WO2021115805A1 - Vorrichtung zur bestimmung des drehmoments und/oder des drehwinkels zwischen einer ersten welle und einer zweiten welle - Google Patents

Vorrichtung zur bestimmung des drehmoments und/oder des drehwinkels zwischen einer ersten welle und einer zweiten welle Download PDF

Info

Publication number
WO2021115805A1
WO2021115805A1 PCT/EP2020/083728 EP2020083728W WO2021115805A1 WO 2021115805 A1 WO2021115805 A1 WO 2021115805A1 EP 2020083728 W EP2020083728 W EP 2020083728W WO 2021115805 A1 WO2021115805 A1 WO 2021115805A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
end region
rotation
direction vector
dimension
Prior art date
Application number
PCT/EP2020/083728
Other languages
English (en)
French (fr)
Inventor
Josef Siraky
Original Assignee
Neura Robotics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neura Robotics GmbH filed Critical Neura Robotics GmbH
Priority to US17/784,443 priority Critical patent/US20230003593A1/en
Priority to BR112022011450A priority patent/BR112022011450A2/pt
Priority to AU2020399929A priority patent/AU2020399929B2/en
Priority to CN202080086155.5A priority patent/CN114787601B/zh
Priority to CA3163740A priority patent/CA3163740A1/en
Priority to JP2022534409A priority patent/JP2023505330A/ja
Priority to KR1020227021337A priority patent/KR20220115964A/ko
Priority to EP20816461.6A priority patent/EP4073484A1/de
Publication of WO2021115805A1 publication Critical patent/WO2021115805A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/109Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving measuring phase difference of two signals or pulse trains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders
    • G01D5/34738Axles; Driving or coupling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/12Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving photoelectric means

