodiment.
  • FIG. 42 is an enlarged view of the heat sink 51.
  • FIG. 43 is a cross-sectional view of the semiconductor device 11 corresponding to the line XLIII-XLIII of FIG. 42.
  • the sealing resin body 21 is omitted for convenience.
  • the heat sinks 51 and 52 on the emitter side are provided with a structure for accommodating excess solder.
  • the heat sinks 51 and 52 correspond to the first conductor portion, and the emitter terminals E1 and E2 correspond to the second conductor portion.
  • the heat sink 51 has a low wet area 151a and a high wet area 151b on the surface facing the emitter terminal E1, that is, the mounting surface. In the plan views of FIGS. 41 and 42, hatching is applied to the low wet area for clarification.
  • the low wetting region 151a is a region having a lower wettability to solder than the high wetting region 151b.
  • the low-wetting region 151a is provided adjacent to the high-wetting region 151b, and the adjacency defines at least a part of the outer periphery of the high-wetting region 151b.
  • the low-wetting region 151a is a portion where the solder does not easily wet and spread at the time of joining, and the high-wetting region 151b is a portion where the solder easily wets and spreads.
  • the highly wet region 151b is a region connected to the overlapping region 151c, which is a region overlapping the junction forming region of the emitter terminal E1, and a region connected to the overlapping region 151c in a plan view in the Z direction, which is the plate thickness direction of the semiconductor element 31, and is an emitter. It has a non-overlapping region 151d, which is a region that does not overlap with the joint portion forming region of the terminal E1.
  • the junction forming region of the emitter terminal E1 is the facing portion E1a.
  • the solder 91d (not shown) is at least interposed between the facing regions E1a and the overlapping region 151c, and the joint 131 is mainly formed in the overlapping region 151c.
  • the highly wet region 151b including the overlapping region 151c and the non-overlapping region 151c is formed in the joint portion 51b of the heat sink 51.
  • the overlapping region 151c and the non-overlapping region 151c are surrounded by a low wetting region 151a.
  • the heat sink 52 forms a joint portion 121 with each of the two emitter terminals E1.
  • the heat sink 52 has two overlapping regions 151c.
  • Each of the overlapping regions 151c has a substantially rectangular shape with the X direction as the longitudinal direction.
  • the two overlapping regions 151c are aligned in the X direction.
  • the non-overlapping region 151d includes at least the accommodation region 151e.
  • the accommodating region 151e is connected to the overlapping region 151c and is a highly wet region 151b accommodating the excess solder 91d with respect to the joint portion 121.
  • the accommodation area 151e of the present embodiment is connected to two overlapping areas 151c. In the alignment direction of the two overlapping regions 151c, one end of the accommodating region 151e is connected to one of the overlapping regions 151c, and the other end of the accommodating region 151e is connected to the other one of the overlapping regions 151c.
  • one accommodation region 151e is provided as a common region with respect to the two overlapping regions 151c.
  • the non-overlapping region 151d further includes a fillet forming region 151f.
  • the fillet forming region 151f is also a highly wet region 151b connected to the overlapping region 151c.
  • the fillet forming region 151f is a region narrower than the accommodating region 151e provided so that the fillet of the solder 91d can be formed.
  • the fillet forming region 151f corresponds to a narrow region.
  • the accommodating area 151e is connected to one side of the overlapping area 151c, and the fillet forming area 151f is connected to the remaining three sides of the overlapping area 151c.
  • the fillet forming region 151f is connected to both sides in the Y direction and the outer side in the X direction, and the accommodating region 151e is connected to the inner side in the X direction.
  • the inside in the X direction is the opposite side of the two overlapping regions 151c, and the outside is the non-opposite side. In this way, the non-overlapping region 151d surrounds the overlapping region 151c.
  • the low-wetting region 151a is adjacent to the non-overlapping region 151d on the entire circumference so as to define the outer circumference of the non-overlapping region 151d.
  • the low-wetting region 151a is adjacent to the outer peripheral portion of the high-wetting region 151b in the accommodation region 151e over the entire area.
  • the highly wet region 151b including the two overlapping regions 151c and the accommodating region 151e is provided in a straight line along the X direction.
  • the width of the non-overlapping region 151d is the length in the direction in which the non-overlapping region 151d is connected to the overlapping region 151c, that is, in the alignment direction with the overlapping region 151c.
  • the width of the accommodation area 151e is the length in the X direction.
  • the width of the portions arranged in the X direction with respect to the overlapping region 151f is the length in the X direction.
  • the fillet forming region 151f has a width sufficient to form a fillet.
  • the accommodating region 151e has a sufficiently wide width as compared with the width of the fillet forming region 151f.
  • the accommodating region 151e has a width capable of accommodating a surplus portion of the solder 91d when the facing distance between the overlapping region 151c and the facing portion E1a is the narrowest in order to absorb the height variation of the semiconductor device 11.
  • the accommodating region 151e has a width capable of accommodating a surplus with respect to the joint portion 121 of the two overlapping regions 151c.
  • the heat sink 51 has a high wet area 151 g in addition to the high wet area 151 b described above.
  • the highly wet region 151b has an overlapping region 151h, which is a region where the terminals 61 overlap in a plan view, and a non-overlapping region 151i, which is a region continuous with the overlapping region 151h and is a region where the terminals 61 do not overlap.
  • the heat sink 51 has two highly wet areas 151 g corresponding to each of the two terminals 61 (semiconductor element 31).
  • the non-overlapping region 151i includes the accommodating region 151j and the fillet forming region 151k, similarly to the non-overlapping region 151d.
  • the accommodating area 151j is connected to the overlapping area 151h and accommodates the solder 91c overflowing from the area facing the overlapping area 151h and the terminal 61.
  • the accommodating region 151j is connected to one side of the overlapping region 151h forming a substantially rectangular plane, and the fillet forming region 151k is connected to the remaining three sides of the overlapping region 151h.
  • the fillet forming region 151k is connected to both sides in the X direction and one side in the Y direction, and the accommodating region 151j is connected to the remaining side in the Y direction.
  • the non-overlapping region 151i surrounds the overlapping region 151h.
  • the low wetting region 151a is adjacent to the non-overlapping region 151i on the entire circumference so as to define the outer circumference of the non-overlapping region 151i.
  • the low-wetting region 151a is adjacent to the outer peripheral portion of the high-wetting region 151b in the accommodation region 151j over the entire area.
  • the two highly wet areas 151 g each have a substantially rectangular shape in a plane.
  • the fillet forming region 151k is a region narrower than the accommodating region 151j.
  • the fillet forming region 151k has a width sufficient to form a fillet.
  • the accommodating region 151j has a sufficiently wide width as compared with the width of the fillet forming region 151k.
  • the accommodating region 151j has a width capable of accommodating a surplus portion of the solder 91c when the facing distance between the overlapping region 151h and the terminal 61 is the narrowest in order to absorb the height variation of the semiconductor device 11.
  • the low-wetting region 151a is provided on the entire surface of the mounting surface of the heat sink 51 except for the high-wetting region 151b and the two high-wetting regions 151g. Since the heat sink 52 has the same configuration as the heat sink 51, detailed description thereof will be omitted.
  • the heat sink 52 also has a low wet area 152a and high wet areas 152b and 152 g.
  • the low-wetting region 152a is provided on the entire surface of the portion excluding the high-wetting regions 152b and 152g.
  • the highly wetted region 152b includes an overlapping region 152c and a non-overlapping region 152d.
  • the highly wetted region 152g includes an overlapping region 152h and a non-overlapping region 152i.
  • the non-overlapping regions 152d and 152i include accommodating regions 152e and 152j (not shown) and fillet forming regions 152f and 152k.
  • the heat sink 52 has the same shape (common component) as the heat sink 51, and the patterning of the low wettability regions 151a and 152a is also the same. Unlike the heat sink 51, the heat sink 52 has only one overlapping region 152c with the facing portion E2a of the emitter terminal E2. The overlapping region 152c is provided near the center of the highly wet region 152b extending along the X direction.
  • FIG. 44 is an enlarged view of the region XLIV of FIG. 43.
  • the solder 91d is omitted for convenience.
  • the heat sink 51 will be described as an example.
  • the heat sink 51 has a base material 160 containing a metal, a metal film 161 provided on the surface of the base material 160, and an uneven oxide film 162.
  • the base material 160 forms a main part of the heat sink 51.
  • the base material 160 is formed by using a Cu-based material.
  • the metal film 161 is formed by including a material having a higher wettability to solder than the base material 160.
  • the metal film 161 is formed over the entire mounting surface of the heat sink 51.
  • the uneven oxide film 162 is locally formed on the mounting surface.
  • the uneven oxide film 162 is locally formed on the metal film 161 by irradiating the metal film 161 with a laser beam.
  • the metal film 161 is provided on the entire surface of the base material 160 except for the exposed surface, for example.
  • the metal film 161 has a base film containing Ni (nickel) as a main component and an upper ground film containing Au (gold) as a main component.
  • an electroless Ni plating film containing P (phosphorus) is used as the base film.
  • the upper ground film (Au) of the portion in contact with the solder diffuses into the solder during reflow.
  • the upper ground film (Au) of the portion of the metal film 161 on which the concave-convex oxide film 162 is formed is removed by irradiation with a laser beam when the concave-convex oxide film 162 is formed.
  • the concave-convex oxide film 162 is an oxide film containing Ni as a main component.
  • 80% is NI 2 O 3
  • 10% is NiO
  • 10% is Ni.
  • the uneven oxide film 162 is formed in the low wetting region 151a on the mounting surface of the heat sink 51.
  • the uneven oxide film 162 is not formed in the highly wet areas 151b and 151g.
  • the concave-convex oxide film 162 provides a low wetting region 151a.
  • the metal film 161 exposed from the concavo-convex oxide film 162 provides highly wet areas 151b and 151g.
  • Reference numeral 161a shown in FIG. 44 is a recess formed on the surface of the metal film 161.
  • the recess 161a is formed by irradiating a pulsed laser beam. One recess 161a is formed for each pulse.
  • the uneven oxide film 162 is formed by melting, vaporizing, and depositing the surface layer portion of the metal film 161 by irradiation with a laser beam.
  • the uneven oxide film 162 is an oxide film derived from the metal film 161.
  • the concave-convex oxide film 162 is a film of an oxide of a metal (Ni) as a main component of the metal film 161.
  • the uneven oxide film 162 is formed following the unevenness of the surface of the metal film 161 having the concave portions 161a. On the surface of the uneven oxide film 162, unevenness is formed at a pitch finer than the width of the concave portion 161a. That is, very fine unevenness (roughened portion) is formed.
  • the uneven oxide film 162 can be formed by, for example, the following manufacturing method. First, electroless Ni plating containing P (phosphorus) is applied to the base material 160, and then Au plating is applied to obtain a metal film 161. After the metal film 161 is formed, the mounting surface is irradiated with a pulsed laser beam to melt and evaporate the surface of the metal film 161.
  • Pulsed laser light energy density is large 100 J / cm 2 or less than 0 J / cm 2, the pulse width is adjusted to be equal to or less than 1 ⁇ seconds.
  • a YAG laser, YVO 4 laser such as a fiber laser with.
  • the energy density may be 1 J / cm 2 or more.
  • the metal film 161 can be processed even at about 5 J / cm 2, for example.
  • the laser light is irradiated to a plurality of positions in order.
  • a recess 161a is formed on the surface of the metal film 161.
  • the average thickness of the portion of the metal film 161 irradiated with the laser beam is thinner than the average thickness of the portion not irradiated with the laser beam.
  • the plurality of recesses 161a formed corresponding to the spots of the laser beam are continuous and form, for example, a scale.
  • the portion of the molten metal film 161 is solidified. Specifically, the molten and vaporized metal film 161 is vapor-deposited on the portion irradiated with the laser beam and the peripheral portion thereof. By depositing the molten and vaporized metal film 161 in this way, the uneven oxide film 162 is formed on the surface of the metal film 161. This makes it possible to prepare a heat sink 51 having a low wetting region 151a formed by the concave-convex oxide film 162 and a high-wetting region 151b and 151 g formed by the metal film 161 exposed from the concave-convex oxide film 162.
  • the heat sink 52 also has the same configuration as the heat sink 51.
  • the same manufacturing method as the heat sink 51 it is possible to prepare a heat sink 52 having a low wet area 152a formed by the uneven oxide film 162 and high wet areas 152b and 152 g formed by the metal film 161 exposed from the uneven oxide film 162.
  • the semiconductor devices 11 and 12 having the double-sided heat dissipation structure are sandwiched by the cooler from both sides in the Z direction. Therefore, high parallelism of the surfaces and high dimensional accuracy between the surfaces are required in the Z direction. Therefore, for the solders 91d and 92d, an amount capable of absorbing the height variation of the semiconductor devices 11 and 12 is arranged. That is, a large amount of solder 91d and 92d are arranged. Then, at the time of 2nd reflow, a load is applied in the Z direction so that the heights of the semiconductor devices 11 and 12 become predetermined heights. The solders 91d and 92d absorb height variations due to dimensional tolerances and assembly tolerances of the elements constituting the semiconductor devices 11 and 12.
  • the total amount of the solder 91d is required to make the height of the semiconductor device 11 a predetermined height
  • the total amount of the solder 91d is in the facing region of the facing portion E1a and the overlapping region 151c, and the capillary phenomenon and the surface surface. It stays due to tension.
  • an external force exceeding the force held between the facing regions such as capillary action and surface tension is applied, so that a part of the solder 91d is removed from the facing region. Overflow.
  • the accommodating area 151e which is the highly wet area 151b, is connected to the overlapping area 151c. Therefore, the excess solder 91d tends to wet and spread from the overlapping region 151c to the accommodating region 151e as shown by the white arrows in FIG. 45.
  • the white arrows in FIG. 45 indicate the flow direction (overflow direction) of the excess solder.
  • the excess solder 91d is restricted from spreading by the low wetting region 151a.
  • the low wet area 151a adjacent to the high wet area 151b promotes the wet spread to the accommodation area 151e and / or suppresses the wet spread to the outside of the accommodation area 151e. From the above, as shown in FIG.
  • FIG. 46 is a cross-sectional view of the semiconductor device 11 corresponding to the XLVI-XLVI line of FIG. 42.
  • FIG. 46 shows a state in which the solder 91d has overflowed.
  • the excess solder 92d can be accommodated in the accommodating area 152e without providing the groove.
  • FIG. 47 is a cross-sectional view of the semiconductor device 11 corresponding to the XLVII-XLVII line of FIG. 42.
  • the sealing resin body 21 is omitted for convenience.
  • FIG. 47 shows this example (an example of this embodiment) and a reference example. Since the potentials of the heat sink 51 and the collector terminal C1 are different, it is necessary to secure a predetermined insulation distance DI in the sealing resin body 21 between them. When the bent portion of the collector terminal C1 is moved away from the heat sink 51 in the Y direction, the insulation distance DI can be secured, but on the other hand, the physique of the sealing resin body 21 and the physique of the semiconductor device 11 become large. Therefore, it is preferable to arrange the collector terminal C1 so that the distance between the bent portion and the end portion of the heat sink 51 (joint portion 51b) is the insulation distance DI.
  • the clearance from the end portion of the heat sink 51 to the overlapping region 151c becomes CL1.
  • the clearance up to the overlapping region 151cr is CL2.
  • Clearance CL2 is longer than clearance CL1.
  • the clearance CL1 is, for example, about half the length of the clearance CL2. Therefore, according to the present embodiment, it is possible to reduce the size of the semiconductor device 11 in the extending direction of the emitter terminal E1 while ensuring the insulation distance DI.
  • the semiconductor device 12 (heat sink 52) has the same configuration as the semiconductor device 11 (heat sink 51).
  • the elements that are the same as or related to the elements of the present embodiment are shown by adding r to the end of the reference numerals of the present embodiment. The same applies to the following reference examples.
  • the accommodating area 151e overlaps and is connected to only a part of the overlapping area 151c.
  • the low-wetting region 151a is adjacent to the outer periphery of the high-wetting region 151b on both sides in the Y direction orthogonal to the arrangement direction (X direction) of the overlapping region 151c and the accommodating region 151e, and sandwiches the overlapping region 151c and the accommodating region 151e. I'm out.
  • the low wetting regions 151a located on both sides function as a guide for the flow of excess solder 91d.
  • the excess solder 91d easily wets and spreads from the overlapping region 151c to the accommodating region 151e. Further, the low wetting regions 151a on both sides make it easy to hold the excess solder 91d in the accommodating region 151e. The same applies to the heat sink 52.
  • the low wet area 151a is adjacent to the outer peripheral portion of the high wet area 151b in the accommodation area 151e over the entire area.
  • the solder 91d it is possible to prevent the solder 91d from getting wet and spreading outside the accommodation area 151e. That is, the surplus solder 91d can be more reliably held in the accommodating area 151e.
  • the heat sink 52 the same applies to the heat sink 52.
  • the low wet area 151a is adjacent to the outer periphery of the high wet area 151b over the entire area.
  • the excess solder 91d is surely wetted and spread in the accommodating area 151e and is held in the accommodating area 151e.
  • FIG. 48 shows a reference example.
  • grooves 151r and 152r for accommodating excess solder are provided in the joint portions 51br and 52br of the heat sinks 51r and 52r.
  • the heat sink 51r has grooves 151r near both ends of the joint portion 51br in the X direction.
  • the heat sink 52r has a groove 151 near the center of the joint portion 52br in the X direction. Therefore, the heat sinks 51r and 52r cannot be shared.
  • the heat sinks 51 and 52 have the same shape, and the wet patterns of the low wet areas 151a and 152a and the high wet areas 151b and 152b are also the same. That is, the irradiation pattern of the laser beam forming the concave-convex oxide film 162 is also the same.
  • the semiconductor device 11 in the highly wet region 151b, the vicinity of both ends is the overlapping region 151c, and the space between the two overlapping regions 151c is the accommodating region 151e.
  • the semiconductor device 12 in the highly wet region 152b, the vicinity of the center is the overlapping region 152c, and both sides are the accommodation regions 152e.
  • the metal film 161 having high wettability to solder is locally irradiated with a laser beam to provide an uneven oxide film 162 to form low wettability regions 151a and 152a.
  • the oxide film (concave and convex oxide film 162) has lower wettability to solder than the metal film 161. Further, since the surface has fine irregularities, the contact area with the solder becomes small, and a part of the solder becomes spherical due to surface tension. That is, the contact angle becomes large. Therefore, the wettability to the solder is low. From the above, the uneven oxide film 162 is suitable for the low wetting regions 151a and 152a. Since the laser beam is used, patterning of the low-wetting regions 151a and 152a and the high-wetting regions 151b and 152b is easy.
  • a groove for accommodating the excess solder 91c and 92c may be provided in the portion forming the solder joint portions 131 and 132. If the arrangements of the semiconductor elements 31 and 32 are the same in the semiconductor devices 11 and 12, the shape and arrangement of the grooves can be the same. In the present embodiment, the same excess solder accommodating structure as the solder joints 121 and 122 is applied to the portions forming the solder joints 131 and 132. Therefore, the surplus solders 91c and 92c can be accommodated in the accommodating areas 151j and 152j without providing the grooves. In the heat sinks 51 and 52, the press working to form the groove can be completely eliminated.
  • the non-overlapping region 151d may include at least the accommodation region 151e.
  • the heat sink 51 may have a configuration in which the fillet forming region 151f is excluded from the non-overlapping region 151d.
  • the highly wetted region 151b has only an overlapping region 151c and an accommodating region 151e. Even with such a configuration, the same effect as that of the above embodiment can be obtained.
  • the highly wet region 151g on the terminal 61 side also has a configuration in which the fillet forming region 151k is similarly excluded. The same applies to the heat sink 52.
  • the low wet area 151a may be adjacent to at least a part of the high wet area 151b. As shown in FIG. 50, the low wetting region 151a may be provided only on both sides in the Y direction orthogonal to the alignment direction (X direction) of the overlapping region 151c and the accommodating region 151e. The low wetting region 151a extends over the overlapping region 151c and the accommodating region 151e on both sides in the Y direction, sandwiching the overlapping region 151c and the accommodating region 151e. In FIG. 50, as in FIG. 49, the low wetting region 151a is continuously adjacent to the overlapping region 151c and the accommodating region 151e. The same applies to the heat sink 52.
  • FIG. 52 is a cross-sectional view of the semiconductor device 11 corresponding to the LII-LII line of FIG. 51, and shows a state in which the solder 91d overflows as in FIG. 46. According to this modification, the patterns of the low-wetting region and the high-wetting region are different between the heat sinks 51 and 52.
  • the same effect as the above-described configuration can be obtained.
  • the heat sinks 51 and 52 having the same shape can be used because the irradiation pattern of the laser beam may be switched.
  • the accommodation area 151e may be connected to at least a part of the overlapping area 151c.
  • An example is shown in which the accommodation region 151e is connected to only one of the four sides of the overlapping region 151c, but the present invention is not limited to this.
  • the accommodation region 151e may be provided so as to be continuous with the two sides of the overlapping region 151c forming a substantially rectangular plane. According to this, the excess solder 91d can be released to the inside in the X direction and one side in the Y direction. The volume for accommodating the excess solder 91d can be increased.
  • the accommodating area 151e may be connected to the three sides of the overlapping area 151c.
  • the accommodating area 151e may be connected to the four sides of the overlapping area 151c.
  • the accommodating area 151e may be provided in an annular shape so as to surround the overlapping area 151c.
  • the accommodating area 151e forms the entire outer circumference of the highly wet area 151b.
  • the accommodation regions 151e connected to different sides with respect to the common overlapping region 151c may be separated from each other. The same applies to the heat sink 52.
  • a concave-convex oxide film 162 may be provided on the side surface of the facing portion E1a of the emitter terminal E1.
  • the uneven oxide film 162 forms a low wetting region. Therefore, it is possible to prevent the solder 91d from spreading on the side surface side of the emitter terminal E1.
  • the high wetting region 151b may be defined by the low wetting region 151a provided on the mounting surface and the side surface of the heat sink 51.
  • the mounting surface can be widely utilized as the high-wetting region 151b. Therefore, it is possible to reduce the size of the heat sink 51.
  • FIG. 54 shows an example in which the concave-convex oxide film 162 is provided on each of the side surface of the emitter terminal E1 and the side surface of the heat sink 51, only one of them may be provided. The same applies to the heat sink 52.
  • the number of semiconductor elements sandwiched by a set of heat radiating parts is not particularly limited.
  • the above-mentioned excess solder accommodating structure can be applied to a configuration in which only one semiconductor element 31 is arranged between the heat sinks 41 and 51 and only one semiconductor element 32 is arranged between the heat sinks 42 and 52. .. It can also be applied to a configuration in which three or more semiconductor elements 31 and 32 are arranged.
  • the above-mentioned structure for accommodating excess solder is not limited to the semiconductor device 11 constituting the upper arm 7U and the semiconductor device 12 constituting the lower arm 7L. That is, the application is not limited to the semiconductor device constituting one arm.
  • FIGS. 55, 56, and 57 it may be applied to a semiconductor device 10A provided with semiconductor elements 31 and 32 constituting the upper and lower arms 7.
  • One semiconductor device 10A constitutes an upper and lower arm 7 for one phase.
  • the sealing resin body 20 is omitted from the semiconductor device 10A shown in FIG. 55.
  • FIG. 57 is a cross-sectional view taken along the line LVII-LVII of FIG. 55.
  • the semiconductor device 10A includes a semiconductor element 31 on the upper arm 7U side and a semiconductor element 32 on the lower arm 7L side.
  • a heat sink 41 is solder-bonded to the collector electrode 31c of the semiconductor element 31.
  • a heat sink 51 is solder-bonded to the emitter electrode 31e of the semiconductor element 31 via the terminal 61.
  • a heat sink 42 is solder-bonded to the collector electrode 32c of the semiconductor element 32.
  • a heat sink 52 is solder-bonded to the emitter electrode 32e of the semiconductor element 31 via the terminal 62.
  • the heat sink 42 has a main body portion to which the semiconductor element 32 is connected and a joint portion 42e connected to the main body portion.
  • the heat sink 51 has a main body portion to which the semiconductor element 31 is connected and a joint portion 51f connected to the main body portion.
  • the joint portions 42e and 51f are arranged so as to face each other in the Z direction, and are connected via the solder 93.
  • the heat sink 52 has a joint portion 52b.
  • the sealing resin body 20 has one surface 20a and a back surface 20b which is the opposite surface to the one surface 20a in the Z direction.
  • the heat sinks 41 and 42 are exposed from the sealing resin body 20 with the heat radiating surface opposite to the mounting surface substantially flush with the surface 20a.
  • the heat sinks 51 and 52 are exposed from the sealing resin body 20 with the heat radiating surface opposite to the mounting surface substantially flush with the back surface 20b.
  • the semiconductor device 10A has one collector terminal C1, one emitter terminal E2, and one output terminal OP1 as main terminals 70.
  • the collector terminal C1 is connected to the heat sink 41, and the output terminal OP1 is connected to the heat sink 42.
  • the emitter terminal E2 is solder-bonded to the joint portion 52b of the heat sink 52.
  • low wettability regions 151a and 152a are locally provided on the mounting surface.
  • the low wetting region 151a is also provided in the joint portion 51f.
  • the joint portion 51f has a low wetting region 151a and a high wetting region 151b on the surface on the mounting surface side.
  • the highly wet region 151b has an overlapping region 151c with the joint portion 42e and an accommodating region 151e.
  • the low-wetting region 151a surrounds the high-wetting region 151b and defines the outer circumference of the high-wetting region 151b.
  • the excess solder 93 overflowing from the facing regions of the joints 42e and 51f wets and spreads from the overlapping region 151c to the accommodation region 151e in order to absorb the height variation. Then, the excess solder 93 is held in the accommodating area 151e.
  • the joint portions 42e and 51f are terminal portions provided in the semiconductor device 10A. In this way, it can also be applied to a joint portion between terminal portions that electrically connects the upper arm 7U and the lower arm 7L.
  • the above-mentioned structure for accommodating excess solder can also be applied to the solder joint portion between the emitter terminal E2 and the heat sink 52 (joint portion 52b).
  • 55 to 57 show an example in which joint portions 42e and 51f are provided on the heat sinks 42 and 51, respectively, and the joint portions 42e and 51f are solder-bonded to each other, but the present invention is not limited to this.
