WO2021117306A1 - ドラム式洗濯機 - Google Patents
ドラム式洗濯機 Download PDFInfo
- Publication number
- WO2021117306A1 WO2021117306A1 PCT/JP2020/034066 JP2020034066W WO2021117306A1 WO 2021117306 A1 WO2021117306 A1 WO 2021117306A1 JP 2020034066 W JP2020034066 W JP 2020034066W WO 2021117306 A1 WO2021117306 A1 WO 2021117306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- drum
- vibration
- rotation speed
- washing machine
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F33/00—Control of operations performed in washing machines or washer-dryers
- D06F33/30—Control of washing machines characterised by the purpose or target of the control
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/20—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
- D06F37/22—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
Definitions
- the present invention relates to a drum-type washing machine, and particularly to lower vibration of the drum-type washing machine during dehydration.
- a drum-type washing machine is composed of an outer tub for storing water, a drum rotatably supported inside the outer tub, a housing forming an outer shell, and an elastic support mechanism for supporting the outer tub on the housing. .. Dehydration of clothes is performed by rotating the drum at high speed. At this time, if the clothing distribution in the drum is uneven, vibration is generated in the outer tank when the drum rotates. This vibration is transmitted from the outer tank to the housing and the floor via the elastic support mechanism. The greater the damping force of the elastic support mechanism of the outer tank, the more the vibration of the outer tank can be reduced, but the transmission force to the housing and the floor increases at a predetermined rotation speed or higher. In addition, there is resonance in the outer tank and the housing before reaching the rotational speed at which dehydration is performed, which also increases the transmission force.
- Patent Document 1 describes a drum for accommodating clothing, an outer tank containing the drum, a housing for accommodating the outer tank, a drive mechanism for rotationally driving the drum, and a direction in which the drum rotates during dehydration.
- a variable damping mechanism that suppresses vibration of the outer tank is provided on the side where the clothing rises, and the variable damping mechanism can change the damping performance from the outside, and the rotation speed is higher than the left-right resonance rotation speed of the housing during dehydration operation.
- a method of reducing the damping force at speed has been proposed. It is stated that this makes it possible to reduce the left-right vibration of the housing and reduce the transmission force to the floor.
- Patent Document 2 describes a time change of vibration of the floor of a house in which clothes are housed, connected to a washing machine having a rotating tub that rotates around a predetermined rotation axis via a network, and the washing machine is installed.
- This is a control method for controlling a washing machine by using an information processing device having a vibration sensor for measuring the amount of vibration, which represents a time change of vibration detected in a predetermined period by a vibration sensor in a processor provided in the information processing device.
- Data is acquired, log data indicating the operating status of the washing machine in a predetermined period is acquired from the washing machine, and the operation mode of the washing machine in which the floor vibrates significantly is estimated based on the vibration data and the log data.
- a control method has been proposed in which a change request for changing the operation mode is output so that the vibration of the floor is reduced. It is stated that this makes it possible to reduce the risk that the vibration generated from the washing machine damages the house and the furniture installed in the house without depending on the user's feeling.
- Patent Document 1 describes a method of switching the damping force, and it is said that the damping force is set large at the time of resonance of the outer tank and the damping force is reduced at high speed to reduce the transmission force to the floor.
- the resonance of the housing is not determined only by the main body, but also changes depending on the environment such as the rigidity of the floor, so it is necessary to understand them.
- Patent Document 2 is provided with a vibration sensor for measuring the vibration of the floor, and estimates the operation mode of the washing machine in which the floor vibrates specifically and greatly based on the vibration data of the vibration sensor and the log data indicating the operation status.
- the operation mode will be changed so that the vibration of the floor is reduced.
- the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a drum-type washing machine that is less dependent on the installation environment.
- the drum type washing machine of the present invention includes a drum for accommodating laundry, an outer tub containing the drum, a housing for accommodating the outer tub, and a drive for rotationally driving the drum. It has a mechanism, a linear actuator that supports the lower part of the outer tank, a control device that controls the linear actuator, and a housing vibration sensor that measures the vibration of the housing.
- the control device measures the housing vibration sensor. It is characterized in that the control method of the linear actuator is changed based on the result.
- the vibration of the housing and the transmission to the floor are transmitted by grasping the resonance rotation speed by the housing vibration sensor provided in the housing and appropriately controlling the linear actuator according to the vibration mode of the housing. It is possible to provide a drum-type washing machine that can reduce the force and is less dependent on the installation environment.
- FIG. 1 is an external perspective view showing a drum-type washing machine 100 according to the first embodiment.
- FIG. 2 is a cross-sectional view on the right side of the housing 1 cut out to show the internal structure of the drum-type washing machine 100 according to the first embodiment.
- the housing 1 constituting the outer shell is mounted on the base 1a, and is composed of the left and right side plates 1b, the front cover 1c, the back cover, the top cover 1d, the top cover panel 1e, and the front lower cover 1f.
- the left and right side plates 1b are joined to a U-shaped upper reinforcing material, a front reinforcing material, and a rear reinforcing material to form a box-shaped housing 1 including the base 1a and have sufficient strength.
- the door 2 is provided at substantially the center of the front cover 1c to close an input port for loading and unloading laundry, and is supported so as to be openable and closable.
- the operation / display panel 3 provided in the center of the upper part of the housing 1 includes a power switch 4, an operation switch 5, and a display 6.
- the operation / display panel 3 is electrically connected to a control device 7 (see FIG. 2) provided on the upper part of the housing 1.
- a housing vibration sensor 1g for measuring the vibration of the housing 1 is provided on the upper part of the housing 1, and the housing vibration sensor 1g is electrically connected to the control device 7. doing. Rubber legs 1h are provided at the lower four corners of the base 1a.
- the drum 8 shown in FIG. 2 is rotatably supported by the outer tub 9, has a large number of through holes for water passage in its outer peripheral wall and bottom wall, and has a front end surface for loading and unloading laundry.
- An opening 8a is provided.
- a fluid balancer 8b integrated with the drum 8 is provided on the outside of the opening 8a.
- a plurality of lifters 8c extending in the axial direction are provided inside the outer peripheral wall, and when the drum 8 is rotated during washing and drying, the laundry is lifted along the outer peripheral wall by the lifter 8c and centrifugal force, and falls by gravity. repeat.
- the rotation axis of the drum 8 is inclined so as to be horizontal or higher on the opening 8a side.
- the cylindrical outer tank 9 includes the drum 8 coaxially, and the drive mechanism 10 is provided in the outer center of the rear end surface.
- the shaft 10a of the drive mechanism 10 penetrates the outer tank 9 and is coupled to the drum 8.
- the outer tub 9 has an opening 9a in the center of the front side for taking in and out the laundry.
- the drive mechanism 10 is provided with a rotation speed detection device 10b for detecting the rotation speed.
- the opening 9a of the outer tub 9 and the opening provided in the housing 1 are connected by a rubber bellows 11, and the outer tub 9 is sealed with water by closing the door 2.
- the drainage port 9b is provided at the bottom bottom of the outer tank 9 and is connected to the internal drainage hose 12.
- the internal drain hose 12 is connected to the external drain hose 14 via a lint collection box 13 for collecting lint.
- the lint collection box 13 is provided with a circulation pump 15 for circulating washing water, and water is sprayed into the drum 8 via the circulation path 15a.
- the external drain hose 14 is provided with a drain valve 14a.
- An outer tank vibration sensor 16 is provided below the outer tank 9 to measure the amplitude of the outer tank 9. Excessive by comparing the amplitude with a preset threshold value, stopping the rotation of the drum 8 when the amplitude is large, and increasing the rotation speed only when the vibration is below the threshold value. The generation of vibration is suppressed.
- the outer tank 9 is vibration-proof supported by a pair of left and right elastic support mechanisms 20 whose lower side is fixed to the base 1a, and the upper part is supported by a front auxiliary spring 9c and a rear auxiliary spring 9d for maintaining a posture in the front-rear direction.
- the elastic support mechanism 20 is composed of a spring 21 and a linear actuator 30.
- the linear actuator 30 is electrically connected to the control device 7, and can output an arbitrary force, and the left and right linear actuators 30 can be controlled differently.
- the vibration during dehydration in the drum type washing machine 100 will be described.
- the rotation speed of the drum 8 is generally increased stepwise, and the rotation speed to be finally increased is often about 900 to 1400 min -1 depending on the operation course and the like.