Definitions

  • the invention relates to a device for determining the torque and / or the angle of rotation between a first shaft and a second shaft, which are rela tively coupled to each other about an axis of rotation via a transmission, according to the preamble of claim 1.
  • a rotation angle measuring system to control a motor, for example egg nes servomotor, on a moving axis such as the arm of a robot, which determines the information required for control such as speed and rotation angle position.
  • the motor usually has a drive shaft which transmits the force applied by the motor to an output shaft via a gear unit.
  • Gearboxes are known to be elastic and non-linear, which means that the speed of the motor does not behave linearly after being stepped up or down by the gearbox. As a result, the elasticity of the gearbox under load causes an angular offset between the expected angular position of the output shaft and the actual angular position of the output shaft.
  • a second rotational angle measuring system is arranged on the output shaft, which detects the movement of the output shaft directly. Additional sensors such as strain gauges are used to determine the torque that acts between the two shafts. Overall, a large number of sensors is required, so that such systems are complex and costly.
  • the object of the invention is therefore to provide a device for determining the torque and / or the angle of rotation Provide between a first shaft and a second shaft, which has a simpler structure and can be produced more cost-effectively.
  • the object is achieved according to the invention by a device for determining the torque and / or the angle of rotation between a first shaft and a second shaft with the characteristics of claim 1.
  • the basic idea of the invention is thus that a push, and each other, the degree V ervenez ervenez a shaft in the form of a hollow shaft another shaft at the same end of the two shafts in hoffmli cher proximity to dispose, which is arranged by two each other also in spatial proximity sensors can be scanned. Two to each other in spatial proximity arranged degree V scanned ervenez ervenez who can be the determined whereby the rotational angular position of each of the two waves instead of two physically separate rotation angle measurement systems.
  • this arrangement also enables the determination of the torque in a simple manner, which results from an angular offset between the expected angular position of the second shaft, for example the output shaft, and the actual angular position of the second shaft, for example the output shaft, for example at a predetermined speed of a motor connected to the first shaft or by the first shaft is fi xed and the resulting angle of rotation is measured on the second shaft under load.
  • the two sensors are arranged on the end face in front of the first end regions of the two shafts, which enables a compact structure light.
  • the two sensors prefferably be arranged on a single printed circuit board, as a result of which the number of components required can be reduced.
  • a particularly advantageous development of the invention provides that the sensors as optical scanning elements and the measure V er emotionsungen are formed as reflective er emotionslessness level V. Such angle measuring systems are particularly robust and enable a high resolution of the angle of rotation to be recorded.
  • the two level V are circumferentially from er Economicsisme formed to erfas sen the rotational angle in a simple manner.
  • the first measure V are er emotionsung on a disc-ring-shaped first element, which is disposed at the first end portion of the first shaft and the second measure V ervenez on a disc-ring-shaped second ele ment which is at the first end portion of the second shaft is arranged, arranged. This enables a compact construction.
  • the two level V are er emotionsoder concen driven relative to one another, which can simplify the analysis of the detected rotational angle.
  • the first shaft is preferably a drive shaft of the transmission and the second shaft is an output shaft of the transmission. Because the first shaft, designed as a hollow shaft, forms the drive shaft of the transmission, a space-saving arrangement of the drive on the first shaft can be made possible.
  • the first shaft can advantageously be connected to the rotor of an electric motor in a rotationally fixed manner for this purpose.
  • the transmission is preferably a voltage wave transmission, as a result of which high step-up or step-down ratios can be made possible in a small space.
  • a robot according to the invention as described above is particularly preferably used in a robot, since it is particularly necessary in the case of robots to precisely control their movement.
  • a robot according to the invention therefore comprises a device according to the invention.
  • Figure 1 shows a longitudinal section through an embodiment of egg ner device according to the invention for determining the torque and / or the angle of rotation between a first shaft and a second shaft and
  • FIG. 2 shows a partially transparent top view of the device according to FIG. 1.
  • Figures 1 and 2 show two views of a device 1 for determining the torque and / or the angle of rotation between a first shaft 10 and a second shaft 20, which are rotatably coupled about an axis of rotation A via a gear 30 relative to one another.
  • the first shaft 10 has a first end region 10a, a second end region 10b and a first direction vector RI which runs parallel to the axis of rotation A and points from the first end region 10a to the second end region 10b.
  • the second shaft 20 has a first end region 20a, a second end region 20b and a second direction vector R2, which runs parallel to the axis of rotation A and from the first end region 20a to the second end region 20b shows.
  • the first shaft 10 is designed as a hollow shaft in which the second shaft 20 is arranged coaxially.
  • the arrangement is such that the first direction vector Ri and the second direction vector R2 are aligned in the same way, or in other words, that the first end region 10a of the first shaft and the first end region 20a of the second shaft point to the same side.
  • the first end region 20a of the second shaft 20 can lie within the first end region 10a of the first shaft 10, in particular terminate flush with it, or protrude slightly beyond it.
  • the first end region 10a of the first shaft 10 has a first measure V er emotionsung 11, while the first end portion 20a of the second shaft 20 a second level V er emotionsung having 21st
  • the dimension V erbodiments 11, 21 can be formed circumferentially.
  • the measure V can er stresses 11, 21 may be arranged, for example on the outer surface of the shafts 10, 20th
  • a disk-ring-shaped first element 12 is arranged on the first end region 10a of the first shaft 10, on or on which the first measuring body 11 is arranged in particular circumferentially