  • the above-mentioned structure for accommodating excess solder may be applied in a configuration in which a joint portion (terminal portion) is provided only on one of the heat sinks 42 and 51.
  • a plurality of semiconductor elements 31 may be arranged in parallel with each other between the heat sinks 41 and 51.
  • the above-mentioned structure for accommodating excess solder may be applied to the solder joints of the heat sinks 51 and 52 with the terminals 61 and 62. The same applies to the semiconductor element 32.
  • heat sinks 41, 42, 51, and 52 are shown as wiring members that are electrically connected to the semiconductor elements 31, 32, but the present invention is not limited to these.
  • a wiring board in which a conductor made of Cu or the like is arranged as an insulator such as ceramics may be adopted.
  • the semiconductor device 10A shown in FIGS. 58 and 59 includes wiring boards 40 and 50 arranged so as to sandwich the semiconductor elements 31 and 32. DBC (Direct Bonded Copper) boards are used as the wiring boards 40 and 50.
  • the wiring boards 40 and 50 have insulators 40a and 50a and conductors 40b and 50b.
  • the conductors 40b and 50b are arranged on at least the surface (mounting surface) on the semiconductor elements 31 and 32 side in the Z direction, in other words, in the plate thickness direction of the insulator. Here, it is also arranged on the back surface of the mounting surface.
  • FIG. 59 is a plan view of FIG. 58 as viewed from the X4 direction, and the periphery of the solder joint portion between the main terminal and the wiring board is enlarged.
  • the wiring board 40 has a plurality of electrically separated conductors 40b on the mounting surface.
  • the collector electrode 31c of the semiconductor element 31 is connected to one of the conductors 40b, and the collector electrode 32c of the semiconductor element 32 is connected to the other one of the conductors 40b.
  • the wiring board 50 also has a plurality of electrically separated conductors 50b on the mounting surface.
  • the emitter electrode 31e of the semiconductor element 31 is electrically connected to one of the conductors 50b, and the emitter electrode 32e of the semiconductor element 32 is electrically connected to the other conductor 50b.
  • a solder joint portion 123 is formed between the collector terminal C1 and the conductor 40b to which the semiconductor element 31 is connected.
  • a solder joint portion 124 is formed between the output terminal OP1 and the conductor 40b to which the semiconductor element 32 is connected.
  • a solder joint portion 122 is formed between the emitter terminal E2 and the conductor 50b to which the semiconductor element 32 is connected.
  • a solder joint 125 is formed between the conductor 50b to which the semiconductor element 31 is connected and the conductor 40b to which the semiconductor element 32 is connected.
  • the semiconductor device 10A has four solder joints 122 to 125 as joints formed between the two conductors.
  • FIG. 60 is a plan view showing the periphery of the solder joint portion 124.
  • the conductor 40b of the wiring board 40 has a low wetting region 142a and a high wetting region 142b on the mounting surface.
  • the low-wetting region 142a corresponds to the low-wetting regions 151a and 152a shown above, and the high-wetting region 142b corresponds to the high-wetting regions 151b and 152b.
  • the highly wetted region 142b has an overlapping region 142c that overlaps with the joint forming region of the output terminal OP1 and a non-overlapping region 142d that is continuous with the overlapping region 142c.
  • the non-overlapping region 142d includes only the containment region 142e.
  • the accommodating region 142a is continuous with only one side of the overlapping region 142c forming a substantially rectangular plane.
  • the low-wetting region 142a surrounds the overlapping region 142c and the accommodating region 142e, and is adjacent to the outer periphery of the high-wetting region 142b over the entire area.
  • the excess solder wets and spreads from the overlapping region 142c to the accommodating region 142e and is held in the accommodating region 142e.
  • solder joint portion 124 Although an example of applying the above-mentioned excess solder accommodating structure to the solder joint portion 124 has been shown, it can also be applied to other solder joint portions 122, 123, 125.
  • the above-mentioned excess solder accommodating structure may be applied to all four solder joints 122 to 125, or may be applied to at least one of the four solder joints 122 to 125.
  • wiring boards 40 and 50 such as a DBC board may be used in the semiconductor device (for example, semiconductor devices 11 and 12) constituting one arm.
  • wiring boards 40, 50 such as a DBC board may be used instead of the heat sinks 41, 42, 51, 52.
  • As a wiring member a combination of a heat sink and a wiring board is also possible.
  • the present invention is not limited to this.
  • the high-wetting regions 142b, 151b, 152b may be masked and then subjected to thermal oxidation treatment to provide an oxide film on the low-wetting regions 142a, 151a, 152a.
  • the portion provided with the oxide film has lower wettability with respect to the bonding material (solder) than the portion not provided with the oxide film.
  • the resin-deposited portions may be designated as low-wetting regions 142a, 151a, 152a, and the non-deposited portions may be designated as high-wetting regions 142b, 151b, 152b.
  • the adhesion to the sealing resin bodies 20, 21 and 22 can be improved by the primer effect.
  • an inorganic material having low wettability to solder a material that repels solder
  • the rough-plated portion may be the low-wetting region 142a, 151a, 152a
  • the non-rough-plated portion may be the high-wetting region 142b, 151b, 152b.
  • the low-wetting regions 142a, 151a, 152a are selectively treated to provide a film having low wettability, but the high-wetting regions 142b, 151b, 152b may be selectively treated. ..
  • a film having high wettability to the bonding material (for example, a plating film) may be formed in the high wetting areas 142b, 151b, 152b of the mounting surface, and a film having high wettability may not be formed in the low wetting areas 142a, 151a, 152a. ..
  • the bonding material is not limited to solder. Sintered bonding materials such as Ag and Cu, and conductive adhesives such as Ag paste may be used.
  • FIG. 61 shows the semiconductor device 11 of this embodiment.
  • FIG. 61 corresponds to FIG.
  • the basic configuration of the semiconductor device 11 is the same as the configuration described in the prior embodiment.
  • the semiconductor device 11 includes two semiconductor elements 31 (31a, 31b) arranged side by side in the X direction.
  • the semiconductor element 31 has five pads 31p on the forming surface of the emitter electrode 31e (not shown).
  • the five pads 31p are arranged along the X direction.
  • the semiconductor element 31 includes, as pads 31p, a cathode pad P1 for the cathode potential of the temperature-sensitive diode, an anode pad P2 for the anode potential, a gate pad P3 for the gate electrode, a current sense pad P4 for the current sense, and an emitter electrode 31e.
  • Each has a Kelvin emitter pad P5 for detecting the potential of the above.
  • the pads 31p of the semiconductor element 31a on which the switching element Q1a is formed are arranged in the order of the cathode pad P1, the anode pad P2, the gate pad P3, the current sense pad P4, and the Kelvin emitter pad P5 when viewed from the X5 direction.
  • the pads 31p of the semiconductor element 31b on which the switching element Q1b is formed are arranged in the order of the Kelvin emitter pad P5, the current sense pad P4, the gate pad P3, the anode pad P2, and the cathode pad P1 when viewed from the X5 direction.
  • the arrow of the alternate long and short dash line shown in FIG. 61 indicates the path of the current (main current) flowing through the main terminal 71.
  • the main current path is formed between the collector terminal C1 and the emitter terminal E1 via the semiconductor element 31.
  • the solid arrow indicates the path of the current (signal current) flowing through the signal terminal 81.
  • the signal current path is formed between the signal terminal 81 connected to the gate pad P3 and the signal terminal 81 connected to the Kelvin emitter pad P5 via the semiconductor element 31.
  • the circuit through which the main current flows and the circuit through which the signal current flows are magnetically coupled.
  • the two semiconductor elements 31a and 31b are arranged line-symmetrically with respect to the axis AX1. Further, the collector terminal C1 and the emitter terminal E1 are arranged line-symmetrically with the axis AX1 as the axis of symmetry. Therefore, the path of the main current on the semiconductor element 31a side and the path of the main current on the semiconductor element 31b side are substantially axisymmetric with the axis AX1 as the axis of symmetry.
  • the arrangement order of the pads 31p in the two semiconductor elements 31 is line-symmetrical with respect to the axis AX1.
  • the signal terminal 81 is also line-symmetrically arranged with respect to the axis AX1. Therefore, the signal current path on the semiconductor element 31a side and the signal current path on the semiconductor element 31b side are substantially axisymmetric with the axis AX1 as the axis of symmetry. Therefore, the magnetic coupling is also substantially line-symmetrical between the semiconductor element 31a side and the semiconductor element 31b side.
  • the pads 31p are arranged in the same order in the two semiconductor elements 31a and 31b, the magnetic coupling becomes asymmetric.
  • the symmetry of the magnetic coupling of the signal current circuit that is, the symmetry of the mutual inductance is also taken into consideration, so that the imbalance of the AC current can be suppressed more effectively.
  • the wiring member is characterized by the shape of the heat radiating portion arranged so as to sandwich the semiconductor element.
  • the shape of the heat dissipation part is devised to increase the wiring inductance on the emitter side.
  • FIG. 62 is an equivalent circuit diagram of the semiconductor device 12 constituting the lower arm 7L.
  • the semiconductor device 12 includes two semiconductor elements 32 (32a, 32b) as in the previous embodiment.
  • the wiring inductance Le21 exists between the semiconductor element 32a and the emitter terminal E2
  • the wiring inductance Le22 exists between the semiconductor element 32b and the emitter terminal E2. Therefore, the emitter potential fluctuates (rises) during switching, that is, when AC current flows.
  • the switching speed of the switching element Q2a is dI1 / dt
  • the switching speed of the switching element Q2b is dI2 / dt.
  • the amount of fluctuation ⁇ Ve of the emitter potential at the time of switching is equal to the multiplication value of the switching speed and the wiring inductance.
  • the wiring inductances Le21 and Le22 are equal to each other. Due to the deviation of the switching speeds dI1 / dt and dI2 / dt, there is a difference in the fluctuation amount ⁇ Ve. When the values of the wiring inductances Le21 and Le22 are large, the difference in the fluctuation amount ⁇ Ve becomes large, which affects the gate voltage Vge. For example, when dI1 / dt> dI2 / dt, the fluctuation amount ⁇ Ve1 becomes larger than the fluctuation amount ⁇ Ve2, and the gate voltage Vge1 becomes lower than the gate voltage Vge2. In this way, the gate voltage Vge shifts to the side that suppresses the imbalance (bias) of the AC current. Therefore, the imbalance of AC current can be suppressed.
  • the value of the fluctuation amount ⁇ Ve becomes small. Therefore, even if the switching speeds dI1 / dt and dI2 / dt deviate from each other, the difference between the fluctuation amounts ⁇ Ve1 and ⁇ Ve2 is small. Therefore, the effect of suppressing imbalance due to the wiring inductance is weakened. In other words, if the values of the wiring inductances Le21 and Le22 are small, the AC current is likely to be unbalanced due to the deviation of the switching speeds dI1 / dt and dI2 / dt, that is, the difference in element characteristics.
  • FIG. 63 shows the heat sink 52 and the emitter terminal E2 on the emitter side in the semiconductor device 12 according to the present embodiment.
  • FIG. 64 shows the heat sink 42 and the collector terminal C2 on the collector side.
  • the configuration of the collector terminal C2 and the emitter terminal E2 is the same as the configuration described in the prior embodiment (see, for example, FIG. 12).
  • the arrangement of the two semiconductor elements 32 is the same.
  • the basic configuration of the heat sinks 42 and 52 is the same.
  • the heat sink 52 of this embodiment has slits 52s.
  • the slit 52s penetrates the heat sink 52 in the Z direction and divides the main body 52a into two islands 52i.
  • One of the islands 52i is a mounting area for the semiconductor element 32a.
  • the other one of the islands 52i is a mounting area for the semiconductor element 32b.
  • the main body 52a has a substantially rectangular shape in a plane, and has a first long side on the side where the emitter terminals E2 are connected and a second long side located opposite to the first long side.
  • the slit 52s opens in the second long side of the main body 52a and extends in the Y direction toward the first long side.
  • the slit 52s straddles the facing regions 32t of the two semiconductor elements 32 in the Y direction. That is, the slit 52s extends in the Y direction to a position closer to the emitter terminal E2 (opposing portion E2a) than the semiconductor element 32.
  • the slit 52s is provided substantially in the center of the main body 52a (heat sink 52) in the X direction.
  • the two islands 52i have a line-symmetrical arrangement with the axis AX2 as the axis of symmetry.
  • the slits 52s are sometimes referred to as notches and separation regions.
  • the heat sink 42 of this embodiment has slits 42s.
  • the slit 42s penetrates the heat sink 42 in the Z direction and is divided into two islands 42i.
  • One of the islands 42i is a mounting area for the semiconductor element 32a.
  • the other one of the islands 42i is a mounting area for the semiconductor element 32b.
  • the heat sink 42 has a substantially rectangular shape in a plane, and has a first long side on the side where the collector terminals C2 are connected and a second long side located opposite to the first long side.
  • the slit 42s opens on the first long side and extends in the Y direction toward the second long side.
  • the slit 42s is open on the side opposite to the opening end of the slit 52s.
  • the slit 42s straddles the facing regions 32t of the two semiconductor elements 32 in the Y direction. That is, the slit 42s extends to a position closer to the second long side than the semiconductor element 32 in the Y direction.
  • the slit 42s is provided substantially in the center of the heat sink 42 in the X direction.
  • the two islands 42i have a line-symmetrical arrangement with the axis AX2 as the axis of symmetry.
  • the slits 42s are sometimes referred to as notches and separation regions.
  • the broken line shown in FIG. 63 indicates the current path. Due to the presence of the slit 52s, the current path on the semiconductor element 32a side and the current path on the semiconductor element 32b side merge at the extension destination of the slit 52s. As described above, since the heat sink 52 has the slits 52s, the distance (wiring length) from the semiconductor elements 32a and 32b to the confluence of the two current paths can be made longer than in the configuration without the slits 52s. .. In other words, the confluence can be moved away from the configuration without the slit 52s. Thereby, the values of the wiring inductances Le21 and Le22 can be increased. As a result, the imbalance of AC current due to the difference in element characteristics can be suppressed.
  • the slit 52s straddles the facing region 32t of the semiconductor element 32. Therefore, the merging portion is not formed in the facing region 32t. As a result, the wiring length to the confluence can be further increased. Therefore, the values of the wiring inductances Le21 and Le22 can be further increased, and the effect of suppressing the current imbalance described above can be enhanced.
  • the heat sink 52 including the slit 52s is line-symmetric with respect to the axis AX2.
  • the current path on the semiconductor element 32a side and the current path on the semiconductor element 32b side become line-symmetrical while providing the slit 52s.
  • the wiring inductance Le21 and the wiring inductance Le22 become substantially equal. Therefore, the imbalance of AC current can be suppressed.
  • the heat sink 52 is divided into two islands 52i by the slits 52s.
  • a plurality of islands 52i are formed in one metal plate or conductor. Therefore, the configuration can be simplified.
  • FIG. 65 shows a reference example having no slits 42s and 52s.
  • the solid arrow indicates the current path between the collector terminal C2r and the semiconductor element 32r.
  • the dashed arrow indicates the current path between the emitter terminal E2r and the semiconductor element 32r.
  • the current flowing between the collector terminal C21r and the semiconductor element 32br and the current flowing between the semiconductor element 32br and the emitter terminal E2r have components in opposite directions to each other.
  • the current flowing between the collector terminal C22r and the semiconductor element 32ar and the current flowing between the semiconductor element 32ar and the emitter terminal E2r have components in opposite directions to each other.
  • the current flowing between the collector terminal C2r and the semiconductor element 32r, which are in a distant positional relationship in the X direction, and the current flowing between the semiconductor element 32r and the emitter terminal E2r have components in opposite directions. .. Therefore, the wiring inductance becomes small due to the cancellation of the magnetic flux.
  • the current path between the semiconductor element 32 and the emitter terminal E2 becomes a path different from the current path shown in FIG. 65.
  • the magnetic flux cancellation can be reduced.
  • mutual inductance acts on the positive side.
  • the values of the wiring inductances Le21 and Le22 can be increased, and the imbalance of the AC current due to the difference in element characteristics can be suppressed.
  • the heat sink 42 has slits 42s. Therefore, a current path shown by a solid arrow in FIG. 64 is formed between the collector terminal C2 and the semiconductor element 32. A current path that bypasses the slit 42s is formed between the collector terminal C22 and the semiconductor element 32a. Similarly, a current path that bypasses the slit 42s is formed between the collector terminal C21 and the semiconductor element 32b.
  • the components of the current flowing between the semiconductor element 32 and the collector terminal C2 and the current flowing between the semiconductor element 32 and the emitter terminal E2, which are opposite to each other, are compared with the configuration in which the slit 42s is not provided. Can be reduced. As a result, the values of the wiring inductances Le21 and Le22 can be increased, and the imbalance of the AC current due to the difference in element characteristics can be suppressed.
  • the slit 42s straddles the facing region 32t of the semiconductor element 32.
  • the current path formed between the collector terminal C22 and the semiconductor element 32a has a substantially J-shape.
  • the current path formed between the collector terminal C21 and the semiconductor element 32b also has a substantially J shape. Therefore, the reverse current component can be further reduced.
  • the values of the wiring inductances Le21 and Le22 can be further increased, and the effect of suppressing the current imbalance described above can be enhanced.
  • the heat sink 42 including the slit 42s is axisymmetric with respect to the axis AX2.
  • the current path on the semiconductor element 32a side and the current path on the semiconductor element 32b side become line-symmetrical while providing the slit 42s.
  • the wiring inductance Lc21 and the wiring inductance Lc22 become substantially equal. Therefore, the imbalance of AC current can be suppressed.
  • the heat sink 42 is divided into two islands 42i by the slits 42s.
  • a plurality of islands 42i are formed in one metal plate or conductor. Therefore, the configuration can be simplified.
  • slits 42s and 52s are provided in the heat sinks 42 and 52, respectively, is shown, but the present invention is not limited to this.
  • the slit 42s may be provided only in the heat sink 42, and the slit 52s may not be provided in the heat sink 52.
  • the slit 52s may be provided only in the heat sink 52, and the slit 42s may not be provided in the heat sink 42.
  • slits 42s and 52s in the semiconductor device 12 has been shown, but the present invention is not limited to this.
  • the current path when the slit is not provided is the same as that of the reference example shown in FIG. 65. Therefore, in the semiconductor device 11, slits may be provided in at least one of the heat sinks 41 and 51.
  • the values of the wiring inductances Le11 and Le12 can be increased by the above-mentioned effect of moving the merging portion away and / or the effect of reducing the magnetic flux cancellation. As a result, the imbalance of AC current due to the difference in element characteristics can be suppressed.
  • a slit may be provided in the heat sink 41.
  • This slit opens on the long side opposite to the side where the collector terminals C1 are connected.
  • the heat sink 51 may be provided with a slit. The slit opens on the long side where the two emitter terminals E1 are connected.
  • the configuration may include two heat sinks 52. That is, the heat sink 52 may be completely divided into two regions. It is possible to obtain the same effect as the configuration in which the slits 52s are provided.
  • the heat sink 52 has islands 52i, respectively. A predetermined gap is provided between the two heat sinks 52 in the X direction.
  • the two heat sinks 52 are electrically connected via a connecting member.
  • the emitter terminal E2 also serves as a connecting member.
  • the opposing portion E2a of the emitter terminal E2 bridges the two heat sinks 52. As a result, the number of parts can be reduced.
  • the configuration may include two heat sinks 42. That is, the heat sink 42 may be completely divided into two regions. It is possible to obtain the same effect as the configuration in which the slits 42s are provided.
  • Each of the heat sinks 42 has an island 42i. A predetermined gap is provided between the two heat sinks 42 in the X direction.
  • the connecting member 43 electrically connected via the connecting member 43 bridges the two heat sinks 42.
  • the two heat sinks 52 may be electrically connected by using a connecting member different from the emitter terminal E2, and the emitter terminal E2 may be connected to this connecting member.
  • the divided structure of the heat sinks 41 and 51 may be adopted.
  • wiring boards 40, 50 such as a DBC board may be used instead of the heat sinks 41, 42, 51, 52. 68, 69, and 70 are examples thereof.
  • FIG. 68 is a cross-sectional view of the semiconductor device corresponding to the LXVIII-LXVIII line of FIGS. 69 and 70. In FIG. 68, the sealing resin body 22 and the signal terminal 82 are omitted for convenience.
  • FIG. 69 shows the wiring board 40 and the collector terminal C2 on the collector side
  • FIG. 70 shows the wiring board 50 and the emitter terminal E2 on the emitter side.
  • the semiconductor device 12 shown in FIG. 68 includes wiring boards 40, 50 arranged so as to sandwich the two semiconductor elements 32 (32a, 32b) as wiring members. ..
  • the wiring boards 40 and 50 are DBC boards.
  • the wiring boards 40 and 50 have insulators 40a and 50a and conductors 40b and 50b.
  • the conductors 40b and 50b are arranged at least on the mounting surface in the Z direction. Here, it is also arranged on the back surface of the mounting surface.
  • the conductor 40b on the mounting surface side has two islands 40i and a slit 40s.
  • the conductor 40b having the islands 40i and the slits 40s corresponds to the heat sink 42.
  • the island 40i corresponds to the island 42i, and the slit 40s corresponds to the slit 42s.
  • the slit 40s penetrates the conductor 40b, and divides the conductor 40b into an island 40i, which is a mounting region of the semiconductor element 32a, and an island 40i, which is a mounting region of the semiconductor element 32b.
  • a collector terminal C21 is connected to one of the islands 40i, and a collector terminal C22 is connected to the other island 40i.
  • the conductor 40b has, for example, a substantially rectangular shape in a plane.
  • the slit 40s is opened on the long side where the collector terminals C2 are connected and extends in the Y direction.
  • the slit 40s straddles the facing regions of the semiconductor elements 32a and 32b.
  • the semiconductor element 32, the conductor 40b including the slit 40s, and the collector terminal C2 have the same symmetry as the above-described embodiment.
  • the conductor 50b on the mounting surface side has two islands 50i and a slit 50s.
  • the conductor 50b having the islands 50i and the slits 50s corresponds to the heat sink 52.
  • the island 50i corresponds to the island 52i, and the slit 50s corresponds to the slit 52s.
  • the slit 50s penetrates the conductor 50b, and divides the conductor 50b into an island 50i, which is a mounting area of the semiconductor element 32a, and an island 50i, which is a mounting area of the semiconductor element 32b.
  • the emitter terminal E2 is connected to a portion of the conductor 50b that connects the two islands 50i.
  • the conductor 50b has, for example, a substantially rectangular shape in a plane.
  • the slit 50s is opened on a long side opposite to the side where the emitter terminals E2 are connected, and extends in the Y direction.
  • the slit 50s straddles the facing regions of the semiconductor elements 32a and 32b.
  • the semiconductor element 32, the conductor 50b including the slit 50s, and the emitter terminal E2 have the same symmetry as the above-described embodiment.
  • the semiconductor device 12 using the wiring boards 40 and 50 can also have the same effect as the semiconductor device 12 using the heat sinks 42 and 52.
  • a heat sink and a wiring board may be combined as the wiring member.
  • a configuration may include a heat sink 42 and a wiring board 50 (DBC substrate), or a configuration may include a wiring board 40 and a heat sink 52. It can also be applied to the semiconductor device 11.
  • Disclosure in this specification, drawings and the like is not limited to the illustrated embodiments.
  • the disclosure includes exemplary embodiments and modifications by those skilled in the art based on them.
  • disclosure is not limited to the parts and / or element combinations shown in the embodiments. Disclosure can be carried out in various combinations.
