WO2022242331A1 - 车辆下电控制方法、装置、介质及设备 - Google Patents

车辆下电控制方法、装置、介质及设备 Download PDF

Info

Publication number
WO2022242331A1
WO2022242331A1 PCT/CN2022/084180 CN2022084180W WO2022242331A1 WO 2022242331 A1 WO2022242331 A1 WO 2022242331A1 CN 2022084180 W CN2022084180 W CN 2022084180W WO 2022242331 A1 WO2022242331 A1 WO 2022242331A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power
relay
hcu
bms
Prior art date
Application number
PCT/CN2022/084180
Other languages
English (en)
French (fr)
Inventor
张庚楠
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP22803656.2A priority Critical patent/EP4328080A1/en
Publication of WO2022242331A1 publication Critical patent/WO2022242331A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to the technical field of automatic control of electric vehicles, and in particular, to a vehicle power-off control method, device, medium and equipment.
  • the power on and off function is added to the new energy vehicle, and the high-voltage components and drive components are controlled to enter/exit the working mode through complex control strategies.
  • complex control strategies when controlling the high-voltage parts of the new energy to exit the working mode, the most important thing is to make the high-voltage power battery open the relay to complete the high-voltage power-off.
  • the contacts of the high-voltage power battery relay are disconnected, causing the driver to hear the sound of the power battery relay being disconnected when the vehicle is powered off, causing the driver to be confused or dissatisfied. Therefore, it is necessary to deal with the sound of the high-voltage battery relay opening. problems that engineers have to consider.
  • the purpose of the present disclosure is to provide an intelligent and energy-saving vehicle power-off control method, device, medium and equipment.
  • the present disclosure provides a vehicle power-off control method, the method comprising:
  • the hybrid vehicle controller (hybrid control unit, HCU) judges whether the state of the vehicle meets the preset power-off conditions;
  • the HCU starts timing
  • the HCU If it is detected that the driver is not in the car before the timing reaches the predetermined duration, the HCU sends a relay disconnection request to the battery management system (Battery Management System, BMS);
  • BMS Battery Management System
  • the BMS controls the relay of the power battery to disconnect.
  • the method also includes:
  • the HCU directly sends the relay off to the BMS ask.
  • the method also includes:
  • the HCU When the timing reaches the predetermined duration, the HCU sends the relay disconnection request to the BMS.
  • the method further includes:
  • the BMS detects whether the relay of the power battery is stuck
  • the BMS sends the detection result to the HCU
  • the HCU controls the vehicle to enter a dormant state.
  • the preset power-off conditions include: the vehicle speed is less than a predetermined vehicle speed threshold, the engine speed is less than a predetermined speed threshold, the belt drive starter generator exits the working state, the DCDC exits the working state, and the SOC of the low-voltage battery is greater than a predetermined
  • the power threshold and the current in the high voltage loop are less than a predetermined current threshold.
  • the present disclosure also provides a vehicle power-off control device, the device comprising:
  • the HCU is configured to determine whether the state of the vehicle satisfies the preset power-off condition if the vehicle power-off instruction triggered by the user is received; if it is determined that the state of the vehicle meets the preset power-off condition, and the power battery If the SOC is greater than the predetermined charging threshold, the timing will start; if the driver is not detected in the car before the timing reaches the predetermined time, a relay disconnection request will be sent to the BMS;
  • the BMS is configured to control the relay of the power battery to be disconnected in response to receiving the relay disconnection request.
  • the HCU is also used for:
  • the relay disconnection request is directly sent to the BMS.
  • the HCU is also used for:
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the method provided in the present disclosure are realized.
  • the present disclosure also provides an electronic device, comprising:
  • a processor configured to execute the computer program in the memory, so as to realize the steps of the method provided in the present disclosure.
  • the HCU starts timing; if it is detected that the driver is not in the car before the timing reaches the predetermined duration, Then the HCU sends a relay disconnection request to the BMS, so that the relay of the BMS controlling the power battery is disconnected.
  • the relay of the power battery is controlled to be disconnected, which can avoid the noise generated by the disconnection of the relay contacts from affecting the driver; on the other hand, the energy state of the power battery is also considered , so that the delayed disconnection of the relay contacts will not affect the energy reserve of the power battery too much, thereby avoiding the impact of noise on the driver as much as possible while ensuring the existing endurance of the vehicle.
