WO2021115110A1 - 一种发动机控制方法、系统及车辆 - Google Patents

一种发动机控制方法、系统及车辆 Download PDF

Info

Publication number
WO2021115110A1
WO2021115110A1 PCT/CN2020/130890 CN2020130890W WO2021115110A1 WO 2021115110 A1 WO2021115110 A1 WO 2021115110A1 CN 2020130890 W CN2020130890 W CN 2020130890W WO 2021115110 A1 WO2021115110 A1 WO 2021115110A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
change rate
current
engine
opening degree
Prior art date
Application number
PCT/CN2020/130890
Other languages
English (en)
French (fr)
Inventor
李云飞
陈其林
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to US17/765,412 priority Critical patent/US20220355784A1/en
Priority to EP20899859.1A priority patent/EP4032765A4/en
Publication of WO2021115110A1 publication Critical patent/WO2021115110A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/085Power
    • B60W2510/086Power change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power

Definitions

  • the present disclosure relates to the field of automobile technology, and in particular to an engine control method, system and vehicle.
  • the vehicle is driven by an engine and/or a driving motor.
  • the drive motor can meet the drive requirements alone, and the whole vehicle will work in series operation mode or pure electric operation mode; while when the power demand is relatively large, the engine and the drive motor are required to operate in parallel Drive the vehicle together.
  • the existing technology mainly controls the engine start in the following two ways: 1. Monitoring the difference between the pure electric drive capacity of the drive motor and the power demand, when the difference indicates that the power demand is gradually approaching the pure electric drive capacity, Start the engine; 2. Monitor the pedal opening value, and start the engine when the pedal opening value is greater than the calibration value.
  • the present disclosure aims to provide an engine control method, system, and vehicle to solve the problem of poor engine power response of existing hybrid vehicles.
  • the vehicle is preset with an opening degree change rate condition
  • the determining the driving intention according to the current opening degree value and the current opening degree change rate includes:
  • the opening degree change rate of the accelerator pedal is less than a second preset change rate
  • the opening degree change rate condition is controlled to be in an off state; wherein, the first preset change rate is greater than the second preset change rate ;
  • the driving intention is a non-emergency driving intention.
  • the vehicle further includes a motor connected to the battery and the engine, and the vehicle is based on the driving intention, the current maximum discharge power, and the current maximum external characteristic power of the entire vehicle. Value, control the start and stop of the engine, including:
  • the engine is controlled to start, and the engine is controlled to drive the vehicle.
  • the vehicle further includes a motor electrically connected to the battery, and the vehicle is based on the driving intention, the current maximum discharge power, and the current maximum external characteristic power value of the entire vehicle , Controlling the start and stop of the engine, also includes:
  • the engine is controlled not to start, and the battery is controlled according to the vehicle
  • the required power supplies power to the motor.
  • the engine control method if it is determined that the driving intention is an emergency driving intention, and the current maximum discharge power is less than the current maximum external characteristic power value of the entire vehicle, the engine is controlled to start and control After the engine drives the vehicle, it further includes:
  • the engine When the output power of the engine is greater than the required power of the electric motor, the engine is controlled to supply power to the electric motor according to the required power of the electric motor, and the engine is controlled to charge the battery.
  • the required power of the engine when the output power of the engine is greater than the required power of the motor, the required power of the engine is controlled to drive the vehicle, and the engine is controlled to charge the battery After that, it also includes:
  • the engine is controlled to enter a stop state.
  • the determining the current maximum discharge power value of the battery and the current maximum external characteristic power value of the vehicle includes:
  • the current state of charge value of the battery is obtained, and the current state of charge value is determined according to a first corresponding relationship between a preset state of charge value and a maximum discharge power value.
  • the current maximum discharge power value corresponding to the state value it further includes:
  • the engine is controlled to start, and the engine is controlled to charge the battery.
  • Another object of the present disclosure is to provide an engine control system applied to a vehicle.
  • the vehicle includes a battery and an engine, wherein the system includes:
  • the first acquisition module is configured to acquire the current maximum discharge power value of the battery and the current maximum external characteristic power value of the vehicle;
  • the second acquisition module is used to acquire the current opening value and the current opening change rate of the accelerator pedal of the vehicle;
  • a determining module configured to determine a driving intention according to the current opening degree value and the current opening degree change rate
  • the control module is used to control the start and stop of the engine according to the driving intention, the current maximum discharge power, and the current maximum external characteristic power value of the entire vehicle.
  • the vehicle is preset with an opening degree change rate condition
  • the determining module includes:
  • a first control unit configured to control the opening degree change rate condition to be in an active state when the current opening degree change rate is greater than a first preset change rate
  • the second control unit is used to control the opening degree change rate condition to be in the off state when the opening degree change rate of the accelerator pedal is less than a second preset change rate; wherein, the first preset change rate is greater than the second preset change rate.
  • the second preset rate of change is used to control the opening degree change rate condition to be in the off state when the opening degree change rate of the accelerator pedal is less than a second preset change rate; wherein, the first preset change rate is greater than the second preset change rate.
  • the second preset rate of change is used to control the opening degree change rate condition to be in the off state when the opening degree change rate of the accelerator pedal is less than a second preset change rate;
  • the third control unit is configured to control the opening when the current opening degree change rate is less than or equal to a first preset change rate, and the accelerator pedal opening degree change rate is greater than or equal to a second preset change rate.
  • the condition of degree change rate maintains the current state
  • a first determining unit configured to determine that the driving intention is an emergency driving intention if the current opening degree value is greater than or equal to a preset opening degree value and the opening degree change rate condition is in the activated state;
  • the first determining unit is configured to determine that the driving intention is a non-emergency driving intention if the current opening degree value is less than the preset opening degree value, and/or the opening degree change rate condition is in the off state .
  • the vehicle further includes a motor connected to the battery;
  • the control module includes:
  • the fourth control unit is configured to, if it is determined that the driving intention is an emergency driving intention, and the current maximum discharge power is less than the current maximum external characteristic power value of the entire vehicle, control the engine to start, and control the engine to drive the engine ⁇ Vehicles.
  • control module further includes:
  • the fifth control unit is used to determine that the driving intention is a non-emergency driving intention, and/or the current maximum discharge power is greater than or equal to the current maximum external characteristic power value of the entire vehicle, then the engine is controlled not to start, and all The battery supplies power to the motor according to the required power of the vehicle.
  • control module further includes:
  • the sixth control unit is configured to control the engine to drive the vehicle according to the required power when the output power of the engine is greater than the required power of the motor, and control the engine to charge the battery.
  • control module further includes:
  • the seventh control unit is configured to control the engine to enter a stop state if the current state of charge value of the battery is greater than or equal to the first preset charge threshold value.
  • the first acquisition module includes:
  • the first acquiring unit is configured to acquire the current state of charge value of the battery, and determine the current state of charge value corresponding to the current state of charge value according to the first corresponding relationship between the preset state of charge value and the maximum discharge power value Maximum discharge power value;
  • the second acquisition unit is configured to acquire the current driving mode of the vehicle, and determine the current maximum vehicle driving mode corresponding to the current driving mode according to the second corresponding relationship between the preset driving mode and the maximum external characteristic power value of the vehicle. External characteristic power value.
  • control module further includes:
  • the eighth control unit is configured to control the engine to start and control the engine to charge the battery if the current state of charge value is less than the second preset charge threshold value.
  • the dynamic response is carried out in advance , To ensure that a greater power request can be met at the next moment, to avoid unnecessary or untimely starting of the engine, thereby solving the problem of poor power response of the existing hybrid vehicle engine.
  • Another object of the present disclosure is to provide a vehicle, wherein the vehicle includes the engine control system.
  • the vehicle has the same advantages as the foregoing engine control method and system over the prior art, and will not be repeated here.
  • FIG. 1 is a schematic flowchart of an engine control method proposed by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of the acquisition process of the opening degree change rate of the accelerator pedal according to the embodiment of the present disclosure
  • Fig. 3 is a schematic flowchart of an engine control method proposed in another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of the engine control system proposed by the embodiment of the disclosure.
  • Fig. 5 schematically shows a block diagram of a computing processing device for executing the method according to the present disclosure.
  • Fig. 6 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present disclosure.
  • FIG. 1 shows an engine control method provided by an embodiment of the present disclosure, which is applied to a vehicle, the vehicle includes a battery and an engine, and the method includes steps S100 to S400:
  • Step S100 Obtain the current maximum discharge power value of the battery and the current maximum external characteristic power value of the vehicle;
  • the current maximum discharge power value refers to the maximum output power value that the battery can currently provide. Because it is precisely when the battery cannot provide enough electric power for the vehicle, it is necessary to start the engine to supply energy for the vehicle, and thus the current maximum discharge power value of the battery needs to be obtained.
  • the maximum external characteristic power value of the vehicle refers to the maximum operating power value that the vehicle can reach
  • the current maximum external characteristic power value of the vehicle refers to the maximum operating power value of the vehicle in the current driving mode .
  • step S100 because it is impossible to predict whether the vehicle needs to work at the maximum operating power value, it can be determined that if the current maximum discharge power value of the battery is greater than the current maximum external characteristic power value of the entire vehicle, the vehicle can pass the above battery alone Providing electric energy to work with maximum power, that is, all driving intentions within the allowable range of the vehicle can be satisfied by the above-mentioned battery alone, that is, when there is an emergency driving intention, there is no need to start the engine to supply power to the motor. Therefore, the embodiment of the present disclosure obtains the current maximum discharge power of the battery and the current maximum external characteristic power value of the vehicle in advance, thereby avoiding that when the driver has a fast power request, the battery alone can satisfy the maximum work of the vehicle in the current state. The problem of starting the engine under power conditions.
  • step S100 includes steps S1001 to S1002:
  • Step S1001 Obtain the current state of charge value of the battery, and determine the current maximum discharge power value corresponding to the current state of charge value according to the first corresponding relationship between the preset state of charge value and the maximum discharge power value .
  • the maximum discharge power of the battery corresponds to the state of charge value of the battery one-to-one, and the maximum discharge power of different batteries has a different correspondence with the state of charge value, it is necessary to establish the maximum discharge power and charge of the battery in advance.
  • Step S1002 Acquire the current driving mode of the vehicle, and determine the current maximum external characteristic power value of the entire vehicle corresponding to the current driving mode according to the second correspondence between the preset driving mode and the maximum external characteristic power value of the entire vehicle .
  • the maximum required power values of the vehicles in different driving modes are different, so it is necessary to establish in advance the second correspondence between the maximum external characteristic power value of the whole vehicle and the driving mode, and then In the step, the current driving mode of the vehicle flow is obtained, and the current maximum external characteristic power value of the whole vehicle is determined according to the corresponding relationship between the maximum external characteristic power value of the whole vehicle and the driving mode.
  • Step S200 Acquire the current opening value and the current opening change rate of the accelerator pedal of the vehicle.
  • the current opening value of the accelerator pedal refers to the ratio between the current stepping angle of the accelerator pedal and the upper limit value of the accelerator pedal stepping angle range, where the current stepping angle refers to the current position of the accelerator pedal and The angle value of the included angle between the initial positions of the accelerator pedal.
  • the current opening value directly corresponds to the target power value of the vehicle, that is, corresponds to the target torque of the vehicle.
  • the current opening change rate refers to the current accelerator pedal opening change value per unit time, which reflects the speed of the current accelerator opening change.