  • the disclosure can have additional parts that can be added to the embodiments. Disclosures include those in which the parts and / or elements of the embodiment are omitted. Disclosures include the replacement or combination of parts and / or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the claims description and should be understood to include all modifications within the meaning and scope equivalent to the claims statement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

両面に主電極を有する半導体素子を挟むように配置され、対応する主電極と電気的に接続された放熱部のひとつであるヒートシンク(51)は、エミッタ端子との間にはんだ接合部を形成する。ヒートシンク(51)は、エミッタ端子側の面に、高濡れ領域(151b)と、板厚方向の平面視において高濡れ領域(151b)の外周を規定するように高濡れ領域(151b)に隣接して設けられ、高濡れ領域(151b)よりもはんだに対する濡れ性が低い低濡れ領域(151a)を有する。高濡れ領域(151b)は、平面視において、エミッタ端子におけるはんだ接合部の形成領域と重なる領域であり、少なくとも一部にはんだが配置された重なり領域(151c)と、重なり領域(151c)に連なる非重なり領域(151d)を有する。非重なり領域(151d)は、余剰はんだを収容する収容領域(151e)を少なくとも含んでいる。

Description

半導体装置 関連出願の相互参照
 この出願は、2019年12月12日に日本に出願された特許出願第2019-224847号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 この明細書における開示は、半導体装置に関する。
 特許文献1は、両面に主電極を有する半導体素子と、導体部として、半導体素子を挟むように配置された放熱部および放熱部に連なる端子部を含む配線部材と、を備えた両面放熱構造の半導体装置を開示する。先行技術文献の記載内容は、この明細書における技術的要素の説明として、参照により援用される。
特開2007-103909号公報
 板厚方向において2つの導体部の間に接合材が配置されてなる接合部を備える構成では、接合材により、半導体装置を構成する要素の寸法公差、組付け公差等により生じる高さのばらつきを吸収する。2つの導体部の対向間隔が狭くなる方に高さがばらついた場合、2つの対向領域から余剰の接合材が溢れることで、高さのばらつきを吸収する。導体部の一方に特許文献1に記載のような溝を設けると、余剰の接合材を収容することができる。溝は、プレス加工により形成される。上述の観点において、または言及されていない他の観点において、半導体装置にはさらなる改良が求められている。
 開示されるひとつの目的は、簡素な構成で余剰の接合材を収容できる半導体装置を提供することにある。
 ここに開示された半導体装置は、
 一面と、一面とは板厚方向において反対の裏面とに、主電極をそれぞれ有する少なくともひとつの半導体素子と、
 板厚方向において半導体素子を挟むように一面側および裏面側のそれぞれに配置され、対応する主電極と電気的に接続された少なくとも一組の放熱部と、放熱部に連なる複数の端子部と、を含む複数の導体部と、板厚方向において2つの導体部の間に接合材が配置されて形成された少なくともひとつの接合部と、を有する配線部材と、を備える。
 接合部の少なくともひとつにおいて、導体部のひとつである第1導体部は、導体部の他のひとつである第2導体部と対向する側の面に、高濡れ領域と、板厚方向の平面視において高濡れ領域の外周を規定するように高濡れ領域に隣接して設けられ、高濡れ領域よりも接合材に対する濡れ性が低い低濡れ領域と、を有する。
 高濡れ領域は、平面視において、第2導体部における接合部の形成領域と重なる領域であり、少なくとも一部に接合材が配置された重なり領域と、重なり領域に連なり、第2導体部の接合部形成領域と重なっていない領域である非重なり領域と、を有する。そして、非重なり領域は、接合部に対して余剰の接合材を収容する収容領域を少なくとも含む。
 開示された半導体装置によると、高濡れ領域である収容領域が重なり領域に連なっており、余剰の接合材は、重なり領域から収容領域に濡れ拡がりやすい。余剰の接合材は、低濡れ領域により濡れ拡がりが規制される。よって、高濡れ領域に隣接する低濡れ領域により、収容領域への濡れ拡がりが促進、および/または、収容領域の外への濡れ拡がりが抑制される。よって、溝を設けなくとも、収容領域に余剰の接合材を収容することができる。この結果、簡素な構成で余剰の接合材を収容できる半導体装置を提供することができる。
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。
電力変換装置が適用される車両の駆動システムの概略構成を示す図である。 第1実施形態に係る半導体装置を示す平面図である。 主端子側から見た半導体装置の平面図である。 図2のIV-IV線に沿う断面図である。 図2のV-V線に沿う断面図である。 封止樹脂体を省略した状態を示す平面図である。 図6をX1方向から見た平面図である。 エミッタ側のヒートシンクを省略した状態を示す平面図である。 第1実施形態に係る半導体モジュールを示す平面図である。 図9をX2方向から見た平面図である。 配線インダクタンスを考慮した半導体モジュールの等価回路図である。 半導体装置において、封止樹脂体内の構造を示した平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 第2実施形態に係る半導体モジュールを示す平面図である。 図16をX3方向から見た平面図である。 負荷線の位置検証に用いた上下アームのモデルである。 スイッチング素子の駆動時における各出力端子に流れる電流を示す図である。 配線抵抗を考慮した半導体モジュールの等価回路図である。 抵抗比率と実効値電流比率との関係を示す図である。 抵抗比率と実効値電流比率との関係を示す図である。 抵抗比率と実効値電流比率との関係を示す図である。 抵抗比率と実効値電流比率との関係を示す図である。 変形例を示す平面図である。 別の例を示す平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 第3実施形態に係る半導体装置を示す平面図である。 はんだのリフロー工程を示す模式的な図である。 変形例を示す平面図である。 変形例を示す平面図である。 電流の局所的な集中を説明する図である。 第4実施形態に係る半導体装置を示す平面図である。 図36のXXXVII-XXXVII線に沿う断面図である。 シミュレーションに用いたモデルを示す図である。 厚みとはんだ接合部の電流密度の最大値との関係を示す図である。 変形例を示す平面図である。 第5実施形態に係る半導体装置において、エミッタ側のヒートシンクを示す平面図である。 エミッタ側のヒートシンクを拡大した平面図である。 図42のXLIII-XLIII線に対応する半導体装置の断面図である。 図43の領域XLIVを拡大した断面図である。 余剰はんだの濡れ拡がりを示す平面図である。 図42のXLVI-XLVI線に対応する半導体装置の断面図である。 図42のXLVII-XLVII線に対応する半導体装置の断面図である。 参考例を示す平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 図51のLII-LII線に沿う断面図である。 変形例を示す平面図である。 変形例を示す断面図である。 変形例を示す平面図である。 図55に示す変形例において、封止樹脂体を省略した図である。 図55に示すLVII-LVII線に沿う断面図である。 変形例を示す平面図である。 図58のX4方向から見た平面図である。 接合部周辺を拡大した平面図である。 第6実施形態に係る半導体装置を示す平面図である。 下アームを構成する半導体装置の等価回路図である。 第7実施形態に係る半導体装置において、エミッタ側のヒートシンクおよび主端子を示す平面図である。 コレクタ側のヒートシンクおよび主端子を示す平面図である。 参考例を示す模式的な平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 変形例を示す断面図である。 変形例を示す平面図である。 変形例を示す平面図である。
 図面を参照しながら、複数の実施形態を説明する。
 (第1実施形態)
 本実施形態に係る半導体装置および半導体モジュールは、電力変換装置に適用される。電力変換装置は、たとえば車両の駆動システムに適用される。電力変換装置は、電気自動車(EV)やハイブリッド自動車(HV)などの車両に適用可能である。以下では、ハイブリッド自動車に適用される例について説明する。
 <車両の駆動システム>
 先ず、車両の駆動システムの概略構成について説明する。図1に示すように、車両の駆動システム1は、直流電源2と、モータジェネレータ3と、電力変換装置4を備えている。
 直流電源2は、リチウムイオン電池やニッケル水素電池などの充放電可能な二次電池である。モータジェネレータ3は、三相交流方式の回転電機である。モータジェネレータ3は、車両の走行駆動源、すなわち電動機として機能する。また、回生時には発電機として機能する。車両は、走行駆動源として、図示しないエンジンと、モータジェネレータ3を備えている。電力変換装置4は、直流電源2とモータジェネレータ3との間で電力変換を行う。
 <電力変換装置の回路構成>
 次に、電力変換装置4の回路構成について説明する。図1に示すように、電力変換装置4は、インバータ5と、制御回路部6と、平滑コンデンサCsを備えている。インバータ5は、電力変換部である。インバータ5は、DC-AC変換部である。電力変換部は、上下アーム7を備えて構成されている。
 上下アーム7は、上アーム7Uと下アーム7Lとが直列接続された回路である。上アーム7Uおよび下アーム7Lのそれぞれは、ゲート電極を備えた複数のスイッチング素子を有している。上アーム7Uおよび下アーム7Lのそれぞれにおいて、複数のスイッチング素子は互いに並列接続されている。本実施形態では、スイッチング素子として、nチャネル型のIGBTを採用している。
 上アーム7Uは、2つのスイッチング素子Q1を有している。2つのスイッチング素子Q1には、還流用のダイオードD1が個別に接続されている。ダイオードD1は、対応するスイッチング素子Q1に対して逆並列に接続されている。並列接続された2つのスイッチング素子Q1は、ハイレベル、ローレベルが同じタイミングで切り替わるゲート駆動信号によって制御される。2つのスイッチング素子Q1のゲート電極は、たとえば同じ駆動回路部(ゲートドライバ)に、電気的に接続されている。上アーム7Uは、後述する2つの半導体素子31によって構成されている。
 下アーム7Lは、2つのスイッチング素子Q2を有している。2つのスイッチング素子Q2には、還流用のダイオードD2が個別に接続されている。ダイオードD2は、対応するスイッチング素子Q2に対して逆並列に接続されている。並列接続された2つのスイッチング素子Q2は、ハイレベル、ローレベルが同じタイミングで切り替わるゲート駆動信号によって制御される。2つのスイッチング素子Q2のゲート電極は、たとえば同じ駆動回路部に、電気的に接続されている。下アーム7Lは、後述する2つの半導体素子32によって構成されている。
 スイッチング素子Q1、Q2は、IGBTに限定されない。たとえば、MOSFETを採用することもできる。ダイオードD1、D2としては、寄生ダイオードを用いることもできる。
 上アーム7Uと下アーム7Lは、上アーム7Uを電力ライン8P側として、電力ライン8P、8Nの間で直列接続されている。電力ライン8Pは、高電位側の電力ラインである。電力ライン8Pは、直流電源2の正極に接続されている。電力ライン8Pは、平滑コンデンサCsの正極側の端子に接続されている。電力ライン8Nは、低電位側の電力ラインである。電力ライン8Nは、直流電源2の負極に接続されている。電力ライン8Nは、平滑コンデンサCsの負極側の端子に接続されている。電力ライン8Nは、接地ラインとも称される。
 インバータ5は、平滑コンデンサCsを介して直流電源2に接続されている。インバータ5は、上記した上下アーム7を3組有している。インバータ5は、三相分の上下アーム7を有している。各相において、スイッチング素子Q1のコレクタ電極は、電力ライン8Pに接続されている。スイッチング素子Q2のエミッタ電極は、電力ライン8Nに接続されている。スイッチング素子Q1のエミッタ電極と、スイッチング素子Q2のコレクタ電極とは、互いに接続されて上下アーム7の接続点を形成している。
 U相の上下アーム7の接続点は、モータジェネレータ3の固定子に設けられたU相巻線に接続されている。V相の上下アーム7の接続点は、モータジェネレータ3のV相巻線に接続されている。W相の上下アーム7の接続点は、モータジェネレータ3のW相巻線に接続されている。各相の上下アーム7の接続点は、相ごとに設けられた負荷線9を介して、対応する相の巻線に接続されている。負荷線9は、出力線とも称される。
 インバータ5は、制御回路部6によるスイッチング制御にしたがって、直流電圧を三相交流電圧に変換し、モータジェネレータ3へ出力する。これにより、モータジェネレータ3は、所定のトルクを発生するように駆動される。車両の回生制動時、車輪からの回転力を受けて、モータジェネレータ3は三相交流電圧を発電する。インバータ5は、モータジェネレータ3が発電した三相交流電圧を、制御回路部6によるスイッチング制御にしたがって直流電圧に変換し、電力ライン8Pへ出力することもできる。このように、インバータ5は、直流電源2とモータジェネレータ3との間で双方向の電力変換を行う。
 制御回路部6は、たとえばマイコン(マイクロコンピュータ)を備えて構成されている。制御回路部6は、インバータ5のスイッチング素子Q1、Q2を動作させるための駆動指令を生成し、図示しない駆動回路部に出力する。制御回路部6は、具体的には、駆動指令としてPWM信号を出力する。駆動指令は、たとえば出力デューティ比である。制御回路部6は、図示しない上位ECUから入力されるトルク要求や各種センサにて検出された信号に基づいて、駆動指令を生成する。
 各種センサとしては、モータジェネレータ3の各相の巻線に流れる相電流を検出する電流センサ、モータジェネレータ3の回転子の回転角を検出する回転角センサ、平滑コンデンサCsの両端電圧、すなわち電力ライン8Pの電圧を検出する電圧センサなどがある。電力変換装置4は、これらの図示しないセンサを有している。
 電力変換装置4は、図示しない駆動回路部を有している。駆動回路部は、制御回路部6からの駆動指令に基づいて駆動信号を生成し、対応する上下アーム7のスイッチング素子Q1、Q2のゲート電極に出力する。これにより、スイッチング素子Q1、Q2を駆動、すなわちオン駆動、オフ駆動させる。駆動回路部は、たとえばアームごとに設けられている。
 平滑コンデンサCsは、電力ライン8P、8Nの間に接続されている。平滑コンデンサCsは、直流電源2とインバータ5との間に設けられており、インバータ5と並列に接続されている。平滑コンデンサCsは、たとえば直流電源2から供給された直流電圧を平滑化し、その直流電圧の電荷を蓄積する。平滑コンデンサCsの両端間の電圧が、モータジェネレータ3を駆動するための直流の高電圧となる。
 電力変換装置4は、電力変換部であるコンバータ、フィルタコンデンサなどを、さらに備えてもよい。コンバータは、直流電圧を異なる値の直流電圧に変換するDC-DC変換部である。コンバータは、直流電源2と平滑コンデンサCsとの間に設けられる。コンバータは、たとえば直流電源2から供給される直流電圧を昇圧する。コンバータに、降圧機能をもたせることもできる。コンバータは、たとえば上下アームとリアクトルを有して構成される。コンバータの上下アームを、上下アーム7と同じ構成としてもよい。昇圧機能のみの場合、コンバータの下アーム側をインバータ5の下アーム7Lと同じ構成とし、上アーム側をダイオードにて構成してもよい。フィルタコンデンサは、直流電源2に並列に接続されている。フィルタコンデンサは、たとえば直流電源2からの電源ノイズを除去する。
 <半導体装置の構造>
 次に、インバータ5を構成する半導体装置について説明する。上下アーム7は、後述するひとつの半導体モジュール10により構成される。半導体モジュール10は、図2~図8に示す2種類(2品番)の半導体装置11、12を備えて構成される。半導体装置11は上アーム7Uを構成し、半導体装置12は下アーム7Lを構成する。
 半導体装置11、12は、互いに仕様が異なっている。図2~図8では、それぞれの半導体素子の板厚方向をZ方向、Z方向に直交し、少なくとも2つの半導体素子が並んで配置された方向をX方向、Z方向およびX方向に直交する方向をY方向としている。特に断りのない場合、X方向およびY方向により規定されるXY面に沿う形状を平面形状としている。図2~図8では、便宜上、2つの半導体装置11、12を横並びで図示している。図6~図8では、封止樹脂体を省略して図示している。さらに図8では、エミッタ側のヒートシンクを省略して図示している。図8では、便宜上、タイバーなどの不要部分を除去する前のリードフレームの状態を図示している。
 先ず、上アーム7U側の半導体装置11について説明する。半導体装置11の要素については、符号の数字の末尾を「1」としている。図2~図8に示すように、半導体装置11は、封止樹脂体21と、半導体素子31と、ヒートシンク41、51と、ターミナル61と、主端子71と、信号端子81を備えている。
 封止樹脂体21は、対応する半導体素子31などを封止している。封止樹脂体21は、たとえばエポキシ系樹脂からなる。封止樹脂体21は、たとえばトランスファモールド法により成形されている。図2~図5に示すように、封止樹脂体21は、略直方体状をなしている。封止樹脂体21は、平面略矩形状をなしている。
 半導体素子31は、半導体基板に、スイッチング素子Q1およびダイオードD1が形成されてなる。半導体素子31には、RC(Reverse Conducting)-IGBTが形成されている。半導体素子31は、半導体チップとも称される。半導体素子31は、Z方向に電流が流れる縦型構造をなしている。
 図4に示すように、Z方向において、半導体素子31の一面(第1主面)にコレクタ電極31cが形成され、裏面(第2主面)にエミッタ電極31eが形成されている。コレクタ電極31cはダイオードD1のカソード電極を兼ねており、エミッタ電極31eはダイオードD1のアノード電極を兼ねている。コレクタ電極31cが高電位側の電極(主電極)であり、エミッタ電極31eが低電位側の電極(主電極)である。エミッタ電極形成面には、信号用の電極であるパッド(図示略)も形成されている。パッドは、Y方向において、エミッタ電極31eの形成領域とは反対側の端部に形成されている。本実施形態において、半導体素子31は、X方向に沿って配置された5つのパッドを有している。パッドは、半導体素子30の温度を検出する温度センサ(感温ダイオード)のカソード電位用、同じくアノード電位用、ゲート電極用、電流センス用、エミッタ電極31eの電位を検出するケルビンエミッタ用の順に並んでいる。
 半導体装置11は、複数の半導体素子31を有している。複数の半導体素子31が並列接続されて、上アーム7Uが構成される。本実施形態では、2つの半導体素子31を有している。図4および図8に示すように、2つの半導体素子31は、互いに略一致する構造、すなわち互いに同じ形状および同じ大きさを有している。半導体素子31は、平面略矩形状をなしている。2つの半導体素子31は、コレクタ電極31cがZ方向における同じ側となるように配置されている。2つの半導体素子31は、Z方向においてほぼ同じ高さに位置するとともに、X方向に並んで配置されている。
 図2および図8に示すように、2つの半導体素子31は、X方向およびZ方向に直交する軸AX1を対称軸として、線対称配置されている。本実施形態では、封止樹脂体21が平面略矩形状をなしており、軸AX1が、封止樹脂体21の外形のX方向中心と略一致するように、2つの半導体素子31が配置されている。2つの半導体素子31において、パッドの並び順は同じである。
 ヒートシンク41、51は、半導体素子31の熱を半導体装置11の外部に放熱する機能を果たす。ヒートシンク41、51は、放熱部材とも称される。ヒートシンク41、51は、半導体素子31と電気的に接続されて配線としての機能を果たす。ヒートシンク41、51は、配線部材とも称される。ヒートシンク41、51は、銅などの金属材料を用いて形成されている。ヒートシンク41、51は、金属部材とも称される。
 ヒートシンク41、51は、複数の半導体素子31を挟むように配置されている。Z方向において、ヒートシンク41、51の間に、2つの半導体素子31が互いに横並びで配置されている。半導体素子31は、Z方向からの投影視において、ヒートシンク41、51に内包されている。ヒートシンク41、51の板厚方向は、Z方向に略平行となっている。図2、図6、および図8に示すように、ヒートシンク41、51において、X方向が長手方向、Y方向が短手方向とされている。
 ヒートシンク41、51は、はんだなどの接合部材を介して、半導体素子31と電気的に接続されている。図4に示すように、ヒートシンク41は、はんだ91aを介してコレクタ電極31cに接続されている。ヒートシンク51は、はんだ91b、91cおよびターミナル61を介して、エミッタ電極31eに接続されている。ターミナル61は、半導体素子31とヒートシンク51とを電気的に中継する金属部材である。ターミナル61は、Z方向からの投影視においてエミッタ電極31eとほぼ一致する形状をなしている。ターミナル61は、平面略矩形状をなしている。ヒートシンク51は、はんだ91cを介してターミナル61に接続されている。ターミナル61における、ヒートシンク51とは反対側の面が、はんだ91bを介してエミッタ電極31eに接続されている。
 図5、図6、および図7に示すように、ヒートシンク51は、本体部51aと、継手部51bを有している。本体部51aの一面に、ターミナル61を介して半導体素子31が接続されている。継手部51bは、本体部51aに連なっている。継手部51bは、ひとつの部材として本体部51aと一体的に設けられている。継手部51bは、Y方向において本体部51aの一端から延設されている。継手部51bは、本体部51aよりも厚みが薄くされている。
 ヒートシンク41、51の大部分は、封止樹脂体21によって覆われている。ヒートシンク41、51の表面のうち、半導体素子31とは反対の面が、封止樹脂体21から露出されている。Z方向において、封止樹脂体21の一面21aからヒートシンク41が露出され、一面21aとは反対の裏面21bからヒートシンク51が露出されている。ヒートシンク41の露出面は一面21aと略面一とされ、ヒートシンク51の露出面は裏面21bと略面一とされている。
 主端子71は、外部接続端子のうち、主電流が流れる端子である。半導体装置11は、3本以上の主端子71を備えている。主端子71は、コレクタ端子C1と、エミッタ端子E1を有している。コレクタ端子C1は、ヒートシンク41に連なっている。コレクタ端子C1は、ヒートシンク41を介して、コレクタ電極41cと電気的に接続されている。エミッタ端子E1は、ヒートシンク51に連なっている。エミッタ端子E1は、ヒートシンク51およびターミナル61を介して、エミッタ電極31eと電気的に接続されている。
 半導体装置11は、3本の主端子71を有している。図2、図3、図6、および図8に示すように、主端子71は、1本のコレクタ端子C1と、2本のエミッタ端子E1を有している。図8に示すように、リードフレーム101に、ヒートシンク41と、主端子71であるコレクタ端子C1およびエミッタ端子E1と、信号端子81が構成されている。
 ヒートシンク41は、リードフレーム101における他の部分、すなわち主端子71および信号端子81よりも厚くされている。主端子71および信号端子81は、ヒートシンク41の素子実装面に略面一で連なっている。複数の主端子71は、同じ側の端部が外枠101aに連なっている。ヒートシンク41は、コレクタ端子C1および吊りリード101bを介して、外枠101aに固定されている。信号端子81は、タイバー101cを介して吊りリード101bに固定されている。リードフレーム101には、位置決めのための基準孔101dが複数設けられている。
 コレクタ端子C1は、ひとつの部材としてヒートシンク41と一体的に設けられている。コレクタ端子C1は、封止樹脂体21内に屈曲部を有しており、封止樹脂体21のひとつの側面21cにおいて、Z方向の中央付近から外部に突出している。エミッタ端子E1は、ヒートシンク51の継手部51bとの対向部E1aをそれぞれ有している。図5に示すように、対向部E1aが、はんだ91dを介して継手部51bに接続されている。エミッタ端子E1は、封止樹脂体21内に屈曲部を有しており、コレクタ端子C1と同じ側面21cにおいて、Z方向の中央付近から外部に突出している。すべての主端子71が、側面21cから突出している。ヒートシンク51には、はんだ91c、91dとの接続部分をそれぞれ囲むように、たとえば図示しない環状の溝が形成されてもよい。溢れたはんだは、溝に収容される。はんだの濡れ拡がりを抑制のため、溝に代えて、粗化めっきや、レーザ光照射による粗化部を設けてもよい。
 コレクタ端子C1およびエミッタ端子E1の突出部分は、Y方向に延設されている。コレクタ端子C1およびエミッタ端子E1は、X方向に並んで配置されており、それぞれの板厚方向はZ方向に略一致している。図3などに示すように、X方向において、エミッタ端子E1の間にコレクタ端子C1が配置されている。主端子71の並び順は、並びの中心に対して対称となっている。主端子71は、エミッタ端子E1、コレクタ端子C1、エミッタ端子E1の順に並んで配置されている。
 図2および図8に示すように、コレクタ端子C1およびエミッタ端子E1のそれぞれは、軸AX1を対称軸として線対称配置されている。コレクタ端子C1は、軸AX1上に配置されており、コレクタ端子C1の幅の中心が、軸AX1と略一致している。2本のエミッタ端子E1は、軸AX1を対称軸として線対称配置されている。以下では、図8に示すように、半導体素子31のひとつを半導体素子31a、半導体素子31の他のひとつを半導体素子31bと示すことがある。エミッタ端子E1のひとつは、軸AX1よりも半導体素子31a側に偏って配置され、エミッタ端子E1の他のひとつは、軸AX1よりも半導体素子31b側に偏って配置されている。
 信号端子81は、対応する半導体素子31のパッドに接続されている。信号端子81は、封止樹脂体21の内部で、ボンディングワイヤ111を介してパッドに接続されている。信号端子81は、封止樹脂体21の側面、詳しくは側面21cと反対の側面21dから外部に突出している。信号端子81は、Y方向であって主端子71とは反対向きに突出している。
 上記した半導体装置11において、封止樹脂体21は、半導体素子31、ヒートシンク41、51それぞれの一部、ターミナル61、主端子71および信号端子81それぞれの一部を、一体的に封止している。
 次に、下アーム7L側の半導体装置12について説明する。半導体装置12の要素については、符号の数字の末尾を「2」としている。半導体装置12は、封止樹脂体22と、半導体素子32と、ヒートシンク42、52と、ターミナル62と、主端子72と、信号端子82を備えている。半導体装置12は、半導体装置11と構成要素が同じであり、構造もほぼ同じであるため、主として異なる部分について説明する。
 封止樹脂体22は、半導体素子32などを封止している。図4に示すように、Z方向において、半導体素子32の一面にコレクタ電極32cが形成され、裏面にエミッタ電極32eが形成されている。半導体装置12も、複数の半導体素子32を有している。複数の半導体素子32が並列接続されて、下アーム7Lが構成される。本実施形態では、2つの半導体素子32を有している。2つの半導体素子32は、同一構造である。2つの半導体素子32は、Z方向においてほぼ同じ高さに位置するとともに、X方向に並んで配置されている。