  • Fig. 1 is a flowchart of a vehicle power-off control method provided by an exemplary embodiment
  • Fig. 2 is a flowchart of a vehicle power-off control method provided by another exemplary embodiment
  • Fig. 3 is a flowchart of a vehicle power-off control method provided by yet another exemplary embodiment
  • Fig. 4 is a flowchart of a vehicle power-off control method provided by yet another exemplary embodiment
  • Fig. 5 is a flowchart of a vehicle power-off control method provided by yet another exemplary embodiment
  • Fig. 6 is a block diagram of a vehicle power-off control device provided by an exemplary embodiment
  • Fig. 7 is a block diagram of an electronic device shown in an exemplary embodiment.
  • the power on and off function is added to the new energy vehicle, and the high-voltage components and drive components are controlled to enter/exit the working mode through complex control strategies.
  • the most important thing is to make the power battery turn on the relay to complete the high-voltage power-off. Due to the hardware characteristics of the power battery, there will be obvious sound when the relay contact of the power battery is turned on, so that the driver can hear the obvious abnormal sound when the vehicle is parked and powered off, which is a kind of alarm for the driver. noise.
  • the impact of the contact disconnection of the relay on the driver's noise is avoided as much as possible.
  • Fig. 1 is a flowchart of a vehicle power-off control method provided by an exemplary embodiment. As shown in Figure 1, the method may include the following steps.
  • step S11 if the vehicle power-off instruction triggered by the user is received, the HCU judges whether the state of the vehicle satisfies the preset power-off condition.
  • Step S12 if it is determined that the state of the vehicle satisfies the preset power-off condition, and the SOC of the power battery is greater than the predetermined charging threshold, the HCU starts timing.
  • Step S13 if it is detected that the driver is not in the vehicle before the timing reaches the predetermined duration, the HCU sends a relay disconnection request to the BMS.
  • Step S14 in response to receiving the relay disconnection request, the BMS controls the power battery relay to disconnect.
  • the user can trigger a specific button to send the vehicle power off instruction to the HCU.
  • the HCU controls the vehicle to complete power-off. For example, when the user presses the keyless entry and start (Passive Entry Passive Start, PEPS) system button, the power supply system disconnects the IG1 and IG2 relays, and switches the power supply mode to OFF mode, then the power supply of each control component can be cut off, and the vehicle can be completed. Power off.
  • PEPS Passive Entry Passive Start
  • the HCU may first determine whether the state of the vehicle satisfies a preset power-off condition. If the above preset power-off conditions are met, it can be considered that the relay of the power battery can be cut off to safely power off.
  • the preset power-off conditions may include: the vehicle speed is less than a predetermined vehicle speed threshold, the engine speed is less than a predetermined speed threshold (for example, less than 2km/h, the vehicle can be considered stationary), the belt drive starter generator exits the working state, DCDC exits In the working state, the SOC of the low-voltage battery is greater than the predetermined power threshold, and the current in the high-voltage circuit is less than the predetermined current threshold.
  • the present disclosure does not limit the sequence of judging the above conditions.
  • the SOC of the traction battery is greater than the predetermined charging threshold, it can be considered that the traction battery currently has a large amount of power, so that the delayed disconnection of the relay of the traction battery can be allowed to avoid the impact of noise on the driver.
  • Whether the driver leaves the seat and is not in the car can be judged by the signal fed back by the gravity-sensing seat configured in the vehicle. For example, if the signal fed back by the gravity-sensing seat in the car indicates that the weight on the seat is greater than a predetermined weight threshold, it can be considered that the driver is still in the car; otherwise, if the signal fed back by the gravity-sensing seat indicates that the weight on the seat If the weight is less than or equal to a predetermined weight threshold, the driver may not be considered present in the vehicle.
  • the HCU can also comprehensively judge whether the driver is out of position according to the accelerator pedal, brake pedal, seat belt status and vehicle door status. For example, if the accelerator pedal or brake pedal is stepped on, the seat belt is not disengaged, and the door is not opened after the vehicle speed decreases to zero, it can be judged that the driver is still in the car if any one is satisfied.
  • the HCU After the user triggers the vehicle power-off instruction, if the driver leaves the vehicle before the timer reaches the predetermined time, the HCU detects that the driver is not in the vehicle, and at this time sends a relay disconnection request to the BMS, so that the BMS controls the relay of the power battery to be disconnected. open.
  • the predetermined duration can be obtained according to experiments or experience.
  • the HCU starts timing; if it is detected that the driver is not in the car before the timing reaches the predetermined duration, Then the HCU sends a relay disconnection request to the BMS, so that the relay of the BMS controlling the power battery is disconnected.