  • a disk-ring-shaped disk ring is arranged on the first end region 20a of the second shaft 20 second element 22 is arranged on or on wel chem the second dimension V erbodiment 21 is arranged in particular circumferentially.
  • the measure V er stresses 11, 21 are arranged in particular concentrically to one another.
  • the disk-annular members 12, 22 each have a plane which in particular is arranged sondere perpendicular to the rotation axis A, in particular sondere the two annular disk members 12, 22 and / or the two degree V er stresses 11, 21 in the same
  • the first element 21 in the form of a disk ring can be designed in a stepped manner, so that an outer region 12a of the first element 12 in the form of a disk ring is radial is arranged outside of the disc-ring-shaped second element 22 and with this in the same plane, while an inne rer region 12b of the disc-ring-shaped first element 12 is arranged axially behind the disc-ring-shaped second element 22 is.
  • the degree V er Sciences Institute 11, 21 have at least one relative angular provision for a turn to.
  • астстра absolute сости ⁇ есс ⁇ Preferably, at the level V er stresses 11, 21 .
  • the first measure V ervenez 11 is scanned by a first sensor 41, while the second measure ervenez V is sensed by a second sensor 42 21st
  • the scanning can be done optically in particular.
  • the measure V are erterrorism 11, reflectively constructed 21, while the sensors 41, 42 are constructed as op diagram sensing.
  • the sensors 41, 42 are, for example, the end face in front of the first end portions 10a, 20a of the two shafts 10, 20 angeord net so that a scan of the measure V er stresses 11, in substantially takes place 21 parallel to the axis of rotation A. Alternatively, scanning can also take place in the radial direction with respect to the shafts 10, 20.
  • the sensors 41, 42 are particularly preferably arranged on a single circuit board 40.
  • the detected by the sensors 41, 42 sample S ignale be to an evaluation unit wei terplanned for determining the rotational angle positions of the first and second shafts 10, 20 and optionally also for as described below Determination of acting between the shafts 10, 20 torque.
  • the rotation angle positions can be determined independently, ie the angle of rotation position of the first shaft 10 by scanning the first measuring body 11 by means of the first sensor 41 and the angular position of the second shaft 20 by scanning the second measuring body 21 by means of the second sensor 42.
  • the determination of the torque can be determined on the angle difference with load between the two shafts 10, 20 when the elasticity of the transmission 30 is known, that is, when the angle difference between the two shafts 10, 20 is known without load during operation at a given speed of the motor 50 .
  • the device 1 can have a housing 50 which is closed by a cover 52, for example.
  • the circuit board 40 can be arranged in the cover 52, so that the sensor system is easily accessible.
  • the first shaft 10 can be the drive shaft of the transmission 30, while the second shaft 20 can be the output shaft of the transmission 30.
  • the first shaft 10 is in particular the motor shaft of a motor 50, which is preferably designed as an electric motor, in particular as a servo motor.
  • the motor 50 has a rotor 55a and a stator 55b, the rotor 55a being coupled to the first shaft 10 in a rotationally fixed manner.
  • the transmission 30 couples the second end region 20a of the first shaft 10 to the second end region 20b of the second shaft 20.
  • the transmission can be designed, for example, as a voltage wave transmission.
  • a radial projection 31 which has an elliptical cross-section perpendicular to the axis of rotation A, can be arranged on the second end region 10b of the first shaft 10, on the outer circumference of which a ball bearing 32, which is designed as a roller bearing, for example, is arranged.
  • a flexible, thin-walled sleeve 33 is arranged, which is fixedly mounted in the housing 50 via a circumferential collar 33 a.
  • the outside of the sleeve 33 has external teeth 34.
  • a radial projection 20c is arranged on the second end region 20b of the second shaft, which has a circumferential projection 20d on its surface facing in the direction of the first end region 20a, so that a circumferential groove 20e is formed, which in the direction of the first end region 20a is open.
  • An internal toothing 35 into which the external toothing 34 of the sleeve 33 engages, is arranged in the groove 20e. There is a difference in the number of teeth between the outer teeth 34 and the internal teeth 35, for example by one or two teeth.
  • the device 1 is used in particular in a robot, for example in a moving joint of a robot.
  • the device 1 enables the determination of the rotational angle positions of the first shaft 10 and the second shaft 20 in a simple manner, since with the sensors 41, 42 the rotational angle positions of the shafts 10, 20, in particular the rotational angular position of the motor 50 and the rotational angular position of the Output shaft 20 and thus the output of the transmission 30, un can be determined as a function of one another.
  • the device 1 allows, for example, in the manner described below, but also in particular without additional mechanical Niche components a determination of the torque acting between the two shafts 10, 20.
  • the torque can be determined with a known elasticity of the transmission.
  • the known elasticity of the transmission can be determined, for example, by determining the angular difference between the first shaft 10, i.e. the motor shaft or the drive shaft, and the second shaft 20, i.e. the output shaft, over the entire travel range without any additional torque .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Retarders (AREA)
  • Manipulator (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung (1) zur Bestimmung des Drehmoments und/oder des Drehwinkels zwischen einer ersten Welle (10) und einer zweiten Welle (20), welche über ein Getriebe (30) relativ zueinander um eine Drehachse (A) drehbar gekoppelt sind, wobei die erste Welle (10) einen ersten Endbereich (10a), einen zweiten Endbereich (10b) und einen parallel zur Drehachse (A) von dem ersten Endbereich (10a) zu dem zweiten Endbereich (10b) weisenden ersten Richtungsvektor (R1) aufweist, und die zweite Welle (20) einen ersten Endbereich (20a), einen zweiten Endbereich (20b) und einen parallel zur Drehachse (A) von dem ersten Endbereich (20a) zu dem zweiten Endbereich (20b) weisenden zweiten Richtungsvektor (R2) aufweist, wobei die erste Welle (10) als Hohlwelle ausgebildet ist und die zweite Welle (20) koaxial in der ersten Welle (10) angeordnet ist, derart, dass der erste Richtungsvektor (R1) und der zweite Richtungsvektor (R2) gleich ausgerichtet sind, und wobei der erste Endbereich (10a) der ersten Welle (10) eine erste Maßverkörperung (11) und der erste Endbereich (20a) der zweiten Welle (20) eine zweite Maßverkörperung (21) aufweist, wobei die erste Maßverkörperung (11) durch einen ersten Sensor (41) und die zweite Maßverkörperung (21) durch einen zweiten Sensor (42) abgetastet wird.