 図2および図8に示すように、2つの半導体素子32は、X方向およびZ方向に直交する軸AX2を対称軸として、線対称配置されている。本実施形態では、封止樹脂体22が平面略矩形状をなしており、軸AX2が、封止樹脂体22の外形のX方向中心と略一致するように、2つの半導体素子32が配置されている。
 ヒートシンク42、52は、複数の半導体素子32を挟むように配置されている。ヒートシンク42、52の板厚方向は、Z方向に略平行となっている。図2、図6、および図8に示すように、ヒートシンク42、52において、X方向が長手方向、Y方向が短手方向とされている。図4に示すように、ヒートシンク42は、はんだ92aを介してコレクタ電極32cに接続されている。ヒートシンク52は、はんだ92b、92cおよびターミナル62を介して、エミッタ電極32eに接続されている。
 ヒートシンク52は、ターミナル62を介して半導体素子32が接続された本体部52aと、本体部52aに連なる継手部52bを有している。継手部52bは、Y方向において本体部52aの一端から延設されている。継手部52bは、本体部52aよりも厚みが薄くされている。ヒートシンク42は、封止樹脂体22の一面22aから露出され、ヒートシンク52は一面22aとは反対の裏面22bから露出されている。ヒートシンク42の露出面は一面22aと略面一とされ、ヒートシンク52の露出面は裏面22bと略面一とされている。
 半導体装置12は3本以上の主端子72を備えている。主端子72は、コレクタ端子C2と、エミッタ端子E2を有している。コレクタ端子C2は、ヒートシンク42を介して、コレクタ電極42cと電気的に接続されている。エミッタ端子E2は、ヒートシンク52およびターミナル62を介して、エミッタ電極32eと電気的に接続されている。半導体装置12は、半導体装置11と同数の主端子72を有している。主端子72は、2本のコレクタ端子C2と、1本のエミッタ端子E2を有している。図8に示すように、リードフレーム102に、ヒートシンク42と、主端子72であるコレクタ端子C2およびエミッタ端子E2と、信号端子82が構成されている。図8に示す符号102aは外枠、符号102bは吊りリード、符号102cはタイバー、符号102dは基準孔である。
 コレクタ端子C2は、ひとつの部材としてヒートシンク42と一体的に設けられている。コレクタ端子C2は、封止樹脂体21内に屈曲部を有しており、封止樹脂体22のひとつの側面22cにおいて、Z方向の中央付近から外部に突出している。エミッタ端子E2は、ヒートシンク52の継手部52bとの対向部E2aを有している。対向部E2aは、はんだ92dを介して継手部52bに接続されている。エミッタ端子E2は、封止樹脂体22内に屈曲部を有しており、コレクタ端子C2と同じ側面22cにおいて、Z方向の中央付近から外部に突出している。ヒートシンク52には、はんだ92c、92dとの接続部分をそれぞれ囲むように、たとえば環状の溝が形成されてもよい。
 コレクタ端子C2およびエミッタ端子E2の突出部分は、Y方向に延設されている。コレクタ端子C2およびエミッタ端子E2は、X方向に並んで配置され、それぞれの板厚方向はZ方向に略一致している。図3などに示すように、X方向において、コレクタ端子C2の間にエミッタ端子E2が配置されている。主端子72の並び順は、並びの中心に対して対称となっている。主端子72は、コレクタ端子C2、エミッタ端子E2、コレクタ端子C2順に並んで配置されている。主端子72と主端子71とは、並び順が互いに逆となっている。
 図2および図8に示すように、コレクタ端子C2およびエミッタ端子E2のそれぞれは、軸AX2を対称軸として線対称配置されている。エミッタ端子E2は、軸AX2上に配置されており、エミッタ端子E2の幅の中心が、軸AX2と略一致している。2本のコレクタ端子C2は、軸AX2を対称軸として線対称配置されている。以下では、図8に示すように、半導体素子32のひとつを半導体素子32a、半導体素子32の他のひとつを半導体素子32bと示すことがある。コレクタ端子C2のひとつは、軸AX2よりも半導体素子32a側に偏って配置され、コレクタ端子C2の他のひとつは、軸AX2よりも半導体素子32b側に偏って配置されている。
 信号端子81は、封止樹脂体22の内部で、ボンディングワイヤ112を介して、半導体素子32のパッドに接続されている。信号端子82は、封止樹脂体21において、側面22cとは反対の側面22dから外部に突出している。
 <半導体装置の製造方法>
 次に、半導体装置11、12の製造方法について説明する。製造する工程(ステップ)は半導体装置11、12で同じであるため、半導体装置11を例に説明する。
 先ず、半導体装置11を構成する各要素を準備する。図8に示したリードフレーム101を準備する。また、半導体素子31と、ターミナル61と、ヒートシンク51を準備する。
 次いで、リードフレーム101のヒートシンク41における実装面上に、はんだ91aを介して、半導体素子31を配置する。コレクタ電極31cが実装面側となるように、はんだ91a上に半導体素子31を配置する。次に、エミッタ電極31e上に、はんだ91bを介して、ターミナル61を配置する。ターミナル61における半導体素子31とは反対の面上に、はんだ91cを配置する。はんだ91cについては、半導体装置11における高さばらつきを吸収可能な量、配置しておく。はんだ91b、91cは、予めターミナル61に迎えはんだとして設けておいてもよい。また、エミッタ端子E1の対向部E1a上に、はんだ91dを配置する。はんだ91dについても、半導体装置11における高さばらつきを吸収可能な量、配置しておく。
 この積層状態で、1stリフローを行う。これにより、はんだ91aを介して、半導体素子31のコレクタ電極31cとヒートシンク41とが接続される。また、はんだ91bを介して、半導体素子31のエミッタ電極31eと対応するターミナル61とが接続される。すなわち、リードフレーム101、半導体素子31、およびターミナル61が一体化された接続体を得ることができる。はんだ91c、91dは、接続体において、後工程で用いる迎えはんだとなる。
 次いで、半導体素子31のパッドと信号端子81とを電気的に接続する。本実施形態では、ボンディングワイヤ111により、半導体素子31のパッドと信号端子81を接続する。
 次いで、ターミナル61側が上となるように、ヒートシンク41を図示しない台座上に配置する。そして、ターミナル61側の実装面が下にくるようにヒートシンク51をヒートシンク41上に配置する。この配置状態で、2ndリフローを行う。2ndリフローにより、リードフレーム101を含む接続体に、ヒートシンク51が一体化される。
 次いで、封止樹脂体21を形成する。本実施形態では、トランスファモールド法を採用する。リードフレーム101を含む接続体を金型内に配置し、封止樹脂体21を成形する。本実施形態では、ヒートシンク41、51が完全に覆われるように、封止樹脂体21を成形する。
 次いで、外枠101aおよびタイバー101cなど、リードフレーム101の不要部分を除去する。これにより、半導体装置11を得ることができる。
 <半導体モジュールの概略構造>
 次に、半導体モジュールの概略構造について説明する。ひとつの半導体モジュールにより、一相分の上下アーム7が構成される。3つの半導体モジュールにより、インバータ5が構成される。図9および図10に示すように、半導体モジュール10は、上記した半導体装置11、12と、連結部材13と、冷却器14を備えている。図9では、便宜上、冷却器14を省略している。
 冷却器14は、熱伝導性に優れた金属材料、たとえばアルミニウム系の材料を用いて形成されている。冷却器14は、全体として扁平形状の管状体となっている。動作時に発熱する半導体装置11、12を冷却するため、半導体装置11、12と冷却器14とが交互に積層されている。半導体装置11、12と冷却器14はZ方向に並んで配置されている。半導体装置11、12のそれぞれは、冷却器14により挟まれている。冷却器14により、半導体装置11、12は両面側から冷却される。
 冷却器14には、図示しない導入管および排出管が接続されている。図示しないポンプによって冷媒を導入管に供給すると、積層された冷却器14内の流路に冷媒が流れる。これにより、半導体装置11、12のそれぞれが、冷媒によって冷却される。冷却器14のそれぞれを流れた冷媒は、排出管を介して排出される。
 半導体装置11において、高電位側のコレクタ端子C1は、電力ライン8Pに電気的に接続される。低電位側のエミッタ端子E1は、出力端子である。コレクタ端子C1は、P端子、正極端子とも称され、出力端子はO端子とも称される。半導体装置12において、高電位側のコレクタ端子C2は、出力端子である。低電位側のエミッタ端子E2は、電力ライン8Nに電気的に接続される。コレクタ端子C2はO端子とも称され、エミッタ端子E2はN端子、負極端子とも称される。
 図9および図10に示すように、上下アーム7を構成する1組の半導体装置11、12は、冷却器14を介して隣り合うように配置されている。半導体装置11、12は、コレクタ端子C1とエミッタ端子E2が対向し、エミッタ端子E1とコレクタ端子C2がそれぞれ対向するように、配置されている。対向とは、対応する封止樹脂体21、22からの突出部分の少なくとも一部において、板面同士が向き合う状態である。本実施形態では、対応する封止樹脂体21、22からの突出部分が、ほぼ全域で対向している。
 連結部材13は、半導体装置11、12を接続する部材である。連結部材13は、上アーム7Uと下アーム7Lとを電気的に接続する配線である。連結部材13は、出力端子であるエミッタ端子E1およびコレクタ端子C2を電気的に接続している。ひとつの半導体モジュール10は、2組の出力端子を接続するために、2つの連結部材13を備えている。
 連結部材13は、たとえば金属板を加工することで形成されている。連結部材13は、架橋部材、繋ぎバスバーとも称される。連結部材13は、たとえば溶接により、エミッタ端子E1およびコレクタ端子C2に接続されている。本実施形態の連結部材13は、略コの字状(略U字状)をなしている。連結部材13の一端にエミッタ端子E1が接続され、他端にコレクタ端子C2が接続されている。連結部材13は、対応する出力端子と板面同士が対向するように配置され、この配置状態で接続されている。2つの連結部材13は、同一構造とされている。
 図11は、半導体モジュール10、すなわち上下アーム7の配線インダクタンス(寄生インダクタンス)を考慮した等価回路図である。図11では、スイッチング素子Q1のうち、半導体素子31aに形成されたスイッチング素子をQ1a、半導体素子31bに形成されたスイッチング素子をQ1bと示している。また、スイッチング素子Q2のうち、半導体素子32aに形成されたスイッチング素子をQ2a、半導体素子32bに形成されたスイッチング素子をQ2bと示している。Lc11、Lc12、Le11、Le12は、スイッチング素子Q1の並列回路の配線インダクタンスを示している。Lc21、Lc22、Le21、Le22は、スイッチング素子Q2の並列回路の配線インダクタンスを示している。
 上記したように、半導体装置11、12は、それぞれ3本以上の主端子71、72を備えている。すなわち、半導体装置11は、コレクタ端子C1およびエミッタ端子E1の少なくとも一方を複数本備えている。また、半導体装置12は、コレクタ端子C2およびエミッタ端子E2の少なくとも一方を複数本備えている。同じ種類の主端子を複数にして並列化する。たとえばエミッタ端子E1を並列化し、コレクタ端子C2を並列化する。これにより、主端子のインダクタンスを低減することができる。
 半導体装置11、12で、主端子71、72の並び順が逆となっている。出力端子であるエミッタ端子E1およびコレクタ端子C2の本数が同じである。したがって、同じ種類(1種類)の半導体装置を用いて上下アームを構成する場合に較べて、出力端子同士の接続構造を簡素化し、これにより主回路配線のインダクタンスを低減することができる。主回路とは、平滑コンデンサCsと上下アーム7を含む回路である。
 コレクタ端子C1およびエミッタ端子E1の並び順が並びの中心に対して対称となっている。非対称の構成に較べて、配線インダクタンスLc11、Lc12を互いに近づけ、配線インダクタンスLe11、Le12を互いに近づけることができる。また、コレクタ端子C2およびエミッタ端子E2の並び順が並びの中心に対して対称となっている。非対称の構成に較べて、配線インダクタンスLc21、Lc22を互いに近づけ、配線インダクタンスLe21,Lc22を互いに近づけることができる。以上により、半導体装置11、12のそれぞれにおいて、スイッチング時に流れる電流のアンバランス、すなわちAC電流のアンバランスを抑制することができる。
 半導体装置11において、並び順を対称にすると、X方向において互いに隣り合うコレクタ端子C1およびエミッタ端子E1が増える。隣り合うコレクタ端子C1およびエミッタ端子E1は側面同士が対向している。磁束打消しの効果により、インダクタンスを低減することができる。同様に、半導体装置12においても、インダクタンスを低減することができる。
 複数の半導体素子31が、並び方向であるX方向と直交する軸AX1に対して線対称配置されている。そして、軸AX1を対称軸として、コレクタ端子C1およびエミッタ端子E1がそれぞれ線対称配置されている。これにより、コレクタ端子C1→スイッチング素子Q1a→エミッタ端子E2の電流経路と、コレクタ端子C1→スイッチング素子Q1b→エミッタ端子E2の電流経路とが、軸AX1を対称軸としてほぼ線対称となる。すなわち、配線インダクタンスLc11、Lc12は、互いにほぼ等しくなる。配線インダクタンスLe11、Le12は、互いにほぼ等しくなる。したがって、半導体装置11において、AC電流のアンバランスを効果的に抑制することができる。
 同様に、複数の半導体素子32が、並び方向であるX方向と直交する軸AX2に対して線対称配置されている。そして、軸AX2を対称軸として、コレクタ端子C2およびエミッタ端子E2がそれぞれ線対称配置されている。これにより、コレクタ端子C2→スイッチング素子Q2a→エミッタ端子E2の電流経路と、コレクタ端子C2→スイッチング素子Q2b→エミッタ端子E2の電流経路とが、軸AX2を対称軸としてほぼ線対称となる。すなわち、配線インダクタンスLc21,Lc22は、互いにほぼ等しくなる。配線インダクタンスLe21,Le22は、互いにほぼ等しくなる。したがって、半導体装置12において、AC電流のアンバランスを効果的に抑制することができる。
 本実施形態では、並んで配置された半導体素子31の中心がY方向において完全一致している。また、並んで配置された半導体素子32の中心がY方向において完全一致している。これによれば、AC電流のアンバランスをより効果的に抑制できる。しかしながら、中心の完全一致に限定されない。Y方向の僅かなずれであれば、上記効果に準ずる効果を奏することができる。
 また、主端子71、72には、平滑コンデンサCsやモータジェネレータ3との電気的な接続のために、バスバーなどが接続される。バスバーは、たとえば溶接される。よって、主端子71、72それぞれについて、少なくとも電流経路を形成する部分、すなわちバスバーとの接続位置までの部分について線対称とすれば、上記効果を奏することができる。
 軸AX1が、封止樹脂体21の外形のX方向中心と略一致している。これにより、半導体装置11の体格を小型化しつつ、上記効果を奏することができる。同じく、軸AX2が、封止樹脂体22の外形のX方向中心と略一致している。これにより、半導体装置12の体格を小型化しつつ、上記効果を奏することができる。
 複数の連結部材13によって、半導体装置11、12が接続されている。上アーム7Uと下アーム7Lとの接続経路の増加により、主回路配線のインダクタンスを低減することができる。
 すべての主端子71が、封止樹脂体21の側面21cから突出するとともに、X方向に沿って配列されている。すべての主端子72が、封止樹脂体22の側面22cから突出するとともに、X方向に沿って配列されている。これにより、上アーム7Uと下アーム7Lとの接続や、平滑コンデンサCsとの接続を簡素化し、主回路配線のインダクタンスを低減することができる。
 コレクタ端子C1およびエミッタ端子E2の突出部分がほぼ全域で対向しており、エミッタ端子E1およびコレクタ端子C2の突出部分がほぼ全域で対向している。したがって、主回路配線のインダクタンスを効果的に低減することができる。
 ヒートシンク41、51が、複数の半導体素子31で共通化されている。したがって、スイッチング素子Q1間の電圧揺れを抑制することができる。同じく、ヒートシンク42、52が、半導体素子32で共通化されているため、スイッチング素子Q2間の電圧揺れを抑制することができる。さらには、部品点数も削減することができる。
 <半導体モジュールの詳細構造>
 次に、上記した半導体モジュールの構造について詳細に説明する。図12は、図2に対応しており、封止樹脂体21、22内の要素を破線で示している。
 半導体モジュール10は、上記したように3本以上の主端子71、72を有する半導体装置11、12を備えて構成されている。封止樹脂体成形時の位置精度などのため、主端子71、72のすべてをリードフレーム101、102に構成している。主端子71、72の並び順が逆であり、半導体装置11、12で、エミッタ端子E1、E2とヒートシンク51、52との接続構造に差が生じる。これにより、製造工程が複雑になる、すなわち生産性が低下する虞がある。
 なお、リードフレーム101に、コレクタ端子C1とともにエミッタ端子E1を構成すると、ヒートシンク51側は金型にてクランプせず、ヒートシンク41(リードフレーム101)側のみクランプすることになる。ひとつの部材のみをクランプするため、封止樹脂体21を成形する際の位置精度が向上する。たとえば、樹脂漏れを抑制できる。リードフレーム102についても同様である。
 上記した問題に対して、本実施形態に係る半導体モジュール10では、図2~図5および図12などに示すように、封止樹脂体21、22、および、主端子71、72の突出部分における少なくとも根元部分71r、72rが、互いに同じ構造とされている。封止樹脂体21、22は、互いに同じ形状および同じ大きさとされている。封止樹脂体21、22の外観が同じとされている。根元部分71r、72rは、互いに同じ形状および同じ大きさとされている。
 コレクタ端子C1とエミッタ端子E2の根元部分71r、72rは、同一構造とされている。エミッタ端子E1とコレクタ端子C2の根元部分71r、72rは、同一構造とされている。封止樹脂体21、22に対する根元部分71r、72rの配置(位置)も、互いに同じとされている。以上により、同一の金型を用いて、封止樹脂体21、22を成形することができる。金型の共通化により、生産性を向上することができる。たとえば型交換を不要にすることができる。
 なお、根元部分71r、72rとは、主端子71、72のうち、封止樹脂体21、22の成形時に金型によってクランプされる部分である。封止樹脂体21,22の側面21c、22cから所定範囲(たとえば1mm程度)の部分である。配置が同じとは、たとえば封止樹脂体21、22が一致するように半導体装置11、12を積層した状態で、Z方向から投影視したときに、根元部分71r、72r同士がほぼ完全に重なる位置関係である。
 また、ヒートシンク51とエミッタ端子E1との間に、はんだ91dを介したはんだ接合部121が形成されている。ヒートシンク52とエミッタ端子E2との間に、はんだ92dを介したはんだ接合部122が形成されている。そして、封止樹脂体21、22および根元部分71r、72rの少なくとも一方を半導体装置11、12の位置基準として、はんだ接合部121,122の少なくとも一部が、Y方向の同じ位置に設けられている。図12に示すように、X方向に平行な仮想線L1上に、はんだ接合部121、122がそれぞれ設けられている。
 これにより、同じリフロー工程、条件にて、はんだ接合を行うことができる。特に2ndリフローを同じ工程、条件にて行うことができる。X方向に沿って搬送しながらリフローを行う際、たとえばヒータの位置を同じにできる。また、ヒートシンク41、42の直下にヒータを設けた場合でも、ヒータからはんだ接合部121,122までの伝熱距離をほぼ等しくすることができる。これにより、リフロー時において、はんだ91d、92dの溶融状態に偏りが生じるのを抑制することができる。
 以上より、本実施形態に係る半導体モジュール10によれば、2種類(2品番)の半導体装置11、12を備えつつ、生産性を向上することができる。特に本実施形態では、はんだ接合部121、122のY方向中心が互いに一致している。これにより、生産性をさらに向上することができる。
 また、リードフレーム101、102における他のクランプ部位についても、互いに同一構造とされ、封止樹脂体21、22に対する配置も互いに同じとされている。たとえば信号端子81、82の突出部分のうち、根元部分81r、82rは、同一構造とされるとともに、封止樹脂体21、22に対する配置(位置)も互いに同じとされている。吊りリード101b、102bの突出部分のうち、根元部分101br、102brは、同一構造とされるとともに、封止樹脂体21、22に対する配置(位置)も互いに同じとされている。
 本実施形態では、主端子71、72の突出部分全体で、同一構造および配置が互いに同じとされている。半導体装置11、12は、主端子71、72の電位(コレクタ/エミッタ)が逆となっているものの、外観が互いに同じである。これによれば、生産性をさらに向上することができる。たとえば、同じ工程、条件で製造しやすい。たとえば、平滑コンデンサCsとの接続を同じ工程、条件で行うことができる。
 本実施形態では、図12に示すように、軸AX1を対称軸として、はんだ接合部121が線対称配置されている。軸AX1を対称軸として、半導体素子31およびはんだ接合部121がそれぞれ線対称配置されている。また、軸AX2を対称軸として、はんだ接合部122が線対称配置されている。軸AX2を対称軸として、半導体素子32およびはんだ接合部122がそれぞれ線対称配置されている。これにより、X方向において、リフロー(2ndリフロー)時のバランスがとれる。よって、生産性を向上することができる。たとえば、長手方向であるX方向においてヒートシンク51、52の傾きを抑制することができる。また、AC電流のアンバランスを抑制することができる。
 本実施形態では、リードフレーム101、102に設けられた位置決め用の基準孔101d、102dも、封止樹脂体21、22などを位置基準として、互いに同じ位置とされている。たとえば図示しない位置決めピンを基準孔101d、102dに合わせて位置決めする。したがって、半導体装置11、12において対応する要素の位置を精度良く合わせることができる。
 本実施形態では、図12に示すように、複数の主端子71の幅W1と、複数の主端子72の幅W2とが、互いに等しくされている。換言すれば、リードフレーム101、102におけるX方向の幅が、互いに等しくされている。これにより、各工程において、基準孔101d、102dにより位置決め(本位置決め)する前に、リードフレーム101、102の外形により仮位置決めをすることができる。したがって、位置決めにかかる時間を短縮することができる。幅W1は、主端子71の幅方向において、複数の主端子71の配置領域の長さである。幅W2は、主端子72の幅方向において、複数の主端子72の配置領域の長さである。
 本実施形態では、リードフレーム101、102において、厚肉部であるヒートシンク41、42が、同一構造とされている。ヒートシンク41、42の熱容量が同じであるため、半導体装置11、12を形成する際、同じリフロー工程、条件にて、はんだ接合を行うことができる。たとえば1stリフローを同じ工程、条件で行うことができる。
 本実施形態では、ヒートシンク51、52の構造が互いに異なる例を示したが、これに限定されない。図13に示す変形例のように、同一構造のヒートシンク51、52を採用してもよい。ヒートシンク51、52は、形状および大きさが互いに同じである。ヒートシンク51、52は、熱容量が同じである。これにより、2ndリフローを安定化させることができる。また、ヒートシンク51、52の共通化により、部品点数を削減することができる。
 半導体装置11、12の外観が同一の場合、半導体装置11、12の少なくともひとつに、他と区別するための目印を設けてもよい。目印は、バスバーなどが接続される部分よりも突出先端側に設けるとよい。すなわち、上下アーム7の電流動作に影響しない部分に設けるとよい。図14に示す変形例では、目印である切り欠き71mを、半導体装置11のエミッタ端子E1のひとつに設けている。これにより、誤って同じ半導体装置同士が接続されるのを抑制することができる。主端子71において、切り欠き71mの位置は、エミッタ端子E1に限定されない。切り欠き71mとともに、半導体装置12の異なる位置に別の切り欠きを設けてもよい。たとえばエミッタ端子E2の突出先端に切り欠きを設けてもよい。
 切り欠きとは別の目印を用いてもよい。たとえば、印刷、レーザ加工などにより形成された目印を採用することもできる。生産性を向上するには、上記した切り欠きが好ましい。切り欠きは、たとえばリードフレーム101、102の形成時や、タイバー101c、102cなどの除去(リードカット)時に形成することができる。
 半導体装置11、12がそれぞれ3本の主端子71、72を備える例を示したが、これに限定されない。4本以上の主端子71、72を備える構成としてもよい。図15に示す変形例では、半導体装置11、12が、対応する主端子71、72を7本備えている。半導体装置11は、3本のコレクタ端子C1と、4本のエミッタ端子E1を備えている。コレクタ端子C1とエミッタ端子E1は、X方向において交互に配置されている。
 半導体装置12は、4本のコレクタ端子C2と、3本のエミッタ端子E2を備えている。コレクタ端子C2とエミッタ端子E2は、X方向において交互に配置されている。主端子71、72それぞれの並び順は、並びの中心に対して対称とされている。主端子71、72の中心から見た並び順は、互いに逆となっている。はんだ接合部121は4つ、はんだ接合部122は3つである。図15において、ヒートシンク51、52は、図13と同じ構造である。
 半導体装置11、12が、対応する半導体素子31、32を2つ備える例を示したが、これに限定されない。半導体素子31、32を3つ以上備えてもよい。
 両面放熱構造の半導体装置11、12として、ターミナル61、62を備える例を示したが、これに限定されない。ターミナル61,62を備えない構成としてもよい。ヒートシンク41、42、51、52が、対応する封止樹脂体21、22から露出される例を示したが、封止樹脂体21、22から露出されない構成としてもよい。ヒートシンク41、42、51、52を、たとえば半導体素子31、32の個数に応じて複数に分割してもよい。しかしながら、一体化したほうが、生産性も向上できる。また、並列回路において電圧の揺らぎを抑制することができる。
 (第2実施形態)
 本実施形態において、先行実施形態と機能的におよび/または構造的に対応する部分および/または関連付けられる部分には、同一の参照符号を付与する。対応する部分および/または関連付けられる部分については、先行実施形態の説明を参照することができる。
 図16および図17に示すように、本実施形態に係る半導体モジュール10は、負荷線9をさらに備えている。負荷線9は、たとえば銅などの金属材料を用いて形成されている。負荷線9は、たとえば板状に形成されている。負荷線9は、バスバーとも称される。半導体モジュール10は、連結部材13として、負荷線9が連なっている連結部材13aと、負荷線9が連なっていない連結部材13bを備えている。
 負荷線9は、連結部材13aと一体的に設けられてもよいし、連結部材13aに接続されてもよい。負荷線9は、連結部材13aの所定位置に連なっている。図16および図17では、便宜上、冷却器14を省略して図示している。
 負荷線9を、連結部材13aのみに繋ぐことで、モータジェネレータ3との接続構造を簡素化することができる。また、コレクタ端子C1およびエミッタ端子E2と平滑コンデンサCsとの接続も簡素化できる。
 半導体装置11、12の基本的な構成は、先行実施形態と同じである。半導体装置11は、1本のコレクタ端子C1と、2本のエミッタ端子E1を備えている。半導体装置12は、2本のコレクタ端子C2と1本のエミッタ端子E2を備えている。半導体装置11、12のエミッタ端子E1、E2は、対応するヒートシンク51、52にはんだ接合されている。