- the outer tank 9 first resonates in the left-right, up-down, and front-rear directions at about 100 to 300 min -1.
- the rotational speed housing resonates in the lateral and longitudinal directions at about 400 ⁇ 600 min -1, housing 1 is resonant in the vertical direction at about 1000 ⁇ 1400min -1.
- the vibration of the outer tub 9 becomes less dependent on the spring constant and the damping coefficient of the elastic support mechanism 20.
- the transmission force is the sum of the spring force and the damping force. That is, it is desirable that the spring constant and the damping coefficient of the elastic support mechanism 20 are small.
- FIG. 3 is a schematic view showing an example of transmission of a force related to left-right vibration of the housing of the drum-type washing machine 100 according to the first embodiment.
- the housing 1 receives from each factor when it moves to the upper position.
- the force is shown by focusing on the left-right vibration of the housing 1. Since the left-right vibration of the housing 1 vibrates so as to fall left and right, it becomes a rotational vibration centered on a point at the lower part of the main body as shown in FIG.
- the spring force of the bellows 11 has an upward transmission force and the damping force has a leftward transmission force.
- the support position of the bellows 11 is higher than the rotation center of the vibration when the housing 1 vibrates left and right, the transmission force due to the damping component of the bellows 11 becomes a counterclockwise moment.
- the spring force of the bellows 11 is upward, the force of tilting the housing 1 in the left-right direction is small.
- the displacement in the vertical direction is upward and the velocity is almost 0, so that the spring force applies an upward force to the housing 1 and the damping force is almost 0.
- the elastic support mechanism 20 on the left side is the rotational vibration of the housing 1 as shown in FIG. Since it is connected to the left side of the center of, the spring force is a clockwise moment.
- the elastic support mechanism 20 on the right side is connected to the right side of the center of the rotational vibration of the housing 1, the spring force becomes a counterclockwise moment.
- the distances from the center of rotation to the connection positions of the bellows 11, the elastic support mechanism 20 on the left side, and the elastic support mechanism 20 on the right side are set to l 1 , l 2 , l 3, and the transmission force F 1 from the bellows 11 faces left. Is positive, and the transmission forces F 2 and F 3 from the left and right elastic support mechanisms 20 are positive in the upward direction.
- vibration can be reduced by grasping the transmission force from the connection portion other than the elastic support mechanism 20 such as the bellows 11 and controlling the output of the linear actuator 30 so as to cancel them.
- the left and right linear actuators 30 cancel the forces from other transmission points. Specifically, it is desirable that the spring constant is larger on the left side with respect to the right side, and the damping coefficient is larger on the right side with respect to the left side.
- FIG. 4 is a schematic view showing an example of transmission of a force related to the vertical vibration of the housing of the drum type washing machine 100 according to the first embodiment.
- the force received by the housing 1 from each factor when moving to the upper position is focused on the vertical vibration of the housing 1.
- the force applied to the housing 1 in the vertical direction has a transmitting force such as a bellows 11 and an elastic support mechanism 20.
- the spring constant of the linear actuator 30 is a negative value of the spring constant of the spring 21.
- FIG. 5A is a schematic view showing left-right vibration of the housing of the drum-type washing machine 100 according to the first embodiment.
- FIG. 5B is a schematic view showing vertical vibration of the housing of the drum type washing machine 100 according to the first embodiment.
- 5A and 5B show the left-right vibration of the housing 1 (left-right vibration of the housing) and the vertical vibration of the housing 1 (vertical vibration of the housing) when the control method is changed.
- FIG. 5A shows left-right vibration of the housing
- FIG. 5B shows vertical vibration of the housing.
- the housing left-right vibration proper control is controlled so that the moment acting on the housing 1 becomes small, and specifically, the spring of the elastic support mechanism 20 on the left side so as to cancel the transmission force from the bellows 11.
- the constant is increased with respect to the right side, and the damping coefficient of the elastic support mechanism 20 on the right side is increased with respect to the left side.
- both the spring constant and the damping coefficient of the elastic support mechanism 20 are set to 0 in order to reduce the transmission from the outer tank 9 to the housing 1. That is, the spring constants of the left and right linear actuators 30 are set to negative values so as to cancel the spring 21.
- the regions A, B, and C in the figure indicate the outer chamber resonance rotation speed region, the housing left-right resonance rotation speed region, and the housing vertical resonance rotation speed region, respectively.
- the linear actuator 30 can reduce the left-right vibration of the housing in the region B as compared with the oil suspension by appropriately controlling the left-right vibration of the housing.
- FIG. 5B it is possible to reduce the vertical vibration of the housing in the region C by appropriately controlling the vertical vibration of the housing.
- the housing horizontal vibration is about the same as in the case of the oil suspension
- the housing vertical vibration is about the same as in the case of the oil suspension. ing. In this way, it is desirable to change the control method according to the vibration direction.
- the resonance rotation speed of the housing 1 is not uniquely determined, and changes depending on the environmental conditions.
- FIG. 6 is a schematic view showing the influence of the hardness of the installation floor on the left-right vibration of the housing of the drum-type washing machine 100 according to the first embodiment.
- the harder the floor the higher the rotation speed at which the housing 1 resonates left and right.
- the resonance rotation speed is determined by the mass and the spring constant, but since the spring is a composite spring of the spring of the washing machine body and the spring of the floor, the resonance rotation speed differs depending on the floor. Therefore, it is difficult to accurately grasp the resonance rotation speed at the time of shipment from the factory. Therefore, a control method that does not depend on the installation environment is required.
- the left-right vibration and the up-down vibration of the housing 1 are measured by the housing vibration sensor 1g provided in the housing 1, and the resonance rotation speed is high in the vertical direction with respect to the left-right vibration having a low resonance rotation speed. Change from control that reduces left-right vibration to control that reduces vertical vibration when the vibration displacement becomes large. By switching the control in this way, it is possible to control appropriately regardless of the installation environment and reduce the vibration of the housing.
- FIG. 7 is a flowchart showing an example of a control method of the drum type washing machine 100 according to the first embodiment.
- the control device 7 increases the rotational speed of the drum 8 to 100 min -1. Since the resonance of the outer tank 9 occurs in 100 to 400 min -1 , in step S102, the control device 7 changes the control method of the linear actuator 30 to the control parameter for the vibration of the outer tank. Since resonance occurs in the region of 400 to 900 min -1 , the housing 1 vibrates left and right. Therefore, in step S103, the control device 7 increases the rotation speed of the drum 8 to 400 min -1, and then in step S104. Change the control parameter to proper control of left and right vibration of the housing. In step S105, the control device 7 increases the rotation speed of the drum 8 with the target of the final dehydration rotation speed determined by each course or user setting.
- step S106 the control device 7 compares the housing vertical vibration with the housing vertical vibration, and if the housing vertical vibration is large (steps S106, Yes), the process proceeds to step S107, and the control parameter is set to the housing vertical vibration proper control. The change is made, and the process proceeds to step S108.
- step S108 the control device 7 determines whether the rotation speed of the drum 8 has reached the preset final dehydration rotation speed, and if not (steps S108, No), returns to step S105 to accelerate and reach. If so (steps S108, Yes), the process proceeds to step S109.
- step S109 the control device 7 searches for the control parameters of the linear actuator 30 so that the vertical vibration of the housing 1 is reduced.
- the control device 7 determines whether or not the operation time has elapsed, and if it has not elapsed (step S110, No), returns to step S109, and if it has elapsed (step S110, Yes), the drum rotation is performed in step S111. Stop and complete the dehydration operation.
- FIG. 8 is a schematic view showing the rotation speed of the drum-type washing machine 100 according to the first embodiment when the control is changed.
- the rotation speed of the drum 8 is increased, there is a resonance of the outer tank 9 in the vicinity of 150 min -1.
- the rotation speed is further increased, there is left-right resonance of the housing 1 near 600 min -1, and the left-right vibration of the housing increases. After that, the left-right vibration of the housing gradually decreases as the rotation speed increases.
- step S106 the values of the vertical vibration and the horizontal direction of the housing 1 are directly compared, but after weighting is performed in the horizontal direction and the vertical direction due to the visibility of the operation / display panel 3 and the like. You can compare by value. Further, not only the vibrations in the left-right direction and the up-down direction may be compared, but also at least two or more axes in the left-right direction, the up-down direction, and the front-back direction may be compared.