Description

Vorrichtung zur Bestimmung des Drehmoments und/oder des Dreh winkels zwischen einer ersten Welle und einer zweiten Welle
Die Erfindung betrifft eine Vorrichtung zur Bestimmung des Drehmoments und/oder des Drehwinkels zwischen einer ersten Welle und einer zweiten Welle, welche über ein Getriebe rela tiv zueinander um eine Drehachse drehbar gekoppelt sind, gemäß dem Oberbegriff des Patentanspruchs 1.
Bekannt ist es, zur Steuerung eines Motors, beispielsweise ei nes Servomotors, an einer bewegten Achse wie beispielsweise dem Arm eines Roboters ein Drehwinkelmesssystem zu verwenden, welches die zur Steuerung notwendigen Informationen wie Dreh zahl und Drehwinkelposition bestimmt. Der Motor weist übli cherweise eine Antriebswelle auf, welche über ein Getriebe die vom Motor aufgebrachte Kraft an eine Abtriebswelle überträgt. Getriebe sind bekanntermaßen elastisch und nicht linear, was dazu führt, dass sich auch die Drehzahl des Motors nach Über oder Untersetzung durch das Getriebe nicht linear verhält. Da her bewirkt die Elastizität des Getriebes unter Last einen Drehwinkelversatz zwischen der erwarteten Drehwinkelposition der Abtriebswelle und der tatsächlichen Drehwinkelposition der Abtriebswelle. Bei bekannten Systemen wird zur Vermeidung ei nes solchen Drehwinkelversatzes ein zweites Drehwinkelmesssys tem an der Abtriebswelle angeordnet, welches die Bewegung der Abtriebswelle direkt erfasst. Zur Bestimmung des Drehmoments, welches zwischen den beiden Wellen wirkt, werden zusätzliche Sensoren wie beispielsweise Dehnmessstreifen verwendet. Insge samt ist eine große Zahl an Sensoren erforderlich, so dass derartige Systeme aufwendig und kostenintensiv sind.
Die Aufgabe der Erfindung besteht daher darin, eine Vorrich tung zur Bestimmung des Drehmoments und/oder des Drehwinkels zwischen einer ersten Welle und einer zweiten Welle bereitzu stellen, welche einfacher aufgebaut ist und kostengünstiger herstellbar ist.
Die Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung zur Bestimmung des Drehmoments und/oder des Drehwinkels zwi schen einer ersten Welle und einer zweiten Welle mit den Merk malen des Patentanspruchs 1.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
Die erfindungsgemäße Vorrichtung zur Bestimmung des Drehmo ments und/oder des Drehwinkels zwischen einer ersten Welle und einer zweiten Welle, welche über ein Getriebe relativ zueinan der um eine Drehachse drehbar gekoppelt sind, wobei die erste Welle einen ersten Endbereich, einen zweiten Endbereich und einen parallel zur Drehachse von dem ersten Endbereich zu dem zweiten Endbereich weisenden ersten Richtungsvektor aufweist, und die zweite Welle einen ersten Endbereich, einen zweiten Endbereich und einen parallel zur Drehachse von dem ersten Endbereich zu dem zweiten Endbereich weisenden zweiten Rich tungsvektor aufweist, zeichnet sich dadurch aus, dass die ers te Welle als Hohlwelle ausgebildet ist und die zweite Welle koaxial in der ersten Welle angeordnet ist, derart, dass der erste Richtungsvektor und der zweite Richtungsvektor gleich ausgerichtet sind, und dass der erste Endbereich der ersten Welle eine erste MaßVerkörperung und der erste Endbereich der zweiten Welle eine zweite MaßVerkörperung aufweist, wobei die erste MaßVerkörperung durch einen ersten Sensor und die zweite MaßVerkörperung durch einen zweiten Sensor abgetastet wird. Die grundlegende Idee der Erfindung besteht somit darin, die eine Welle in die als Hohlwelle ausgebildete andere Welle ein zuschieben, und am gleichen Ende der beiden Wellen in räumli cher Nähe zueinander die MaßVerkörperungen anzuordnen, welche durch zwei ebenfalls in räumlicher Nähe zueinander angeordnete Sensoren abgetastet werden können. Anstelle von zwei örtlich getrennten Drehwinkelmesssystemen können zwei in räumlicher Nähe zueinander angeordnete MaßVerkörperungen abgetastet wer den, wodurch die Drehwinkelposition jeder der beiden Wellen ermittelt werden kann. Gleichzeitig ermöglicht diese Anordnung auch auf einfache Art und Weise die Bestimmung des Drehmo ments, welches sich aus einem Drehwinkelversatz zwischen der erwarteten Drehwinkelposition der zweiten Welle, beispielswei se der Abtriebswelle, und der tatsächlichen Drehwinkelposition der zweiten Welle, beispielsweise der Abtriebswelle, ergibt, beispielsweise bei einer vorgegebenen Drehzahl eines mit der ersten Welle verbundenen Motors oder indem die erste Welle fi xiert wird und unter Last der sich ergebende Drehwinkel an der zweiten Welle gemessen wird.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung sind die beiden Sensoren stirnseitig vor den ersten Endbereichen der beiden Wellen angeordnet, was einen kompakten Aufbau ermög licht.
Besonders bevorzugt sind die beiden Sensoren auf einer einzi gen Leiterplatte angeordnet, wodurch die Zahl der erforderli chen Komponenten reduziert werden kann.
Eine besonders vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Sensoren als optische Abtastelemente und die MaßVerkörperungen als reflektive MaßVerkörperungen ausgebildet sind. Derartige Winkelmesssysteme sind besonders robust und ermöglichen eine hohe Auflösung des zu erfassenden Drehwin kels.
Vorzugsweise sind die beiden MaßVerkörperungen umlaufend aus gebildet, um auf einfache Art und Weise den Drehwinkel erfas sen zu können.
Besonders bevorzugt sind die erste MaßVerkörperung auf einem scheibenringförmigen ersten Element, welches an dem ersten Endbereich der ersten Welle angeordnet ist, und die zweite MaßVerkörperung auf einem scheibenringförmigen zweiten Ele ment, welches an dem ersten Endbereich der zweiten Welle ange ordnet ist, angeordnet. Dies ermöglicht einen kompakten Auf bau.