 以下では、エミッタ端子E1のひとつをエミッタ端子E11、他のひとつをエミッタ端子E12と示すことがある。コレクタ端子C2のひとつをコレクタ端子C21、他のひとつをコレクタ端子C22と示すことがある。X方向において、エミッタ端子E11は半導体素子31a側に配置され、エミッタ端子E12は半導体素子31b側に配置されている。コレクタ端子C21は半導体素子32a側に配置され、コレクタ端子C22は半導体素子32b側に配置されている。
 以下に、負荷線9の連なる位置について説明する。
 図18は、負荷線9の連なる位置を検証するため、配線抵抗を考慮した上下アーム7の回路モデルである。図18に示す負荷は、モータジェネレータ3の固定子巻線に相当する。負荷は、誘導性負荷(L負荷)である。以下では、P端子であるコレクタ端子C1を単にP、N端子であるエミッタ端子E2を単にN、出力線である負荷線9を単にOと示すことがある。
 図18に示すように、上下アーム7は、上アーム7Uと下アーム7Lを接続する経路として、第1経路F1と、第2経路F2を有している。以下において、単に経路F1、F2と示すことがある。第1経路F1は、連結部材13aと、エミッタ端子E11と、コレクタ端子C21を有している。連結部材13aは、出力端子であるエミッタ端子E11およびコレクタ端子C21に溶接されている。第1経路F1は、主たる抵抗成分として、エミッタ端子E11と連結部材13aとの溶接部分の抵抗R1と、連結部材13a自身の配線抵抗である抵抗R2、R3と、コレクタ端子C21と連結部材13aとの溶接部分の抵抗R4を有している。
 第2経路F2は、連結部材13bと、エミッタ端子E12と、コレクタ端子C22を有している。連結部材13bは、出力端子であるエミッタ端子E12およびコレクタ端子C22に溶接されている。第2経路F2は、主たる抵抗成分として、エミッタ端子E12と連結部材13bとの溶接部分の抵抗R5と、連結部材13b自身の配線抵抗である抵抗R6、R7と、コレクタ端子C22と連結部材13bとの溶接部分の抵抗R8を有している。図18に示すモデルでは、負荷線9が上アーム7U寄りに連なり、第1経路F1において、負荷線9が連なる位置から下アーム7L側に、抵抗R2、R3があると仮定とした。
 上記したように、連結部材13のひとつに負荷線9が連なる構成では、DC電流の経路が主として2つある。DC電流とは、スイッチング時ではなく、スイッチング素子がオンされている定常時に流れる電流である。図18に実線矢印で示すCP1、CP2は、上アーム7U側のスイッチング素子Q1(Q1a、Q1b)を駆動させているときの主電流経路である。破線矢印で示すCP3、CP4は、下アーム7L側のスイッチング素子Q2(Q2a、Q2b)を駆動させているときの主電流経路である。
 電流経路CP1は、コレクタ端子C1(P)→ヒートシンク41→スイッチング素子Q1a、Q1b→ヒートシンク51→エミッタ端子E11→連結部材13a→負荷線9(O)である。電流経路CP2は、コレクタ端子C1(P)→ヒートシンク41→スイッチング素子Q1a、Q1b→ヒートシンク51→エミッタ端子E12→連結部材13b→コレクタ端子C22→ヒートシンク42→コレクタ端子C21→連結部材13a→負荷線9(O)である。このように、電流経路CP1、CP2とで主回路配線の抵抗成分が異なるため、DC電流のアンバランスが生じる虞がある。
 同様に、電流経路CP3は、負荷線9(O)→連結部材13a→コレクタ端子C21→ヒートシンク42→スイッチング素子Q2a、Q2b→ヒートシンク52→エミッタ端子E2(N)である。電流経路CP4は、負荷線9(O)→連結部材13a→エミッタ端子E11→ヒートシンク51→エミッタ端子E12→連結部材13b→コレクタ端子C22→ヒートシンク42→スイッチング素子Q2a、Q2b→ヒートシンク52→エミッタ端子E2(N)である。このように、電流経路CP3、CP4とで主回路配線の抵抗成分が異なるため、DC電流のアンバランスが生じる虞がある。
 図19は、図18に示すモデルにおいて、モータロックが生じたときに出力端子に流れる電流のシミュレーション結果を示している。図19(a)は、上アーム7U側を駆動させているときに、各出力端子に流れる電流を示している。図19(b)は、下アーム7L側を駆動させているときに、各出力端子に流れる電流を示している。図19では、エミッタ端子E11に流れる電流を実線、コレクタ端子C21に流れる電流を破線、エミッタ端子E12およびコレクタ端子C22に流れる電流を一点鎖線で示している。
 シミュレーションでは、負荷電流を1000[A]、上下アーム7の出力波形のデューティ比を55%とした。また、抵抗R1~R8の値を互いに等しい値であるrとした。経路F1、F2の全抵抗値8rに対し、電流経路CP1の抵抗値はr、電流経路CP2の抵抗値は7r、電流経路CP3の抵抗値は3r、電流経路CP4の抵抗値は5rである。
 よって、電流経路CP1のほうが、電流経路CP2よりも電流が流れやすい。スイッチング素子Q1の駆動時において、エミッタ端子E11のほうがエミッタ端子E12よりも大きな電流が流れる。また、電流経路CP3のほうが、電流経路CP4よりも電流が流れやすい。スイッチング素子Q2の駆動時において、コレクタ端子C21のほうがコレクタ端子C22よりも大きな電流が流れる。このように、経路F1を構成する出力端子、具体的にはエミッタ端子E11およびコレクタ端子C21側に電流が集中する。
 スイッチング素子Q1の駆動時には、上下アーム7から負荷へ電流が流れる。図19(a)に示すように、PWM周期のオン期間には、コレクタ端子C1(P)からスイッチング素子Q1を介して負荷線9(O)に電流が流れる。エミッタ端子E11には、1000×7/8=875[A]の電流が流れる。オフ期間には、エミッタ端子E2(N)からダイオードD2を介して負荷線9(O)に電流が流れる。このとき、エミッタ端子E11には、1000×3/8=375[A]の電流が流れる。エミッタ端子E11に流れる電流は、875[A](デューティ比55%)、375[A](デューティ比45%)の矩形波である。エミッタ端子E11には、実効値換算で696[A]の電流が流れる。
 スイッチング素子Q2の駆動時には、負荷から上下アーム7に電流が流れる。PWM周期のオン期間には、負荷線9(O)からスイッチング素子Q2を介してエミッタ端子E2(N)に電流が流れる。コレクタ端子C21には、図19(b)に示すように、1000×5/8=625[A]の電流が流れる。オフ期間には、負荷線9(O)からダイオードD1を介してコレクタ端子C1(P)に電流が流れる。このとき、コレクタ端子C21には、1000×1/8=125[A]の電流が流れる。コレクタ端子C21に流れる電流は、625[A](デューティ比45%)、125[A](デューティ比55%)の矩形波である。コレクタ端子C21には、実効値換算で429[A]の電流が流れる。
 このように、図18に示すモデルでは、上アーム7Uのほうが下アーム7LよりもDC電流のバランスが悪い。よって、DC電流のアンバランスにより電流が集中するエミッタ端子E11およびコレクタ端子C21の中でも、特にエミッタ端子E11に大きな電流が流れる。エミッタ端子E11のほうが、通電ストレスが大きい。
 本実施形態の半導体モジュール10は、先行実施形態同様、ヒートシンク51、52と主端子71、72との接合部として、はんだ接合部121と、はんだ接合部122を有している。はんだ接合部121は、ヒートシンク51とエミッタ端子E11、E12のそれぞれとの間に形成されている。はんだ接合部122は、ヒートシンク52とエミッタ端子E2との間に形成されている。電流が集中するエミッタ端子E11およびコレクタ端子C21のうち、エミッタ端子E11には、はんだ接合部121が形成され、コレクタ端子C21には、はんだ接合部が形成されていない。コレクタ端子C21は、ひとつの部材としてヒートシンク42と連続的に設けられている。たとえばエレクトロマイグレーション効果は、流れる電流が大きくなるほど高くなる。エミッタ端子E11のほうが、コレクタ端子C21よりも通電ストレスに対する耐性が低い。
 そこで、本実施形態では、経路F1において、負荷線9の連なる位置(以下、基準位置と示す)からエミッタ端子E11を介してヒートシンク51までの配線抵抗の値が、基準位置からコレクタ端子C21を介してヒートシンク42までの配線抵抗の値よりも大きくなるように、基準位置が設定されている。図16および図17に示すように、本実施形態に係る半導体モジュール10では、負荷線9が、略コの字(U字)状をなす連結部材13aのうち、コレクタ端子C21との溶接部分に連なっている。基準位置は、出力分岐点とも称される。
 図20は、図16および図17に示す半導体モジュール10の等価回路図である。連結部材13aにおいて、負荷線9が連なる基準位置BPは、下アーム7L寄りに設けられている。図20では、便宜上、基準位置BPとコレクタ端子C21との溶接部分の抵抗R4との間の配線抵抗をゼロとし、基準位置BPを、連結部材13aの配線抵抗R2、R3と抵抗R4との間に設けている。
 経路F1において、基準位置BPから、エミッタ端子E11およびはんだ接合部121を介して、ヒートシンク51までの配線部分の抵抗値(第1抵抗値)は、抵抗R1、R2、R3の合計値である。基準位置BPから、コレクタ端子C21を介して、ヒートシンク42までの配線部分の抵抗値(第2抵抗値)は、抵抗R4の値である。たとえば各抵抗R1~R8の値がrの場合、第1抵抗値は3r、第2抵抗値はrである。
 以上により、通電ストレスに対する耐性が低いエミッタ端子E11側の半導体装置11において、エミッタ端子E11、E12のDC電流のアンバランスを抑制することができる。エミッタ端子E11、E12のDC電流のアンバランスの度合いを小さくすることができる。これにより、エミッタ端子E11に形成されたはんだ接合部121への電流集中を抑制することができる。DC電流のアンバランスの抑制により、はんだ接合部121に流れる電流を小さくすることができる。したがって、2種類(2品番)の半導体装置11、12を備える半導体モジュール10において、信頼性を向上することができる。
 上記した負荷線9の配置により、コレクタ端子C2側においてDC電流のアンバランスの度合いが大きくなり、コレクタ端子C21に流れる電流が大きくなる。しかしながら、コレクタ端子C21は、エミッタ端子E11よりも通電ストレスに対する耐性が高い。よって、半導体モジュール10全体として、信頼性を向上することができる。
 なお、はんだ接合の有無により、エミッタ端子E11のほうがコレクタ端子C21よりも通電ストレスに対する耐性が低い例を示したが、これに限定されない。たとえば、コレクタ端子C21がヒートシンク42にはんだ接合され、コレクタ端子C21のはんだ接合部の面積が、エミッタ端子E11のはんだ接合部121の面積よりも大きくされてもよい。はんだ接合の有無、はんだ接合部の面積などにより、通電ストレスに対する耐性の大小が決定される。
 本実施形態とは逆の構成、すなわち下アーム7L側のコレクタ端子C21のほうが、上アーム7U側のエミッタ端子E11よりも通電ストレスに対する耐性が低くされた構成としてもよい。この場合、経路F1において、基準位置BPからヒートシンク42までの配線抵抗値が、基準位置BPからヒートシンク51までの配線抵抗値よりも大きくなるように、負荷線9を設ければよい。たとえば、基準位置BPを、連結部材13aにおいて上アーム7U寄りに設ければよい。
 本実施形態では、連結部材13a、13bが、同一構造とされている。これによれば、負荷線9の基準位置BPにより、DC電流のアンバランスを調整しやすい。同一構造の連結部材13a、13bを用い、溶接も同様に行うことで、経路F1全体の抵抗値と、経路F2全体の抵抗値とを、ほぼ等しくすることができる。
 経路F1、F2の抵抗値が等しい場合、エミッタ端子E11に流れる電流とコレクタ端子C21に流れる電流とのクロスポイントにおける抵抗比率xが、モータロック時に設定される出力波形のデューティ比とほぼ一致することが明らかとなった。図21は、モータロック時に設定される種々のデューティ比において、抵抗比率xとエミッタ端子E11およびコレクタ端子C21の実効値電流の比率の関係を示している。以下において、区別のため、クロスポイントの抵抗比率をx0と示す。
 抵抗比率xは、経路F1全体の抵抗値に対する第1抵抗値の比率である。図20において、抵抗R1~R4の合計値を1とすると、抵抗R1、R2、R3の合計値がx、抵抗R4が(1-x)である。モータロック時のデューティ比は、一般的に50%程度(たとえば40~60%の範囲の中)に設定される。デューティ比は、図21(a)が50%、図21(b)が55%、図21(c)が60%である。上記したシミュレーション結果は、図21(b)において、抵抗比率xが0.25の場合の結果である。抵抗比率x=0.25において、エミッタ端子E11とコレクタ端子C21との実効値電流の比率は0.62:0.38である。
 図21に示すように、いずれのデューティ比においても、クロスポイントの抵抗比率x0とデューティ比Rdが一致している。図21(a)において、抵抗比率x0は、0.55である。図21(b)において、抵抗比率x0は、0.5である。図21(c)において、抵抗比率x0は、0.6である。
 したがって、モータロック時に設定されるデューティ比をRdとすると、エミッタ端子E11のほうが通電ストレスに対する耐性が低い場合、x≧Rdを満たすように、抵抗比率x、すなわち基準位置BPを設定するとよい。この関係を満たすことで、エミッタ端子E11の実効値電流を、コレクタ端子C21の実効値電流以下にすることができる。これにより、半導体モジュール10の信頼性を向上することができる。x>Rdを満たすと、エミッタ端子E11の実効値電流を、コレクタ端子C21の実効値電流未満にすることができる。これにより、半導体モジュール10の信頼性をさらに向上することができる。
 コレクタ端子C21のほうが通電ストレスに対する耐性が低い場合、x≦Rdを満たすように、抵抗比率x、すなわち基準位置BPを設定するとよい。この関係を満たすことで、コレクタ端子C21の実効値電流を、エミッタ端子E11の実効値電流以下にすることができる。これにより、半導体モジュール10の信頼性を向上することができる。x<Rdを満たすと、コレクタ端子C21の実効値電流を、エミッタ端子E11の実効値電流未満にすることができる。これにより、半導体モジュール10の信頼性をさらに向上することができる。
 連結部材13a、13bが、同一構造の例を示したが、これに限定されない。経路F1、F2の抵抗値がほぼ等しい例を示したが、これに限定されない。連結部材13a、13bの構造が異なる構成にも適用できる。経路F1、F2の抵抗値が異なる構成にも適用できる。たとえば、幅、厚み、長さの少なくとも1つを、連結部材13a、13bの少なくとも一部において異ならせてもよい。たとえば同一構造の連結部材13a、13bを用いつつ、溶接抵抗(抵抗R1、R4、R5、R8)を異ならせることで、経路F1、F2の抵抗値が異なるようにしてもよい。連結部材13a、13bと出力端子との接続は溶接に限定されない。溶接以外の固定手段、たとえば接合部材による固定、締結などを用いてもよい。
 たとえば、図20において、経路F1側の抵抗R1~R4の値をそれぞれr、経路F2側の抵抗R5~R8の値をそれぞれ2rとしたときの、実効値電流の比率と抵抗比率xとの関係を図22に示す。経路F1全体の抵抗値に対する経路F2全体の抵抗値の比をkとすると、k=2である。デューティ比は、図22(a)が50%、図22(b)が55%、図22(c)が60%である。
 図22(a)に示すように、デューティ比が50%の場合、クロスポイントの抵抗比率x0はデューティ比Rdと一致する。図22(b)および図22(c)に示すように、デューティ比が55%、60%の場合、抵抗比率x0とデューティ比Rdとにずれが生じている。抵抗比率x0のほうがデューティ比Rdよりも大きい値となっている。デューティ比が55%の場合、抵抗比率x0は0.6である。デューティ比が60%の場合、抵抗比率x0は0.7である。
 経路F1、F2の抵抗値が一致しない場合、クロスポイントの抵抗比率x0が、下記式1により決定される。
(式1)x0={(Rd-0.5)×k+0.5}
 したがって、エミッタ端子E11のほうが通電ストレスに対する耐性が低い場合、下記式2を満たすように、抵抗比率x、すなわち基準位置BPを設定するとよい。
(式2)x≧{(Rd-0.5)×k+0.5}
 この関係を満たすことで、エミッタ端子E11の実効値電流を、コレクタ端子C21の実効値電流以下にすることができる。下記式3を満たすと、エミッタ端子E11の実効値電流を、コレクタ端子C21の実効値電流未満にすることができる。
(式3)x>{(Rd-0.5)×k+0.5}
 コレクタ端子C21のほうが通電ストレスに対する耐性が低い場合、下記式4を満たすように、抵抗比率x、すなわち基準位置BPを設定するとよい。
(式4)x≦{(Rd-0.5)×k+0.5}
 この関係を満たすことで、コレクタ端子C21の実効値電流を、エミッタ端子E11の実効値電流以下にすることができる。下記式5を満たすと、コレクタ端子C21の実効値電流を、エミッタ端子E11の実効値電流未満にすることができる。
(式5)x<{(Rd-0.5)×k+0.5}
 上記した式1~5の関係については、k=2以外においても成立する。たとえば、k=1.5の場合を、図23に示す。デューティ比は、図23(a)が50%、図23(b)が55%、図23(c)が60%である。デューティ比が50%の場合、クロスポイントの抵抗比率x0はデューティ比Rdと一致する。デューティ比が55%の場合、抵抗比率x0は0.575である。デューティ比が60%の場合、抵抗比率x0は0.65である。いずれのデューティ比においても、クロスポイントの抵抗比率x0は、上記した式1により算出される値と一致する。
 k=0.5の場合を、図24に示す。デューティ比は、図24(a)が50%、図24(b)が55%、図24(c)が60%である。デューティ比が50%の場合、クロスポイントの抵抗比率x0はデューティ比Rdと一致する。デューティ比が55%の場合、抵抗比率x0は0.525である。デューティ比が60%の場合、抵抗比率x0は0.55である。いずれのデューティ比においても、クロスポイントの抵抗比率x0は、上記した式1により算出される値と一致する。なお、上記式1~5の関係は、たとえばk=1でも成立する。
 負荷線9の位置は、上記例に限定されない。たとえばエミッタ端子E11の通電ストレスに対する耐性が低い場合、図25に示す変形例のように、連結部材13aを、コレクタ端子C21との接続部分よりも延設し、この延設部分に負荷線9が連なる構成としてもよい。図26に示す変形例のように、略コの字状をなす連結部材13aにおいて、エミッタ端子E11およびコレクタ端子C21との接続部を繋ぐ繋ぎ部に、負荷線9が連なる構成としてもよい。この場合、溶接抵抗に差を設ける、および/または、連結部材13aにおける接続部の幅を異ならせればよい。図27に示す変形例のように、Y方向において連結部材13aを反転させてもよい。
 経路F1において、エミッタ端子E11およびコレクタ端子C21と連結部材13aとの接続数が同じ例を示したが、これに限定されない。エミッタ端子E11とコレクタ端子C21とで接続数を異ならせることで、基準位置BPからの配線抵抗を調整することもできる。たとえば図28に示す変形例では、板厚方向の表裏でコレクタ端子C21に連結部材13aが接続されている。連結部材13a、13bの構造が互いに異なっている。コレクタ端子C21は2つの接続部を有し、エミッタ端子E11は1つの接続部を有している。2つの接続部により、コレクタ端子C21の接続面積が大きい。これにより、抵抗R4の値が、抵抗R1の値よりも小さくなっている。
 図29に示す変形例のように、連結部材13a、13bが、ワイヤなどの細線15によって電気的に接続された構成としてもよい。細線15の抵抗値は、電流経路CP1、CP2、CP3、CP4を構成する他の要素の抵抗値に較べて十分に大きい。細線15は、DC電流のバランスに大きな影響を与えない。
 半導体装置11、12をZ方向に積層配置する例を示したが、これに限定されない。たとえば図30に示す変形例のように、平置きの状態で接続することもできる。図30に示す符号B1は正極側のバスバーであり、符号B2は負極側のバスバーである。バスバーB1を介して、コレクタ端子C1が平滑コンデンサCsの正極側の端子に接続される。バスバーB2を介して、エミッタ端子E2が平滑コンデンサCsの負極側の端子に接続される。図30では、封止樹脂体21、22など、半導体装置11、12の要素の一部を省略して図示している。
 半導体装置11、12の構造は、両面放熱構造に限定されない。片面放熱構造にも適用できる。また、縦型構造のスイッチング素子に限定されず、横型構造のスイッチング素子(たとえばLDMOS)にも適用できる。片面放熱構造の場合、たとえば平置き状態での接続構造を採用することができる。
 半導体装置11、12が複数の半導体素子31、32を備える例を示したが、これに限定されない。1つの半導体素子31、32を備える構成において、複数の経路、たとえば2つの経路F1、F2を有すると、DC電流のアンバランスを生じ得る。よって、半導体装置11、12が1つの半導体素子31、32のみを備える構成にも適用することができる。
 半導体装置11、12が封止樹脂体21、22を備える例を示したが、これに限定されない。封止樹脂体21、22を備えない構成としてもよい。
 (第3実施形態)
 本実施形態において、先行実施形態と機能的におよび/または構造的に対応する部分および/または関連付けられる部分には、同一の参照符号を付与する。対応する部分および/または関連付けられる部分については、先行実施形態の説明を参照することができる。
 図31は、本実施形態に係る半導体装置11、12を示している。図31では、便宜上、2つの半導体装置11、12を横並びで図示している。図31では、図12同様、封止樹脂体21、22内の要素を破線で示している。
 半導体装置11、12の基本的な構成は、先行実施形態と同じである。半導体装置11、12は、両面放熱構造をなしている。Z方向からの平面視において、ヒートシンク51、52の面積が、対応するヒートシンク41、42の面積よりも小さくされている。ヒートシンク51(本体部51a)の長手方向において、2つの半導体素子31が並んで配置されている。同じく、ヒートシンク52(本体部52a)の長手方向において、2つの半導体素子32が並んで配置されている。
 半導体装置11は、はんだ接合部121を有している。はんだ接合部121は、エミッタ端子E1のそれぞれとヒートシンク51との間に形成されている。半導体装置12は、はんだ接合部122を有している。はんだ接合部122は、エミッタ端子E2とヒートシンク52との間に形成されている。
 半導体装置11、12は、はんだ接合部131、132をさらに有している。はんだ接合部131は、ターミナル61のそれぞれとヒートシンク51との間に形成されている。はんだ接合部132は、ターミナル62のそれぞれとヒートシンク52との間に形成されている。図31では、他と区別するために、はんだ接合部121、122、131、132にハッチングを施している。
 ヒートシンク51、52の面積が、ヒートシンク41、42の面積よりも小さい場合、上記したように2ndリフローによって、ヒートシンク51、52側のはんだ接合部が形成される。たとえば半導体装置12を形成する場合、図32に示すように、ヒートシンク42を含む接続体を、はんだ92c、92dが上になるように台座200上に配置する。次いで、ヒートシンク52を配置する。この配置状態で、2ndリフローを行う。その際、部材の自重、冶具などにより、台座200をZ方向の位置基準としてヒートシンク42の位置が決定する。
 ヒートシンク52については、台座200上に冶具201で位置決めされて配置されるものの、Z方向については、はんだの溶融時においてフリーである。ヒートシンク52の重心Cg2と、ヒートシンク52に接続されるはんだの表面張力との関係により、ヒートシンク52に傾きが生じる虞がある。たとえばはんだ92c、92dが同じタイミングで固まらないことも考えられる。はんだの液相から固相への体積変化が、傾きに影響を及ぼす虞がある。なお、半導体装置11(ヒートシンク51)についても同様である。図32では、ヒートシンク42、52とはんだ92c、92dに着目し、便宜上、他の要素をヒートシンク42と一体的に図示している。
 本実施形態に係る半導体装置11では、ヒートシンク51の主たるはんだ接合部が、ヒートシンク51の重心Cg1を通る軸AX11を対称軸として線対称配置されている。軸AX11は、ヒートシンク51の長手方向、すなわちX方向と半導体素子31の板厚方向であるZ方向とに直交している。同じく、半導体装置12では、主たるはんだ接合部が、ヒートシンク52の重心Cg2を通る軸AX12を対称軸として線対称配置されている。軸AX12は、ヒートシンク52の長手方向、すなわちX方向と半導体素子32の板厚方向であるZ方向とに直交している。
 この配置により、ヒートシンク51、52の長手方向において、重心Cg1、Cg2に対してほぼ同じ距離で、ほぼ同じ表面張力が作用する。これにより、長手方向の一方側と他方側とで、図32に示すようにトルクがほぼ釣り合う。したがって、面積の大きいヒートシンク41、42をZ方向において位置決めし、この状態でヒートシンク51、52のはんだ接合部を形成する際に、ヒートシンク41、42とヒートシンク51、52とが相対的に傾くのを抑制することができる。
 特に長手方向において傾くのを抑制することができる。同じ傾きでも、長手方向のほうが短手方向よりも変位量が大きくなる。本実施形態によれば、変位量を抑制することができる。傾きの抑制により、たとえば放熱性を確保することができる。並列接続される半導体素子31、32において、配線インダクタンスのずれを抑制することができる。
 本実施形態では、半導体装置11が、ヒートシンク51に形成されるはんだ接合部として、ヒートシンク51と半導体素子31とを電気的に接続するはんだ接合部131と、ヒートシンク51とエミッタ端子E1とを電気的に接続するはんだ接合部121を有している。はんだ接合部131は、はんだ91cを含んで形成され、はんだ接合部121は、はんだ91dを含んで形成されている。半導体装置11は、2つのはんだ接合部131と、2つのはんだ接合部121を有している。
 2つのはんだ接合部131は、軸AX11を対称軸として、線対称配置されている。これにより、ヒートシンク51の長手方向において、はんだ91cの表面張力のバランスがとれる。2つのはんだ接合部121は、軸AX11を対称軸として、線対称配置されている。これにより、ヒートシンク51の長手方向において、はんだ91dの表面張力のバランスがとれる。以上により、ヒートシンク51に長手方向の傾きが生じるのを抑制することができる。
 同じく、半導体装置12が、ヒートシンク52に形成されるはんだ接合部として、ヒートシンク52と半導体素子32とを電気的に接続するはんだ接合部132と、ヒートシンク52とエミッタ端子E2とを電気的に接続するはんだ接合部122を有している。はんだ接合部132は、はんだ92cを含んで形成され、はんだ接合部122は、はんだ92dを含んで形成されている。半導体装置12は、2つのはんだ接合部132と、1つのはんだ接合部122を有している。
 2つのはんだ接合部132は、軸AX12を対称軸として、線対称配置されている。これにより、ヒートシンク52の長手方向において、はんだ92cの表面張力のバランスがとれる。はんだ接合部122は、軸AX12を対称軸として、線対称配置されている。これにより、ヒートシンク52の長手方向において、はんだ92dの表面張力のバランスがとれる。以上により、ヒートシンク52に長手方向の傾きが生じるのを抑制することができる。
 本実施形態では、ヒートシンク51との接続面積が大きい順に、少なくとも上位2つのはんだ接合部が、ヒートシンク51の短手方向において軸AX21と重なるように設けられている。軸AX21は、ヒートシンク51の短手方向、すなわちY方向とZ方向とに直交し、且つ、重心Cg1を通る。表面張力が軸AX21に近い位置で働くため、短手方向において、傾きを生じさせるトルクを小さくすることができる。これにより、ヒートシンク51に短手方向の傾きが生じるのを抑制することができる。本実施形態では、すべてのはんだ接合部131が、軸AX21上に設けられている。
 同じく、ヒートシンク52との接続面積が大きい順に、少なくとも上位2つのはんだ接合部が、ヒートシンク52の短手方向において軸AX22と重なるように設けられている。軸AX22は、ヒートシンク52の短手方向、すなわちY方向とZ方向とに直交し、且つ、重心Cg2を通る。表面張力が軸AX22に近い位置で働くため、短手方向において、傾きを生じさせるトルクを小さくすることができる。これにより、ヒートシンク52に短手方向の傾きが生じるのを抑制することができる。本実施形態では、すべてのはんだ接合部132が、軸AX22上に設けられている。