  • the current opening change rate can be determined by the accelerator pedal opening and time.
  • the relation function is obtained by differential calculation of time.
  • the current opening value of the accelerator pedal can be directly obtained by detecting the angle value between the current position of the accelerator pedal and the position when the accelerator pedal is not stepped on.
  • FIG. 2 shows a schematic diagram of the process of obtaining the rate of change of the accelerator pedal opening in an embodiment of the present disclosure in actual application.
  • the opening degree change rate corresponding to ⁇ is ⁇ y1/ ⁇ t1, where ⁇ y1 is the opening degree change in the ⁇ t1 time period; and the opening degree change rate corresponding to ⁇ is ⁇ y2/ ⁇ t2, where, ⁇ y2 is the amount of opening change in the ⁇ t2 time period.
  • Step S300 Determine a driving intention according to the current opening degree value and the current opening degree change rate.
  • the current driving intention of the driver is determined by combining the current opening value of the accelerator pedal and the current opening change rate.
  • the driving intention may include an emergency driving intention, a non-emergency driving intention, and the like.
  • the consideration of the rate of change of accelerator pedal opening is mainly to monitor the driver’s driving intention, because the rate of change of accelerator pedal’s opening can clearly reflect the driver’s demand for the power of the vehicle, when the opening rate of change is small , which means that the driver does not need the vehicle to respond quickly with large torque, and when the rate of change is large, it indicates that the driver has a more urgent need for the power of the vehicle, although the current available torque of the vehicle can still meet the current demand.
  • the entire vehicle must be prepared in advance to output the maximum power to ensure that it can meet the greater torque request at the next moment.
  • step S300 because the accelerator pedal has a large opening change rate in a short time from the undepressed state to the depressed state, but the corresponding target torque demand is not large, it is very likely that the vehicle will be powered by the battery here.
  • the power supply of the electric motor can meet the driving demand, and there is no need to start the engine to drive the vehicle. It can be seen that if the driver's driving intention is judged by the rate of change of accelerator pedal opening alone, it is easy to misjudge a non-urgent power request as an urgent power request.
  • Step S400 Control the start and stop of the engine according to the driving intention, the current maximum discharge power, and the current maximum external characteristic power value of the entire vehicle.
  • the vehicle can provide electric energy through the above-mentioned battery alone.
  • Work at the maximum working power that is, the above battery alone can satisfy all driving intentions within the allowable range of the vehicle, without starting the engine to supply power to the motor, and even without starting the engine and using the engine to directly drive the vehicle.
  • step S400 after the driver's driving intention is determined through step S300, the current maximum discharge power of the battery and the current maximum external characteristic power value of the vehicle need to be combined to determine whether the engine needs to be started and control
  • the engine executes the corresponding start and stop actions, which can not only control the engine start when the driving intention needs to start the engine, but also avoid starting the engine when the battery is sufficient and the battery alone can meet the maximum working power of the vehicle in the current state.
  • the dynamic response is carried out in advance , To ensure that a greater power request can be met at the next moment, to avoid unnecessary or untimely starting of the engine, thereby solving the problem of poor power response of the existing hybrid vehicle engine.
  • step S300 may include steps S3001 to S3005:
  • Step S3001 when the current opening degree change rate is greater than a first preset change rate, control the opening degree change rate condition to be in an active state.
  • the first preset change rate is used to determine whether the driver has an emergency acceleration intention to open the change rate limit value.
  • the current opening degree change rate of the accelerator pedal is greater than the first preset change rate, it indicates that the driver is likely to have an urgent driving intention, and thus the opening degree change rate condition is activated, so that the opening degree change rate condition is in an active state.
  • Step S3002 when the opening degree change rate of the accelerator pedal is less than a second preset change rate, control the opening degree change rate condition to be in the off state; wherein, the first preset change rate is greater than the second preset change rate. Let the rate of change.
  • the second preset change rate is used to determine whether the driver has an emergency acceleration intention to open the change rate limit value.
  • the current opening degree change rate of the accelerator pedal is less than the second preset change rate, it indicates that the driver has no emergency driving intention, and therefore the opening degree change rate condition is closed, so that the opening degree change rate condition is in the off state.
  • Step S3003 When the current opening degree change rate is less than or equal to a first preset change rate, and the accelerator pedal opening degree change rate is greater than or equal to a second preset change rate, control the opening degree change rate condition Maintain the current state.
  • step S3003 when the rate of change of the opening degree of the accelerator pedal is between the first preset rate of change and the second preset rate of change, it indicates that the opening degree for activating the off-state opening degree change rate condition is not reached.
  • the state of change rate does not reach the state of opening change rate that turns off the activated opening change rate condition, so the original state of the opening change condition is not changed, that is, the control degree change rate condition maintains its current state status.
  • the embodiment of the present disclosure reserves a certain amount of receipt for the activation of the opening change rate condition, and the receipt amount is the difference between the first preset change rate and the second preset change rate . If the current opening change rate of the accelerator pedal meets the higher entry condition that is greater than the first preset change rate, the opening change rate condition is activated at this time, and in the active state, the current opening change rate is allowed to be low For the entry condition of the first preset rate of change, as long as the exit condition of the second preset rate of change is not lower than the exit condition of the second preset rate of change, the opening degree change rate condition remains active.
  • the opening change rate condition is in the off state at this time, and in the off state, the current opening is allowed
  • the rate of change is higher than the exit condition of the second preset rate of change. As long as the exit condition of the rate of change is higher than the exit condition of the first preset rate of change, the opening degree change rate condition remains closed.
  • Step S3004 If the current opening degree value is greater than or equal to the preset opening degree value, and the opening degree change rate condition is in the activated state, it is determined that the driving intention is an emergency driving intention.
  • a preset opening value is set in advance, and only when the current accelerator pedal opening value is greater than or equal to the preset opening value and the opening change rate condition is active, it is determined that the driver currently has Emergency driving intention.
  • a preset opening value it is possible to prevent a large opening change rate caused by accidentally depressing the accelerator pedal and activate the opening change condition, but there is no large pedal opening, but it is misjudged as the driver When there is an urgent power request, that is, it is misjudged as an emergency driving intention.
  • steps 3001 to S3004 it can be seen that a certain amount of receipt is reserved for the activation of the opening change rate condition, which can prevent the driver from having an emergency driving intention, but the current opening change rate when the accelerator pedal is initially depressed It is greater than the first preset rate of change, but the current opening of the accelerator pedal has not reached the preset opening value and is misjudged as a non-emergency driving intention; and to prevent the driver from actually having an emergency driving intention and depressing the accelerator pedal When the current opening degree reaches the preset opening degree value, it is misjudged as a non-emergency driving intention because the opening degree change rate drops to less than or equal to the first preset change rate.
  • Step S3005 If the current opening degree value is less than the preset opening degree value, and/or the opening degree change rate condition is in the off state, it is determined that the driving intention is a non-emergency driving intention.
  • step S3005 when it is satisfied that the current opening value of the accelerator pedal is less than the preset opening value and any one or more of the conditions of the opening change rate is in the off state, it can be determined that the current driving intention of the driver is Non-emergency driving intention.
  • FIG. 3 shows a flowchart of a preferred embodiment of the present disclosure.
  • the above engine control method is applied to a vehicle, the vehicle includes a battery and an engine, and the vehicle further includes A motor electrically connected to the battery, the vehicle is preset with an opening degree change rate condition, and the above engine control method includes steps S201 to S210.
  • the vehicle in the embodiment of the present disclosure also includes a generator matched with the engine, the generator is driven by the engine to generate electricity, and the generator is electrically connected to the above-mentioned battery and motor, so that the engine can drive the generator to generate electricity. , Which in turn enables the engine to supply power to the battery and/or the motor through the generator.
  • Step S201 Obtain the current state of charge value of the battery, and determine the current maximum discharge power value corresponding to the current state of charge value according to the first corresponding relationship between the preset state of charge value and the maximum discharge power value .
  • step S201 reference may be made to the detailed description of step S1001, which will not be repeated here.
  • Step S202 Acquire the current driving mode of the vehicle, and determine the current maximum external characteristic power value of the entire vehicle corresponding to the current driving mode according to the second correspondence between the preset driving mode and the maximum external characteristic power value of the entire vehicle .
  • step S202 refers to the detailed description of step S1002, which will not be repeated here.
  • Step S203 Acquire the current opening value and the current opening change rate of the accelerator pedal of the vehicle.
  • step S203 reference may be made to the detailed description of step S200, which will not be repeated here.
  • Step S204 When the current opening degree change rate is greater than a first preset change rate, control the opening degree change rate condition to be in an active state.
  • step S204 refer to the detailed description of step S3001, which will not be repeated here.
  • Step S205 When the opening degree change rate of the accelerator pedal is less than a second preset change rate, control the opening degree change rate condition to be in an off state; wherein, the first preset change rate is greater than the second preset change rate. Let the rate of change.
  • step S205 reference may be made to the detailed description of step S3002, which will not be repeated here.
  • Step S206 When the current opening degree change rate is less than or equal to a first preset change rate, and the accelerator pedal opening degree change rate is greater than or equal to a second preset change rate, control the opening degree change rate condition Maintain the current state.
  • step S206 reference may be made to the detailed description of step S3003, which will not be repeated here.
  • Step S207 If the current opening degree value is greater than or equal to the preset opening degree value, and the opening degree change rate condition is in the activated state, it is determined that the driving intention is an emergency driving intention.
  • step S207 reference may be made to the detailed description of step S3004, which will not be repeated here.
  • Step S208 If the current opening degree value is less than the preset opening degree value, and/or the opening degree change rate condition is in the off state, it is determined that the driving intention is a non-emergency driving intention.
  • step S208 reference may be made to the detailed description of step S3005, which will not be repeated here.
  • Step S209 If it is determined that the driving intention is an emergency driving intention, and the current maximum discharge power is less than the current maximum external characteristic power value of the entire vehicle, control the engine to start, and control the engine to drive the vehicle.
  • step S209 if it is determined that the driver’s driving intention is an emergency driving intention, and the current maximum discharge power of the battery is less than the current maximum external characteristic power value of the entire vehicle, it indicates that the battery will soon be unable to meet the power demand of the vehicle, so the engine needs to be controlled to start , In order to provide driving force to the vehicle.
  • step S209 For different vehicle model architectures, the specific steps of step S209 are different.
  • step S209 when the vehicle is a parallel architecture model, the step S209 includes step S901:
  • Step S901 If it is determined that the driving intention is an emergency driving intention, and the current maximum discharge power is less than the current maximum external characteristic power value of the entire vehicle, control the engine to start, and control the engine to drive the wheels through a transmission mechanism, And drive the vehicle to run according to the required power of the vehicle.
  • the engine is controlled to drive the wheels according to the required power of the vehicle, so as to achieve the purpose of driving the vehicle to run.
  • the battery supplies power to the motor, and the engine and Together, the motors provide driving force for the vehicle.
  • step S209 includes step S902:
  • Step S902 If it is determined that the driving intention is an emergency driving intention, and the current maximum discharge power is less than the current maximum external characteristic power value of the entire vehicle, control the engine to start, and control the engine to supply power to the motor, And the motor is used to drive the vehicle to run according to the required power of the vehicle.
  • the engine is controlled to supply power to the motor according to the required power of the vehicle, and then the motor drives the vehicle according to the required power of the vehicle.
  • the output power of the engine does not reach the required power of the vehicle, control the engine and the battery to meet the needs of the vehicle.