  • the relay of the power battery is controlled to be disconnected, which can avoid the noise generated by the disconnection of the relay contacts from affecting the driver; on the other hand, the energy state of the power battery is also considered , so that the delayed disconnection of the relay contacts will not affect the energy reserve of the power battery too much, thereby avoiding the impact of noise on the driver as much as possible while ensuring the existing endurance of the vehicle.
  • Fig. 2 is a flowchart of a vehicle power-off control method provided by another exemplary embodiment. As shown in FIG. 2 , on the basis of FIG. 1 , the method may further include step S120.
  • Step S120 if it is determined that the state of the vehicle satisfies the preset power-off condition, and the SOC of the power battery is less than or equal to the predetermined charge threshold, the HCU directly sends a relay disconnection request to the BMS.
  • the SOC of the power battery is less than or equal to the predetermined charging threshold, it can be considered that the current power of the power battery is low. In order to ensure the subsequent power consumption, delaying the disconnection of the relay of the power battery is not considered.
  • the HCU does not perform timing and directly turns off the relay. When disconnected, the vehicle will be powered off.
  • priority is given to ensuring the continuous power consumption of the vehicle, so as to avoid affecting the normal running of the vehicle due to the delayed disconnection of the relay.
  • Fig. 3 is a flow chart of a vehicle power-off control method provided by yet another exemplary embodiment. As shown in FIG. 3 , on the basis of FIG. 1 , the method may further include step S130.
  • Step S130 when the timing reaches a predetermined duration, the HCU sends a relay disconnection request to the BMS.
  • the method of delaying the disconnection of the relay contacts to avoid the impact of noise on the driver is limited within a predetermined period of time. If the predetermined duration is exceeded, the influence of noise is no longer considered, but the relay is directly controlled to be disconnected. This is to take into account that the vehicle will consume power when it is not powered on, and use the predetermined time to make a compromise between power consumption and noise impact. In this embodiment, both power consumption and noise impact are taken into consideration, and the noise impact on the driver is avoided as much as possible under the condition of ensuring the existing battery life of the vehicle.
  • Fig. 4 is a flow chart of a vehicle power-off control method provided by yet another exemplary embodiment. As shown in FIG. 4 , on the basis of FIG. 1 , after the step S14 in which the BMS controls the relay of the power battery to be disconnected, the method may further include the following steps.
  • step S15 the BMS detects whether the relay of the power battery is stuck.
  • step S16 the BMS sends the detection result to the HCU.
  • Step S17 if the detection result indicates that there is no adhesion, the HCU controls the vehicle to enter a dormant state.
  • the vehicle can be controlled to enter the dormant state after confirming that the relay has no adhesion.
  • the method in the related art can be applied to determine whether the relay is stuck.
  • the vehicle is controlled to enter the dormant state under the condition that the relay is guaranteed to be free of adhesion, thereby enhancing the safety of the vehicle.
  • Fig. 5 is a flowchart of a vehicle power-off control method provided by yet another exemplary embodiment. As shown in FIG. 5 , the control method for powering off the vehicle may include the following steps.
  • PEPS receives the vehicle speed sent by the electronic stability system (Electronic Stability Program, ESP) of the vehicle body and makes a judgment;
  • EVS Electronic Stability Program
  • PEPS will keep IG1/IG2 engaged, and PEPS will send KL15ON signal to make the vehicle continue to drive normally.
  • HCU receives the vehicle speed sent by ESP, and checks the vehicle status in the next step when the detected vehicle speed is less than 2km/h, the engine state is in the exit working state (stopped), and the engine speed is less than the predetermined speed;
  • the vehicle will perform the delayed power-off process until the engine is stopped, the speed is less than the predetermined speed and the vehicle speed is ⁇ 2km/h, then the next step will be performed;
  • HCU detects belt drive starter generator (Belt-Driven Starter Generator, BSG) status, DCDC status, 12V low-voltage battery status, battery pack temperature status, etc. If the BSG exits the working state, the SOC of the low-voltage battery>80%, and the DCDC exits the working state, the HCU detects the current in the high-voltage circuit (sent by the BMS). If the current in the high-voltage circuit is greater than the current threshold, the HCU requests the motor to enter the active state.
  • BSG Belt Drive Starter Generator
  • Short-circuit mode (to avoid damage to power batteries, bus capacitors and other high-voltage components caused by excessive back electromotive force); if the current in the high-voltage circuit is less than the current threshold, the HCU determines that the state of the vehicle meets the preset power-off conditions.