 本実施形態では、はんだ接合部121、122が、軸AX21、AX22と重ならないように、短手方向において軸AX21、AX22とは離れた位置に設けられている。これにより、ヒートシンク51、52と、半導体素子31、32およびエミッタ端子E1、E2との接続構造を簡素化することができる。特に、半導体装置11において、2つのはんだ接合部121が、軸AX21に対して同じ側に配置されているため、構造を簡素化することができる。
 本実施形態でも、図31に示すように、封止樹脂体21の側面21cから、すべての主端子71が突出している。そして、Z方向からの平面視において、はんだ接合部131の中心131cが、短手方向において、軸AX21よりもはんだ接合部121から離れた位置に設けられている。これにより、はんだ91dの表面張力によるトルクを打ち消す側に、はんだ91cの表面張力を作用させることができる。したがって、ヒートシンク51の短手方向の傾きを効果的に抑制することができる。中心131cは、エミッタ電極31eの中心とほぼ一致する。
 同じく、封止樹脂体22の側面22cから、すべての主端子72が突出している。そして、Z方向からの平面視において、はんだ接合部132の中心132cが、短手方向において、軸AX22よりもはんだ接合部122から離れた位置に設けられている。これにより、はんだ92dの表面張力によるトルクを打ち消す側に、はんだ92cの表面張力を作用させることができる。したがって、ヒートシンク52の短手方向の傾きを効果的に抑制することができる。中心132cは、エミッタ電極32eの中心とほぼ一致する。
 なお、本実施形態において、ヒートシンク41、42、51、52が放熱部材に相当する。ヒートシンク41、42が第1部材に相当し、ヒートシンク51、52が第2部材に相当する。はんだ接合部121、122、131、132が複数のはんだ接合部に相当する。はんだ接合部131、132が第1接合部に相当し、はんだ接合部121、122が第2接合部に相当する。軸AX11、AX12が、軸、第1軸に相当する。軸AX21、AX22が第2軸に相当する。
 放熱部材として、ヒートシンク41、42、51、52の例を示したがこれに限定されない。たとえばヒートシンク41、42およびヒートシンク51、52の少なくとも一方として、DBC(Direct Bonded Copper)基板を採用することもできる。
 半導体装置11が備える半導体素子31の個数、配置は、上記例に限定されない。半導体装置12が備える半導体素子32の個数、配置は、上記例に限定されない。3つ以上の半導体素子31、32を備えてもよい。4つの半導体素子31を備えることで、図33に示す変形例では、半導体装置11が4つのはんだ接合部131を有している。
 複数の半導体素子31、32の一部がX方向に並んで配置され、残りの半導体素子31、32が並んで配置された半導体素子31、32に対してY方向にずれて配置された構成を採用できる。この場合も、複数のはんだ接合部131、132が、軸AX11、AX12に対して線対称配置とされればよい。図34に示す変形例では、半導体装置11が3つのはんだ接合部131を有している。2つのはんだ接合部131が、軸AX11に対して線対称配置となるように、X方向に並んで配置されている。残りのはんだ接合部131は、他の2つに対してY方向にずれて配置されるとともに、軸AX11に対して線対称配置とされている。図33、図34では、便宜上、信号端子81および吊りリード101bなどを省略している。図33、図34では、半導体装置11を示したが、半導体装置12に適用することもできる。
 半導体装置11、12が、封止樹脂体21、22を備える例を示したが、これに限定されない。封止樹脂体21、22のない構成としてもよい。
 (第4実施形態)
 本実施形態において、先行実施形態と機能的におよび/または構造的に対応する部分および/または関連付けられる部分には、同一の参照符号を付与する。対応する部分および/または関連付けられる部分については、先行実施形態の説明を参照することができる。
 先行実施形態に示した半導体装置11は、ヒートシンク51と主端子71とのはんだ接合部121を有している。半導体装置12は、ヒートシンク52と主端子72とのはんだ接合部122を有している。図35では、一例として、半導体装置12のはんだ接合部122周辺を模式的に示している。図35では、電流の流れ実線矢印で示している。
 図35に示すように、ヒートシンク52の継手部52bと、エミッタ端子E2の対向部E2aとの間にはんだ92dが介在し、はんだ接合部122が形成されている。対向部E2aのほうが継手部52bよりも電流が流れにくいと、はんだ接合部122において、低抵抗である継手部52b内を、より遠くまで流れようとする動きが強まる。これにより、はんだ92dにおいて、流れ方向手前より、奥側の電流密度が大きくなる。このように、はんだ92dにおいて、電流が局所的に集中しやすい。
 ヒートシンク52およびエミッタ端子E2は、いずれも銅などの金属材料を用いて形成されている。ヒートシンク52およびエミッタ端子E2は、少なくとも主成分金属が同じである。たとえば、対向部E2aが継手部52bよりも薄いと、対向部E2aのほうが流れにくいため、はんだ接合部122において、継手部52b内をより遠くまで流れようとする動き流れが強まる。
 継手部52bと対向部E2aは、板面同士が対向している。はんだ92dは、継手部52bと対向部E2aの板面間に介在している。対向方向からの投影視において、継手部52bにおける端子配置面(対向面)のほうが対向部E2aよりも大きいと、はんだ接合部122において、継手部52b内をより遠くまで流れようとする流れが強まる。なお、半導体装置11でも、同様な問題が生じる。はんだ91d、92dにおいて、電流が局所的に集中すると、たとえばエレクトロマイグレーションが懸念される。
 次に、図36および図37に基づき、本実施形態に係る半導体装置11、12について説明する。図36では、便宜上、封止樹脂体21、22を省略している。図37は、図36のXXXVII-XXXVII線に沿う断面図である。図37では、封止樹脂体21、22も含めて図示している。図37は、先行実施形態の図5に対応している。
 半導体装置11のヒートシンク51は、本体部51aと、継手部51bを有している。2本のエミッタ端子E1は、対向部E1aと、延設部E1bをそれぞれ有している。対向部E1aは、板面同士が対向するように継手部51b上に配置されている。対向部E1aは、はんだ91dを介して継手部51bに接続されている。延設部E1bは、対向部E1aに連なっている。延設部E1bは、Y方向であって継手部51bから遠ざかる方向に延設されている。図37に示すように、継手部51bの厚みをta1、対向部E1aの厚みをtb1とすると、少なくともはんだ接合部121において、厚みtb1が厚みta1以上(tb1≧ta1)とされている。
 本実施形態では、継手部51bの厚みが、全域でほぼ均一とされている。また、対向部E1aの厚みが、全域でほぼ均一とされている。そして、対向部E1aの厚みtb1が、継手部51bの厚みta1よりも厚く(tb1>ta1)されている。継手部51bにおけるエミッタ端子E1の配置面は、対向部E1aより大きくされている。継手部51bは、2つの対向部E1aに対応して、2つの凸部51cを有している。凸部51cは、Y方向であって本体部51aから遠ざかる方向に突出している。
 継手部51bのX方向両端に、対向部E1aの配置領域51dが設けられている。継手部51bにおいて、コレクタ端子C1と対向する領域は、対向部E1aが配置されない非配置領域51eとされている。X方向において、配置領域51d、非配置領域51e、配置領域51dの順に設けられている。配置領域51dの幅Wa1と凸部51cの幅は一致している。幅Wa1は、X方向の長さである。
 幅Wa1は、継手部51bの板厚方向および継手部51bにおける電流の主たる流れ方向に直交する方向の長さである。幅Wa1は、板厚方向および本体部51aからの継手部51bの延設方向に直交する方向の長さである。配置領域51dにおけるY方向の一部分、具体的には本体部51aから離れた部分が、凸部51cをなしている。配置領域51dは、それぞれ平面略矩形状をなしている。XY平面において、配置領域51dの中央部分にはんだ91dが接続され、中央部分を取り囲む周囲部分には、はんだ91dが接続されていない。
 対向部E1aは、その一部にはんだ91dが接続されている。対向部E1aにおいて、接合部分は、エミッタ端子E1の長手方向の一端に設けられている。対向部E1aの幅Wb1は、継手部51bの配置領域51dの幅Wa1よりも狭くされている。すなわち、幅Wa1が、幅Wb1よりも広く(Wa1>Wb1)されている。幅Wb1は、接合部分を含むX方向の長さである。幅Wb1は、板厚方向およびエミッタ端子E1の長手方向に直交する方向の長さである。
 半導体装置12のヒートシンク52は、本体部52aと、継手部52bを有している。1本のエミッタ端子E2は、対向部E2aと、延設部E2bをそれぞれ有している。対向部E2aは、板面同士が対向するように継手部52b上に配置されている。対向部E2aは、はんだ92dを介して継手部52bに接続されている。延設部E2bは、対向部E2aに連なっている。延設部E2bは、Y方向であって継手部52bから遠ざかる方向に延設されている。図37に示すように、継手部52bの厚みをta2、対向部E2aの厚みをtb2とすると、少なくともはんだ接合部122において、厚みtb2が厚みta2以上(tb2≧ta2)とされている。
 本実施形態では、継手部52bの厚みが、全域でほぼ均一とされている。また、対向部E2aの厚みが、全域でほぼ均一とされている。そして、対向部E2aの厚みtb2が、継手部52bの厚みta2よりも厚く(tb2>ta2)されている。継手部52bにおけるエミッタ端子E2の配置面は、対向部E2aより大きくされている。継手部52bは、対向部E2aに対応して1つの凸部52cを有している。凸部52cは、Y方向であって本体部52aから遠ざかる方向に突出している。
 継手部52bのX方向中央に、対向部E2aの配置領域52dが設けられている。継手部52bにおいて、コレクタ端子C2と対向する領域は、対向部E2aが配置されない非配置領域52eとされている。X方向において、非配置領域52e、配置領域52d、非配置領域52eの順に設けられている。配置領域52dの幅Wa2と凸部52cの幅は一致している。幅Wa2は、X方向の長さである。
 幅Wa2は、継手部52bの板厚方向および継手部52bにおける電流の主たる流れ方向に直交する方向の長さである。幅Wa2は、板厚方向および本体部52aに対する継手部52bの延設方向に直交する方向の長さである。配置領域52dにおけるY方向の一部分、具体的には本体部52aから離れた部分が、凸部52cをなしている。配置領域52dは、平面略矩形状をなしている。XY平面において、配置領域52dの中央部分にはんだ92dが接続され、中央部分を取り囲む周囲部分には、はんだ92dが接続されていない。
 対向部E2aの一部に、はんだ92dが接続されている。対向部E2aにおいて、接合部分は、エミッタ端子E2の長手方向の一端に設けられている。対向部E2aの幅Wb2は、継手部52bの配置領域52dの幅Wa2よりも狭くされている。すなわち、幅Wa2が、幅Wb2よりも広く(Wa2>Wb2)されている。幅Wb2は、接合部分を含むX方向の長さである。幅Wb2は、板厚方向およびエミッタ端子E2の長手方向に直交する方向の長さである。
 本実施形態に係る半導体装置11、12によれば、上記したように、対向部E1aの厚みtb1が継手部51bの厚みta1以上とされている。対向部E1aが継手部51bより薄い構成に較べて、対向部E1aに電流が流れやすいため、はんだ91dにおいて、電流が局所的に集中するのを抑制することができる。したがって、半導体装置11の信頼性を向上することができる。同様に、対向部E2aの厚みtb2が継手部52bの厚みta2以上とされている。したがって、半導体装置12の信頼性を向上することができる。
 本実施形態では、継手部51bにおけるエミッタ端子E1の配置面が、対向部E1aより大きくされている。配置領域51dの幅Wa1が、対向部E1aの幅Wb1よりも広くされている。はんだ91dに電流が局所的に集中しやすい構成ながらも、上記したtb1≧ta1の関係を満たすことで、半導体装置11の信頼性を向上することができる。同様に、継手部52bにおけるエミッタ端子E2の配置面は、対向部E2aより大きくされている。配置領域52dの幅Wa2が、対向部E2aの幅Wb2よりも広くされている。はんだ92dに電流が局所的に集中しやすい構成ながらも、上記したtb2≧ta2の関係を満たすことで、半導体装置12の信頼性を向上することができる。
 本実施形態では、半導体装置11、12が、対応する半導体素子31、32を複数備えている。複数の半導体素子31が、はんだ91b、91cを介して、同じ本体部51aに接続されている。はんだ91dに電流が局所的に集中しやすい構成ながらも、上記したtb1≧ta1の関係を満たすことで、半導体装置11の信頼性を向上することができる。複数の半導体素子32が、はんだ92b、92cを介して、同じ本体部52aに接続されている。はんだ92dに電流が局所的に集中しやすい構成ながらも、上記したtb2≧ta2の関係を満たすことで、半導体装置12の信頼性を向上することができる。
 半導体装置12では、エミッタ端子E2の本数が半導体素子32の数よりも少なくされている。エミッタ端子E2の本数が、コレクタ端子C2の本数よりも少なくされている。半導体装置12は、2つの半導体素子32と、1本のエミッタ端子E2を備えている。このように、エミッタ端子E2、すなわち、はんだ接合部122のはんだ92dに電流が局所的に集中しやすい構成ながらも、上記したtb1≧ta1の関係を満たすことで、半導体装置11の信頼性を向上することができる。
 図37に示すように、本実施形態では、半導体装置11において、エミッタ端子E1の対向部E1aの厚みが、コレクタ端子C1の厚みよりも厚くされている。半導体装置12において、エミッタ端子E2の対向部E2aの厚みが、コレクタ端子C2の厚みよりも厚くされている。このように、主端子71、72において、エミッタ端子E1、E2の少なくとも対向部E1a、E2aを、他の部分よりも厚くしている。したがって、コレクタ端子C1、C2とバスバーなどとの接続条件を変えずに、局所的な電流集中を抑制することができる。
 次に、厚みta1、ta2、tb1、tb2のより好ましい関係について説明する。図38はシミュレーションに用いたモデルを示している。図39はシミュレーション結果を示している。半導体装置12のはんだ接合部122周辺を簡素化して、モデルとした。図38では、電流の主たる流れを実線矢印で示している。図38(a)では、継手部52bを流れる電流の主たる流れ方向、エミッタ端子E2を流れる電流の主たる流れ方向が同一である。すなわち、電流のなす角θが0°である。図38(b)ではθが90°であり、図38(c)ではθが180°である。図38(a)~(c)では、はんだ接合部122の幅が、エミッタ端子E2の幅Wb2と略一致している。
 シミュレーションでは、幅Wa2を13mm、幅Wb2を10mmとした。また、継手部52bの厚みta2を0.5mmとした。そして、エミッタ端子E2の厚みtb2を種々変化させ、はんだ接合部122における電流密度の最大値を求めた。図39(a)はθ=0°、図39(b)はθ=90°、図39(c)はθ=180°の結果を示している。
 図39(a)に示すように、θ=0°の場合、tb2<ta2において、電流密度の最大値が最も大きい値を示した。tb2≧ta2において、tb2<ta2よりも電流密度の最大値が小さい値を示した。また、厚みtb2がta2×(Wa2/Wb2)付近において、電流密度の最大値が最も小さい値(最下点)を示した。
 厚みta2と等しいときの厚みをtb2s、最下点の厚みをtb2mとすると、tb2sとtb2mの差Δは、下記式6で示される。
(式6)Δ=tb2m-tb2s=ta2×{(Wa2/Wb2)-1}
 最下点を頂点とするΔの2倍の範囲内において、厚みtb2は厚みta2よりも厚くなる。この範囲は、下記式7で示される。
(式7)ta2<tb2≦ta2×{(2×Wa2-Wb2)/Wb2}
 式7の関係を満たすことで、電流密度の最大値をより小さくすることができる。すなわち、はんだ接合部122中において電流が局所的に集中するのを効果的に抑制することができる。モデルではθ=0°の例を示したが、電流の主たる流れ方向が完全一致の場合に限定されない。0°≦θ<45°の範囲、すなわち同一方向への電流成分が大きければ、効果を奏することができる。
 θ=90°の場合も、図示を省略するが、tb2<ta2において、電流密度の最大値が最も大きい値を示した。図39(b)に示すように、tb2≧ta2の範囲において、厚みtb2を厚くするほど、電流密度の最大値が小さくなった。θ=180°の場合も、図示を省略するが、tb2<ta2において、電流密度の最大値が最も大きい値を示した。図39(c)に示すように、tb2≧ta2の範囲において、厚みtb2を厚くするほど、電流密度の最大値が小さくなった。
 このように、45°≦θ≦180°においては、tb2≧ta2の範囲において、厚みtb2を厚くするほど、電流密度の最大値が小さくなる。特に、tb2>ta2を満たすようにすると、電流が局所的に集中するのを効果的に抑制することができる。なお、半導体装置11についても、同様の効果を奏する。
 半導体装置11、12において、エミッタ端子E1、E2の対向部E1a、E2aの厚みを、延設部E1b、E2bの厚みと略等しくしてもよい。エミッタ端子E1、E2を、全長で厚みが等しい構成としてもよい。
 たとえば図40に示す変形例のように、対向部E1aの厚みを、延設部E1bの厚みよりも厚くしてもよい。延設部E1bの厚みは、継手部51bの厚みta1よりも薄くされている。エミッタ端子E1において、対向部E1aが厚くされ、延設部E1bは薄くされている。これによれば、エミッタ端子E1についても、バスバーなどとの接続条件を変えずに、電流の局所的な集中を抑制することができる。また、全長で同一厚みとする構成に較べて、コストを低減することもできる。エミッタ端子E2についても同様である。
 本実施形態に係る半導体装置11、12は、少なくとも、半導体素子と、半導体素子が電気的に接続された本体部および継手部を有する金属部材と、継手部にはんだ接合された端子を備えればよい。
 半導体装置11、12が対応する半導体素子31、32を2つ備える例を示したが、これに限定されない。半導体素子31,32を1つのみ備えてもよいし、3つ以上の半導体素子31,32を備えてもよい。たとえば図33に示したように、4つの半導体素子31が同じヒートシンク41、51に電気的に接続された構成としてもよい。
 複数の半導体素子31、32の配置は、上記例に限定されない。すべての半導体素子31、32がX方向に並んで配置される構成に限定されない。半導体素子31の一部が、他の半導体素子31に対してY方向にずれた配置された構成にも適用できる。半導体素子32の一部が、他の半導体素子32に対してY方向にずれた配置された構成にも適用できる。たとえば図34に示した構成としてもよい。
 半導体装置11、12が封止樹脂体21、22を備える例を示したが、これに限定されない。封止樹脂体21、22を備えない構成としてもよい。
 半導体装置11、12の構造は、両面放熱構造に限定されない。片面放熱構造にも適用できる。また、縦型構造のスイッチング素子に限定されず、横型構造のスイッチング素子(たとえばLDMOS)にも適用できる。
 (第5実施形態)
 本実施形態において、先行実施形態と機能的におよび/または構造的に対応する部分および/または関連付けられる部分には、同一の参照符号を付与する。対応する部分および/または関連付けられる部分については、先行実施形態の説明を参照することができる。
 先行実施形態では、ヒートシンクにおいて、主端子との接合部を囲むように、余剰はんだを収容する溝を設ける例を示した。溝に代えて、別の収容構造を採用してもよい。
 本実施形態の半導体装置11、12の基本構成は、先行実施形態に記載の構成と同じである。半導体装置11、12は、配線部材を備えている。配線部材は、半導体素子31、32と電気的に接続され、配線機能を提供する。配線部材は、複数の導体部と、2つの導体部間に形成された接合部を有している。導体部は、半導体素子31、32を挟むように配置された少なくとも一組の放熱部と、放熱部に連なる複数の端子部を含んでいる。ヒートシンク41、42、51、52が放熱部に相当し、主端子71、72が端子部に相当する。また、はんだ接合部121、122が、接合部に相当し、はんだ91d、92dが接合材に相当する。ヒートシンク41、42、51、52および主端子71、72が、配線部材に相当する。
 <余剰はんだの収容構造>
 図41~図43に基づき、余剰はんだの収容構造について説明する。図41は、本実施形態の半導体装置11、12において、エミッタ側のヒートシンク51、52を示している。図42は、ヒートシンク51を拡大した図である。図43は、図42のXLIII-XLIII線に対応する半導体装置11の断面図である。図43では、便宜上、封止樹脂体21を省略している。本実施形態では、エミッタ側のヒートシンク51、52に、余剰はんだの収容構造を設けている。ヒートシンク51、52が第1導体部に相当し、エミッタ端子E1、E2が第2導体部に相当する。
 ヒートシンク51は、エミッタ端子E1と対向する側の面、すなわち実装面に、低濡れ領域151aと、高濡れ領域151bを有している。図41、42などの平面図では、明確化のため、低濡れ領域にハッチングを施している。低濡れ領域151aは高濡れ領域151bよりもはんだに対する濡れ性が低い領域である。低濡れ領域151aは、高濡れ領域151bに隣接して設けられ、隣接によって高濡れ領域151bの外周の少なくとも一部を規定している。低濡れ領域151aは、接合時にはんだが濡れ拡がり難い部分であり、高濡れ領域151bははんだが濡れ拡がりやすい部分である。
 高濡れ領域151bは、半導体素子31の板厚方向であるZ方向の平面視において、エミッタ端子E1の接合部形成領域と重なる領域である重なり領域151cと、重なり領域151cに連なる領域であり、エミッタ端子E1の接合部形成領域と重なっていない領域である非重なり領域151dを有している。エミッタ端子E1の接合部形成領域は、対向部E1aである。図示しないはんだ91dは、対向部E1aと重なり領域151cとの対向領域間に少なくとも介在し、接合部131は、重なり領域151cを主として形成される。
 重なり領域151cおよび非重なり領域151c含む高濡れ領域151bは、ヒートシンク51の継手部51bに形成されている。重なり領域151cおよび非重なり領域151cは、低濡れ領域151aにより取り囲まれている。ヒートシンク52は、2本のエミッタ端子E1との間に接合部121をそれぞれ形成する。ヒートシンク52は、2つの重なり領域151cを有している。重なり領域151cのそれぞれは、X方向を長手方向とする平面略矩形状をなしている。2つの重なり領域151cはX方向に並んでいる。
 非重なり領域151dは、収容領域151eを少なくとも含んでいる。収容領域151eは、重なり領域151cに連なっており、接合部121に対して余剰のはんだ91dを収容する高濡れ領域151bである。本実施形態の収容領域151eは、2つの重なり領域151cに連なっている。2つの重なり領域151cの並び方向において、収容領域151eの一端が重なり領域151cのひとつに連なり、収容領域151eの他端が重なり領域151cの他のひとつに連なっている。このように、ひとつの収容領域151eが、2つの重なり領域151cに対して共通の領域として設けられている。
 非重なり領域151dは、さらにフィレット形成領域151fを含んでいる。フィレット形成領域151fも、重なり領域151cに連なる高濡れ領域151bである。フィレット形成領域151fは、はんだ91dのフィレットを形成可能なように設けられた、収容領域151eよりも幅の狭い領域である。フィレット形成領域151fが狭幅領域に相当する。
 収容領域151eは重なり領域151cの一辺に連なっており、フィレット形成領域151fは重なり領域151cの残りの3辺に連なっている。重なり領域151cのそれぞれにおいて、Y方向の両側の辺とX方向における外側の辺にフィレット形成領域151fが連なり、X方向における内側の辺に収容領域151eが連なっている。X方向内側とは2つの重なり領域151cの対向する側であり、外側とは非対向側である。このように、非重なり領域151dが重なり領域151cを取り囲んでいる。低濡れ領域151aは、非重なり領域151dの外周を規定するように、非重なり領域151dに全周で隣接している。低濡れ領域151aは、収容領域151eにおいて高濡れ領域151bの外周をなす部分に全域で隣接している。2つの重なり領域151cおよび収容領域151eを含む高濡れ領域151bは、X方向に沿って一直線状に設けられている。
 非重なり領域151dの幅とは、重なり領域151cに対して連なる方向、すなわち重なり領域151cとの並び方向における長さである。収容領域151eの幅は、X方向の長さである。フィレット形成領域151fにおいて、たとえば重なり領域151fに対してX方向に並んだ部分の幅は、X方向の長さである。フィレット形成領域151fは、フィレットを形成できる程度の幅を有している。収容領域151eは、フィレット形成領域151fの幅に較べて十分に広い幅を有している。収容領域151eは、半導体装置11の高さばらつきを吸収すべく、重なり領域151cと対向部E1aとの対向間隔が最も狭くなったときのはんだ91dの余剰分を収容できる幅を有している。収容領域151eは、2つの重なり領域151cの接合部121に対する余剰分を収容できる幅を有している。
 ヒートシンク51は、上記した高濡れ領域151bとは別に高濡れ領域151gを有している。高濡れ領域151bは、平面視においてターミナル61が重なる領域である重なり領域151hと、重なり領域151hに連なる領域であり、ターミナル61が重なっていない領域である非重なり領域151iを有している。ヒートシンク51は、2つのターミナル61(半導体素子31)のそれぞれに対応して、2つの高濡れ領域151gを有している。非重なり領域151iは、非重なり領域151d同様、収容領域151jと、フィレット形成領域151kを含んでいる。
 収容領域151jは、重なり領域151hに連なり、重なり領域151hとターミナル61との対向領域から溢れたはんだ91cを収容する。収容領域151jは平面略矩形状をなす重なり領域151hの一辺に連なっており、フィレット形成領域151kは重なり領域151hの残りの3辺に連なっている。重なり領域151hのそれぞれにおいて、X方向の両側の辺とY方向における一方の辺にフィレット形成領域151kが連なり、Y方向における残りの辺に収容領域151jが連なっている。
 このように、非重なり領域151iが重なり領域151hを取り囲んでいる。低濡れ領域151aは、非重なり領域151iの外周を規定するように、非重なり領域151iに全周で隣接している。低濡れ領域151aは、収容領域151jにおいて高濡れ領域151bの外周をなす部分に全域で隣接している。2つの高濡れ領域151gは、それぞれ平面略矩形状をなしている。
 フィレット形成領域151kは、収容領域151jよりも幅の狭い領域である。フィレット形成領域151kは、フィレットを形成できる程度の幅を有している。収容領域151jは、フィレット形成領域151kの幅に較べて十分に広い幅を有している。収容領域151jは、半導体装置11の高さばらつきを吸収すべく、重なり領域151hとターミナル61との対向間隔が最も狭くなったときのはんだ91cの余剰分を収容できる幅を有している。
 低濡れ領域151aは、ヒートシンク51の実装面において、高濡れ領域151bと2つの高濡れ領域151gを除く部分の全面に設けられている。なお、ヒートシンク52は、ヒートシンク51と同様の構成を有しているため、詳細な説明は省略する。ヒートシンク52も、低濡れ領域152aと、高濡れ領域152b、152gを有している。低濡れ領域152aは、高濡れ領域152b、152gを除く部分の全面に設けられている。高濡れ領域152bは、重なり領域152cと、非重なり領域152dを含む。高濡れ領域152gは、重なり領域152hと、非重なり領域152iを含む。非重なり領域152d、152iは、図示しない収容領域152e、152jおよびフィレット形成領域152f、152kを含む。ヒートシンク52は、ヒートシンク51と同一形状(共通部品)であり、低濡れ領域151a、152aのパターニングも互いに同じである。ヒートシンク52は、ヒートシンク51とは異なり、エミッタ端子E2の対向部E2aとの重なり領域152cをひとつのみ有する。重なり領域152cは、X方向に沿って延びる高濡れ領域152bの中央付近に設けられている。