  • the power supplies power to the motor, and the motor drives the vehicle according to the power required by the vehicle.
  • step S209 when the vehicle is a hybrid vehicle type, the step S209 includes steps S903 to S905:
  • Step S903 If it is determined that the driving intention is an emergency driving intention, and the current maximum discharge power is less than the current maximum external characteristic power value of the entire vehicle, control the engine to start; if the required power of the vehicle is less than or equal to the motor The upper limit of the output power, the engine is controlled to supply power to the motor, and the motor is used to drive the vehicle to run according to the required power of the vehicle; if the required power of the vehicle is greater than the upper limit of the output power of the motor Value, the engine is controlled to drive the wheels through the transmission mechanism to drive the vehicle to run according to the required power of the vehicle.
  • the vehicle when the vehicle is a hybrid architecture model, after starting the engine, it is necessary to further determine how the engine will drive the vehicle to run at its required power according to the upper limit of the output power of the motor and the required power of the vehicle.
  • the motor when the required power of the vehicle is less than or equal to the upper limit of the output power of the motor, it is stated that as long as the motor is provided with sufficient electric energy, the motor alone can provide sufficient driving force for the vehicle, thus controlling the engine to supply power to the motor , And drive the vehicle to run according to the required power of the vehicle through the motor;
  • the required power of the vehicle is greater than the upper limit of the output power of the motor, it means that the motor alone cannot provide sufficient driving force for the vehicle. Therefore, it is necessary to control the engine to drive the wheels directly through the transmission mechanism to drive the vehicle according to the required power of the vehicle. the goal of. Obviously, in the process of starting the engine, its output power changes from small to large, and its output power cannot meet the needs of the vehicle instantaneously. Therefore, when the output power of the engine does not reach the required power of the vehicle, the battery supplies power to the motor, and the engine and Together, the motors provide driving force for the vehicle.
  • Step S210 If it is determined that the driving intention is a non-emergency driving intention, and/or the current maximum discharge power is greater than or equal to the current maximum external characteristic power value of the entire vehicle, control the engine not to start, and control the battery to press The required power of the vehicle supplies power to the motor.
  • step S210 that is, when any one or more conditions of the driving intention being a non-emergency driving intention and the current maximum discharge power greater than or equal to the current maximum external characteristic power value of the entire vehicle are met, the engine is not controlled to start.
  • the driving intention is non-emergency driving intention, it also indicates that the driver has no high torque demand or sudden acceleration demand temporarily, so there is no need to start the engine in advance; and when the current maximum discharge power is greater than or equal to the current maximum external characteristic power value of the vehicle , Only the battery can make the motor can provide enough driving force for the vehicle, so there is no need to start the engine in advance.
  • the engine control method provided by the embodiment of the present disclosure further includes step S211 after step S209:
  • Step S211 When the output power of the engine is greater than the required power of the vehicle, control the engine to drive the vehicle according to the required power, and control the engine to charge the battery.
  • step S211 that is, when the output power of the engine is greater than the required power of the vehicle, such as vehicle braking or braking, the engine is controlled to drive the vehicle according to the actual required power of the vehicle, and the excess part of the engine output power is used To charge the battery, so as to achieve the effect of energy recovery.
  • step S211 further includes step S212:
  • Step S212 If the current state of charge value of the battery is greater than or equal to the first preset charge threshold, control the engine to enter a stop state.
  • the first preset charge threshold value is the upper limit value of the state of charge value of the battery, which corresponds to the maximum battery capacity of the battery.
  • step S201 further includes step S213:
  • Step S213 If the current state of charge value is less than a second preset charge threshold, control the engine to start, and control the engine to charge the battery.
  • the second preset charge threshold value is the lower limit of the state of charge value of the battery, which corresponds to the minimum power of the battery.
  • the current state of charge value of the battery is less than the second preset charge threshold, it indicates that the battery is insufficiently charged. Therefore, it is necessary to start the engine to charge the battery so that the battery has enough power to meet the usage requirements of the vehicle.
  • the opening change condition is activated when the current opening change rate is greater than the first preset change rate, closed when the current opening change rate is less than the second preset change rate, and when the current opening change rate is less than or equal to the first preset Change rate and the current opening change rate is greater than or equal to the second preset rate of change, the original state remains unchanged; then when the current opening value is greater than or equal to the preset opening value, and the opening change module is activated Under the condition that the current maximum discharge power is less than the current maximum external characteristic power value of the entire vehicle, the engine is controlled to start, and the vehicle is driven by the engine.
  • the opening change condition is active and the current opening value reaches the preset opening value, it indicates that the driver currently has an emergency power demand, and if the current maximum discharge power is less than the current vehicle maximum external characteristic power value, it indicates The current battery power is not enough to achieve the maximum external characteristic power state of the vehicle, so it is necessary to control the engine to start and drive the vehicle through the engine.
  • the accelerator pedal opening value and the opening degree change rate are integrated to accurately predict the driver’s emergency power demand driving intention, and then control the engine in advance
  • the start-up enables the power output of the motor to match the driving demand of the driver in time, thereby solving the problem of poor power response of the existing hybrid vehicle engine.
  • Another object of the present disclosure is to provide an engine control system applied to a vehicle, the vehicle includes a battery and an engine, of which, please refer to FIG. 4, which shows an engine control system proposed by an embodiment of the present disclosure Schematic diagram of the structure, the system includes:
  • the first obtaining module 10 is configured to obtain the current maximum discharge power value of the battery and the current maximum external characteristic power value of the vehicle;
  • the second acquisition module 20 is configured to acquire the current opening value and the current opening change rate of the accelerator pedal of the vehicle;
  • the determining module 30 is configured to determine the driving intention according to the current opening degree value and the current opening degree change rate;
  • the control module 40 is configured to control the start and stop of the engine according to the driving intention, the current maximum discharge power, and the current maximum external characteristic power value of the entire vehicle.
  • the current opening value and the current opening change rate of the accelerator pedal of the vehicle are first acquired through the second acquisition module 20, and the determination module 30 determines the current opening value and the current opening change rate according to the current opening value and the current opening change rate.
  • the driving intention is determined, and the current maximum discharge power value of the battery and the current maximum external characteristic power value of the vehicle are acquired through the first acquisition module 10, and then the control module 40 according to the driving intention, the current maximum discharge power and the current maximum discharge power
  • the current maximum external characteristic power value of the entire vehicle is used to control the start and stop of the engine.
  • the dynamic response is carried out in advance , To ensure that a greater power request can be met at the next moment, to avoid unnecessary or untimely starting of the engine, thereby solving the problem of poor power response of the existing hybrid vehicle engine.
  • the vehicle is preset with an opening degree change rate condition
  • the determining module 30 includes:
  • a first control unit configured to control the opening degree change rate condition to be in an active state when the current opening degree change rate is greater than a first preset change rate
  • the second control unit is used to control the opening degree change rate condition to be in the off state when the opening degree change rate of the accelerator pedal is less than a second preset change rate; wherein, the first preset change rate is greater than the second preset change rate.
  • the second preset rate of change is used to control the opening degree change rate condition to be in the off state when the opening degree change rate of the accelerator pedal is less than a second preset change rate; wherein, the first preset change rate is greater than the second preset change rate.
  • the second preset rate of change is used to control the opening degree change rate condition to be in the off state when the opening degree change rate of the accelerator pedal is less than a second preset change rate;
  • the third control unit is configured to control the opening when the current opening degree change rate is less than or equal to a first preset change rate, and the accelerator pedal opening degree change rate is greater than or equal to a second preset change rate.
  • the condition of degree change rate maintains the current state
  • a first determining unit configured to determine that the driving intention is an emergency driving intention if the current opening degree value is greater than or equal to a preset opening degree value and the opening degree change rate condition is in the activated state;
  • the first determining unit is configured to determine that the driving intention is a non-emergency driving intention if the current opening degree value is less than the preset opening degree value, and/or the opening degree change rate condition is in the off state .
  • the vehicle further includes a motor connected to the battery;
  • the control module 40 includes:
  • the fourth control unit is configured to, if it is determined that the driving intention is an emergency driving intention, and the current maximum discharge power is less than the current maximum external characteristic power value of the entire vehicle, control the engine to start, and control the engine to drive the engine ⁇ Vehicles.
  • control module 40 further includes:
  • the fifth control unit is used to determine that the driving intention is a non-emergency driving intention, and/or the current maximum discharge power is greater than or equal to the current maximum external characteristic power value of the entire vehicle, then the engine is controlled not to start, and all The battery supplies power to the motor according to the required power of the vehicle.
  • control module 40 further includes:
  • the sixth control unit is configured to control the engine to drive the vehicle according to the required power when the output power of the engine is greater than the required power of the motor, and control the engine to charge the battery.
  • control module 40 further includes:
  • the seventh control unit is configured to control the engine to enter a stop state if the current state of charge value of the battery is greater than or equal to the first preset charge threshold value.
  • the first acquisition module 10 includes:
  • the first acquiring unit is configured to acquire the current state of charge value of the battery, and determine the current state of charge value corresponding to the current state of charge value according to the first corresponding relationship between the preset state of charge value and the maximum discharge power value Maximum discharge power value;
  • the second acquisition unit is configured to acquire the current driving mode of the vehicle, and determine the current maximum vehicle driving mode corresponding to the current driving mode according to the second corresponding relationship between the preset driving mode and the maximum external characteristic power value of the vehicle. External characteristic power value.
  • control module 40 further includes:
  • the eighth control unit is configured to control the engine to start and control the engine to charge the battery if the current state of charge value is less than the second preset charge threshold value.
  • Another object of the present disclosure is to provide a vehicle, wherein the vehicle includes the engine control system.
  • the vehicle has the same advantages as the above-mentioned engine control method and system over the prior art, and will not be repeated here.
  • the engine control method, system, and vehicle provided in this application first obtain the current opening value and current opening change rate of the accelerator pedal of the vehicle, and determine the driving intention according to the current opening value and current opening change rate At the same time, the current maximum discharge power value of the battery and the current vehicle maximum external characteristic power value of the vehicle are obtained, and then the current maximum discharge power value and the current maximum external characteristic power value of the vehicle are controlled according to the driving intention, the current maximum discharge power and the current maximum external characteristic power value of the vehicle. Start and stop of the engine.
  • the dynamic response is carried out in advance , To ensure that a greater power request can be met at the next moment, to avoid unnecessary or untimely starting of the engine, thereby solving the problem of poor power response of the existing hybrid vehicle engine.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the various component embodiments of the present disclosure may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 5 shows a computing processing device that can implement the method according to the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • Such computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 6.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 5.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable code 1031', that is, code that can be read by a processor such as 1010, which, when run by a computing processing device, causes the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the present disclosure can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims that list several devices, several of these devices can be embodied by the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Abstract