Vorteilhafterweise sind die beiden MaßVerkörperungen konzent risch zueinander angeordnet, was die Auswertung der erfassten Drehwinkel vereinfachen kann.
Gemäß einer besonders bevorzugten Ausführungsform der Erfin dung sind die beiden MaßVerkörperungen in der gleichen Ebene angeordnet, was die Auswertung der detektierten Drehwinkel weiter vereinfachen kann.
Vorzugsweise ist die erste Welle eine Antriebswelle des Ge triebes und die zweite Welle eine Abtriebswelle des Getriebes. Dadurch, dass die als Hohlwelle ausgebildete erste Welle die Antriebswelle des Getriebes bildet, kann eine platzsparende Anordnung des Antriebs an der ersten Welle ermöglicht werden. Insbesondere kann dazu vorteilhafterweise die erste Welle mit dem Rotor eines Elektromotors drehfest verbunden sein. Vorzugsweise ist das Getriebe ein Spannungswellengetriebe, wodurch hohe Über- oder Untersetzungsverhältnisse auf kleinem Raum ermöglicht werden können.
Die erfindungsgemäße Vorrichtung wie zuvor beschrieben kommt besonders bevorzugt bei einem Roboter zur Anwendung, da es be sonders bei Roboters erforderlich ist, deren Bewegung exakt zu steuern. Ein erfindungsgemäßer Roboter umfasst daher eine er findungsgemäße Vorrichtung.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der folgenden Figuren detailliert erläutert. Es zeigen
Figur 1 einen Längsschnitt durch ein Ausführungsbeispiel ei ner erfindungsgemäßen Vorrichtung zur Bestimmung des Drehmoments und/oder des Drehwinkels zwischen einer ersten Welle und einer zweiten Welle und
Figur 2 eine teilweise transparente Draufsicht auf die Vor richtung gemäß Figur 1.
Die Figuren 1 und 2 zeigen zwei Ansichten einer Vorrichtung 1 zur Bestimmung des Drehmoments und/oder des Drehwinkels zwi schen einer ersten Welle 10 und einer zweiten Welle 20, welche über ein Getriebe 30 relativ zueinander um eine Drehachse A drehbar gekoppelt sind. Die erste Welle 10 weist einen ersten Endbereich 10a, einen zweiten Endbereich 10b und einen ersten Richtungsvektor RI auf, welcher parallel zur Drehachse A ver läuft und von dem ersten Endbereich 10a zum zweiten Endbereich 10b weist. Die zweite Welle 20 weist einen ersten Endbereich 20a, einen zweiten Endbereich 20b und einen zweiten Richtungs vektor R2 auf, welcher parallel zur Drehachse A verläuft und von dem ersten Endbereich 20a zum zweiten Endbereich 20b weist. Die erste Welle 10 ist als Hohlwelle ausgebildet, in welcher die zweite Welle 20 koaxial angeordnet ist. Die Anord nung erfolgt derart, dass der erste Richtungsvektor Ri und der zweite Richtungsvektor R2 gleich ausgerichtet sind, oder mit anderen Worten, dass der erste Endbereich 10a der ersten Welle und der erste Endbereich 20a der zweiten Welle zur gleichen Seite weisen. Dabei kann der erste Endbereich 20a der zweiten Welle 20 innerhalb des ersten Endbereichs 10a der ersten Welle 10 liegen, insbesondere bündig mit diesem abschließen, oder geringfügig über diesen hinausragen.
Der erste Endbereich 10a der ersten Welle 10 weist eine erste MaßVerkörperung 11 auf, während der erste Endbereich 20a der zweiten Welle 20 eine zweite MaßVerkörperung 21 aufweist. Die MaßVerkörperungen 11, 21 können umlaufend ausgebildet sein. Dazu können die MaßVerkörperungen 11, 21 beispielsweise auf der Außenfläche der Wellen 10, 20 angeordnet sein. In dem dar gestellten Ausführungsbeispiel ist an dem ersten Endbereich 10a der ersten Welle 10 ein scheibenringförmiges erstes Ele ment 12 angeordnet, an oder auf welchem die erste Maßverkörpe rung 11 insbesondere umlaufend angeordnet ist, während an dem ersten Endbereich 20a der zweiten Welle 20 ein scheibenring förmiges zweites Element 22 angeordnet ist, an oder auf wel chem die zweite MaßVerkörperung 21 insbesondere umlaufend an geordnet ist. Die MaßVerkörperungen 11, 21 sind insbesondere konzentrisch zueinander angeordnet. Die scheibenringförmigen Elemente 12, 22 weisen jeweils eine Ebene auf, welche insbe sondere senkrecht zur Drehachse A angeordnet ist, wobei insbe sondere die beiden scheibenringförmigen Elemente 12, 22 und/oder die beiden MaßVerkörperungen 11, 21 in der gleichen
Ebene angeordnet sind. Dazu kann das scheibenringförmige erste Element 21 abgestuft ausgebildet sein, so dass ein äußerer Be reich 12a des scheibenringförmigen ersten Elements 12 radial außerhalb des scheibenringförmigen zweiten Elements 22 und mit diesem in der gleichen Ebene angeordnet ist, während ein inne rer Bereich 12b des scheibenringförmigen ersten Elements 12 axial hinter dem scheibenringförmigen zweiten Element 22 ange ordnet ist.
Die MaßVerkörperungen 11, 21 lassen zumindest eine relative Winkelbestimmung über eine Umdrehung zu. Vorzugsweise handelt es sich bei den MaßVerkörperungen 11, 21 um absolute Maßver körperungen, welche eine Winkelbestimmung über eine Vielzahl von Umdrehungen ermöglichen.
Die erste MaßVerkörperung 11 wird durch einen ersten Sensor 41 abgetastet, während die zweite MaßVerkörperung 21 durch einen zweiten Sensor 42 abgetastet wird. Die Abtastung kann insbe sondere optisch erfolgen. Dazu sind die MaßVerkörperungen 11, 21 reflektiv ausgebildet, während die Sensoren 41, 42 als op tische Abtastelemente ausgebildet sind.
Die Sensoren 41, 42 sind beispielsweise stirnseitig vor den ersten Endbereichen 10a, 20a der beiden Wellen 10, 20 angeord net, so dass eine Abtastung der MaßVerkörperungen 11, 21 in wesentlichen parallel zur Drehachse A erfolgt. Alternativ kann auch eine Abtastung in radialer Richtung zu den Wellen 10, 20 erfolgen.