- control parameters set for each rotation speed region are selected and controlled, but as in step S109, the housing left-right vibration is generated for each rotation speed region.
- the control parameters may be searched so that the values such as the lateral vibration of the outer tank or the values calculated from them are used as evaluation indexes to decrease. By doing so, it is not necessary to set the control parameters in advance.
- the control device 7 of the present embodiment can change the control method so that the output of the housing vibration sensor 1g becomes small. Further, the control device 7 can determine and record the resonance rotation speed from the output of the housing vibration sensor 1g, and calculate the switching rotation speed for changing the control from the resonance rotation speed.
- FIG. 9 is a flowchart showing a control method of the drum type washing machine 100 according to the second embodiment. Other control switching methods will be described with reference to FIG.
- step S201 the control device 7 increases the rotation speed of the drum 8 to 100 min -1. Since resonance of the outer tank occurs in 100 to 400 min -1 , in step S202, the control device 7 changes the control method of the linear actuator 30 to the control parameter for the vibration of the outer tank. Since the resonance 400 housing 1 in the region of ⁇ 900 min -1 vibrates to the left and right is generated, at step S203, the rotation speed of the control device 7 drum 8, from raising the rotational speed to 400 min -1, step In S204, the control device 7 changes the control parameter to the housing left-right vibration proper control. In step S205, the control device 7 increases the rotation speed of the drum 8 with the target of the final dehydration rotation speed.
- the control device 7 performs resonance determination J1 in step S206 while increasing the rotation speed of the drum 8, and determines whether or not the rotation speed causes left-right resonance of the housing (whether or not the left-right vibration of the housing is a maximum value).
- the resonance determination for example, the rotation speed and the left-right vibration of the housing are recorded, and the rotation speed at which the left-right vibration of the housing is the maximum value is regarded as resonance.
- the control device 7 records the rotation speed at the time when it is determined to be resonance as the housing left-right resonance rotation speed (step S207), and proceeds to step S208.
- the control device 7 proceeds to step S208.
- step S208 the control device 7 determines the rotation speed, determines whether the switching rotation speed is calculated from the recorded housing left-right resonance rotation speed and the housing vertical resonance rotation speed, and when the switching rotation speed is reached. (Step S208, Yes), in step S209, the control parameter of the linear actuator 30 is changed to the housing vertical vibration proper control, and the process proceeds to step S210.
- the switching rotation speed is obtained as the median value of the recorded housing left-right resonance rotation speed and the housing top-bottom resonance rotation speed.
- the control device 7 proceeds to step S210.
- step S210 the control device 7 performs resonance determination J2 in the same manner as in step S206, and determines whether the vertical vibration of the housing has reached the maximum value.
- step S210, Yes the control device 7 records the rotation speed at that time as the housing vertical resonance rotation speed in step S211 and proceeds to step S212.
- step S210, No the control device 7 proceeds to step S212.
- step S212 the control device 7 determines the end, determines whether the set time has elapsed, and if it has elapsed (steps S212, Yes), stops the rotation of the drum 8 in step S213 and ends. On the other hand, if the control device 7 has not elapsed (step S212, No), the control device 7 returns to step S205.
- FIG. 10 is a schematic view showing the rotation speed of the drum-type washing machine 100 according to the second embodiment when the control is changed.
- the control device 7 records the rotation speed at which the left-right vibration of the housing is maximized as the left-right resonance rotation speed of the housing.
- this switching rotation speed is an average value of the housing left-right resonance rotation speed and the housing top-bottom resonance rotation speed. The rotation speed is increased, and the rotation speed when the housing vertical vibration is maximized is recorded as the housing vertical resonance rotation speed.
- the switching rotation speed may be calculated by calculating the housing left-right resonance rotation speed during acceleration and adding a predetermined rotation speed to the rotation speed. By doing so, the amount of recording the resonance rotation speed can be reduced.
- FIG. 11 is a schematic view showing the transmission of force in the left-right direction in the drum-type washing machine 100 according to the third embodiment.
- FIG. 11 is a schematic cross-sectional view of the upper side surface schematically showing the force transmitted from the outer tub 9 of the drum-type washing machine 100 to the housing 1. Since the basic configuration is the same as that of the first embodiment, the description thereof will be omitted.
- the force transmitted from the outer tank 9 to the housing 1 is only from the spring component of the bellows 11 and the spring component of the elastic support mechanism 20 on the right side.
- the bellows 11 is arranged on the front surface of the housing 1 in order to connect the front surface of the housing 1 and the front surface of the outer tank 9.
- the elastic support mechanism 20 is connected to the housing 1 near the center of the housing 1 in the front-rear direction in order to support the vicinity of the center of gravity of the supported component such as the outer tank 9 and the drum 8.
- the connection points between the outer tank 9 and the housing 1 are different in the front-rear direction.
- the spring constant of the linear actuator 30 is determined so as to cancel the transmission force from the bellows 11 indicated by the solid arrow in FIG.
- the transmission force from the outer tank 9 to the housing 1 can be expressed by the sum of the transmission force F 1 from the bellows 11 and the transmission force F 2 from the elastic support mechanism 20 on the right side. Further, since each transmission force assumes only the spring component, it can be obtained by multiplying each spring constant by the displacement. When the displacement x 1 in front of the outer tank 9 and the displacement x 2 at the connection position of the elastic support mechanism 20 are equal, they can be offset by giving a negative spring constant to the spring constant of the bellows 11 to the elastic support mechanism 20 on the right side. Is.
- the vibration of the outer tub 9 changes the magnitude of the displacement x 2 with respect to the displacement x 1 depending on how the laundry is biased. Therefore, with the control parameters determined when a predetermined vibration is generated, even if the vibration form of the outer tub 9 changes due to the bias of the laundry or the like, the transmission force from the bellows 11 can be satisfactorily offset. Is preferable.
- the displacement x 1 of the connection position of the bellows 11 and the displacement x 2 of the connection position of the elastic support mechanism 20 are estimated from the values of the outer tank vibration sensor 16 to determine the control parameters. By doing so, it is possible to offset the transmission force from the bellows 11 without leaning toward the bias of the laundry.
- transmission is performed only from the spring component of the bellows 11 and the elastic support mechanism 20 on the right side, but the idea is the same for transmission from a plurality of places as in the actual drum-type washing machine 100. is there.
- the vibration velocity of each part is estimated from the value of the outer tank vibration sensor 16 and the control parameter is determined.
- the control parameters may be selected based on the offset position and size of.
- the output of the linear actuator 30 is made smaller than when the laundry is biased toward the front side. This is because the vibration is relatively large with respect to the front of the outer tank 9, so that even if the linear actuator 30 is small, it can be offset.
- the installation environment and the laundry can be placed in a offset position. It is possible to reduce the vibration of the housing without leaning. That is, the control device 7 may control the linear actuator 30 by using the values of both the housing vibration sensor 1g and the outer tank vibration sensor 16.
- FIG. 12 is an external perspective view showing the drum type washing machine 100A according to the fourth embodiment. Since the basic configuration is the same as that of the first embodiment, the description thereof will be omitted. Unlike the first embodiment, the fourth embodiment is provided with the housing linear actuator 40 instead of the rubber legs 1h.
- the housing linear actuator 40 can output an arbitrary force like the linear actuator 30.
- resonance in the left-right direction and resonance in the up-down direction of the housing 1 occur.
- the larger the spring constant the more the vibration of the housing 1 can be reduced.
- the larger the spring constant the greater the transmission force to the floor.
- the damping coefficient the larger the damping coefficient is in the vicinity of the resonance rotation speed, the less the housing vibration is, and the smaller the transmission force to the floor is.
- the amount of increase in transmission force increases with respect to the amount of vibration reduction.
- both the spring constant and damping coefficient should be increased up to the vicinity of the resonance rotational speed, and both the spring constant and damping coefficient should be decreased in the rotational speed region of ⁇ 2 times or more of the resonant rotational speed. Is desirable.
- the appropriate control method differs depending on the form of vibration.
- the control device 7 obtains and records the resonance rotation speed in each axial direction from the output of the housing vibration sensor 1g, and adjusts the rotation speed for which the control is changed from the resonance rotation speed data when the vehicle has been operated in the past. By doing so, it is possible to appropriately control the housing linear actuator 40 without depending on the installation environment.
- FIG. 13 is a schematic view showing left-right vibration of the housing according to the fourth embodiment.