一种发动机控制方法、系统及车辆,所述车辆包括电池与发动机,其中,所述方法包括:获取所述电池的当前最大放电功率值,以及所述车辆的当前整车最大外特性功率值;获取所述车辆的加速踏板的当前开度值和当前开度变化率;根据所述当前开度值和所述当前开度变化率,确定驾驶意图;根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。因为通过当前开度值和当前开度变化率先预判驾驶意图,并基于该驾驶意图结合电池的当前最大放电功率值及车辆的当前整车最大外特性功率值,提前进行动力响应,以确保下一时刻能够满足更大的动力请求,避免了发动机出现不必要的启动或启动不及时的情况。

Description

一种发动机控制方法、系统及车辆
本申请要求在2019年12月12日提交中国专利局、申请号为201911276800.5、名称为“一种发动机控制方法、系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及汽车技术领域,特别涉及一种发动机控制方法、系统及车辆。
背景技术
当前,对于混联架构的新能源汽车,车辆由发动机和/或驱动电机驱动。其中,在动力需求比较小时,驱动电机能够独自满足驱动要求,整车会工作在串联运行模式或纯电运行模式下;而在动力需求比较大时,则需要发动机与驱动电机以并联运行模式下共同驱动车辆。
对于混联架构的新能源汽车,在车辆具有紧急的动力需求时,需要发动机迅速启动以辅助电池驱动车辆。目前现有技术主要是通过以下两种方式来控制发动机启动:1、监测驱动电机的纯电驱动能力与动力需求之间的差值,当差值表示动力需求逐渐接近纯电驱动能力的时候,启动发动机;2、监测踏板开度值,当踏板开度值大于标定值时,启动发动机。
上述两种控制发动机启动的方式,都容易因为差值与标定值设置的不合理,导致发动机的不必要启动或启动延迟,给用户造成发动机动力响应不佳的驾驶体验,甚至会发生行车危险。
概述
有鉴于此,本公开旨在提出一种发动机控制方法、系统及车辆,以解决现有混合动力车辆发动机动力响应不佳的问题。
为达到上述目的,本公开的技术方案是这样实现的:
一种发动机控制方法,应用于车辆,所述车辆包括电池与发动机,其中,所述方法包括:
获取所述电池的当前最大放电功率值,以及所述车辆的当前整车最大外特性功率值;
获取所述车辆的加速踏板的当前开度值和当前开度变化率;
根据所述当前开度值和所述当前开度变化率,确定驾驶意图;
根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。
进一步地,所述的发动机控制方法中,所述车辆预置有开度变化率条件;
所述根据当前开度值和当前开度变化率,确定驾驶意图,包括:
在所述当前开度变化率大于第一预设变化率时,控制所述开度变化率条件处于激活状态;
在所述加速踏板的开度变化率小于第二预设变化率时,控制所述开度变化率条件处于关闭状态;其中,所述第一预设变化率大于所述第二预设变化率;
在所述当前开度变化率小于或等于第一预设变化率,且所述加速踏板的开度变化率大于或等于第二预设变化率时,控制所述开度变化率条件维持当前所处的状态;
若所述当前开度值大于或等于预设开度值,且所述开度变化率条件处于所述激活状态,则确定所述驾驶意图为紧急驾驶意图;
若所述当前开度值小于所述预设开度值,和/或所述开度变化率条件处于所述关闭状态,则确定所述驾驶意图为非紧急驾驶意图。
进一步地,所述的发动机控制方法中,所述车辆还包括与所述电池及发动机连接的电机,所述根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停,包括:
若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于所述当前整车最大外特性功率值,控制所述发动机启动,并控制所述发动机驱动所述车辆。
进一步地,所述的发动机控制方法中,所述车辆还包括与所述电池电连接的电机,所述根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停,还包括:
若确定所述驾驶意图为非紧急驾驶意图,和/或所述当前最大放电功率大于或等于当前整车最大外特性功率值,则控制所述发动机不启动,且控制所述电池按所述车辆的需求功率为所述电机供电。
进一步地,所述的发动机控制方法中,所述若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于当前整车最大外特性功率值,则控制所述发动机启动,并控制所述发动机驱动所述车辆之后,还包括:
在所述发动机的输出功率大于所述电机的需求功率时,控制所述发动机按所述电机的需求功率为所述电机供电,并控制所述发动机为所述电池充电。
进一步地,所述的发动机控制方法中,所述在所述发动机的输出功率大于所述电机的需求功率时,控制所述发动机需求功率驱动所述车辆,并控制所述发动机为所述电池充电之后,还包括:
若所述电池的当前荷电状态值大于或等于第一预设荷电阈值,则控制所述发动机进入停止状态。
进一步地,所述的发动机控制方法中,所述确定所述电池的当前最大放电功率值,以及所述车辆的当前整车最大外特性功率值,包括:
获取所述电池的当前荷电状态值,并根据预设荷电状态值与最大放电功率值的第一对应关系,确定所述当前荷电状态值对应的所述当前最大放电功率值;
获取所述车辆的当前驾驶模式,并根据预设驾驶模式与整车最大外特性功率值的第二对应关系,确定所述当前驾驶模式对应的所述当前整车最大外特性功率值。
进一步地,所述的发动机控制方法中,在所述获取所述电池的当前荷电状态值,并根据预设荷电状态值与最大放电功率值的第一对应关系,确定所述当前荷电状态值对应的所述当前最大放电功率值之后,还包括:
若所述当前荷电状态值小于第二预设荷电阈值,则控制所述发动机启动,并控制所述发动机为所述电池充电。
本公开的另一目的在于提出一种发动机控制系统,应用于车辆,所述车辆包括电池与发动机,其中,所述系统包括:
第一获取模块,用于获取所述电池的当前最大放电功率值,以及所述车辆的当前整车最大外特性功率值;
第二获取模块,用于获取所述车辆的加速踏板的当前开度值和当前开度变化率;
确定模块,用于根据所述当前开度值和所述当前开度变化率,确定驾驶意图;
控制模块,用于根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。
进一步地,所述的发动机控制系统中,所述车辆预置有开度变化率条件;
所述确定模块包括:
第一控制单元,用于在所述当前开度变化率大于第一预设变化率时,控制所述开度变化率条件处于激活状态;
第二控制单元,用于在所述加速踏板的开度变化率小于第二预设变化率时,控制所述开度变化率条件处于关闭状态;其中,所述第一预设变化率大于所述第二预设变化率;
第三控制单元,用于在所述当前开度变化率小于或等于第一预设变化率,且所述加速踏板的开度变化率大于或等于第二预设变化率时,控制所述开度变化率条件维持当前所处的状态;
第一确定单元,用于若所述当前开度值大于或等于预设开度值,且所述开度变化率条件处于所述激活状态,则确定所述驾驶意图为紧急驾驶意图;
第一确定单元,用于若所述当前开度值小于所述预设开度值,和/或所述开度变化率条件处于所述关闭状态,则确定所述驾驶意图为非紧急驾驶意图。
进一步地,所述的发动机控制系统中,所述车辆还包括与所述电池连接的电机;
所述控制模块包括:
第四控制单元,用于若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于所述当前整车最大外特性功率值,控制所述发动机启动,并控制所述发动机驱动所述车辆。
进一步地,所述的发动机控制系统中,所述控制模块还包括:
第五控制单元,用于确定所述驾驶意图为非紧急驾驶意图,和/或所述当前最大放电功率大于或等于当前整车最大外特性功率值,则控制所述发动机不启动,且控制所述电池按所述车辆的需求功率为所述电机供电。
进一步地,所述的发动机控制系统中,所述控制模块还包括:
第六控制单元,用于在所述发动机的输出功率大于所述电机的需求功率时,控制所述发动机按所述需求功率驱动所述车辆,并控制所述发动机为所述电池充电。
进一步地,所述的发动机控制系统中,所述控制模块还包括:
第七控制单元,用于若所述电池的当前荷电状态值大于或等于第一预设荷电阈值,则控制所述发动机进入停止状态。
进一步地,所述的发动机控制系统中,所述第一获取模块包括:
第一获取单元,用于获取所述电池的当前荷电状态值,并根据预设荷电状态值与最大放电功率值的第一对应关系,确定所述当前荷电状态值对应的所述当前最大放电功率值;
第二获取单元,用于获取所述车辆的当前驾驶模式,并根据预设驾驶模式与整车最大外特性功率值的第二对应关系,确定所述当前驾驶模式对应的所述当前整车最大外特性功率值。
进一步地,所述的发动机控制系统中,所述控制模块还包括:
第八控制单元,用于若所述当前荷电状态值小于第二预设荷电阈值,则控制所述发动机启动,并控制所述发动机为所述电池充电。
相对于在先技术,本公开所述的发动机控制方法及系统具有以下优势:
先获取车辆的加速踏板的当前开度值和当前开度变化率,并根据当前开度值和当前开度变化率确定驾驶意图,同时获取电池的当前最大放电功率值及车辆的当前整车最大外特性功率值,然后根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。因为通过当前开度值和当前开度变化率先预判确定了驾驶意图,并基于该确定的驾驶意图结合电池的当前最大放电功率值及车辆的当前整车最大外特性功率值,提前进行动力响应,以确保下一时刻能够满足更大的动力请求,避 免了发动机出现不必要的启动或启动不及时的情况,从而解决了现有混合动力车辆发动机动力响应不佳的问题。
本公开的再一目的在于提出一种车辆,其中,所述车辆包括所述的发动机控制系统。
所述车辆与上述一种发动机控制方法、系统相对于现有技术所具有的优势相同,在此不再赘述。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例所提出的发动机控制方法的流程示意图;
图2本公开实施例所提出的加速踏板的开度变化率获取过程示意图;
图3本公开另一实施例所提出的发动机控制方法的流程示意图;
图4为本公开实施例所提出的发动机控制系统的结构示意图。
图5示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;以及
图6示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面将参考附图更详细地描述本申请的实施例。虽然附图中显示了本申请的实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更彻底地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
请参阅图1,示出了本公开实施例所提供的一种发动机控制方法,应用于车辆,所述车辆包括电池与发动机,所述方法包括步骤S100~S400:
步骤S100、获取所述电池的当前最大放电功率值,以及所述车辆的当前整车最大外特性功率值;
上述步骤S100中,该当前最大放电功率值指的是电池当前可以提供的最大输出功率值。因为正是在电池无法为整车提供足够的电功率时,才需要启动发动机为整车供能,因而需要获取电池的当前最大放电功率值。
上述步骤S100中,该整车最大外特性功率值指的是车辆可以达到的最大工作功率值,而当前整车最大外特性功率值指的是车辆在当前驾驶模式下的整车最大工作功率值。
上述步骤S100中,因为无法预判车辆是否需要按最大工作功率值工作,但是可以确定的是,如果电池的当前最大放电功率值大于当前整车最大外特性功率值的话,车辆可以单独通过上述电池提供电能而以最大功率功率进行工作,也即可以单独通过上述电池满足在车辆允许范围内的全部驾驶意图,也即在有紧急驾驶意图时,无需启动发动机对电机进行供电。因而本公开实施例预先获取电池的当前最大放电功率及车辆的当前整车最大外特性功率值,进而可以避免在驾驶员出现快速动力请求时,单独利用电池能够满足当前状态下的整车最大工作功率的情况下启动发动机的问题。
可选地,上述步骤S100包括步骤S1001~S1002:
步骤S1001、获取所述电池的当前荷电状态值,并根据预设荷电状态值与最大放电功率值的第一对应关系,确定所述当前荷电状态值对应的所述当前最大放电功率值。