Die Sensoren 41, 42 sind besonders bevorzugt auf einer einzi gen Leiterplatte 40 angeordnet. Die durch die Sensoren 41, 42 detektierten AbtastSignale werden an eine Auswerteeinheit wei tergegeben zur Bestimmung der Drehwinkelpositionen der ersten bzw. zweiten Welle 10, 20 und gegebenenfalls auch zur wie nachfolgend beschriebenen Bestimmung des zwischen den Wellen 10, 20 wirkenden Drehmoments. Die Drehwinkelpositionen können unabhängig voneinander bestimmt werden, d. h. die Drehwinkel position der ersten Welle 10 durch Abtasten der ersten Maßver körperung 11 mittels des ersten Sensors 41 und die Drehwinkel position der zweiten Welle 20 durch abtasten der zweiten Maß verkörperung 21 mittels des zweiten Sensors 42. Die Bestimmung des Drehmoments kann bei bekannter Elastizität des Getriebes 30, d. h. bei Kenntnis, welche Winkeldifferenz ohne Last im Betrieb bei einer vorgegebenen Drehzahl des Motors 50 zwischen den beiden Wellen 10, 20 vorliegt, auf der Winkeldifferenz mit Last im Betrieb zwischen den beiden Wellen 10, 20 ermittelt werden.
Die Vorrichtung 1 kann ein Gehäuse 50 aufweisen, welches bei spielsweise durch einen Deckel 52 abgeschlossen ist. Dabei kann die Leiterplatte 40 in dem Deckel 52 angeordnet sein, wodurch die Sensorik einfach zugänglich ist.
Die erste Welle 10 kann die Antriebswelle des Getriebes 30 sein, während die zweite Welle 20 die Abtriebswelle des Ge triebes 30 sein kann. Die erste Welle 10 ist insbesondere die Motorwelle eines Motors 50, der vorzugsweise als Elektromotor, insbesondere als Servomotor, ausgebildet ist. Der Motor 50 weist einen Rotor 55a und einen Stator 55b auf, wobei der Ro tor 55a drehfest mit der ersten Welle 10 gekoppelt ist.
Das Getriebe 30 koppelt den zweiten Endbereich 20a der ersten Welle 10 mit dem zweiten Endbereich 20b der zweiten Welle 20. Das Getriebe kann beispielsweise als Spannungswellengetriebe ausgebildet sein. Dazu kann an dem zweiten Endbereich 10b der ersten Welle 10 ein radialer Vorsprung 31, der einen ellipti schem Querschnitt senkrecht zur Drehachse A aufweist, angeord net sein, auf dessen Außenumfang ein Kugellager 32, welches beispielsweise als Wälzlager ausgebildet ist, angeordnet ist. Am Außenumfang des Kugellagers 32 ist eine flexible, dünnwan dige Hülse 33 angeordnet, die über einen umlaufenden Kragen 33a in dem Gehäuse 50 feststehend gelagert angeordnet ist. Die Außenseite der Hülse 33 weist eine Außenverzahnung 34 auf. An dem zweiten Endbereich 20b der zweiten Welle ist ein radialer Vorsprung 20c angeordnet, welcher an seiner in Richtung auf den ersten Endbereich 20a zugewandten Fläche einen umlaufenden Vorsprung 20d aufweist, so dass sich eine umlaufende Nut 20e bildet, welche in Richtung auf den ersten Endbereich 20a offen ist. In der Nut 20e ist eine Innenverzahnung 35 angeordnet, in welche die Außenverzahnung 34 der Hülse 33 eingreift. Dabei besteht eine Differenz in der Zahl der Zähne zwischen der Au ßenverzahnung 34 und der Innenverzahnung 35, beispielsweise um ein oder zwei Zähne. Bei Drehung der ersten Welle 10 um die Drehachse A verformt der elliptische Vorsprung 31 die Hülse 33, und aufgrund der Zähnedifferenz wird eine Rotation der zweiten Welle 20 gegenüber der ersten Welle 10 erreicht. Bei großen Zähnezahlen kann dabei eine hohe Über- oder Unterset zung erreicht werden.
Die Vorrichtung 1 kommt insbesondere bei einem Roboter, bei spielsweise bei einem bewegten Gelenk eines Roboters, zum Ein satz.
Die Vorrichtung 1 ermöglicht auf einfache Art und Weise die Bestimmung der Drehwinkelpositionen der ersten Welle 10 und der zweiten Welle 20, da jeweils mit den Sensoren 41, 42 die Drehwinkelpositionen der Wellen 10, 20, insbesondere die Dreh winkelposition des Motors 50 und die Drehwinkelposition der Abtriebswelle 20 und somit des Ausgangs des Getriebes 30, un abhängig voneinander bestimmt werden können. Die Vorrichtung 1 ermöglicht beispielsweise auf die im folgenden beschriebene Weise weiterhin aber auch insbesondere ohne zusätzliche mecha- nische Komponenten eine Bestimmung des zwischen den beiden Wellen 10, 20 wirkenden Drehmoments. Wird die erste Welle 10 in ihrer Position fixiert und wirkt ein zu bestimmendes Dreh moment auf die zweite Welle 20, stellt sich eine Winkeldiffe- renz zwischen der zweiten Welle 20 und der ersten Welle 10 ein, da das Getriebe 30 eine Elastizität aufweist und bei Ein wirkung des Drehmoments ähnlich wie ein Torsionsstab wirkt.
Aus der Größe der Winkeldifferenz kann bei bekannter Elastizi tät des Getriebes das Drehmoment bestimmt werden. Die bekannte Elastizität des Getriebes kann beispielsweise dadurch bestimmt werden, dass einmal über den gesamten Verfahrbereich ohne ein zusätzlich wirkendes Drehmoment die Winkeldifferenz zwischen der ersten Welle 10, also der Motorwelle oder der Antriebswel le, und der zweiten Welle 20, also der Abtriebswelle, bestimmt wird.
Bezugszeichenliste
I Vorrichtung
10 erste Welle
10a erster Endbereich
10b zweiter Endbereich
II erste MaßVerkörperung
12 scheibenringförmiges erstes Element
12a äußerer Bereich
12b innerer Bereich
20 zweite Welle
20a erster Endbereich
20b zweiter Endbereich
20c radialer Vorsprung
20d umlaufender Vorsprung
20e Nut
21 zweite MaßVerkörperung
22 scheibenringförmiges zweites Element
30 Getriebe
31 Vorsprung
32 Kugellager
33 Hülse
33a Kragen
34 Außenverzahnung
35 Innenverzahnung
40 Leiterplatte
41 Sensor
42 Sensor 50 Gehäuse 52 Deckel 55 Motor 55a Rotor 55b Stator
A Drehachse
RI erster Richtungsvektor
R2 zweiter Richtungsvektor