- FIG. 13 shows the relationship between the rotation speed of the drum 8 and the left-right vibration of the housing when the spring constant of the housing linear actuator 40 is variable.
- the housing vibration displacement when the spring constant is large is indicated by a broken line
- the housing vibration displacement when the spring constant is small is indicated by a chain line. It can be seen that the larger the spring constant, the higher the resonance rotation speed. When the rotation speed is low, the larger the spring constant, the smaller the housing vibration, and the smaller the spring constant, the smaller the housing vibration.
- control device 7 increases the spring constant of the housing linear actuator 40 to start dehydration, and lowers the spring constant at a rotation speed near the center of the resonance rotation speed before and after switching the spring constant. By controlling in this way, as shown by the solid line in FIG. 13, it is possible to suppress an increase in vibration due to resonance and provide a washing machine in which the vibration of the housing 1 is small.
- the resonance rotation speed of the housing 1 is affected by the rigidity of the floor. Therefore, the resonance rotation speed may be obtained and recorded when the operation is performed without the switching control, and the rotation speed at which the switching is performed may be determined based on the recorded rotation speed.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
- Control Of Washing Machine And Dryer (AREA)
Abstract
ドラム式洗濯機(100)は、洗濯物を収容するドラム(8)と、該ドラム(8)を内包する外槽(9)と、該外槽(9)を収容する筐体(1)と、ドラム(8)を回転駆動する駆動機構(10)と、外槽(9)の下部を支持するリニアアクチュエータ(30)と、該リニアアクチュエータ(30)を制御する制御装置(7)と、筐体(1)の振動を測定する筐体振動センサ(1g)とを有し、制御装置(7)は、筐体振動センサ(1g)の測定結果を基にリニアアクチュエータ(30)の制御方法を変更する。
Description
本発明は、ドラム式洗濯機に関するもので、特にドラム式洗濯機の脱水時の低振動化に関する。
ドラム式洗濯機は、水を溜める外槽と、外槽の内部に回転可能に支持されたドラムと、外郭をなす筐体と、外槽を筐体に支持する弾性支持機構などによって構成される。衣類の脱水は、ドラムを高速で回転させて行う。このとき、ドラム内の衣類分布に偏りが生じていると、ドラムが回転する際に外槽に振動が発生する。この振動は、外槽から弾性支持機構を介して筐体、床へと伝達する。外槽の弾性支持機構の減衰力が大きい程、外槽の振動を低減することができるが、所定の回転速度以上では筐体や床への伝達力が増加する。また、脱水を行う回転速度に到達するまでに、外槽や筐体の共振があり、それによっても伝達力が増加する。
特許文献1には、衣類を収容するドラムと、該ドラムを内包する外槽と、該外槽を収容する筐体と、ドラムを回転駆動する駆動機構と、ドラムが脱水時に回転する方向に対して衣類が上昇する側に外槽の振動を抑制する可変減衰機構を設け、可変減衰機構は外部より減衰性能を変更することが可能で、脱水運転時に筐体の左右共振回転速度よりも高い回転速度において減衰力を低下させる方法が提案されている。これにより、筐体の左右振動を低下させ、床への伝達力を低減することが可能と記されている。
特許文献2には、衣類が収容され、所定の回転軸周りで回転する回転槽を有する洗濯機に、ネットワークを介して接続され、且つ、洗濯機が設置された家屋の床の振動の時間変化を測定する振動センサを有する情報処理装置を用いて、洗濯機を制御する制御方法であって、情報処理装置が備えるプロセッサに、振動センサによって、所定期間において検出された振動の時間変化を表す振動データを取得させ、所定期間における洗濯機の運転状況を示すログデータを洗濯機から取得させ、振動データと、ログデータと、に基づき、床が特異的に大きく振動する洗濯機の運転モードを推定させ、床の振動が低減されるように、運転モードの変更を要求する変更要求を出力させる制御方法が提案されている。これにより、ユーザの感覚に依存することなく、洗濯機から発生した振動が家屋や家屋に設置された家具にダメージを与えるリスクを低減させることができる、と記されている。
特許文献1には、減衰力の切り替えを行う手法が記載されており、外槽共振時には減衰力を大きく設定し、高速時には減衰を小さくして床への伝達力を低減するとされている。しかしながら、筐体の共振は本体のみでは決まらず、床の剛性など環境によっても変化するため、それらの把握が必要である。
また、特許文献2には、床の振動を測定する振動センサを設け、振動センサの振動データと運転状況を示すログデータとに基づき、床が特異的に大きく振動する洗濯機の運転モードを推定し、床の振動が低減されるように、運転モードを変更するとされている。しかしながら、運転モードを変更する場合、外槽の共振時の振動の低減には繋がりにくいため、外槽の共振時の振動低減が課題である。
本発明は、前記した課題を解決するためになされたものであり、設置環境に依存しにくいドラム式洗濯機を提供することを目的とする。
前記目的を解決するために、本発明のドラム式洗濯機は、洗濯物を収容するドラムと、該ドラムを内包する外槽と、該外槽を収容する筐体と、ドラムを回転駆動する駆動機構と、外槽の下部を支持するリニアアクチュエータと、該リニアアクチュエータを制御する制御装置と、筐体の振動を測定する筐体振動センサとを有し、制御装置は、筐体振動センサの測定結果を基にリニアアクチュエータの制御方法を変更することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
本発明によれば、筐体に設けた筐体振動センサで共振回転速度を把握し、筐体の振動モードに応じてリニアアクチュエータを適正に制御することで、筐体の振動や床への伝達力を低減することが可能であり、設置環境に依存しにくいドラム式洗濯機を提供できる。
本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
<第1実施形態>
図1は、第1実施形態に係るドラム式洗濯機100を示す外観斜視図である。図2は、第1実施形態に係るドラム式洗濯機100の内部構造を示すために筐体1の一部を切断して示した右側面断面図である。
<第1実施形態>
図1は、第1実施形態に係るドラム式洗濯機100を示す外観斜視図である。図2は、第1実施形態に係るドラム式洗濯機100の内部構造を示すために筐体1の一部を切断して示した右側面断面図である。
外郭を構成する筐体1は、ベース1aの上に取り付けられており、左右の側板1b、前面カバー1c、背面カバー、上面カバー1d、上面カバーパネル1e、前面下部カバー1fで構成されている。左右の側板1bは、コの字型の上補強材、前補強材、後補強材に結合されており、ベース1aを含めて箱状の筐体1を形成し、十分な強度を有している。ドア2は、前面カバー1cの略中央に設けた洗濯物を出し入れするための投入口を塞ぐためのもので、開閉可能に支持されている。筐体1の上部中央に設けた操作・表示パネル3は、電源スイッチ4、操作スイッチ5、表示器6を備える。操作・表示パネル3は、筐体1上部に設けた制御装置7(図2参照)に電気的に接続している。また、図2に示すように、筐体1の上部には筐体1の振動を測定するための筐体振動センサ1gを設けており、筐体振動センサ1gは制御装置7に電気的に接続している。ベース1aの4隅下部にはゴム製の脚1hが設けられている。