在实际应用中,因为电池的最大放电功率与电池的荷电状态值一一对应,而不同电池的最大放电功率与其荷电状态值的对应关系不同,因而需要预先建立电池的最大放电功率与荷电状态值的的第一对应关系,并在该步骤S100中,先获取所述电池的当前荷电状态值,再根据预设荷电状态值与最大放电功率值的第一对应关系,确定所述电池的当前最大放电功率值。
步骤S1002、获取所述车辆的当前驾驶模式,并根据预设驾驶模式与整车最大外特性功率值的第二对应关系,确定所述当前驾驶模式对应的所述当前整车最大外特性功率值。
在实际应用中,因为车辆往往具有多种驾驶模式,不同的驾驶模式下车辆的最大需求功率值不同,因而需要预先建立整车最大外特性功率值与驾驶模式的第二对应关系,并在该步骤中,获取车流量的当前驾驶模式,并根据该整车最大外特性功率值与驾驶模式的对应关系,确定当前整车最大外特性功率值。
步骤S200、获取所述车辆的加速踏板的当前开度值和当前开度变化率。
上述步骤S200中,加速踏板的当前开度值指的是加速踏板的当前踩踏角度与加速踏板踩踏角度范围的上限值之间的比值,其中,当前踩踏角度指的是加速踏板的当前位置与加速踏板的初始位置之间的夹角角度值,该当前开度值与车辆的目标功率值直接对应,也即对车辆的目标扭矩相对应。而当前开度变化率指的是加速踏板当前在单位时间内开度变化值,反应了当前加速踏板当前开度变化的快慢情况,该当前开度变化率可以通过加速踏板的开度与时间的关系函数对时间进行微分计算得到。
其中,加速踏板的当前开度值可以直接通过检测加速踏板当前位置与加速踏板未被踩踏时的位置之间的夹角角度值获得。而当前开度变化率可以通过检测一段时间Δt内加速踏板开度的变化值Δy,再计算开度变化率Ratio=Δy/Δt,即可以得到加速踏板的当前开度变化率。
具体地,可参阅图2,图2示出了在实际应用时,本公开实施例中的加速踏板的开度变化率获取过程示意图。如图2所示,α处对应的开度变化率为Δy1/Δt1,其中,Δy1为Δt1时间段内的开度变化量;而β处对应的开度变化率则为Δy2/Δt2,其中,Δy2为Δt2时间段内的开度变化量。
步骤S300、根据所述当前开度值和所述当前开度变化率,确定驾驶意图。
上述步骤S300中,通过结合加速踏板的当前开度值与当前开度变化率,判断驾驶员当前的驾驶意图,该驾驶意图可以包括紧急驾驶意图、非紧急驾驶意图等。其中,加速踏板的开度变化率考虑主要是为了监测驾驶员的驾驶意图,因为加速踏板的开度变化率能够明确的反映出驾驶员对整车动力的需求程度,当开度变化率较小时,说明驾驶员不需要整车迅速做出大扭矩响应,而当变化速率较大时,说明驾驶员对整车动力有比较急切的需求,虽然目前整车的可用扭矩还能满足当前的需求,但是整车必须提前做好输出最大动力的准备,以确保下一时刻能够满足更大的扭矩请求。
上述步骤S300中,因为在加速踏板由未被踩踏状态到被踩踏状态的短时间内,其开度变化率很大,但是其对应的目标扭矩需求并不大,此处很可能通过电池为车辆的电机供电就能够满足驾驶需求,也就完全不需要启动发动机来驱动车辆。可以看出,若单独通过加速踏板的开度变化率来判断驾驶员的驾驶意图容易出现将非急切的动力请求误判为急切的动力请求。因而需要设置一个预设开度值,该预设开度值表示最小的请求意愿的加速踏板的开度下限值,在加速踏板的当前开度值大于该预设开度值时,才需要结合加速踏板的开度变化率来进一步确定驾驶意图。
通过设置一个预设开度值,可以防止误踩加速踏板造成了很大的变化速率,但是并没有很大的踏板开度,却误判为驾驶员有急切的动力请求的情况,也即误判为紧急驾驶意图。
步骤S400、根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。
因为无法预判车辆是否需要按最大工作功率值工作,但是可以确定的是,如果电池的当前最大放电功率值大于或等于当前整车最大外特性功率值 的话,车辆可以单独通过上述电池提供电能而以最大工作功率进行工作,也即可以单独通过上述电池满足在车辆允许范围内的全部驾驶意图,无需启动发动机对电机进行供电,更无需启动发动机并利用发动机直接驱动车辆。
而在电池的当前最大放电功率值小于当前整车最大外特性功率值时,说明单独通过电池无法满足车辆的最大工作功率值需求。虽然车辆是否需要按最大工作功率值工作仍无法确定,但是为了保证能够满足车辆后续的动力需求,则需要根据步骤S300所确定的驾驶意图来控制发动机执行相应的的启动动作。
因而上述步骤S400中,在通过步骤S300确定了驾驶员的驾驶意图后,还需要结合电池的当前最大放电功率及车辆的当前整车最大外特性功率值,才可以确实是否需要启动发动机,并控制发动机执行相应的启停动作,不仅可以在驾驶意图需要启动发动机时提前控制发动机启动,而且可以避免在电池电量充足、单独利用电池能够满足当前状态下的整车最大工作功率时启动发动机的情况。
相对于现有技术,本公开所述的发动机控制方法具有以下优势:
先获取车辆的加速踏板的当前开度值和当前开度变化率,并根据当前开度值和当前开度变化率确定驾驶意图,同时获取电池的当前最大放电功率值及车辆的当前整车最大外特性功率值,然后根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。因为通过当前开度值和当前开度变化率先预判确定了驾驶意图,并基于该确定的驾驶意图结合电池的当前最大放电功率值及车辆的当前整车最大外特性功率值,提前进行动力响应,以确保下一时刻能够满足更大的动力请求,避免了发动机出现不必要的启动或启动不及时的情况,从而解决了现有混合动力车辆发动机动力响应不佳的问题。
因为到实际应用中,当快速踩踏加速踏板时,踏板的开度变化是越来越慢的,再往下踩的过程中,开度变化率会略微下降,这属于正常情况,但是驾驶员对车辆的动力需求其实并没有减弱,显然,若此时就确定驾驶员没有紧急驾驶意图是不合理的。
因而,可选地,在本公开实施例提供的发动机控制方法中,所述车辆预 置有开度变化率条件,上述步骤S300可以包括步骤S3001~S3005:
步骤S3001、在所述当前开度变化率大于第一预设变化率时,控制所述开度变化率条件处于激活状态。
上述步骤S3001中,第一预设变化率为用于确定驾驶员是否有紧急加速意图的开度变化率界限值。在加速踏板的当前开度变化率大于该第一预设变化率时,则表明驾驶员很可能有紧急驾驶意图,因而激活开度变化率条件,使得开度变化率条件处于激活状态。
步骤S3002、在所述加速踏板的开度变化率小于第二预设变化率时,控制所述开度变化率条件处于关闭状态;其中,所述第一预设变化率大于所述第二预设变化率。
上述步骤S3002中,第二预设变化率为用于确定驾驶员是否有紧急加速意图的开度变化率界限值。在加速踏板的当前开度变化率小于该第二预设变化率时,则表明驾驶员没有紧急驾驶意图,因而关闭开度变化率条件,使得开度变化率条件处于关闭状态。
步骤S3003、在所述当前开度变化率小于或等于第一预设变化率,且所述加速踏板的开度变化率大于或等于第二预设变化率时,控制所述开度变化率条件维持当前所处的状态。
上述步骤S3003中,在加速踏板的开度变化率处于第一预设变化率与第二预设变化率之间时,则表明没有达到将处于关闭状态的开度变化率条件进行激活的开度变化率状态,也没有达到将处于激活状态的开度变化率条件进行关闭的开度变化率状态,因而不改变开度变化条件原有的状态,也即控制度变化率条件维持其当前所处的状态。
通过步骤S3001~S3003可以看出,本公开实施例为开度变化率条件的激活保留一定的回执量,该回执量即是第一预设变化率与第二预设变化率之间的差值。如果加速踏板的当前开度变化率满足了大于第一预设变化率这个较高的进入条件,此时开度变化率条件就处于激活状态,且在激活状态下,允许当前开度变化率低于第一预设变化率这个进入条件,只要不低于第二预设变化率这个退出条件,则开度变化率条件依然保持激活状态。
同理,如果加速踏板的当前开度变化率满足了小于第二预设变化率这个 较低的退出条件,此时开度变化率条件就处于关闭状态,且在关闭状态下,允许当前开度变化率高于第二预设变化率这个退出条件,只要高于第一预设变化率这个退出条件,则开度变化率条件依然保持关闭状态。
步骤S3004、若所述当前开度值大于或等于预设开度值,且所述开度变化率条件处于所述激活状态,则确定所述驾驶意图为紧急驾驶意图。
在上述步骤S3004中,预先设置一预设开度值,只有在加速踏板的当前开度值大于或等于该预设开度值,且开度变化率条件处于激活状态,才确定驾驶员当前有紧急驾驶意图。其中,通过设置一个预设开度值,可以防止误踩加速踏板造成了很大的开度变化率且激活了开度变化条件,但是并没有很大的踏板开度,却误判为驾驶员有急切的动力请求的情况,也即误判为紧急驾驶意图。
另外,结合步骤3001~S3004,可以看出,为开度变化率条件的激活保留一定的回执量,可以避免在驾驶员确实有紧急驾驶意图,却因为初始踩踏加速踏板时,当前开度变化率大于第一预设变化率,但加速踏板的当前开度还未达到预设开度值而被误判为非紧急驾驶意图的情况;以及避免驾驶员确实有紧急驾驶意图,在踩踏加速踏板的当前开度达到预设开度值时,却因为开度变化率下降至小于或等于第一预设变化率,却被误判为非紧急驾驶意图的情况。
步骤S3005、若所述当前开度值小于所述预设开度值,和/或所述开度变化率条件处于所述关闭状态,则确定所述驾驶意图为非紧急驾驶意图。
上述步骤S3005中,在满足加速踏板的当前开度值小于预设开度值、以及开度变化率条件处于关闭状态中的任意一项或多项时,即可以确定驾驶员当前的驾驶意图为非紧急驾驶意图。
请参阅图3,示出了本公开一优选实施例的流程图,在本公开提供的优选实施例中,上述发动机控制方法,应用于车辆,所述车辆包括电池与发动机,所述车辆还包括与所述电池电连接的电机,所述车辆预置有开度变化率条件,上述发动机控制方法包括步骤S201~S210。
需要说明的是,本公开实施例中的车辆还包括与发动机配套的发电机,该发电机由发动机驱动发电,且该发电机与上述电池及电机均电连接,从而 使得发动机可以驱动发电机发电,进而使得发动机可以通过发电机向电池和/或电机供电。
步骤S201、获取所述电池的当前荷电状态值,并根据预设荷电状态值与最大放电功率值的第一对应关系,确定所述当前荷电状态值对应的所述当前最大放电功率值。
上述步骤S201可参照步骤S1001的详细说明,此处不再赘述。
步骤S202、获取所述车辆的当前驾驶模式,并根据预设驾驶模式与整车最大外特性功率值的第二对应关系,确定所述当前驾驶模式对应的所述当前整车最大外特性功率值。
上述步骤S202可参照步骤S1002的详细说明,此处不再赘述。
步骤S203、获取所述车辆的加速踏板的当前开度值和当前开度变化率。
上述步骤S203可参照步骤S200的详细说明,此处不再赘述。
步骤S204、在所述当前开度变化率大于第一预设变化率时,控制所述开度变化率条件处于激活状态。
上述步骤S204可参照步骤S3001的详细说明,此处不再赘述。
步骤S205、在所述加速踏板的开度变化率小于第二预设变化率时,控制所述开度变化率条件处于关闭状态;其中,所述第一预设变化率大于所述第二预设变化率。
上述步骤S205可参照步骤S3002的详细说明,此处不再赘述。
步骤S206、在所述当前开度变化率小于或等于第一预设变化率,且所述加速踏板的开度变化率大于或等于第二预设变化率时,控制所述开度变化率条件维持当前所处的状态。
上述步骤S206可参照步骤S3003的详细说明,此处不再赘述。
步骤S207、若所述当前开度值大于或等于预设开度值,且所述开度变化率条件处于所述激活状态,则确定所述驾驶意图为紧急驾驶意图。
上述步骤S207可参照步骤S3004的详细说明,此处不再赘述。
步骤S208、若所述当前开度值小于所述预设开度值,和/或所述开度变化率条件处于所述关闭状态,则确定所述驾驶意图为非紧急驾驶意图。
上述步骤S208可参照步骤S3005的详细说明,此处不再赘述。
步骤S209、若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于所述当前整车最大外特性功率值,控制所述发动机启动,并控制所述发动机驱动所述车辆。
上述步骤S209中,如果确定驾驶员的驾驶意图为紧急驾驶意图,且电池的当前最大放电功率小于当前整车最大外特性功率值,则表明电池即将不能满足车辆的动力需求,因而需要控制发动机启动,以给车辆提供驱动力。