Claims

Patentansprüche
1.Vorrichtung (1) zur Bestimmung des Drehmoments und/oder des Drehwinkels zwischen einer ersten Welle (10) und ei ner zweiten Welle (20), welche über ein Getriebe (30) re lativ zueinander um eine Drehachse (A) drehbar gekoppelt sind, wobei die erste Welle (10) einen ersten Endbereich (10a), einen zweiten Endbereich (10b) und einen parallel zur Drehachse (A) von dem ersten Endbereich (10a) zu dem zweiten Endbereich (10b) weisenden ersten Richtungsvektor (RI) aufweist, und die zweite Welle (20) einen ersten Endbereich (20a), einen zweiten Endbereich (20b) und ei nen parallel zur Drehachse (A) von dem ersten Endbereich (20a) zu dem zweiten Endbereich (20b) weisenden zweiten Richtungsvektor (R2) aufweist, d a d u r c h g e k e n n z e i c h n e t, dass die erste Welle (10) als Hohlwelle ausgebildet ist und die zweite Welle (20) koaxial in der ersten Welle (10) ange ordnet ist, derart, dass der erste Richtungsvektor (RI) und der zweite Richtungsvektor (R2) gleich ausgerichtet sind, und dass der erste Endbereich (10a) der ersten Wel le (10) eine erste MaßVerkörperung (11) und der erste Endbereich (20a) der zweiten Welle (20) eine zweite Maß verkörperung (21) aufweist, wobei die erste Maßverkörpe rung (11) durch einen ersten Sensor (41) und die zweite MaßVerkörperung (21) durch einen zweiten Sensor (42) ab getastet wird.
2.Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die beiden Sensoren (41, 42) stirnseitig vor den ersten End bereichen (10a, 20a) der beiden Wellen (10, 20) angeord net sind.
3.Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die beiden Sensoren (41, 42) auf einer einzigen Leiterplatte (40) angeordnet sind.
4.Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Sensoren (41, 42) als optische Abtastelemente und die MaßVerkörperungen (11, 21) als reflektive MaßVerkörperun gen (11, 21) ausgebildet sind.
5.Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die beiden MaßVerkörperungen (11, 21) umlaufend ausgebildet sind.
6.Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die erste MaßVerkörperung (11) auf einem scheibenringförmigen ersten Element (12), welches an dem ersten Endbereich (10a) der ersten Welle (10) angeordnet ist, und die zwei te MaßVerkörperung (21) auf einem scheibenringförmigen zweiten Element (22), welches an dem ersten Endbereich (20a) der zweiten Welle (20) angeordnet ist, angeordnet sind.
7.Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die beiden MaßVerkörperungen (11, 21) konzentrisch zueinander angeordnet sind.
8.Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die beiden MaßVerkörperungen (11, 21) in der gleichen Ebene angeordnet sind.
9.Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die erste Welle (10) eine Antriebswelle des Getriebes (30) und die zweite Welle (20) eine Abtriebswelle des Getrie- bes (30) ist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die erste Welle (10) mit einem Rotor (55a) eines Elektromo- tors (55) drehtest verbunden ist.
11. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das Ge triebe (30) ein Spannungswellengetriebe ist.
12. Roboter mit einer Vorrichtung (1) nach einem der vor hergehenden Ansprüche.
PCT/EP2020/083728 2019-12-13 2020-11-27 Vorrichtung zur bestimmung des drehmoments und/oder des drehwinkels zwischen einer ersten welle und einer zweiten welle WO2021115805A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/784,443 US20230003593A1 (en) 2019-12-13 2020-11-27 Device for determining the torque and/or rotational angle between a first shaft and a second shaft
BR112022011450A BR112022011450A2 (pt) 2019-12-13 2020-11-27 Dispositivo para determinar o torque e/ou o eixo de rotação entre um primeiro veio e um segundo veio
AU2020399929A AU2020399929B2 (en) 2019-12-13 2020-11-27 Device for determining the torque and/or rotational angle between a first shaft and a second shaft
CN202080086155.5A CN114787601B (zh) 2019-12-13 2020-11-27 用于确定第一轴和第二轴之间的扭矩和/或旋转角度的装置
CA3163740A CA3163740A1 (en) 2019-12-13 2020-11-27 Device for determining the torque and/or rotational angle between a first shaft and a second shaft
JP2022534409A JP2023505330A (ja) 2019-12-13 2020-11-27 第1シャフトと第2シャフトとの間のトルクおよび/または回転角を判定する装置
KR1020227021337A KR20220115964A (ko) 2019-12-13 2020-11-27 제1 회전축과 제2 회전축 사이의 회전 모멘트 및/또는 회전각을 결정하는 장치
EP20816461.6A EP4073484A1 (de) 2019-12-13 2020-11-27 Vorrichtung zur bestimmung des drehmoments und/oder des drehwinkels zwischen einer ersten welle und einer zweiten welle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019134392.5 2019-12-13
DE102019134392.5A DE102019134392B4 (de) 2019-12-13 2019-12-13 Vorrichtung zur Bestimmung des Drehmoments und/oder des Drehwinkels zwischen einer ersten Welle und einer zweiten Welle

Publications (1)

Publication Number Publication Date
WO2021115805A1 true WO2021115805A1 (de) 2021-06-17

Family

ID=73646336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/083728 WO2021115805A1 (de) 2019-12-13 2020-11-27 Vorrichtung zur bestimmung des drehmoments und/oder des drehwinkels zwischen einer ersten welle und einer zweiten welle

Country Status (11)

Country Link
US (1) US20230003593A1 (de)
EP (1) EP4073484A1 (de)
JP (1) JP2023505330A (de)
KR (1) KR20220115964A (de)
CN (1) CN114787601B (de)
AU (1) AU2020399929B2 (de)
BR (1) BR112022011450A2 (de)
CA (1) CA3163740A1 (de)
DE (1) DE102019134392B4 (de)
TW (1) TW202130981A (de)
WO (1) WO2021115805A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230182325A1 (en) * 2021-12-10 2023-06-15 Coretronic Mems Corporation Joint actuator of robot