図2に示すドラム8は、外槽9に回転可能に支持されており、その外周壁および底壁に通水のための多数の貫通孔を有し、前側端面に洗濯物を出し入れするための開口部8aを設けている。開口部8aの外側にはドラム8と一体の流体バランサ8bを備えている。外周壁の内側には軸方向に延びるリフタ8cが複数個設けてあり、洗濯、乾燥時にドラム8を回転すると、洗濯物はリフタ8cと遠心力で外周壁に沿って持ち上がり、重力で落下する動きを繰り返す。ドラム8の回転軸は、水平または開口部8a側が高くなるように傾斜している。
円筒状の外槽9はドラム8を同軸上に内包し、後側端面の外側中央に駆動機構10を設けている。駆動機構10のシャフト10aは外槽9を貫通し、ドラム8と結合している。なお、外槽9は前側中央に洗濯物を出し入れするための開口部9aを有している。また、駆動機構10には回転速度を検出する回転速度検出装置10bが設けられている。
外槽9の開口部9aと筐体1に設けた開口部は、ゴム製のベローズ11で接続しており、ドア2を閉じることで外槽9を水封する。排水口9bは外槽9の底面最下部に設けられており、内部排水ホース12と接続している。内部排水ホース12は糸くずを捕集するための糸くず捕集ボックス13を介して、外部排水ホース14に接続している。糸くず捕集ボックス13には、洗濯水を循環するための循環ポンプ15が設けられており、循環経路15aを介して水をドラム8内に散布する。外部排水ホース14には排水弁14aが設けてあり、排水弁14aを閉じて給水することで外槽9に水を溜め、排水弁14aを開いて外槽9内の水を機外へ排出する。外槽9の下部には外槽振動センサ16を設けており、外槽9の振幅を測定している。前記振幅とあらかじめ設定しているしきい値を比較し、振幅が大きい場合にはドラム8の回転を停止させて、振動がしきい値以下となった場合のみ回転速度を上昇させることで、過大な振動の発生を抑制している。
外槽9は、下側をベース1aに固定された左右一対の弾性支持機構20によって防振支持され、上部を前後方向の姿勢を保持するための前補助バネ9c、後補助バネ9dによって支持されている。弾性支持機構20は、バネ21とリニアアクチュエータ30で構成されている。リニアアクチュエータ30は、制御装置7に電気的に接続しており、任意の力を出力することが可能であり、かつ左右のリニアアクチュエータ30はそれぞれ異なる制御をさせることも可能である。
次に、ドラム式洗濯機100における脱水時の振動について説明する。脱水運転では、一般的にドラム8の回転速度を段階的に上昇させ、最終的に上昇させる回転速度は運転コースなどにもよるが900~1400min-1程度で行われることが多い。ドラム8の回転速度を上昇させる際に、まず100~300min-1程度において外槽9が左右や上下、前後方向に共振する。さらに回転速度を上昇させると400~600min-1程度で筐体が左右や前後方向に共振し、1000~1400min-1程度で筐体1が上下方向に共振する。
次に、弾性支持機構20のばね定数や減衰係数と振動の関係を振動の形態ごとに説明する。まず、外槽9共振時にはばね定数が小さく、減衰係数が大きい程、外槽9の振動を抑制することが可能になる。また、外槽9の共振回転速度より十分に高くなると、外槽9の振動は弾性支持機構20のばね定数や減衰係数に依存しにくくなる。その領域においては、外槽9の振動を筐体1に伝えないことが望ましく、外槽9から筐体1への伝達力が小さい程、筐体1の振動や床振動が小さくなる。ここで、伝達力はばね力と減衰力の和である。すなわち、弾性支持機構20のばね定数や減衰係数は小さい方が望ましい。
しかし、ドラム式洗濯機100のように外槽9から筐体1への接続部が弾性支持機構20の他にもベローズ11など複数存在する場合、前記の考えが当てはまらない場合がある。その一例として、筐体左右共振時の振動を用いて説明する。
図3は、第1実施形態に係るドラム式洗濯機100の筐体左右振動に関わる力の伝達の一例を示す模式図である。図3は、外槽9が反時計回りに(太い実線矢印のドラム8の回転方向参照)円の軌跡を描きながら振動した際に、上側の位置に移動した時に各因子から筐体1が受ける力を筐体1の左右振動に着目して示す。筐体1の左右振動は、左右に倒れるように振動するため、図3に示すような本体下部の点を中心とした回転振動となる。外槽9が上に移動した場合、変位は上向き、速度は左向きとなるため、ベローズ11のばね力は上向き、減衰力は左向きに伝達力を持つ。
ここで、ベローズ11の支持位置が、筐体1が左右に振動する際の振動の回転中心より高いため、ベローズ11の減衰成分による伝達力は反時計回りのモーメントとなる。一方、ベローズ11のばね力は上向きのため筐体1を左右方向に倒す力は小さい。
また、左右の弾性支持機構20に関しては、上下方向の変位は上向き、速度はほぼ0となるため、ばね力は筐体1に上向きの力を加え、減衰力はほぼ0となる。ここで、筐体1の左右振動の中心が筐体1の左右方向の中央付近かつ下部付近にあることを考慮すると、図3に示すように左側の弾性支持機構20は筐体1の回転振動の中心よりも左側に接続しているため、ばね力は時計回りのモーメントとなる。一方、右側の弾性支持機構20は筐体1の回転振動の中心よりも右側に接続しているため、ばね力は反時計回りのモーメントとなる。
図3において、ベローズ11によるモーメントをM1、左側の弾性支持機構20によるモーメントをM2、右側の弾性支持機構20によるモーメントをM3とし、筐体1に働くモーメントの合計であるMは(1)式で表すことができる。ここで、モーメントは時計回りを正とする。
M=M1+M2+M3 (1)
M=M1+M2+M3 (1)
さらに、回転中心からベローズ11、左側の弾性支持機構20、右側の弾性支持機構20のそれぞれの接続位置までの距離をl1,l2,l3とし、ベローズ11からの伝達力F1は左向きを正とし、左右の弾性支持機構20からの伝達力F2、F3は上向きを正とする。筐体1に働くモーメントMは(2)式で表すことができる。
M=-F1l1+F2l2-F3l3 (2)
M=-F1l1+F2l2-F3l3 (2)
ここで、筐体左右振動を低減するために弾性支持機構20からの伝達力F2、F3を同じ比率で低減した場合、F2l2とF3l3相殺してF1l1が残る。しかし、Mが0となるようにF3対してF2を大きくすることで、F2、F3を同じように低減した場合に比べてMを小さくすることができ、筐体振動を低減することが可能となる。
このように、ドラム8の回転速度について、外槽9の共振回転速度より高い回転速度だからといって、個々の要素からの伝達力を低減しても筐体振動が低減しない場合が生じる。その場合、ベローズ11のような弾性支持機構20以外の接続部からの伝達力を把握し、それらを相殺するようにリニアアクチュエータ30の出力を制御することで、振動の低減が可能となる。
また、ドラム8の回転によって、外槽9が反時計回りに回転するように振動する中で外槽9が中心より右側に位置した場合、変位は右向き、速度は上向きとなる。その時、筐体1を左右に倒す力としては、ベローズ11からのばね力があり、筐体1を右に倒す向きに作用する。また、その他の力としては、左右のリニアアクチュエータ30の減衰力は上向きとなるため、左側のリニアアクチュエータ30の減衰力は筐体1を右に倒す向きとなり、右側のリニアアクチュエータ30の減衰力は筐体1を左に倒す向きとなる。従って、ベローズ11からの伝達力を相殺するためには、左側のリニアアクチュエータ30の減衰力は小さい方が望ましく、右側のリニアアクチュエータ30の減衰力は大きい方が望ましい。
以上のように、筐体1の左右振動を低減するためには、左右のリニアアクチュエータ30で他の伝達箇所からの力を相殺することが望ましい。具体的には、ばね定数に関しては右側に対して左側を大きく、減衰係数に関しては左側に対して右側を大きくすることが望ましい。
図4は、第1実施形態に係るドラム式洗濯機100の筐体上下振動に関わる力の伝達の一例を示す模式図である。図4は、外槽9が反時計回りに円の軌跡を描きながら振動した際に、上側の位置に移動した時に各因子から筐体1が受ける力を筐体1の上下振動に着目して示す。筐体1に上下方向に加えられる力は、ベローズ11や弾性支持機構20などの伝達力がある。
図4のように外槽9が上側に振動した場合、変位は上方向、速度の上下方向成分は0となるため、ベローズ11や弾性支持機構20の減衰成分からの伝達力は0となり、ベローズ11や弾性支持機構20のばね力は全て上向きとなる。従って、各接続部からの力の向きが同じであるため、打ち消しあうことがない。また、図4の位置から進み、外槽9が左側に位置した時、上下方向の変位は0、速度は下向きとなる。すなわち、弾性支持機構20、ベローズ11のばね力は0、減衰力は全て下向きとなる。このように、各接続部からの伝達力は全て同じ向きとなり、打ち消しあうことがない。