针对不同的车型架构,该步骤S209的具体步骤不同。
其中,在所述车辆为并联架构车型时,所述步骤S209包括步骤S901:
步骤S901、若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于所述当前整车最大外特性功率值,控制所述发动机启动,并控制所述发动机通过传动机构驱动车轮,并按所述车辆的需求功率驱动所述车辆运行。
即在车辆为并联架构车型时,在启动发动机后,控制发动机按车辆的需求功率来驱动车轮,进而达到驱动车辆运行的目的。显然,在发动机启动的过程中,其输出功率由小变大,其输出功率无法瞬间满足车辆的需求,因而在发动机的输出功率未达到车辆的需求功率时,电池向电机供电,并由发动机与电机共同为车辆提供驱动力。
其中,在所述车辆为串联架构车型时,所述步骤S209包括步骤S902:
步骤S902、若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于所述当前整车最大外特性功率值,控制所述发动机启动,并控制所述发动机向所述电机供电,并通过所述电机按所述车辆的需求功率驱动所述车辆运行。
即在车辆为串联架构车型时,在启动发动机后,控制发动机按车辆的需求功率向电机供电,进而由电机按车辆的需求功率来驱动车辆运行。显然,在发动机启动的过程中,其输出功率由小变大,其输出功率无法瞬间满足车辆的需求,因而在发动机的输出功率未达到车辆的需求功率时,控制发动机与电池共同按车辆的需求功率向电机供电,并由电机按车辆的需求功率来驱动车辆运行。
其中,在所述车辆为混联架构车型时,所述步骤S209包括步骤 S903~S905:
步骤S903、若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于所述当前整车最大外特性功率值,控制所述发动机启动;若车辆的需求功率小于或等于所述电机的输出功率上限值,则控制所述发动机向所述电机供电,并通过所述电机按所述车辆的需求功率驱动所述车辆运行;若车辆的需求功率大于所述电机的输出功率上限值,则控制所述发动机通过传动机构驱动车轮,以按所述车辆的需求功率驱动所述车辆运行。
即在车辆为混联架构车型时,在启动发动机后,需要根据电机的输出功率上限值与车辆的需求功率来进一步确定发动机具体如何驱动车辆按其需求功率运行。
具体地,在车辆的需求功率小于或等于电机的输出功率上限值时,说明只要给电机提供足够的电能就能够单独由该电机为车辆提供足够的驱动力,因而控制发动机向所述电机供电,并通过所述电机按所述车辆的需求功率驱动所述车辆运行;
而在车辆的需求功率大于电机的输出功率上限值时,说明无法单独由电机为车辆提供足够的驱动力,因而需要控制发动机直接通过传动机构驱动车轮,进而达到按车辆的需求功率驱动车辆运行的目的。显然,在发动机启动的过程中,其输出功率由小变大,其输出功率无法瞬间满足车辆的需求,因而在发动机的输出功率未达到车辆的需求功率时,电池向电机供电,并由发动机与电机共同为车辆提供驱动力。
步骤S210、若确定所述驾驶意图为非紧急驾驶意图,和/或所述当前最大放电功率大于或等于当前整车最大外特性功率值,则控制所述发动机不启动,且控制所述电池按所述车辆的需求功率为所述电机供电。
在上述步骤S210中,即在驾驶意图为非紧急驾驶意图和当前最大放电功率大于或等于当前整车最大外特性功率值中的任何一个或多个条件满足时,均不控制发动机启动。其中,因为若驾驶意图为非紧急驾驶意图,也表明驾驶员暂时没有大扭矩需求或急加速需求,因而无需提前启动发动机;而在当前最大放电功率大于或等于当前整车最大外特性功率值时,仅由电池即可使得电机能够为车辆提供足够的驱动力,因而更无须提前启动发动机。
可选地,如图3所示,本公开实施例所提供的发动机控制方法,在步骤S209之后,还包括步骤S211:
步骤S211、在所述发动机的输出功率大于所述车辆的需求功率时,控制所述发动机按所述需求功率驱动所述车辆,并控制所述发动机为所述电池充电。
在上述步骤S211中,即在发动机的输出功率大于车辆的需求功率时,如车辆制动或刹车等情况下,控制发动机按车辆的实际需求功率驱动车辆,而发动机输出功率中的多余部分则用于向电池充电,从而达到回收能量的效果。
进一步地,如图2所示,本公开实施例所提供的发动机控制方法,在步骤S211之后,还包括步骤S212:
步骤S212、若所述电池的当前荷电状态值大于或等于第一预设荷电阈值,则控制所述发动机进入停止状态。
上述步骤S212中,该第一预设荷电阈值为电池的荷电状态值上限值,对应于电池的最大电池容量。在发动机给电池充电后,若电池的当前荷电状态值大于或等于该第一预设荷电阈值,则表明电池已经有足够的电能,因而控制发动机不再为电池充电,并控制发动机进入停止状态,且控制电池按车辆的需求功率为电机供电,以节省能耗。
可选地,如图3所示,本公开实施例所提供的发动机控制方法,在步骤S201之后,还包括步骤S213:
步骤S213、若所述当前荷电状态值小于第二预设荷电阈值,则控制所述发动机启动,并控制所述发动机为所述电池充电。
上述步骤S213中,该第二预设荷电阈值为电池的荷电状态值下限值,对应于电池的最低电量。在电池的当前荷电状态值小于该第二预设荷电阈值时,表明电池的电量不足,因而需要启动发动机为电池充电,以让电池有足够的电能满足车辆的使用需求。
相对于现有技术,本公开所述的发动机控制方法具有以下优势:
监测电池的当前最大放电功率以及当前整车最大外特性功率值,监测车辆的加速踏板的当前开度值、以及加速踏板的当前开度变化率,并预先设置 一开度变化条件,该开度变化条件在当前开度变化率大于第一预设变化率处于激活状态、在当前开度变化率小于第二预设变化率时处于关闭状态、在当前开度变化率小于或等于第一预设变化率且当前开度变化率大于或等于第二预设变化率时维持原有的状态不变;然后在当前开度值大于或等于预设开度值,且所述开度变化模块处于激活状态,且当前最大放电功率小于当前整车最大外特性功率值的情况下,控制所述发动机启动,并通过所述发动机驱动车辆。因为在开度变化条件处于激活状态且当前开度值达到预设开度值时,则说明驾驶员当前有紧急动力需求,而若当前最大放电功率小于当前整车最大外特性功率值,则表明电池当前电量不足以实现整车最大外特性功率状态,因而需要控制发动机启动,并通过发动机驱动车辆。本公开实施例通过在当前最大放电功率小于当前整车最大外特性功率值时,综合加速踏板的开度值与开度变化率,准确预判驾驶员的紧急动力需求驾驶意图,进而提前控制发动机启动,使得电机的动力输出能够及时匹配驾驶员的驾驶需求,从而解决了现有混合动力车辆发动机动力响应不佳的问题。
本公开的另一目的在于提出一种发动机控制系统,应用于车辆,所述车辆包括电池与发动机,其中,请参阅图4,图4示出了本公开实施例所提出的一种发动机控制系统的结构示意图,所述系统包括:
第一获取模块10,用于获取所述电池的当前最大放电功率值,以及所述车辆的当前整车最大外特性功率值;
第二获取模块20,用于获取所述车辆的加速踏板的当前开度值和当前开度变化率;
确定模块30,用于根据所述当前开度值和所述当前开度变化率,确定驾驶意图;
控制模块40,用于根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。
本公开实施例所述的系统中,先通过第二获取模块20获取车辆的加速踏板的当前开度值和当前开度变化率,并由确定模块30根据当前开度值和当前开度变化率确定驾驶意图,同时通过第一获取模块10获取电池的当前最大放电功率值及车辆的当前整车最大外特性功率值,然后由控制模块40 根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。因为通过当前开度值和当前开度变化率先预判确定了驾驶意图,并基于该确定的驾驶意图结合电池的当前最大放电功率值及车辆的当前整车最大外特性功率值,提前进行动力响应,以确保下一时刻能够满足更大的动力请求,避免了发动机出现不必要的启动或启动不及时的情况,从而解决了现有混合动力车辆发动机动力响应不佳的问题。
可选地,所述的发动机控制系统中,所述车辆预置有开度变化率条件;
所述确定模块30包括:
第一控制单元,用于在所述当前开度变化率大于第一预设变化率时,控制所述开度变化率条件处于激活状态;
第二控制单元,用于在所述加速踏板的开度变化率小于第二预设变化率时,控制所述开度变化率条件处于关闭状态;其中,所述第一预设变化率大于所述第二预设变化率;
第三控制单元,用于在所述当前开度变化率小于或等于第一预设变化率,且所述加速踏板的开度变化率大于或等于第二预设变化率时,控制所述开度变化率条件维持当前所处的状态;
第一确定单元,用于若所述当前开度值大于或等于预设开度值,且所述开度变化率条件处于所述激活状态,则确定所述驾驶意图为紧急驾驶意图;
第一确定单元,用于若所述当前开度值小于所述预设开度值,和/或所述开度变化率条件处于所述关闭状态,则确定所述驾驶意图为非紧急驾驶意图。
可选地,所述的发动机控制系统中,所述车辆还包括与所述电池连接的电机;
所述控制模块40包括:
第四控制单元,用于若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于所述当前整车最大外特性功率值,控制所述发动机启动,并控制所述发动机驱动所述车辆。
可选地,所述的发动机控制系统中,所述控制模块40还包括:
第五控制单元,用于确定所述驾驶意图为非紧急驾驶意图,和/或所述 当前最大放电功率大于或等于当前整车最大外特性功率值,则控制所述发动机不启动,且控制所述电池按所述车辆的需求功率为所述电机供电。
进一步地,所述的发动机控制系统中,所述控制模块40还包括:
第六控制单元,用于在所述发动机的输出功率大于所述电机的需求功率时,控制所述发动机按所述需求功率驱动所述车辆,并控制所述发动机为所述电池充电。
可选地,所述的发动机控制系统中,所述控制模块40还包括:
第七控制单元,用于若所述电池的当前荷电状态值大于或等于第一预设荷电阈值,则控制所述发动机进入停止状态。
可选地,所述的发动机控制系统中,所述第一获取模块10包括:
第一获取单元,用于获取所述电池的当前荷电状态值,并根据预设荷电状态值与最大放电功率值的第一对应关系,确定所述当前荷电状态值对应的所述当前最大放电功率值;
第二获取单元,用于获取所述车辆的当前驾驶模式,并根据预设驾驶模式与整车最大外特性功率值的第二对应关系,确定所述当前驾驶模式对应的所述当前整车最大外特性功率值。
可选地,所述的发动机控制系统中,所述控制模块40还包括:
第八控制单元,用于若所述当前荷电状态值小于第二预设荷电阈值,则控制所述发动机启动,并控制所述发动机为所述电池充电。
本公开的再一目的在于提出一种车辆,其中,所述车辆包括所述的发动机控制系统。
所述车辆与上述一种发动机控制方法、系统相对于现有技术所具有的优势相同,在此不再赘述
关于上述系统和车辆的技术细节和好处已在上述方法中进行了详细阐述,此处不再赘述。
综上所述,本申请提供的发动机控制方法、系统及车辆,先获取车辆的加速踏板的当前开度值和当前开度变化率,并根据当前开度值和当前开度变化率确定驾驶意图,同时获取电池的当前最大放电功率值及车辆的当前整车最大外特性功率值,然后根据所述驾驶意图、所述当前最大放电功率及所述 当前整车最大外特性功率值,控制所述发动机的启停。因为通过当前开度值和当前开度变化率先预判确定了驾驶意图,并基于该确定的驾驶意图结合电池的当前最大放电功率值及车辆的当前整车最大外特性功率值,提前进行动力响应,以确保下一时刻能够满足更大的动力请求,避免了发动机出现不必要的启动或启动不及时的情况,从而解决了现有混合动力车辆发动机动力响应不佳的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形 式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图5示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图6所述的便携式或者固定存储单元。该存储单元可以具有与图5的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬 件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (13)