  • the HCU starts to delay opening the power battery relay strategy, comprehensively considers whether the driver is in the car, the state of the high-voltage power battery and the energy consumption of the continuous high-voltage state, and judges the timing of sending the disconnection request to the BMS.
  • the dashboard will display "the power battery is low, please charge in time", and the HCU will send a request to disconnect the relay to the BMS;
  • the HCU starts timing
  • the HCU If it is detected that the driver is not in the vehicle before the timing reaches the predetermined duration (calibrated according to the comprehensive energy consumption of the delayed closing relay, for example, 30s), the HCU sends a request to disconnect the relay to the BMS;
  • the HCU sends a request to disconnect the relay to the BMS.
  • the BMS controls the disconnection of the relay and performs adhesion detection.
  • the BMS reports the battery status and adhesion detection results to the HCU. If there is no adhesion, the HCU stops sending messages and enters a dormant state. At this point, the vehicle is powered off.
  • Fig. 6 is a block diagram of a vehicle power-off control device provided by an exemplary embodiment.
  • the vehicle power-off control device 600 may include an HCU 601 and a BMS 602.
  • HCU 601 is used to determine whether the state of the vehicle satisfies the preset power-off condition if the vehicle power-off instruction triggered by the user is received; When the charging threshold is reached, the timing starts; if it is detected that the driver is not in the car before the timing reaches the predetermined duration, a relay disconnection request is sent to the BMS 602.
  • the BMS 602 is configured to control the disconnection of the relay of the power battery in response to receiving the relay disconnection request.
  • the HCU 601 is also used to directly send a relay disconnection request to the BMS 602 if it is determined that the state of the vehicle meets the preset power-off conditions and the SOC of the power battery is less than or equal to the predetermined charging threshold.
  • the HCU 601 is also configured to send a relay disconnection request to the BMS 602 when the timing reaches a predetermined duration.
  • the BMS 602 is also used to detect whether the relay of the power battery is stuck and sends the detection result to the HCU 601; the HCU 601 is also used to control the vehicle to enter a sleep state if the detection result indicates that there is no adhesion.
  • the preset power-off conditions include: the vehicle speed is less than a predetermined vehicle speed threshold, the engine speed is less than a predetermined speed threshold, the belt drive starter generator exits the working state, the DCDC exits the working state, and the SOC of the low-voltage battery is greater than the predetermined power threshold and the current in the high voltage loop is less than a predetermined current threshold.
  • the relay of the power battery is controlled to be disconnected, so that the noise generated by the disconnection of the relay contacts can be avoided from affecting the driver; on the other hand, the power battery is also considered The energy state of the relay contacts will not affect the energy reserve of the power battery too much, so that the noise impact on the driver is avoided as much as possible while ensuring the existing endurance of the vehicle.
  • Fig. 7 is a block diagram of an electronic device 700 shown in an exemplary embodiment.
  • the electronic device 700 may include: a processor 701 and a memory 702 .
  • the electronic device 700 may also include one or more of a multimedia component 703 , an input/output (I/O) interface 704 , and a communication component 705 .
  • I/O input/output
  • the processor 701 is used to control the overall operation of the electronic device 700, so as to complete all or part of the steps in the above-mentioned vehicle power-off control method.
  • the memory 702 is used to store various types of data to support the operation of the electronic device 700, for example, these data may include instructions for any application or method operating on the electronic device 700, and application-related data, Such as contact data, sent and received messages, pictures, audio, video, etc.
  • the memory 702 can be realized by any type of volatile or non-volatile memory device or their combination, such as Static Random Access Memory (Static Random Access Memory, referred to as SRAM), Electrically Erasable Programmable Read-Only Memory (EPROM) Electrically Erasable Programmable Read-Only Memory, referred to as EEPROM), Erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory, referred to as EPROM), Programmable Read-Only Memory (Programmable Read-Only Memory, referred to as PROM), read-only Memory (Read-Only Memory, referred to as ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • Multimedia components 703 may include screen and audio components.
  • the screen can be, for example, a touch screen, and the audio component is used for outputting and/or inputting audio signals.
  • an audio component may include a microphone for receiving external audio signals.
  • the received audio signal may be further stored in memory 702 or sent via communication component 705 .
  • the audio component also includes at least one speaker for outputting audio signals.
  • the I/O interface 704 provides an interface between the processor 701 and other interface modules, which may be a keyboard, a mouse, buttons, and the like. These buttons can be virtual buttons or physical buttons.