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023095023A (ja) 2021-12-24 2023-07-06 キヤノン株式会社 ロボット、製造方法および分散型センサ
DE102022202796A1 (de) 2022-03-22 2023-09-28 Zf Friedrichshafen Ag Vorrichtung zur Überwachung der Drehzahl eines Motors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823903A1 (de) * 1998-05-28 1999-12-02 Sensor Instr Gmbh Vorrichtung zum gleichzeitigen Messen eines an einer Welle wirksamen Drehmoments sowie des Drehwinkels der Welle
US6356847B1 (en) * 1997-11-27 2002-03-12 Siegfried Gerlitzki Method and device for determining the torque exerted on a rotating body which can be rotationally driven around a rotational axis
SK1382007A3 (sk) * 2007-11-08 2009-06-05 Jozef Bajla Spôsob optického merania krútiaceho momentu alebo uhla skrútenia otáčajúcich sa hriadeľov a zariadenie na tento spôsob merania
DE102012100682A1 (de) * 2011-05-24 2012-11-29 Rolf Strothmann Drehmomentsensor
WO2013114567A1 (ja) * 2012-01-31 2013-08-08 株式会社安川電機 エンコーダ、エンコーダ製造方法、駆動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513692C1 (de) * 1995-04-11 1996-07-18 Stegmann Max Antriebstech Drehwinkelmeßsystem
DE19958504A1 (de) * 1999-12-04 2001-06-07 Bosch Gmbh Robert Sensoranordnung zur Erfassung eines Drehwinkels und/oder eines Drehmoments
EP2386844B1 (de) * 2010-05-12 2014-01-08 Electragil GmbH Drehmomentsensor
DE102010037226B4 (de) * 2010-08-30 2015-08-13 Ovalo Gmbh Steuerungs- und Sensormodul für einen Aktuator
CN103586638B (zh) * 2013-11-12 2016-07-27 安徽华星消防设备(集团)有限公司 一种利用加工多边形的加工装置进行加工的方法
DE102016100236A1 (de) * 2016-01-08 2017-07-13 Valeo Schalter Und Sensoren Gmbh Drehmomentsensorvorrichtung für ein Kraftfahrzeug, elektrisches Lenksystem sowie Kraftfahrzeug
DE102016004810B3 (de) * 2016-04-20 2017-06-14 Sami Haddadin Antriebsvorrichtung für einen Manipulator
CN108291850B (zh) * 2016-07-20 2020-06-16 三角力量管理株式会社 扭矩传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356847B1 (en) * 1997-11-27 2002-03-12 Siegfried Gerlitzki Method and device for determining the torque exerted on a rotating body which can be rotationally driven around a rotational axis
DE19823903A1 (de) * 1998-05-28 1999-12-02 Sensor Instr Gmbh Vorrichtung zum gleichzeitigen Messen eines an einer Welle wirksamen Drehmoments sowie des Drehwinkels der Welle
SK1382007A3 (sk) * 2007-11-08 2009-06-05 Jozef Bajla Spôsob optického merania krútiaceho momentu alebo uhla skrútenia otáčajúcich sa hriadeľov a zariadenie na tento spôsob merania
DE102012100682A1 (de) * 2011-05-24 2012-11-29 Rolf Strothmann Drehmomentsensor
WO2013114567A1 (ja) * 2012-01-31 2013-08-08 株式会社安川電機 エンコーダ、エンコーダ製造方法、駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230182325A1 (en) * 2021-12-10 2023-06-15 Coretronic Mems Corporation Joint actuator of robot

Also Published As

Publication number Publication date
CN114787601B (zh) 2024-05-28
KR20220115964A (ko) 2022-08-19
CN114787601A (zh) 2022-07-22
DE102019134392B4 (de) 2023-06-15
EP4073484A1 (de) 2022-10-19
JP2023505330A (ja) 2023-02-08
AU2020399929A1 (en) 2022-06-23
DE102019134392A1 (de) 2021-06-17
BR112022011450A2 (pt) 2022-08-30
CA3163740A1 (en) 2021-06-17
US20230003593A1 (en) 2023-01-05
AU2020399929B2 (en) 2024-03-07
TW202130981A (zh) 2021-08-16

Similar Documents

Publication Publication Date Title
WO2021115805A1 (de) Vorrichtung zur bestimmung des drehmoments und/oder des drehwinkels zwischen einer ersten welle und einer zweiten welle
DE3211748C2 (de)
EP1376086B1 (de) Drehmomentsensor
DE102006057539B4 (de) Verfahren zum Anbringen eines Detektormechanismus einer Planetengetriebevorrichtung, Planetengetriebevorrichtung und Drehaktuator
DE4337867A1 (de) Differential-Linearaktuator
DE4430503C1 (de) Drehmomentsensor mit Dehnmeßstreifenanordnung
WO2019179802A1 (de) Drehgelenkanordnung
DE3737007A1 (de) Verfahren und einrichtung zur drehmomentmessung
DE102007058657A1 (de) Vorrichtung zur Messung eines Torsionsmoments und Anordnung, aus einer sich drehenden Welle und einer Vorrichtung zur Messung eines Torsionsmoments
EP3820649B1 (de) Drehmomentschrauberanordnung und verfahren zum betrieb einer solchen drehmomentschrauberanordnung
DE102013001829A1 (de) Drehwinkel- und Torsionswinkelsensor
EP1312534B1 (de) Vorrichtung zur Bestimmung des Lenkwinkels eines Lenkrades
DE3726148C2 (de)
DE4004589A1 (de) Messvorrichtung an wellen zur bestimmung des drehmoments und/oder des drehwinkels
DE102012018952A1 (de) Elektromechanische Lenkung mit koaxialem Elektromotor
DE19823903A1 (de) Vorrichtung zum gleichzeitigen Messen eines an einer Welle wirksamen Drehmoments sowie des Drehwinkels der Welle
EP2295960B1 (de) Abtastvorrichtung zum Abtasten eines Körpers, insbesondere eines Bolzens
WO2014067518A1 (de) Schalteinrichtung für eine kettenschaltung eines fahrrades
EP2894448B1 (de) Vorrichtung zur Erfassung des Zustands eines Maschinenelements
EP3611088B1 (de) Tretlager und fahrrad mit einem solchen tretlager
DE10003738A1 (de) Drehmoment-Erfassungseinrichtung an einer sich drehenden oder ruhenden Vorrichtung, insbesondere an der Welle einer Fahrzeuglenkung
DE19961886B4 (de) Lenkeinrichtung
DE10154737C1 (de) Vorrichtung zum Messen von Drehmomenten und der Drehrichtung in einer Antriebsanordnung
DE19947370C2 (de) Wegsensor
DE10008539C2 (de) Messvorrichtung zur berührungslosen Erfassung eines Drehwinkels oder eines Drehmoments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20816461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163740

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022534409

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022011450

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227021337

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020399929

Country of ref document: AU

Date of ref document: 20201127

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020816461

Country of ref document: EP

Effective date: 20220713

ENP Entry into the national phase

Ref document number: 112022011450

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220610