  1. 一种发动机控制方法,应用于车辆,所述车辆包括电池与发动机,其特征在于,所述方法包括:
    获取所述电池的当前最大放电功率值,以及所述车辆的当前整车最大外特性功率值;
    获取所述车辆的加速踏板的当前开度值和当前开度变化率;
    根据所述当前开度值和所述当前开度变化率,确定驾驶意图;
    根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。
  2. 根据权利要求1所述的发动机控制方法,其特征在于,所述车辆预置有开度变化率条件;
    所述根据当前开度值和当前开度变化率,确定驾驶意图,包括:
    在所述当前开度变化率大于第一预设变化率时,控制所述开度变化率条件处于激活状态;
    在所述加速踏板的开度变化率小于第二预设变化率时,控制所述开度变化率条件处于关闭状态;其中,所述第一预设变化率大于所述第二预设变化率;
    在所述当前开度变化率小于或等于第一预设变化率,且所述加速踏板的开度变化率大于或等于第二预设变化率时,控制所述开度变化率条件维持当前所处的状态;
    若所述当前开度值大于或等于预设开度值,且所述开度变化率条件处于所述激活状态,则确定所述驾驶意图为紧急驾驶意图;
    若所述当前开度值小于所述预设开度值,和/或所述开度变化率条件处于所述关闭状态,则确定所述驾驶意图为非紧急驾驶意图。
  3. 根据权利要求2所述的发动机控制方法,其特征在于,所述根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停,包括:
    若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于所述当前整车最大外特性功率值,控制所述发动机启动,并控制所述发动机驱 动所述车辆。
  4. 根据权利要求3所述的发动机控制方法,其特征在于,所述车辆还包括与所述电池电连接的电机,所述根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停,还包括:
    若确定所述驾驶意图为非紧急驾驶意图,和/或所述当前最大放电功率大于或等于当前整车最大外特性功率值,则控制所述发动机不启动,且控制所述电池按所述车辆的需求功率为所述电机供电。
  5. 根据权利要求3所述的发动机控制方法,其特征在于,所述若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于当前整车最大外特性功率值,则控制所述发动机启动,并控制所述发动机驱动所述车辆之后,还包括:
    在所述发动机的输出功率大于所述车辆的需求功率时,控制所述发动机按所述需求功率驱动所述车辆,并控制所述发动机为所述电池充电。
  6. 根据权利要求5所述的发动机控制方法,其特征在于,所述在所述发动机的输出功率大于所述车辆的需求功率时,控制所述发动机按所述需求功率驱动所述车辆,并控制所述发动机为所述电池充电之后,还包括:
    若所述电池的当前荷电状态值大于或等于第一预设荷电阈值,则控制所述发动机进入停止状态。
  7. 一种发动机控制系统,应用于车辆,所述车辆包括电池与发动机,其特征在于,所述系统包括:
    第一获取模块,用于获取所述电池的当前最大放电功率值,以及所述车辆的当前整车最大外特性功率值;
    第二获取模块,用于获取所述车辆的加速踏板的当前开度值和当前开度变化率;
    确定模块,用于根据所述当前开度值和所述当前开度变化率,确定驾驶意图;
    控制模块,用于根据所述驾驶意图、所述当前最大放电功率及所述当前整车最大外特性功率值,控制所述发动机的启停。
  8. 根据权利要求7所述的发动机控制系统,其特征在于,所述车辆预 置有开度变化率条件;
    所述确定模块包括:
    第一控制单元,用于在所述当前开度变化率大于第一预设变化率时,控制所述开度变化率条件处于激活状态;
    第二控制单元,用于在所述加速踏板的开度变化率小于第二预设变化率时,控制所述开度变化率条件处于关闭状态;其中,所述第一预设变化率大于所述第二预设变化率;
    第三控制单元,用于在所述当前开度变化率小于或等于第一预设变化率,且所述加速踏板的开度变化率大于或等于第二预设变化率时,控制所述开度变化率条件维持当前所处的状态;
    第一确定单元,用于若所述当前开度值大于或等于预设开度值,且所述开度变化率条件处于所述激活状态,则确定所述驾驶意图为紧急驾驶意图;
    第一确定单元,用于若所述当前开度值小于所述预设开度值,和/或所述开度变化率条件处于所述关闭状态,则确定所述驾驶意图为非紧急驾驶意图。
  9. 根据权利要求8所述的发动机控制系统,其特征在于,所述车辆还包括与所述电池连接的电机;
    所述控制模块包括:
    第四控制单元,用于若确定所述驾驶意图为紧急驾驶意图,且所述当前最大放电功率小于所述当前整车最大外特性功率值,控制所述发动机启动,并控制所述发动机驱动所述车辆。
  10. 一种车辆,其特征在于,所述车辆包括如权利要求7~9任一所述的发动机控制系统。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-6中任一项所述的发动机控制方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在 计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-6中任一项所述的发动机控制方法。
  13. 一种计算机可读介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2020/130890 2019-12-12 2020-11-23 一种发动机控制方法、系统及车辆 WO2021115110A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/765,412 US20220355784A1 (en) 2019-12-12 2020-11-23 Engine control method, system, and vehicle
EP20899859.1A EP4032765A4 (en) 2019-12-12 2020-11-23 ENGINE, SYSTEM AND VEHICLE CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911276800.5 2019-12-12
CN201911276800.5A CN112026742B (zh) 2019-12-12 2019-12-12 一种发动机控制方法、系统及车辆