従って、上下方向の振動を低減するためには、各々の接続部のばね定数、減衰係数を小さくすることが望ましい。従って、弾性支持機構20のばね定数、減衰係数は小さい程望ましい。すなわち、リニアアクチュエータ30のばね定数はバネ21のばね定数の負の値となることが望ましい。
図5Aは、第1実施形態に係るドラム式洗濯機100の筐体左右振動を示す模式図である。図5Bは、第1実施形態に係るドラム式洗濯機100の筐体上下振動を示す模式図である。図5A、図5Bは、制御方法を変更したときの筐体1の左右振動(筐体左右振動)および筐体1の上下振動(筐体上下振動)を示す。比較対象として、弾性支持機構20にリニアアクチュエータ30を設けるのではなく、減衰係数が一定のオイルサスペンションを設けた場合も併せて示す。図5Aは筐体左右振動、図5Bは筐体上下振動を示している。
ここで、筐体左右振動適正制御は、筐体1に働くモーメントが小さくなるように制御しており、具体的にはベローズ11からの伝達力を相殺するように左側の弾性支持機構20のばね定数を右側に対して大きくし、右側の弾性支持機構20の減衰係数を左側に対して大きくしている。
一方、筐体上下振動適正制御は、外槽9から筐体1への伝達を小さくするために、弾性支持機構20のばね定数、減衰係数ともに0とする。すなわち、左右のリニアアクチュエータ30のばね定数はバネ21を相殺するように負の値としている。なお、図中の領域A、領域B、領域Cはそれぞれ外槽共振回転速度領域、筐体左右共振回転速度領域、筐体上下共振回転速度領域を示している。
図5Aに示すように、リニアアクチュエータ30を筐体左右振動適正制御とすることで、オイルサスペンションに比べて領域Bにおいて筐体左右振動を低減できていることが分かる。また、図5Bに示すように、筐体上下振動適正制御とすることで、領域Cにおける筐体上下振動を低減することが可能である。また、筐体上下振動適正制御とした場合は、筐体左右振動はオイルサスペンションの場合と同程度となり、筐体左右振動適制御として場合は筐体上下振動はオイルサスペンションの場合と同程度となっている。このように、振動方向に応じて制御方法を変更することが望ましい。しかし、筐体1の共振回転速度は一意に決まるものではなく、環境の条件によっても変化する。
図6は、第1実施形態に係るドラム式洗濯機100の筐体左右振動に与える設置床の硬さの影響を示す模式図である。図6に示すように、床が硬いほど筐体1の左右共振となる回転速度は高くなる。図示しないが、筐体上下共振に関しても同様である。共振回転速度は質量とばね定数で決定されるが、ばねが洗濯機本体のばねと床のばねの合成ばねとなるため、床によって共振回転速度が異なることになる。従って、工場出荷時に正確に共振回転速度を把握することは困難となる。そこで、設置環境に依存しにくい制御方法が必要となる。
そこで、本実施形態では、筐体1に設けた筐体振動センサ1gで筐体1の左右振動や上下振動を測定し、共振回転速度が低い左右振動に対し、共振回転速度が高い上下方向の振動変位が大きくなった際に左右振動を低減する制御から上下振動を低減する制御に変更する。このように制御を切り替えることで、設置環境によらずに適切に制御し、筐体振動を低減することが可能となる。
次に、本実施形態の制御方法について説明する。
図7は、第1実施形態に係るドラム式洗濯機100の制御方法の一例を示すフローチャートである。ステップS101で、制御装置7はドラム8の回転速度を100min-1まで上昇させる。100~400min-1が外槽9の共振が発生するため、ステップS102では、制御装置7はリニアアクチュエータ30の制御方法を外槽振動用の制御パラメータに変更する。400~900min-1の領域に筐体1が左右に振動する共振が発生するため、ステップS103で、制御装置7はドラム8の回転速度を400min-1まで回転速度を上昇させてから、ステップS104で制御パラメータを筐体左右振動適正制御に変更する。ステップS105で、制御装置7はドラム8の回転速度を各コースやユーザ設定で決定される最終脱水回転速度を目標に、ドラム8の回転速度を上昇させる。
図7は、第1実施形態に係るドラム式洗濯機100の制御方法の一例を示すフローチャートである。ステップS101で、制御装置7はドラム8の回転速度を100min-1まで上昇させる。100~400min-1が外槽9の共振が発生するため、ステップS102では、制御装置7はリニアアクチュエータ30の制御方法を外槽振動用の制御パラメータに変更する。400~900min-1の領域に筐体1が左右に振動する共振が発生するため、ステップS103で、制御装置7はドラム8の回転速度を400min-1まで回転速度を上昇させてから、ステップS104で制御パラメータを筐体左右振動適正制御に変更する。ステップS105で、制御装置7はドラム8の回転速度を各コースやユーザ設定で決定される最終脱水回転速度を目標に、ドラム8の回転速度を上昇させる。
ステップS106で、制御装置7は筐体左右振動と筐体上下振動を比較し、筐体上下振動が大きい場合(ステップS106,Yes)、ステップS107に進み、制御パラメータを筐体上下振動適正制御に変更し、ステップS108に進む。一方、筐体左右振動の方が大きい場合(ステップS106,No)、制御装置7はステップS108に進む。ステップS108で、制御装置7はドラム8の回転速度が予め設定された最終脱水回転速度に到達したか判定し、到達していない場合(ステップS108,No)、ステップS105に戻って加速し、到達した場合(ステップS108,Yes)、ステップS109に進む。
ステップS109で、制御装置7は筐体1の上下振動が低下するように、リニアアクチュエータ30の制御パラメータの探索を行う。ステップS110で、制御装置7は運転時間が経過したか判定し、経過していない場合(ステップS110,No)、ステップS109に戻り、経過した場合(ステップS110,Yes)、ステップS111でドラム回転を停止し、脱水運転を完了する。
図8は、第1実施形態に係るドラム式洗濯機100の制御変更時の回転速度を示す模式図である。ドラム8の回転速度を上昇させると、まず150min-1付近に外槽9の共振がある。さらに回転速度を上昇させると、600min-1付近に筐体1の左右共振があり、筐体左右振動が大きくなっていく。その後は、筐体左右振動は回転速度の上昇に伴い徐々に低下していく。筐体上下共振に近づくと、徐々に筐体上下振動が増加していき、筐体左右振動よりも大きくなる。そこで、制御装置7は、筐体上下振動を低下させるために、筐体上下振動適正制御に切り替える。このように、筐体振動の大きさを基準にすることで、回転速度領域に関わらず、振動を低減することが可能となる。
ここで、ステップS106では、筐体1の左右方向と上下振動の値を直接比較しているが、操作・表示パネル3の視認性などにより、左右方向と上下方向で重みづけを行った後の値で比較しても構わない。また、左右方向、上下方向の振動の比較だけでなく、左右方向、上下方向、前後方向の内の少なくとも2軸以上で比較しても構わない。
また、本実施形態では複数の制御パラメータを切り替えることで、各回転速度で顕著になる振動の抑制を可能としている。しかし、制御パラメータを急に切り替えるとそれに伴い、外槽や筐体の振動が急峻に変化してしまう。そこで、制御パラメータを変更する際には徐々に変化するように制御を変更することが望ましい。
本実施形態では最終脱水回転速度に到達する前は、回転速度領域ごとに設定された制御パラメータを選択して制御を行っているが、ステップS109のように回転速度領域ごとに筐体左右振動、外槽左右振動など、もしくはそれらから算出される値を評価指標として、それらの値が低下するように、制御パラメータを探索してもよい。そのようにすることで、予め制御パラメータを設定する必要がなくなる。
本実施形態の制御装置7は、筐体振動センサ1gの出力が小さくなるように制御方法を変更することができる。また、制御装置7は、筐体振動センサ1gの出力から共振回転速度を判定して記録し、該共振回転速度から制御を変更する切り替え回転速度を算出することができる。
<第2実施形態>
図9は、第2実施形態に係るドラム式洗濯機100の制御方法を示すフローチャートである。図9を参照して、他の制御切り替え方法を説明する。
図9は、第2実施形態に係るドラム式洗濯機100の制御方法を示すフローチャートである。図9を参照して、他の制御切り替え方法を説明する。
図9に示すように、ステップS201で、制御装置7はドラム8の回転速度を100min-1まで上昇させる。100~400min-1が外槽の共振が発生するため、ステップS202で、制御装置7はリニアアクチュエータ30の制御方法を外槽振動用の制御パラメータに変更する。400~900min-1の領域に筐体1が左右に振動する共振が発生するため、ステップS203で、制御装置7はドラム8の回転速度を、400min-1まで回転速度を上昇させてから、ステップS204で、制御装置7は制御パラメータを筐体左右振動適正制御に変更する。ステップS205で、制御装置7は最終脱水回転速度を目標に、ドラム8の回転速度を上昇させる。