 <低濡れ領域>
 図44に基づき、低濡れ領域について説明する。図44は、図43の領域XLIVを拡大した図である。図44では、便宜上、はんだ91dを省略して図示している。以下では、ヒートシンク51を例に説明する。
 ヒートシンク51は、金属を含む母材160と、母材160の表面上に設けられた金属膜161および凹凸酸化膜162を有している。母材160は、ヒートシンク51の主たる部分をなしている。母材160は、Cu系の材料を用いて形成されている。金属膜161は、母材160よりもはんだに対する濡れ性が高い材料を含んで形成されている。金属膜161は、ヒートシンク51の実装面の全域に形成されている。凹凸酸化膜162は、実装面において局所的に形成されている。
 凹凸酸化膜162は、金属膜161にレーザ光を照射することで、金属膜161上に局所的に形成されている。金属膜161は、母材160の表面のうち、たとえば露出面を除く面の全域に設けられている。金属膜161は、Ni(ニッケル)を主成分とする下地膜と、Au(金)を主成分とする上地膜を有している。本実施形態では、下地膜として、P(リン)を含む無電解Niめっき膜を採用している。凹凸酸化膜162から露出する金属膜161のうち、はんだが接触する部分の上地膜(Au)は、リフロー時にはんだ中に拡散する。金属膜161のうち、凹凸酸化膜162が形成される部分の上地膜(Au)は、凹凸酸化膜162を形成する際にレーザ光の照射により除去される。凹凸酸化膜162は、Niを主成分とする酸化物の膜である。たとえば、凹凸酸化膜162を構成する成分のうち、80%がNI、10%がNiO、10%がNiとなっている。
 凹凸酸化膜162は、ヒートシンク51の実装面において、低濡れ領域151aに形成されている。凹凸酸化膜162は、高濡れ領域151b、151gには形成されていない。凹凸酸化膜162が、低濡れ領域151aを提供している。凹凸酸化膜162から露出する金属膜161が、高濡れ領域151b、151gを提供している。
 図44に示す符号161aは、金属膜161の表面に形成された凹部である。凹部161aは、パルス発振のレーザ光の照射により形成される。1パルスごとにひとつの凹部161aが形成される。凹凸酸化膜162は、レーザ光の照射により、金属膜161の表層部分が溶融、気化し、蒸着することで形成される。凹凸酸化膜162は、金属膜161由来の酸化膜である。凹凸酸化膜162は、金属膜161の主成分の金属(Ni)の酸化物の膜である。凹凸酸化膜162は、凹部161aを有する金属膜161の表面の凹凸に倣って形成されている。凹凸酸化膜162の表面には、凹部161aの幅よりも細かいピッチで凹凸が形成されている。すなわち、非常に微細な凹凸(粗化部)が形成されている。
 凹凸酸化膜162は、たとえば以下の製造方法により形成することができる。先ず、母材160上にP(リン)を含む無電解Niめっきを施したのち、Auめっきを施して、金属膜161を得る。金属膜161の形成後、実装面に対してパルス発振のレーザ光を照射し、金属膜161の表面を溶融及び蒸発させる。
 パルス発振のレーザ光は、エネルギー密度が0J/cmより大きく100J/cm以下で、パルス幅が1μ秒以下となるように調整される。この条件を満たすには、YAGレーザ、YVOレーザ、ファイバレーザなどを採用することができる。たとえばYAGレーザの場合、エネルギー密度が1J/cm以上であればよい。無電解Niめっきの場合、たとえば5J/cm程度でも金属膜161を加工することができる。
 このとき、レーザ光の光源とヒートシンク51とを相対的に移動させることにより、レーザ光を複数の位置に順に照射する。レーザ光を照射し、金属膜161の表面を溶融、気化させることで、金属膜161の表面には、凹部161aが形成される。金属膜161のうち、レーザ光を照射した部分の平均厚みは、レーザ光を照射しない部分の平均厚みよりも薄くなる。また、レーザ光のスポットに対応して形成される複数の凹部161aは連なり、たとえば鱗状となる。
 次いで、溶融した金属膜161の部分を凝固させる。具体的には、溶融して気化した金属膜161を、レーザ光が照射された部分やその周辺部分に蒸着させる。このように、溶融して気化した金属膜161を蒸着させることにより、金属膜161の表面上に凹凸酸化膜162を形成する。これにより、凹凸酸化膜162による低濡れ領域151aと、凹凸酸化膜162から露出する金属膜161による高濡れ領域151b、151gを有するヒートシンク51を準備することができる。
 ヒートシンク52も、ヒートシンク51と同様の構成を有している。ヒートシンク51と同様の製造方法により、凹凸酸化膜162による低濡れ領域152aと、凹凸酸化膜162から露出する金属膜161による高濡れ領域152b、152gを有するヒートシンク52を準備することができる。
 <第5実施形態のまとめ>
 先行実施形態に記載のように、両面放熱構造の半導体装置11、12は、冷却器によってZ方向の両面側から挟まれる。よって、Z方向において表面の高い平行度と表面間の高い寸法精度が求められる。このため、はんだ91d、92dについては、半導体装置11、12の高さばらつきを吸収可能な量を配置する。すなわち、多めのはんだ91d、92dを配置する。そして、2ndリフロー時に、Z方向に荷重を加えることで、半導体装置11、12の高さが所定高さとなるようにする。はんだ91d、92dは、半導体装置11、12を構成する要素の寸法公差や組み付け公差による高さばらつきを吸収する。
 たとえば、半導体装置11の高さを所定高さにするために、はんだ91dの全量が必要な場合、はんだ91dの全量が、対向部E1aと重なり領域151cとの対向領域内に、毛細管現象、表面張力などによって留まる。所定高さにするために、はんだ91dが余る場合、毛細管現象、表面張力などの対向領域間に保持する力を超えた外力が印加されることで、はんだ91dの一部が対向領域から外に溢れる。
 本実施形態では、高濡れ領域151bである収容領域151eが重なり領域151cに連なっている。このため、余剰のはんだ91dは、図45に白抜き矢印で示すように重なり領域151cから収容領域151eに濡れ拡がりやすい。図45中の白抜き矢印は、余剰はんだの流れ方向(溢れ方向)を示している。また、余剰のはんだ91dは、低濡れ領域151aにより濡れ拡がりが規制される。高濡れ領域151bに隣接する低濡れ領域151aにより、収容領域151eへの濡れ拡がりが促進、および/または、収容領域151e外への濡れ拡がりが抑制される。以上より、溝を設けなくとも、図46に示すように、収容領域151eに余剰のはんだ91dを収容することができる。図46は、図42のXLVI-XLVI線に対応する半導体装置11の断面図である。図46では、はんだ91dが溢れた状態を示している。同様に、溝を設けなくとも、収容領域152eに余剰のはんだ92dを収容することができる。
 この結果、簡素な構成で余剰のはんだ91d、92dを収容できる半導体装置11、12を提供することができる。溝形成のプレス加工が不要となるため、製造コストを低減することができる。
 図47は、図42のXLVII-XLVII線に対応する半導体装置11の断面図である。図47では、便宜上、封止樹脂体21を省略している。図47では、本例(本実施形態の例)と参考例とを示している。ヒートシンク51とコレクタ端子C1の電位が異なるため、両者の間に封止樹脂体21内において所定の絶縁距離DIを確保する必要がある。コレクタ端子C1の屈曲部をY方向においてヒートシンク51から遠ざけると絶縁距離DIを確保することができるが、その反面、封止樹脂体21の体格、ひいては半導体装置11の体格が大きくなる。よって、コレクタ端子C1の屈曲部とヒートシンク51(継手部51b)の端部との間の距離が、絶縁距離DIとなるように配置するのが好ましい。
 このような配置を採用すると、本例では、ヒートシンク51の端部から重なり領域151cまでのクリアランスがCL1となる。参考例の場合、余剰はんだを収容するための溝151rを有するため、重なり領域151crまでのクリアランスがCL2となる。クリアランスCL2は、クリアランスCL1よりも長い。クリアランスCL1は、たとえばクリアランスCL2の半分程度の長さである。よって、本実施形態によれば、絶縁距離DIを確保しつつ、エミッタ端子E1の延設方向において、半導体装置11の体格を小型化することができる。なお、半導体装置12(ヒートシンク52)も、半導体装置11(ヒートシンク51)と同様の構成である。参考例では、本実施形態(本例)の要素と同一又は関連する要素について、本実施形態の符号の末尾にrを付け加えて示している。以下の参考例においても同様である。
 本実施形態では、ヒートシンク51において、収容領域151eが重なり領域151cの一部のみに連なっている。そして、低濡れ領域151aが、重なり領域151cと収容領域151eとの並び方向(X方)に直交するY方向の両側で高濡れ領域151bの外周に隣接し、重なり領域151cおよび収容領域151eを挟んでいる。両サイドに位置する低濡れ領域151aが、余剰のはんだ91dの流れのガイドとして機能する。低濡れ領域151aのガイドにより、余剰のはんだ91dは、重なり領域151cから収容領域151eに濡れ拡がりやすい。また、両サイドの低濡れ領域151aにより、収容領域151e内に余剰のはんだ91dを保持しやすい。ヒートシンク52についても同様である。
 本実施形態では、ヒートシンク51において、低濡れ領域151aが、収容領域151eにおいて高濡れ領域151bの外周をなす部分に全域で隣接している。これにより、収容領域151eの外へはんだ91dが濡れ拡がるのを抑制することができる。すなわち、余剰のはんだ91dを、収容領域151e内により確実に保持することができる。ヒートシンク52についても同様である。
 本実施形態では、ヒートシンク51において、低濡れ領域151aが、高濡れ領域151bの外周に全域で隣接している。これにより、余剰のはんだ91dは、確実に収容領域151eに濡れ拡がり、収容領域151e内に保持される。
 図48は、参考例を示している。この参考例では、ヒートシンク51r、52rの継手部51br、52brに、余剰はんだを収容する溝151r、152rを設けている。ヒートシンク51rは、継手部51brのX方向両端付近に溝151rをそれぞれ有している。ヒートシンク52rは、継手部52brのX方向中央付近に溝151を有している。よって、ヒートシンク51r、52rを共通化することができない。
 これに対し、本実施形態では、ヒートシンク51、52を同一形状とし、かつ、低濡れ領域151a、152aおよび高濡れ領域151b、152bの濡れパターンも同一としている。すなわち、凹凸酸化膜162を形成するレーザ光の照射パターンも同一としている。図45に示したように、半導体装置11では、高濡れ領域151bにおいて、両端付近が重なり領域151cとなり、2つの重なり領域151cの間が収容領域151eとなる。半導体装置12では、高濡れ領域152bにおいて、中央付近が重なり領域152cとなり、両サイドが収容領域152eとなる。ヒートシンク51、52の共通部品化により、製造コストを低減することができる。
 本実施形態では、はんだに対する濡れ性の高い金属膜161に対し、レーザ光を局所的に照射して凹凸酸化膜162を設け、低濡れ領域151a、152aを形成している。酸化膜(凹凸酸化膜162)は、金属膜161に較べて、はんだに対する濡れ性が低い。また、表面に微細な凹凸を有しているため、はんだとの接触面積が小さくなり、はんだの一部は表面張力によって球状になる。すなわち、接触角が大きくなる。よって、はんだに対する濡れ性が低い。以上により、凹凸酸化膜162は、低濡れ領域151a、152aに好適である。レーザ光を用いるため、低濡れ領域151a、152a、高濡れ領域151b、152bのパターニングが容易である。
 さらに、凹凸酸化膜162の表面には、非常に微細な凹凸が形成されており、封止樹脂体21、22が絡みつき、アンカー効果が生じる。また、封止樹脂体21、22との接触面積が増える。よって、ヒートシンク51、52の凹凸酸化膜162を設けた部分において、封止樹脂体21、22との密着性が高まる。
 なお、ヒートシンク51、52において、はんだ接合部131、132を形成する部分に、余剰のはんだ91c、92cを収容する溝を設けてもよい。半導体装置11、12において半導体素子31、32の配置が同じであれば、溝の形状および配置を同一にすることができる。本実施形態では、はんだ接合部131、132を形成する部分にも、はんだ接合部121、122同様の余剰はんだの収容構造を適用している。よって、溝を設けなくとも、余剰のはんだ91c、92cを収容領域151j、152jに収容することができる。ヒートシンク51、52において、溝を形成するプレス加工を完全になくすことができる。
 <変形例>
 非重なり領域151dは、少なくとも収容領域151eを含めばよい。図49に示すように、ヒートシンク51において、非重なり領域151dからフィレット形成領域151fを排除した構成としてもよい。高濡れ領域151bは、重なり領域151cと、収容領域151eのみを有している。このような構成としても、上記実施形態と同等の効果を奏することができる。なお、ターミナル61側の高濡れ領域151gも、同様にフィレット形成領域151kを排除した構成となっている。ヒートシンク52についても同様である。
 低濡れ領域151aは、高濡れ領域151bの少なくとも一部に隣接すればよい。図50に示すように、低濡れ領域151aが、重なり領域151cと収容領域151eとの並び方向(X方)に直交するY方向の両側のみに設けられてもよい。低濡れ領域151aは、Y方向の両側で、重なり領域151cおよび収容領域151eにわたって延設され、重なり領域151cおよび収容領域151eを挟んでいる。図50では、図49同様、低濡れ領域151aが、重なり領域151cおよび収容領域151eに対して連続的に隣接している。ヒートシンク52についても同様である。
 複数の重なり領域151cに対して収容領域151eを共通とする例を示したが、これに限定されない。図51および図52に示すように、収容領域151eを重なり領域151cごとに分けてもよい。低濡れ領域151aは、高濡れ領域151bを2つに分割している。図52は、図51のLII-LII線に対応する半導体装置11の断面図であり、図46同様、はんだ91dが溢れた状態を示している。この変形例によれば、低濡れ領域および高濡れ領域のパターンがヒートシンク51、52で異なるものとなる。しかしながら、共通パターン以外の点において、上記した構成と同等の効果を奏することができる。凹凸酸化膜162の場合、レーザ光の照射パターンを切り替えればよいため、同一形状のヒートシンク51、52を用いることができる。
 収容領域151eは、重なり領域151cの少なくとも一部に連なればよい。重なり領域151cの四辺のひとつのみに収容領域151eが連なる例を示したが、これに限定されない。図53に示すように、平面略矩形状をなす重なり領域151cの二辺に連なるように、収容領域151eを設けてもよい。これによれば、X方向の内側と、Y方向の一方の側とに、余剰のはんだ91dを逃がすことができる。余剰はんだ91dを収容する体積を増やすことができる。なお、収容領域151eを、重なり領域151cの三辺に連なるようにしてもよい。また、収容領域151eを重なり領域151cの四辺に連なるようにしてもよい。たとえば、重なり領域151cを取り囲むように収容領域151eを環状に設けてもよい。この場合、収容領域151eが高濡れ領域151bの外周の全域をなす。共通の重なり領域151cに対して異なる辺に連なる収容領域151e同士を、相互に分離してもよい。ヒートシンク52についても同様である。
 図54に示すように、エミッタ端子E1の対向部E1aの側面に凹凸酸化膜162を設けてもよい。凹凸酸化膜162により、低濡れ領域が形成される。よって、はんだ91dがエミッタ端子E1の側面側に濡れ拡がるのを抑制することができる。また、ヒートシンク51の実装面と側面とに設けた低濡れ領域151aにより、高濡れ領域151bを規定してもよい。側面に低濡れ領域151aを設けることで、その分、実装面を広く高濡れ領域151bとして活用することができる。よって、ヒートシンク51の体格を小型化することも可能である。図54では、エミッタ端子E1の側面およびヒートシンク51の側面のそれぞれに凹凸酸化膜162を設ける例を示したが、いずれか一方のみを設けてもよい。ヒートシンク52についても同様である。
 一組の放熱部により挟まれる半導体素子の数は特に限定されない。たとえばヒートシンク41、51間にひとつの半導体素子31のみが配置され、ヒートシンク42、52間にひとつの半導体素子32のみが配置される構成にも、上記した余剰はんだの収容構造を適用することができる。3つ以上の半導体素子31、32が配置される構成にも適用することができる。
 上記した余剰はんだの収容構造は、上アーム7Uを構成する半導体装置11、下アーム7Lを構成する半導体装置12に限定されない。すなわち、ひとつのアームを構成する半導体装置への適用に限定されない。たとえば図55、図56、および図57に示すように、上下アーム7を構成する半導体素子31、32を備えた半導体装置10Aに適用してもよい。ひとつの半導体装置10Aにより、一相分の上下アーム7が構成される。図56では、図55に示す半導体装置10Aに対して、封止樹脂体20を省略している。図57は、図55のLVII-LVII線に沿う断面図である。
 半導体装置10Aは、上アーム7U側の半導体素子31と、下アーム7L側の半導体素子32を備えている。半導体素子31のコレクタ電極31cには、ヒートシンク41がはんだ接合されている。半導体素子31のエミッタ電極31eには、ターミナル61を介して、ヒートシンク51がはんだ接合されている。同様に、半導体素子32のコレクタ電極32cには、ヒートシンク42がはんだ接合されている。半導体素子31のエミッタ電極32eには、ターミナル62を介して、ヒートシンク52がはんだ接合されている。ヒートシンク42は、半導体素子32が接続された本体部と、本体部に連なる継手部42eを有している。ヒートシンク51は、半導体素子31が接続された本体部と、本体部に連なる継手部51fを有している。継手部42e、51fはZ方向において互いに対向するように配置され、はんだ93を介して接続されている。ヒートシンク52は、継手部52bを有している。
 封止樹脂体20は、一面20aと、Z方向において一面20aと反対の面である裏面20bを有している。ヒートシンク41、42は、実装面とは反対の放熱面が一面20aと略面一の状態で、封止樹脂体20から露出している。ヒートシンク51、52は、実装面とは反対の放熱面が裏面20bと略面一の状態で、封止樹脂体20から露出している。半導体装置10Aは、主端子70として、コレクタ端子C1、エミッタ端子E2、および出力端子OP1をそれぞれ1本有している。コレクタ端子C1は、ヒートシンク41に連なっており、出力端子OP1は、ヒートシンク42に連なっている。エミッタ端子E2は、ヒートシンク52の継手部52bにはんだ接合されている。
 そして、エミッタ側のヒートシンク51、52において、実装面に低濡れ領域151a、152aが局所的に設けられている。低濡れ領域151aは、継手部51fにも設けられている。継手部51fは、実装面側の面に、低濡れ領域151aと高濡れ領域151bを有している。高濡れ領域151bは、継手部42eとの重なり領域151cと、収容領域151eを有している。低濡れ領域151aは、高濡れ領域151bを取り囲み、高濡れ領域151bの外周を規定している。継手部42e、51fのはんだ接合部において、高さばらつきを吸収するために、継手部42e、51fの対向領域から溢れた余剰のはんだ93は、重なり領域151cから収容領域151eに濡れ拡がる。そして、余剰のはんだ93は、収容領域151eに保持される。この構成では、継手部42e、51fは、半導体装置10A内に設けられた端子部である。このように、上アーム7Uと下アーム7Lを電気的につなぐ端子部同士の接合部にも適用することができる。
 図示しないが、エミッタ端子E2とヒートシンク52(継手部52b)とのはんだ接合部にも、上記した余剰はんだの収容構造を適用することができる。図55~図57では、ヒートシンク42、51にそれぞれ継手部42e、51fを設け、継手部42e、51f同士をはんだ接合する例を示したが、これに限定されない。ヒートシンク42、51の一方のみに継手部(端子部)を設ける構成において、上記した余剰はんだの収容構造を適用してもよい。ヒートシンク41、51間に複数の半導体素子31が互いに並列に配置される構成としてもよい。ヒートシンク51、52におけるターミナル61,62とのはんだ接合部に対して、上記した余剰はんだの収容構造を適用してもよい。半導体素子32についても同様である。
 半導体素子31、32と電気的に接続される配線部材として、ヒートシンク41、42、51、52の例を示したが、これに限定されない。セラミックスなどの絶縁体に、Cuなどを材料とする導体が配置された配線基板を採用してもよい。図58および図59に示す半導体装置10Aは、半導体素子31、32を挟むように配置された配線基板40、50を備えている。配線基板40、50として、DBC(Direct Bonded Copper)基板を採用している。配線基板40、50は、絶縁体40a、50aと、導体40b、50bを有している。導体40b、50bは、Z方向、換言すれば絶縁体の板厚方向において、少なくとも半導体素子31、32側の面(実装面)に配置されている。ここでは、実装面の裏面にも配置されている。図59は、図58をX4方向から見た平面図であり、主端子と配線基板とのはんだ接合部周辺を拡大している。
 配線基板40は、実装面に、電気的に分離された複数の導体40bを有している。導体40bのひとつに半導体素子31のコレクタ電極31cが接続され、導体40bの他のひとつに半導体素子32のコレクタ電極32cが接続されている。同様に、配線基板50も、実装面に、電気的に分離された複数の導体50bを有している。導体50bのひとつに半導体素子31のエミッタ電極31eが電気的に接続され、導体50bの他のひとつに半導体素子32のエミッタ電極32eが電気的に接続されている。
 コレクタ端子C1と、半導体素子31が接続された導体40bとの間に、はんだ接合部123が形成されている。出力端子OP1と、半導体素子32が接続された導体40bとの間に、はんだ接合部124が形成されている。エミッタ端子E2と、半導体素子32が接続された導体50bとの間に、はんだ接合部122が形成されている。半導体素子31が接続された導体50bと、半導体素子32が接続された導体40bとの間に、はんだ接合部125が形成されている。このように、半導体装置10Aは、2つの導体部の間に形成された接合部として、4つのはんだ接合部122~125を有している。
 図60は、はんだ接合部124の周辺を示す平面図である。配線基板40の導体40bは、実装面に、低濡れ領域142aと、高濡れ領域142bを有している。低濡れ領域142aは、先に示した低濡れ領域151a、152aに対応し、高濡れ領域142bは、高濡れ領域151b、152bに対応している。高濡れ領域142bは、出力端子OP1の接合部形成領域と重なる重なり領域142cと、重なり領域142cに連なる非重なり領域142dを有している。非重なり領域142dは、収容領域142eのみを含んでいる。収容領域142aは、平面略矩形状をなす重なり領域142cの一辺のみに連なっている。低濡れ領域142aは、重なり領域142cおよび収容領域142eを取り囲み、高濡れ領域142bの外周に全域で隣接している。はんだ接合部124において、余剰はんだは、重なり領域142cから収容領域142eに濡れ拡がり、収容領域142eに保持される。
 はんだ接合部124において、上記した余剰はんだの収容構造を適用する例を示したが、他のはんだ接合部122、123、125にも適用することができる。4つのはんだ接合部122~125のすべてに上記した余剰はんだの収容構造を適用してもよいし、少なくともひとつに適用してもよい。ひとつのアームを構成する半導体装置(たとえば半導体装置11、12)において、DBC基板などの配線基板40、50を用いてもよい。なお、先行実施形態において、ヒートシンク41、42、51、52に代えて、DBC基板などの配線基板40、50を用いてもよい。配線部材として、ヒートシンクと配線基板との組み合わせも可能である。
 レーザ照射による凹凸酸化膜162を設けることで、実装面の一部を、低濡れ領域142a、151a、152aとする例を示したが、これに限定されない。たとえば、高濡れ領域142b、151b、152bにマスクを施した状態で、熱酸化処理を行い、低濡れ領域142a、151a、152aに酸化膜を設けてもよい。酸化膜を設けた部分は、酸化膜を設けていない部分に対して、接合材(はんだ)に対する濡れ性が低下する。
 ポリアミド樹脂やエポキシ樹脂などをパターニングすることで、樹脂の成膜した部分を低濡れ領域142a、151a、152a、成膜していない部分を高濡れ領域142b、151b、152bとしてもよい。なお、金属部材の表面に樹脂を成膜することで、プライマー効果により、封止樹脂体20、21、22との密着性を向上することもできる。また、樹脂材料に代えて、はんだに対する濡れ性の低い無機材料(はんだを撥じく材料)を用いてもよい。粗化めっきを施した部分を低濡れ領域142a、151a、152a、施していない部分を高濡れ領域142b、151b、152bとしてもよい。
 上記では、低濡れ領域142a、151a、152aに選択的に処理を施し、濡れ性の低い膜を設ける例を示したが、高濡れ領域142b、151b、152bに選択的に処理を施してもよい。接合材に対する濡れ性の高い膜(たとえばめっき膜)を実装面の高濡れ領域142b、151b、152bに形成し、低濡れ領域142a、151a、152aに濡れ性の高い膜を形成しない構成としてもよい。
 接合材は、はんだに限定されない。AgやCuなどの焼結型接合材、Agペーストなどの導電性接着剤を用いてもよい。
 (第6実施形態)
 本実施形態において、先行実施形態と機能的におよび/または構造的に対応する部分および/または関連付けられる部分には、同一の参照符号を付与する。対応する部分および/または関連付けられる部分については、先行実施形態の説明を参照することができる。
 先行実施形態では、並列接続される複数の半導体素子において、パッドの並び順が同一である例を示した。この並び順とは別の並び順を採用してもよい。
 図61は、本実施形態の半導体装置11を示している。図61は、図12に対応している。半導体装置11の基本構成は、先行実施形態に記載の構成と同じである。半導体装置11は、X方向に並んで配置された2つの半導体素子31(31a、31b)を備えている。半導体素子31は、図示しないエミッタ電極31eの形成面に、5つのパッド31pをそれぞれ有している。5つのパッド31pは、X方向に沿って並んでいる。半導体素子31は、パッド31pとして、感温ダイオードのカソード電位用のカソードパッドP1、同じくアノード電位用のアノードパッドP2、ゲート電極用のゲートパッドP3、電流センス用の電流センスパッドP4、エミッタ電極31eの電位を検出するケルビンエミッタパッドP5を、それぞれ有している。
 スイッチング素子Q1aが形成された半導体素子31aのパッド31pは、X5方向から見たときに、カソードパッドP1、アノードパッドP2、ゲートパッドP3、電流センスパッドP4、ケルビンエミッタパッドP5の順に並んでいる。スイッチング素子Q1bが形成された半導体素子31bのパッド31pは、X5方向から見たときに、ケルビンエミッタパッドP5、電流センスパッドP4、ゲートパッドP3、アノードパッドP2、カソードパッドP1の順に並んでいる。
 <第6実施形態のまとめ>
 図61に示す一点鎖線の矢印は主端子71を流れる電流(主電流)の経路を示している。主電流の経路は、半導体素子31を介して、コレクタ端子C1とエミッタ端子E1との間に形成される。実線矢印は信号端子81を流れる電流(信号電流)の経路を示している。信号電流の経路は、半導体素子31を介して、ゲートパッドP3に接続された信号端子81とケルビンエミッタパッドP5に接続された信号端子81との間に形成される。主電流が流れる回路と信号電流が流れる回路とは、磁気的に結合する。