Publications (1)

Publication Number Publication Date
WO2021115110A1 true WO2021115110A1 (zh) 2021-06-17

Family

ID=73576470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130890 WO2021115110A1 (zh) 2019-12-12 2020-11-23 一种发动机控制方法、系统及车辆

Country Status (4)

Country Link
US (1) US20220355784A1 (zh)
EP (1) EP4032765A4 (zh)
CN (1) CN112026742B (zh)
WO (1) WO2021115110A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113085830A (zh) * 2021-05-27 2021-07-09 中国第一汽车股份有限公司 一种发动机起动控制方法、装置、电子设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303301A (zh) * 2012-03-06 2013-09-18 上海汽车集团股份有限公司 一种混合动力车辆加速工况电机助力优化方法
CN103786719A (zh) * 2012-10-26 2014-05-14 现代自动车株式会社 混合动力车辆的控制系统和方法
WO2015060460A1 (en) * 2013-10-24 2015-04-30 Toyota Jidosha Kabushiki Kaisha Control system for a vehicle
CN108110282A (zh) * 2017-11-30 2018-06-01 中国第汽车股份有限公司 燃料电池发动机功率控制方法
CN109747625A (zh) * 2018-12-11 2019-05-14 同济大学 一种混合动力车辆复合式能量管理方法
CN109795476A (zh) * 2019-01-29 2019-05-24 四川阿尔特新能源汽车有限公司 发动机启动控制方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077223B2 (en) * 2002-05-29 2006-07-18 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle
JP3746775B2 (ja) * 2003-07-04 2006-02-15 本田技研工業株式会社 ハイブリッド車両の制御装置
DE102011101138A1 (de) * 2011-05-11 2012-11-15 Volkswagen Aktiengesellschaft Verfahren zur Aktivierung eines Verbrennungsmotors für ein Fahrzeug sowie entsprechende Steuerung und Fahrzeug
JP6387947B2 (ja) * 2015-12-07 2018-09-12 トヨタ自動車株式会社 ハイブリッド自動車
CN107539308A (zh) * 2016-06-28 2018-01-05 长城汽车股份有限公司 车辆的控制方法、系统及车辆
KR20180086782A (ko) * 2017-01-23 2018-08-01 현대자동차주식회사 하이브리드 차량의 주행 제어 방법
CN109895758A (zh) * 2017-12-08 2019-06-18 郑州宇通客车股份有限公司 一种混合动力汽车发动机扭矩控制方法、系统及车辆
CN110391482B (zh) * 2019-07-22 2021-06-08 安徽江淮汽车集团股份有限公司 电池快速升温方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303301A (zh) * 2012-03-06 2013-09-18 上海汽车集团股份有限公司 一种混合动力车辆加速工况电机助力优化方法
CN103786719A (zh) * 2012-10-26 2014-05-14 现代自动车株式会社 混合动力车辆的控制系统和方法
WO2015060460A1 (en) * 2013-10-24 2015-04-30 Toyota Jidosha Kabushiki Kaisha Control system for a vehicle
CN108110282A (zh) * 2017-11-30 2018-06-01 中国第汽车股份有限公司 燃料电池发动机功率控制方法
CN109747625A (zh) * 2018-12-11 2019-05-14 同济大学 一种混合动力车辆复合式能量管理方法
CN109795476A (zh) * 2019-01-29 2019-05-24 四川阿尔特新能源汽车有限公司 发动机启动控制方法及装置

Also Published As

Publication number Publication date
US20220355784A1 (en) 2022-11-10
EP4032765A4 (en) 2022-12-21
CN112026742B (zh) 2021-10-08
CN112026742A (zh) 2020-12-04
EP4032765A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2019037632A1 (zh) 基于唤醒源的电动汽车上电方法
JP2017537589A (ja) 電気自動車用のステアリングパワーシステム及びそれを制御する方法
WO2021115110A1 (zh) 一种发动机控制方法、系统及车辆
KR20210080289A (ko) 차량용 컴퓨팅 플랫폼의 휴면 제어 방법, 장치, 기기 및 판독 가능 저장 매체
WO2022247275A1 (zh) 发动机起动控制方法、装置、电子设备以及存储介质
WO2021197438A1 (zh) 发动机启停控制方法、系统以及车辆
CN115648961B (zh) 车辆控制方法、装置及相关设备
CN113147721B (zh) 控制发动机起动方法、装置、电子设备以及存储介质
RU2766909C1 (ru) Электронное устройство управления транспортным средством, способ электронного управления транспортным средством и носитель, предназначенный для долговременного хранения информации
JP7191973B2 (ja) ガレージモード制御ユニット、制御システム及び制御方法
WO2024002316A1 (zh) 车辆控制器的控制方法、装置、中央网关控制器及介质
CN111942356A (zh) 一种驻车方法、装置、系统及终端
WO2021204262A1 (zh) 一种纯电可用功率确定方法、系统及车辆
WO2022242331A1 (zh) 车辆下电控制方法、装置、介质及设备
CN116142164A (zh) 新能源车作为移动电站的控制方法、系统、车辆及存储介质
WO2022266912A1 (zh) 一种电池的加热方法以及加热装置
CN112707259A (zh) 一种电梯休眠的方法、装置、计算机设备和存储介质
CN113147632A (zh) 一种车辆控制方法、装置、车辆及存储介质
CN107685657B (zh) 车辆制动方法和装置
CN116424213B (zh) 一种车辆室内灯的控制方法、装置、设备及存储介质
CN111212357A (zh) 音响系统的控制方法及装置
CN113829883B (zh) 新能源车辆控制方法、装置、介质、电子设备
TW201231331A (en) Automatic power mode switch device for electric vehicles
CN117549746A (zh) 整车启动后的下电控制方法、装置、介质和设备
CN117162992A (zh) 一种车辆制动系统控制方法、装置、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020899859

Country of ref document: EP

Effective date: 20220330

NENP Non-entry into the national phase

Ref country code: DE