制御装置7は、ドラム8の回転速度を上昇させながら、ステップS206で共振判定J1を行い、筐体左右共振となる回転速度かどうか(筐体左右振動が極大値か否か)を判定する。共振判定は、例えば回転速度と筐体左右振動を記録し、筐体左右振動が最大値となった回転速度を共振とする。共振であると判断された場合(ステップS206,Yes)、制御装置7は、共振と判断された時の回転速度を筐体左右共振回転速度として記録し(ステップS207)、ステップS208に進む。一方、制御装置7は、共振であると判断されない場合(ステップS206,No)、ステップS208に進む。
ステップS208で、制御装置7は回転速度判定を行い、記録されている筐体左右共振回転速度と筐体上下共振回転速度から算出する切り替え回転速度となったか判定し、切り替え回転速度となった場合(ステップS208,Yes)、ステップS209でリニアアクチュエータ30の制御パラメータを筐体上下振動適正制御に変更し、ステップS210に進む。ここで、切り替え回転速度は、記録されている筐体左右共振回転速度と筐体上下共振回転速度の中央値などのように求める。一方、制御装置7は、切り替え回転速度でない場合(ステップS208,No)、ステップS210に進む。
ステップS210で、制御装置7はステップS206と同様に共振判定J2を行い、筐体上下振動が極大値となったか判定する。極大値となった場合(ステップS210,Yes)、制御装置7は、ステップS211でその時の回転速度を筐体上下共振回転速度として記録し、ステップS212に進む。一方、制御装置7は、極大値とならない場合(ステップS210,No)、ステップS212に進む。
ステップS212で、制御装置7は終了判定を行い、設定時間を経過したか判定し、経過した場合(ステップS212,Yes)、ステップS213でドラム8の回転を停止し、終了する。一方、制御装置7は、経過していない場合(ステップS212,No)、ステップS205に戻る。
図10は、第2実施形態に係るドラム式洗濯機100の制御変更時の回転速度を示す模式図である。ドラム8の回転速度を上昇させると、まず150min-1付近に外槽9の共振がある。さらにドラム8の回転速度を上昇させると、600min-1付近に筐体1の左右共振があり、筐体左右振動が大きくなっていく。ここで、制御装置7は筐体左右振動が最大となった回転速度を筐体左右共振回転速度として記録する。さらに、回転速度を上昇させると切り替え回転速度となり、制御装置7は制御方法を切り替える。この切り替え回転速度は、図10に示すように、筐体左右共振回転速度と筐体上下共振回転速度の平均値とする。回転速度を上昇させ、筐体上下振動が最大となった時の回転速度を筐体上下共振回転速度として記録する。
このように、筐体1の左右方向及び上下方向の共振回転速度から切り替え回転速度求める用いることで、各軸の振動を比較することなく、制御パラメータの変更が可能となる。
なお、本実施形態では筐体左右共振回転速度と筐体上下共振回転速度を算出し、記録する方法を述べているが、必ずしも両者を記録する必要はない。例えば、加速中に筐体左右共振回転速度を算出し、その回転速度に所定の回転速度を加えるなどして、切り替え回転速度を算出してもよい。このようにすることで、共振回転速度を記録する量を削減することができる。
<第3実施形態>
図11は、第3実施形態に係るドラム式洗濯機100における左右方向の力の伝達を示す模式図である。図11はドラム式洗濯機100の外槽9から筐体1に伝わる力を模式的に表す上側面断面模式図である。基本的な構成は第1実施形態と同じであるため、説明を省略する。
図11は、第3実施形態に係るドラム式洗濯機100における左右方向の力の伝達を示す模式図である。図11はドラム式洗濯機100の外槽9から筐体1に伝わる力を模式的に表す上側面断面模式図である。基本的な構成は第1実施形態と同じであるため、説明を省略する。
説明を簡単にするために外槽9から筐体1に伝わる力は、ベローズ11のばね成分と右側の弾性支持機構20のばね成分からのみと仮定する。図11に示すように、ベローズ11は筐体1前面と外槽9前面を接続するため、筐体1前面に配置される。一方、弾性支持機構20は、外槽9やドラム8などの支持される構成部品の重心付近を支持するため、筐体1の前後方向の中央付近で筐体1と接続する。このように、外槽9と筐体1の接続箇所は前後方向に異なっている。
ここで、筐体1の左右振動を低減する場合、第1実施形態で述べたように接続部ごとの伝達力を低減するのではなく、外槽9から筐体1への伝達力の総和を小さくすることが望ましい。そこで、図11に実線の矢印で示すベローズ11からの伝達力を相殺するように、リニアアクチュエータ30のばね定数が決定される。
外槽9から筐体1への伝達力は、ベローズ11からの伝達力F1と右側の弾性支持機構20からの伝達力F2の和で表すことができる。また、それぞれの伝達力はばね成分のみを仮定しているため、それぞれのばね定数に変位を乗ずることで求めることができる。外槽9前方の変位x1と弾性支持機構20の接続位置の変位x2が等しい場合、右側の弾性支持機構20にベローズ11のばね定数に対して負のばね定数を与えることで相殺が可能である。
しかし、外槽9の振動は洗濯物の片寄り方によって、変位x1に対する変位x2の大きさが変化する。従って、所定の振動が発生したときに決定した制御パラメータでは洗濯物の片寄り方などによって外槽9の振動の形態が変わった場合でも、ベローズ11からの伝達力を良好に相殺できるようにするのが好ましい。
そこで、第3実施形態では、外槽振動センサ16の値からベローズ11の接続位置の変位x1や弾性支持機構20の接続位置の変位x2を推定し、制御パラメータを決定する。このようにすることで、洗濯物の片寄り方に寄らずに、ベローズ11からの伝達力を相殺することが可能となる。本実施形態では、ベローズ11と右側の弾性支持機構20のばね成分からのみ伝達すると仮定しているが、実際のドラム式洗濯機100のように複数個所からの伝達に対しても考え方は同様である。減衰成分からの伝達を考慮する場合は、外槽振動センサ16の値から各部の振動速度を推定し、制御パラメータを決定する。
以上のように、外槽9の各位置での振動変位、速度を推定して制御パラメータを決定することで、筐体振動を低減することが可能となる。ただし、必ずしも接続位置ごとに変位を推定する必要はなく、予め洗濯物の片寄りの位置や大きさに対応した制御パラメータを決定しておき、外槽振動センサ16の値からを推定した洗濯物の片寄り位置や大きさを基に制御パラメータを選択してもよい。外槽9の前方が後方に対して大きく振動する前側に洗濯物が片寄った場合は、リニアアクチュエータ30の出力が大きくなるように制御する。一方、外槽9の後方の振動が前方に対して大きくなる後側に洗濯物が片寄った場合は前側に片寄った場合に比べてリニアアクチュエータ30の出力が小さくなるようにする。これは、外槽9の前方に対して相対的に振動が大きいため、リニアアクチュエータ30の小さくても相殺が可能となるためである。
さらに、第3実施形態と第1実施形態もしくは第2実施形態を組み合わせ、外槽振動センサ16と筐体振動センサ1gの両者の情報から制御することで、設置環境と洗濯物が片寄った位置に寄らずに筐体振動の低減を実現することが可能となる。すなわち、制御装置7は、筐体振動センサ1gと外槽振動センサ16との両方の値を用いてリニアアクチュエータ30の制御を行うとよい。
<第4実施形態>
図12は、第4実施形態に係るドラム式洗濯機100Aを示す外観斜視図である。基本的な構成は第1実施形態と同じであるため、説明を省略する。第4実施形態は、第1実施形態と異なりゴム製の脚1hの代わりに、筐体リニアアクチュエータ40を設けている。
図12は、第4実施形態に係るドラム式洗濯機100Aを示す外観斜視図である。基本的な構成は第1実施形態と同じであるため、説明を省略する。第4実施形態は、第1実施形態と異なりゴム製の脚1hの代わりに、筐体リニアアクチュエータ40を設けている。
筐体リニアアクチュエータ40は、リニアアクチュエータ30のように任意の力を出力することが可能である。先述の実施形態で述べたように、ドラム式洗濯機100Aでは筐体1の左右方向の共振や上下方向の共振などが発生する。共振回転速度近傍以下の回転速度では、ばね定数が大きいほど筐体1の振動を低減することが可能である。一方、それ以上の回転速度ではばね定数が大きいほど床への伝達力が大きくなる。また、減衰係数に関しても、共振回転速度近傍では減衰係数が大きいほど筐体振動は低減し、床への伝達力も小さくなる。しかし、回転速度が高くなると振動の低減量に対し、伝達力の増加量が大きくなる。床への伝達力を最小とするためには、共振回転速度付近まではばね定数、減衰係数ともに大きくし、共振回転速度の√2倍以上の回転速度領域ではばね定数、減衰係数ともに小さくすることが望ましい。
このように振動の形態によって適切な制御方法が異なる。ここで、筐体1の共振回転速度はドラム式洗濯機100Aを設置した床面の剛性によっても変化するため、工場出荷時点で共振回転速度を把握することは困難である。そこで、制御装置7は筐体振動センサ1gの出力から各軸方向の共振回転速度を求めて記録し、過去に運転した際の共振回転速度データから制御を変更する回転速度を調整する。このようにすることで、設置環境に依存することなく、筐体リニアアクチュエータ40を適切に制御することが可能となる。