 本実施形態では、先行実施形態同様、2つの半導体素子31a、31bが軸AX1に対して線対称配置されている。また、軸AX1を対称軸として、コレクタ端子C1およびエミッタ端子E1がそれぞれ線対称配置されている。よって、半導体素子31a側の主電流の経路と、半導体素子31b側の主電流の経路とは、軸AX1を対称軸としてほぼ線対称となる。
 加えて、2つの半導体素子31におけるパッド31pの並び順が、軸AX1に対して線対称配置となっている。信号端子81も、軸AX1に対して線対称配置となっている。よって、半導体素子31a側の信号電流の経路と、半導体素子31b側の信号電流の経路とは、軸AX1を対称軸としてほぼ線対称となる。このため、磁気結合も、半導体素子31a側と半導体素子31b側とでほぼ線対称となる。なお、2つの半導体素子31a、31bでパッド31pの並び順を同じにした場合、磁気結合は非対称となる。
 本実施形態では、信号電流回路の磁気結合の対称性、すなわち相互インダクタンスの対称性も考慮するため、AC電流のアンバランスを、より効果的に抑制することができる。
 (第7実施形態)
 本実施形態において、先行実施形態と機能的におよび/または構造的に対応する部分および/または関連付けられる部分には、同一の参照符号を付与する。対応する部分および/または関連付けられる部分については、先行実施形態の説明を参照することができる。
 本実施形態では、配線部材において、半導体素子を挟むように配置された放熱部の形状に特徴がある。放熱部の形状は、エミッタ側の配線インダクタンスを高めるように工夫されている。
 <エミッタ側の配線インダクタンスの効果>
 エミッタ側の配線インダクタンスは、並列回路におけるAC電流のアンバランスを緩和する機能を果たす。図62は、下アーム7Lを構成する半導体装置12の等価回路図である。半導体装置12は、先行実施形態同様、2つの半導体素子32(32a、32b)を備えている。半導体素子32aとエミッタ端子E2との間には配線インダクタンスLe21が存在し、半導体素子32bとエミッタ端子E2との間には配線インダクタンスLe22が存在する。このため、スイッチング時、すなわちAC電流が流れる際、エミッタ電位が変動(上昇)する。
 ここで、スイッチング素子Q2aのスイッチング速度をdI1/dt、スイッチング素子Q2bのスイッチング速度をdI2/dtとする。スイッチング時におけるエミッタ電位の変動量ΔVeは、スイッチング速度と配線インダクタンスとの乗算値に等しい。半導体素子32a側の変動量ΔVe1は、ΔVe1=Le21×(dI1/dt)となる。半導体素子32b側の変動量ΔVe2は、ΔVe2=Le22×(dI2/dt)となる。
 たとえば、配線インダクタンスLe21、Le22が互いに等しい場合について考える。スイッチング速度dI1/dt、dI2/dtのずれにより、変動量ΔVeに差が生じる。配線インダクタンスLe21、Le22の値が大きいと変動量ΔVeの差が大きくなり、ゲート電圧Vgeに影響を及ぼす。たとえばdI1/dt>dI2/dtの場合、変動量ΔVe1が変動量ΔVe2に対して大きくなり、ゲート電圧Vge1がゲート電圧Vge2よりも低くなる。このように、ゲート電圧VgeがAC電流のアンバランス(偏り)を抑制する側にずれる。したがって、AC電流のアンバランスを抑制することができる。
 配線インダクタンスLe21、Le22の値が小さい場合、変動量ΔVeの値が小さくなる。このため、スイッチング速度dI1/dt、dI2/dtにずれが生じても、変動量ΔVe1、ΔVe2の差が小さい。したがって、配線インダクタンスによるアンバランス抑制の効果が弱まる。換言すれば、配線インダクタンスLe21、Le22の値が小さいと、スイッチング速度dI1/dt、dI2/dtのずれ、すなわち素子特性差によって、AC電流のアンバランスが生じやすくなる。
 <ヒートシンクの形状>
 図63は、本実施形態に係る半導体装置12において、エミッタ側のヒートシンク52およびエミッタ端子E2を示している。図64は、コレクタ側のヒートシンク42およびコレクタ端子C2を示している。コレクタ端子C2およびエミッタ端子E2の構成は、先行実施形態に記載の構成(たとえば図12参照)と同じである。2つの半導体素子32の配置も、同様である。ヒートシンク42、52の基本構成も、同様である。
 図63に示すように、本実施形態のヒートシンク52は、スリット52sを有している。スリット52sは、ヒートシンク52をZ方向に貫通するとともに、本体部52aを2つのアイランド52iに区画している。アイランド52iのひとつは、半導体素子32aの搭載領域である。アイランド52iの他のひとつは、半導体素子32bの搭載領域である。本体部52aは、平面略矩形状をなしており、エミッタ端子E2が連なる側の第1長辺および第1長辺の反対に位置する第2長辺を有している。スリット52sは、本体部52aの第2長辺に開口するとともに、第1長辺に向けてY方向に延設されている。
 スリット52sは、Y方向において、2つの半導体素子32の対向領域32tを跨いでいる。すなわち、スリット52sは、Y方向において、半導体素子32よりもエミッタ端子E2(対向部E2a)に近い位置まで延設されている。スリット52sは、X方向において本体部52a(ヒートシンク52)のほぼ中央に設けられている。2つのアイランド52iは、軸AX2を対称軸とする線対称配置となっている。スリット52sは、切り欠き、分離領域と称されることがある。
 図64に示すように、本実施形態のヒートシンク42は、スリット42sを有している。スリット42sは、ヒートシンク42をZ方向に貫通するとともに、2つのアイランド42iに区画している。アイランド42iのひとつは、半導体素子32aの搭載領域である。アイランド42iの他のひとつは、半導体素子32bの搭載領域である。ヒートシンク42は、平面略矩形状をなしており、コレクタ端子C2が連なる側の第1長辺および第1長辺の反対に位置する第2長辺を有している。スリット42sは、第1長辺に開口するとともに、第2長辺に向けてY方向に延設されている。スリット42sは、スリット52sの開口端とは反対側で開口している。
 スリット42sは、Y方向において、2つの半導体素子32の対向領域32tを跨いでいる。すなわち、スリット42sは、Y方向において、半導体素子32よりも第2長辺に近い位置まで延設されている。スリット42sは、X方向において、ヒートシンク42のほぼ中央に設けられている。2つのアイランド42iは、軸AX2を対称軸とする線対称配置となっている。スリット42sは、切り欠き、分離領域と称されることがある。
 <第7実施形態のまとめ>
 図63に示す破線は、電流経路を示している。半導体素子32a側の電流経路と、半導体素子32b側の電流経路とは、スリット52sの存在により、スリット52sの延設先で合流する。このように、ヒートシンク52がスリット52sを有することで、スリット52sを有さない構成よりも、半導体素子32a、32bから2つの電流経路の合流部までの距離(配線長)を長くすることができる。換言すれば、スリット52sを有さない構成よりも、合流部を遠ざけることができる。これにより、配線インダクタンスLe21、Le22の値を大きくすることができる。この結果、素子特性差によるAC電流のアンバランスを抑制することができる。
 本実施形態では、スリット52sが、半導体素子32の対向領域32tを跨いでいる。よって、対向領域32t内において合流部が形成されない。これにより、合流部までの配線長を、さらに長くすることができる。よって、配線インダクタンスLe21、Le22の値をさらに大きくし、ひいては、上記した電流アンバランスの抑制効果を高めることができる。
 本実施形態では、スリット52sを含むヒートシンク52が、軸AX2に対して線対称となっている。これにより、スリット52sを設けつつ、半導体素子32a側の電流経路と半導体素子32b側の電流経路とが線対称となる。これにより、配線インダクタンスLe21と配線インダクタンスLe22とがほぼ等しくなる。よって、AC電流のアンバランスを抑制することができる。
 本実施形態では、スリット52sにより、ヒートシンク52を2つのアイランド52iに区画している。複数のアイランド52iが、一枚の金属板や導体内に構成されている。よって、構成を簡素化することができる。
 図65は、スリット42s、52sを有さない参考例を示している。実線矢印は、コレクタ端子C2rと半導体素子32rとの間の電流経路を示している。破線矢印は、エミッタ端子E2rと半導体素子32rとの間の電流経路を示している。コレクタ端子C21rと半導体素子32brとの間を流れる電流と、半導体素子32brとエミッタ端子E2rとの間を流れる電流とは、互いに逆向きの成分を有する。同様に、コレクタ端子C22rと半導体素子32arとの間を流れる電流と、半導体素子32arとエミッタ端子E2rとの間を流れる電流とは、互いに逆向きの成分を有する。
 このように、X方向において遠い位置関係にあるコレクタ端子C2rと半導体素子32rとの間を流れる電流と、半導体素子32rとエミッタ端子E2rとの間を流れる電流とは、互いに逆向きの成分を有する。よって、磁束打消しにより、配線インダクタンスが小さくなる。
 本実施形態では、ヒートシンク52にスリット52sを設けることで、半導体素子32とエミッタ端子E2との間の電流経路が、図65に示す電流経路とは異なる経路となる。これにより、半導体素子32とコレクタ端子C2との間を流れる電流と、半導体素子32とエミッタ端子E2との間を流れる電流とで、互いに逆向きとなる成分を低減することができる。したがって、磁束打消しを低減することができる。換言すれば、相互インダクタンスがプラス側に作用する。この結果、配線インダクタンスLe21、Le22の値を大きくし、ひいては、素子特性差によるAC電流のアンバランスを抑制することができる。
 本実施形態では、ヒートシンク42がスリット42sを有している。よって、コレクタ端子C2と半導体素子32との間に、図64に実線矢印で示す電流経路が形成される。コレクタ端子C22と半導体素子32aとの間には、スリット42sを迂回する電流経路が形成される。同様に、コレクタ端子C21と半導体素子32bとの間には、スリット42sを迂回する電流経路が形成される。
 これにより、半導体素子32とコレクタ端子C2との間を流れる電流と、半導体素子32とエミッタ端子E2との間を流れる電流とで、互いに逆向きとなる成分を、スリット42sを設けない構成に較べて低減することができる。これにより、配線インダクタンスLe21、Le22の値を大きくし、ひいては、素子特性差によるAC電流のアンバランスを抑制することができる。
 本実施形態では、スリット42sが、半導体素子32の対向領域32tを跨いでいる。これにより、コレクタ端子C22と半導体素子32aとの間に形成される電流経路は、略J字状をなす。同様に、コレクタ端子C21と半導体素子32bとの間に形成される電流経路も、略J字状をなす。したがって、逆向きの電流成分をさらに低減することができる。この結果、配線インダクタンスLe21、Le22の値をさらに大きくし、ひいては、上記した電流アンバランスの抑制効果を高めることができる。
 本実施形態では、スリット42sを含むヒートシンク42が、軸AX2に対して線対称となっている。これにより、スリット42sを設けつつ、半導体素子32a側の電流経路と半導体素子32b側の電流経路とが線対称となる。これにより、配線インダクタンスLc21と配線インダクタンスLc22とがほぼ等しくなる。よって、AC電流のアンバランスを抑制することができる。
 本実施形態では、スリット42sにより、ヒートシンク42を2つのアイランド42iに区画している。複数のアイランド42iが、一枚の金属板や導体内に構成されている。よって、構成を簡素化することができる。
 <変形例>
 ヒートシンク42、52にそれぞれスリット42s、52sを設ける例を示したが、これに限定されない。ヒートシンク42のみにスリット42sを設け、ヒートシンク52にスリット52sを設けない構成としてもよい。ヒートシンク52のみにスリット52sを設け、ヒートシンク42にスリット42sを設けない構成としてもよい。
 半導体装置12にスリット42s、52sを設ける例を示したが、これに限定されない。半導体装置11において、スリットを設けない場合の電流経路は、図65に示した参考例と同等となる。そこで、半導体装置11において、ヒートシンク41、51の少なくとも一方にスリットを設けてもよい。上記した合流部を遠ざける効果、および/または、磁束打消しを低減する効果により、配線インダクタンスLe11、Le12の値を大きくすることができる。この結果、素子特性差によるAC電流のアンバランスを抑制することができる。
 たとえば、図12に示した構成の半導体装置11において、ヒートシンク41にスリットを設けてもよい。このスリットは、コレクタ端子C1が連なる辺と反対の長辺に開口する。これにより、磁束打消しを低減し、これにより配線インダクタンスLe11、Le12の値を大きくすることができる。半導体装置11において、ヒートシンク51にスリットを設けてもよい。スリットは、2本のエミッタ端子E1が連なる長辺に開口する。
 スリット42s、52sを設けることで、ヒートシンク42、52において複数のアイランド42i、52iを区画する例を示したが、これに限定されない。たとえば図66に示すように、2つのヒートシンク52を備える構成としてもよい。すなわち、ヒートシンク52を、完全に2つの領域に分断してもよい。スリット52sを設けた構成と同等の効果を奏することができる。
 図66に示すように、ヒートシンク52は、アイランド52iをそれぞれ有している。2つのヒートシンク52の間には、X方向において所定のギャップが設けられている。2つのヒートシンク52は、連結部材を介して電気的に接続される。図66に示す例では、エミッタ端子E2が連結部材を兼ねている。エミッタ端子E2の対向部E2aが、2つのヒートシンク52を架橋している。これにより、部品点数を低減することができる。
 図67に示すように、2つのヒートシンク42を備える構成としてもよい。すなわち、ヒートシンク42を、完全に2つの領域に分断してもよい。スリット42sを設けた構成と同等の効果を奏することができる。ヒートシンク42のそれぞれがアイランド42iを有している。2つのヒートシンク42の間には、X方向において所定のギャップが設けられている。2つのヒートシンク42は、連結部材43を介して電気的に接続される連結部材43が、2つのヒートシンク42を架橋している。
 なお、エミッタ端子E2とは別の連結部材を用いて2つヒートシンク52(アイランド52i)を電気的に接続し、この連結部材にエミッタ端子E2を接続してもよい。半導体装置11において、ヒートシンク41、51の分断構造を採用してもよい。
 本実施形態においても、ヒートシンク41、42、51、52に代えて、DBC基板などの配線基板40、50を用いてもよい。図68、図69、および図70は、その一例である。図68は、図69および図70のLXVIII-LXVIII線に対応する半導体装置の断面図である。図68では、便宜上、封止樹脂体22や信号端子82を省略している。図69は、コレクタ側の配線基板40およびコレクタ端子C2を示し、図70は、エミッタ側の配線基板50およびエミッタ端子E2を示している。
 図68に示す半導体装置12は、先行実施形態(たとえば図59参照)同様、配線部材として、2つの半導体素子32(32a、32b)を挟むように配置された配線基板40、50を備えている。配線基板40、50は、DBC基板である。配線基板40、50は、絶縁体40a、50aと、導体40b、50bを有している。導体40b、50bは、Z方向において、少なくとも実装面に配置されている。ここでは、実装面の裏面にも配置されている。
 配線基板40において、実装面側の導体40bは、2つのアイランド40iと、スリット40sを有している。アイランド40iおよびスリット40sを有する導体40bが、ヒートシンク42に相当する。アイランド40iがアイランド42iに相当し、スリット40sがスリット42sに相当する。スリット40sは、導体40bを貫通しており、導体40bを半導体素子32aの搭載領域であるアイランド40iと、半導体素子32bの搭載領域であるアイランド40iと、に区画している。アイランド40iのひとつにコレクタ端子C21が接続され、アイランド40iの他のひとつにコレクタ端子C22が接続されている。
 導体40bは、たとえば平面略矩形状をなしている。スリット40sは、コレクタ端子C2が連なる長辺に開口し、Y方向に延設されている。スリット40sは、半導体素子32a、32bの対向領域を跨いでいる。半導体素子32、スリット40sを含む導体40b、およびコレクタ端子C2は、上記した実施形態と同様の対称性を有している。
 配線基板50において、実装面側の導体50bは、2つのアイランド50iと、スリット50sを有している。アイランド50iおよびスリット50sを有する導体50bが、ヒートシンク52に相当する。アイランド50iがアイランド52iに相当し、スリット50sがスリット52sに相当する。スリット50sは、導体50bを貫通しており、導体50bを半導体素子32aの搭載領域であるアイランド50iと、半導体素子32bの搭載領域であるアイランド50iに区画している。エミッタ端子E2は、導体50bにおいて2つのアイランド50iをつなぐ部分に接続されている。
 導体50bは、たとえば平面略矩形状をなしている。スリット50sは、エミッタ端子E2が連なる辺とは反対の長辺に開口し、Y方向に延設されている。スリット50sは、半導体素子32a、32bの対向領域を跨いでいる。半導体素子32、スリット50sを含む導体50b、およびエミッタ端子E2は、上記した実施形態と同様の対称性を有している。
 このように、配線基板40、50を用いた半導体装置12においても、ヒートシンク42、52を用いた半導体装置12と同等の効果を奏することができる。なお、配線部材として、ヒートシンクと配線基板を組み合わせてもよい。たとえば、ヒートシンク42と配線基板50(DBC基板)を備える構成、配線基板40とヒートシンク52を備える構成としてもよい。半導体装置11に適用することもできる。
 (他の実施形態)
 この明細書および図面等における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
 明細書および図面等における開示は、請求の範囲の記載によって限定されない。明細書および図面等における開示は、請求の範囲に記載された技術的思想を包含し、さらに請求の範囲に記載された技術的思想より多様で広範な技術的思想に及んでいる。よって、請求の範囲の記載に拘束されることなく、明細書および図面等の開示から、多様な技術的思想を抽出することができる。

Claims (10)

  1.  一面と、前記一面とは板厚方向において反対の裏面とに、主電極(31c、31e、32c、32e)をそれぞれ有する少なくともひとつの半導体素子(31、32)と、
     前記板厚方向において前記半導体素子を挟むように前記一面側および前記裏面側のそれぞれに配置され、対応する前記主電極と電気的に接続された少なくとも一組の放熱部(41、42、51、52)と、前記放熱部に連なる複数の端子部(C1、C2、E1、E2)と、を含む複数の導体部と、前記板厚方向において2つの前記導体部の間に接合材(91d、92d)が配置されて形成された少なくともひとつの接合部(121、122)と、を有する配線部材と、
    を備え、
     前記接合部の少なくともひとつにおいて、前記導体部のひとつである第1導体部(51、52)は、前記導体部の他のひとつである第2導体部(E1、E2)と対向する側の面に、高濡れ領域(151b、152b)と、前記板厚方向の平面視において前記高濡れ領域の外周を規定するように前記高濡れ領域に隣接して設けられ、前記高濡れ領域よりも前記接合材に対する濡れ性が低い低濡れ領域(151a、152a)と、を有し、
     前記高濡れ領域は、前記平面視において、前記第2導体部における前記接合部の形成領域と重なる領域であり、少なくとも一部に前記接合材が配置された重なり領域(151c、152c)と、前記重なり領域に連なり、前記第2導体部の接合部形成領域と重なっていない領域である非重なり領域(151d、152d)と、を有し、
     前記非重なり領域は、前記接合部に対して余剰の前記接合材を収容する収容領域(151e、152e)を少なくとも含む半導体装置。
  2.  前記収容領域は、前記平面視において前記重なり領域の外周の一部のみに連なっており、
     前記低濡れ領域は、前記重なり領域と前記収容領域との並び方向および前記板厚方向に直交する方向において前記重なり領域と前記低濡れ領域との両方を挟むように、前記直交する方向の両側で前記高濡れ領域の外周に隣接している請求項1に記載の半導体装置。
  3.  前記低濡れ領域は、前記収容領域において前記高濡れ領域の外周をなす部分に全域で隣接している請求項1または請求項2に記載の半導体装置。
  4.  前記低濡れ領域は、互いに連なる前記重なり領域および前記非重なり領域を一体的に取り囲み、前記高濡れ領域の外周に全域で隣接している請求項1~3いずれか1項に記載の半導体装置。
  5.  前記第1導体部は、前記高濡れ領域として、2つの前記重なり領域と、2つの前記重なり領域の並び方向において前記重なり領域の間に設けられ、前記重なり領域のそれぞれに連なる前記収容領域と、を有する請求項1~4いずれか1項に記載の半導体装置。
  6.  前記第1導体部は、前記高濡れ領域として、2つの前記収容領域と、2つの前記収容領域の並び方向において前記収容領域の間に設けられ、前記収容領域のそれぞれに連なる前記重なり領域と、を有する請求項1~4いずれか1項に記載の半導体装置。
  7.  前記第1導体部において、前記高濡れ領域および前記低濡れ領域のうち、前記低濡れ領域のみに、前記接合材に対する濡れ性の低い膜が形成されている請求項1~6いずれか1項に記載の半導体装置。
  8.  前記第1導体部は、母材(160)と、前記母材の表面に形成された金属膜(161)と、前記金属膜の主成分の金属と同じ金属の酸化物であり、表面が連続して凹凸をなす凹凸酸化膜(162)と、を有し、
     前記低濡れ領域のみに、前記接合材に対する濡れ性が低い膜として、前記凹凸酸化膜が形成されている請求項7に記載の半導体装置。
  9.  前記非重なり領域は、前記収容領域のみを含む請求項1~8いずれか1項に記載の半導体装置。
  10.  前記非重なり領域は、前記収容領域と、前記収容領域とは異なる位置で前記重なり領域に連なり、前記重なり領域との並び方向の長さが前記収容領域よりも短い狭幅領域(151f、152f)と、を含む請求項1~8いずれか1項に記載の半導体装置。
PCT/JP2020/038747 2019-12-12 2020-10-14 半導体装置 WO2021117334A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080085890.4A CN114846601A (zh) 2019-12-12 2020-10-14 半导体装置
US17/747,629 US20220278030A1 (en) 2019-12-12 2022-05-18 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-224847 2019-12-12
JP2019224847A JP7167907B2 (ja) 2019-12-12 2019-12-12 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/747,629 Continuation US20220278030A1 (en) 2019-12-12 2022-05-18 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2021117334A1 true WO2021117334A1 (ja) 2021-06-17

Family

ID=76312788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038747 WO2021117334A1 (ja) 2019-12-12 2020-10-14 半導体装置

Country Status (4)

Country Link
US (1) US20220278030A1 (ja)
JP (1) JP7167907B2 (ja)
CN (1) CN114846601A (ja)
WO (1) WO2021117334A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023128078A (ja) * 2022-03-02 2023-09-14 株式会社デンソー 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170810A (ja) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 半導体装置
JP2017159335A (ja) * 2016-03-10 2017-09-14 株式会社デンソー 半導体装置及びその製造方法
JP2019176058A (ja) * 2018-03-29 2019-10-10 株式会社デンソー 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170810A (ja) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 半導体装置
JP2017159335A (ja) * 2016-03-10 2017-09-14 株式会社デンソー 半導体装置及びその製造方法
JP2019176058A (ja) * 2018-03-29 2019-10-10 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
US20220278030A1 (en) 2022-09-01
JP2021093503A (ja) 2021-06-17
CN114846601A (zh) 2022-08-02
JP7167907B2 (ja) 2022-11-09

Similar Documents

Publication Publication Date Title
US10966355B2 (en) Electric power conversion apparatus
US7812443B2 (en) Power semiconductor module for inverter circuit system
CN111480231B (zh) 电力转换装置
US11817429B2 (en) Plurality of chips between two heat sinks
US11942869B2 (en) Power module and electric power conversion device
JP6977682B2 (ja) 回転電機ユニット
WO2021117334A1 (ja) 半導体装置
JP2020145320A (ja) 半導体装置
JP7092072B2 (ja) 半導体モジュール
WO2021220641A1 (ja) 半導体装置および電力変換装置
JP7124769B2 (ja) 半導体モジュール
JP6782809B2 (ja) 半導体モジュール及びこれを備えた電力変換装置
WO2020039986A1 (ja) 電力用半導体装置およびその製造方法、ならびに電力変換装置
CN114730758A (zh) 电力用半导体装置及其制造方法以及电力变换装置
JP7363682B2 (ja) 半導体装置
JP7081724B2 (ja) 電力変換装置
JP7552421B2 (ja) 半導体装置
US20230187322A1 (en) Semiconductor device and power conversion device
JP7056267B2 (ja) 電力変換装置
JP2023078915A (ja) 半導体装置およびその製造方法
WO2019049780A1 (ja) 半導体モジュールの接合構造及び接合方法
CN118231365A (zh) 半导体装置
JP5494590B2 (ja) 半導体モジュールおよびその製造方法
JP2020161683A (ja) 半導体装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900262

Country of ref document: EP

Kind code of ref document: A1