図13は、第4実施形態に係る筐体左右振動を示す模式図である。図13は、一例として、筐体リニアアクチュエータ40のばね定数を可変としたときの、ドラム8の回転速度と筐体左右振動の関係を示す。ばね定数が大きい場合の筐体振動変位を破線で示し、ばね定数が小さい場合の筐体振動変位を一点鎖線で示す。ばね定数が大きいほど共振回転速度が高いことが分かる。また、回転速度が低い場合はばね定数が大きいほど筐体振動が小さくなり、共振回転速度付近で逆転して、ばね定数が小さい方が、筐体振動が小さくなる。そこで、制御装置7は筐体リニアアクチュエータ40のばね定数を大きくして脱水を開始し、ばね定数の切り替え前後の共振回転速度の中央付近となる回転速度でばね定数を低下させる。このように制御することで、図13の実線で示すように、共振による振動の増加を抑制し、筐体1の振動が小さい洗濯機を提供することが可能となる。
ここで、第1実施形態でも述べたように、筐体1の共振回転速度は床の剛性の影響を受ける。従って、切り替え制御を行わずに運転した際に共振回転速度を求めて記録し、その記録された回転速度を基に切り替えを実施する回転速度を決定してもよい。
本実施形態によれば、設置環境や洗濯物の片寄り位置に寄らずに、筐体1の振動を低減し、床への伝達力を低減することができる。
1 筐体
1g 筐体振動センサ
2 ドア
3 操作・表示パネル
4 電源スイッチ
5 操作スイッチ
6 表示器
7 制御装置
8 ドラム
9 外槽
10 駆動機構
16 外槽振動センサ
20 弾性支持機構
21 バネ
30 リニアアクチュエータ
40 筐体リニアアクチュエータ
100,100A ドラム式洗濯機
1g 筐体振動センサ
2 ドア
3 操作・表示パネル
4 電源スイッチ
5 操作スイッチ
6 表示器
7 制御装置
8 ドラム
9 外槽
10 駆動機構
16 外槽振動センサ
20 弾性支持機構
21 バネ
30 リニアアクチュエータ
40 筐体リニアアクチュエータ
100,100A ドラム式洗濯機
Claims (6)
- 洗濯物を収容するドラムと、該ドラムを内包する外槽と、該外槽を収容する筐体と、前記ドラムを回転駆動する駆動機構と、前記外槽の下部を支持するリニアアクチュエータと、該リニアアクチュエータを制御する制御装置と、前記筐体の振動を測定する筐体振動センサとを有し、
前記制御装置は、前記筐体振動センサの測定結果を基にリニアアクチュエータの制御方法を変更する
ことを特徴とするドラム式洗濯機。 - 請求項1に記載のドラム式洗濯機において、
前記制御装置は、前記筐体振動センサの出力が小さくなるように前記制御方法を変更することを特徴とするドラム式洗濯機。 - 請求項1に記載のドラム式洗濯機において、
前記制御装置は、前記筐体振動センサの出力から共振回転速度を判定して記録し、該共振回転速度から制御を変更する切り替え回転速度を算出する
ことを特徴とするドラム式洗濯機。 - 請求項1に記載のドラム式洗濯機において、
前記制御装置は、前記筐体振動センサによる前記筐体の振動方向に応じて前記制御方法を変更することを特徴とするドラム式洗濯機。 - 請求項1乃至4のいずれか1項に記載のドラム式洗濯機において、
前記外槽の振動を測定する外槽振動センサを有し、
前記制御装置は、前記外槽振動センサと前記筐体振動センサとの両方の値を用いて前記リニアアクチュエータの制御を行う
ことを特徴とするドラム式洗濯機。 - 洗濯物を収容するドラムと、該ドラムを内包する外槽と、該外槽を収容する筐体と、前記ドラムを回転駆動する駆動機構と、前記筐体と本体を設置する面の間に設けられ前記筐体を支持する筐体リニアアクチュエータと、該筐体リニアアクチュエータを制御する制御装置と、前記筐体の振動を測定する筐体振動センサとを有し、
前記制御装置は、前記筐体振動センサの測定結果を基に前記筐体リニアアクチュエータの制御方法を変更する
ことを特徴とするドラム式洗濯機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-223985 | 2019-12-11 | ||
JP2019223985A JP7351737B2 (ja) | 2019-12-11 | 2019-12-11 | ドラム式洗濯機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021117306A1 true WO2021117306A1 (ja) | 2021-06-17 |
Family
ID=76311209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/034066 WO2021117306A1 (ja) | 2019-12-11 | 2020-09-09 | ドラム式洗濯機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7351737B2 (ja) |
WO (1) | WO2021117306A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008142231A (ja) * | 2006-12-08 | 2008-06-26 | Matsushita Electric Ind Co Ltd | 洗濯機 |
JP2011062346A (ja) * | 2009-09-17 | 2011-03-31 | Toshiba Corp | ドラム式洗濯機の制振装置及びドラム式洗濯機 |
-
2019
- 2019-12-11 JP JP2019223985A patent/JP7351737B2/ja active Active
-
2020
- 2020-09-09 WO PCT/JP2020/034066 patent/WO2021117306A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008142231A (ja) * | 2006-12-08 | 2008-06-26 | Matsushita Electric Ind Co Ltd | 洗濯機 |
JP2011062346A (ja) * | 2009-09-17 | 2011-03-31 | Toshiba Corp | ドラム式洗濯機の制振装置及びドラム式洗濯機 |
Also Published As
Publication number | Publication date |
---|---|
JP7351737B2 (ja) | 2023-09-27 |
JP2021090666A (ja) | 2021-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3973425B2 (ja) | ドラム式洗濯機およびその制御方法 | |
JP4756054B2 (ja) | ドラム式洗濯機 | |
RU2398059C1 (ru) | Стиральная машина барабанного типа | |
KR100671193B1 (ko) | 드럼식 세탁기 | |
JP5056254B2 (ja) | 洗濯機 | |
US8621893B2 (en) | Washing machine and method of controlling the same | |
KR102455064B1 (ko) | 세탁기 및 그의 제어방법 | |
US20150013077A1 (en) | Washing machine with balancer and control method thereof | |
CN108368662B (zh) | 洗衣机 | |
US9809916B2 (en) | Washing machine with balancer and control method thereof | |
WO2012114751A1 (ja) | ドラム式洗濯機 | |
KR20060088720A (ko) | 드럼세탁기의 밸런싱 조절장치 및 밸런싱 조절방법 | |
KR20100116325A (ko) | 세탁장치 | |
JP5380320B2 (ja) | 洗濯機 | |
JP4941319B2 (ja) | 洗濯機、ドラム回転速度制御方法およびプログラム | |
WO2021117306A1 (ja) | ドラム式洗濯機 | |
JP5823070B2 (ja) | 洗濯機 | |
KR100815663B1 (ko) | 세탁기 | |
JP6976037B2 (ja) | 洗濯機 | |
JP4803610B2 (ja) | ドラム式洗濯機 | |
JP5753980B2 (ja) | ドラム式洗濯機 | |
JP4851910B2 (ja) | ドラム式洗濯機 | |
JP2005348804A (ja) | ドラム式洗濯機 | |
JP3754377B2 (ja) | ドラム式洗濯機およびドラム式洗濯機における脱水時の振動低減方法 | |
JP2013153994A (ja) | 洗濯機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20900181 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20900181 Country of ref document: EP Kind code of ref document: A1 |