  • the communication component 705 is used for wired or wireless communication between the electronic device 700 and other devices.
  • Wireless communication such as Wi-Fi, Bluetooth, Near Field Communication (NFC for short), 2G, 3G, 4G, NB-IOT, eMTC, or other 5G, etc., or one or more of them Combinations are not limited here. Therefore, the corresponding communication component 705 may include: a Wi-Fi module, a Bluetooth module, an NFC module and the like.
  • the electronic device 700 may be implemented by one or more application-specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), digital signal processors (Digital Signal Processor, DSP for short), digital signal processing equipment (Digital Signal Processing Device, referred to as DSPD), programmable logic device (Programmable Logic Device, referred to as PLD), field programmable gate array (Field Programmable Gate Array, referred to as FPGA), controller, microcontroller, microprocessor or other electronic components Implementation, for executing the above-mentioned vehicle power-off control method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • controller microcontroller
  • microprocessor or other electronic components Implementation for executing the above-mentioned vehicle power-off control method.
  • a computer-readable storage medium including program instructions is also provided, and when the program instructions are executed by a processor, the steps of the above-mentioned vehicle power-off control method are realized.
  • the computer-readable storage medium can be the above-mentioned memory 702 including program instructions, and the above-mentioned program instructions can be executed by the processor 701 of the electronic device 700 to complete the above-mentioned vehicle power-off control method.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above-mentioned The code part of the vehicle power-off control method.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, since the program can be read, for example, by optically scanning the paper or other medium, followed by editing, interpretation or other suitable processing if necessary.
  • the program is processed electronically and stored in computer memory.
  • various parts of the present disclosure may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: a discrete Logic circuits, ASICs with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供一种车辆下电控制方法、装置、介质及设备。车辆下电控制方法包括:若接收到用户触发的车辆下电指示,则HCU判断车辆的状态是否满足预设的下电条件(S11);若判定车辆的状态满足预设的下电条件,且动力电池的SOC大于预定的荷电阈值,则HCU开始计时(S12);若在计时达到预定时长之前检测到驾驶员不在车内,则HCU向BMS发送继电器断开请求(S13);响应于接收到继电器断开请求,BMS控制动力电池的继电器断开(S14)。这样,权衡考虑了动力电池的能量状态,使继电器触点的延时断开不会过多影响动力电池的能量的储备,从而在保障车辆现有续航能力的情况下,尽可能地避免了对驾驶员的噪声影响。

Description

车辆下电控制方法、装置、介质及设备
相关申请的交叉引用
本公开要求在2021年05月20日提交中国专利局、申请号为202110553911.7、名称为“车辆下电控制方法、装置、介质及设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电动车辆自动控制技术领域,具体地,涉及一种车辆下电控制方法、装置、介质及设备。
背景技术
当前,能源紧缺的现象日益明显,世界各国发展新能源的呼声越来越强,中国政府更是通过各种政策大力扶持新能源汽车行业的发展。
新能源汽车中增加了上下电功能,通过复杂的控制策略控制高压部件及驱动部件进入/退出工作模式。其中,在控制新能源各高压零部件退出工作模式时,最主要的是使高压动力电池打开继电器,完成高压下电。但是,高压动力电池继电器的触点断开时会有声响,导致车辆下电时驾驶员听到动力电池继电器断开的声响,引起驾驶员疑惑或不满,所以处理高压电池继电器打开的声响便成了工程师不得不考虑的问题。
发明内容
本公开的目的是提供一种智能化且节能的车辆下电控制方法、装置、介质及设备。
为了实现上述目的,本公开提供一种车辆下电控制方法,所述方法包括:
若接收到用户触发的车辆下电指示,则混动整车控制器(hybrid control unit,HCU)判断车辆的状态是否满足预设的下电条件;
若判定所述车辆的状态满足所述预设的下电条件,且动力电池的荷电状态(State of Charge,SOC)大于预定的荷电阈值,则所述HCU开始计时;
若在计时达到预定时长之前检测到驾驶员不在车内,则所述HCU向电池管理系统(Battery Management System,BMS)发送继电器断开请求;
响应于接收到所述继电器断开请求,所述BMS控制动力电池的继电器断开。
可选地,所述方法还包括:
若判定所述车辆的状态满足所述预设的下电条件,且所述动力电池的SOC小于或等于所述预定的荷电阈值,则所述HCU直接向所述BMS发送所述继电器断开请求。
可选地,所述方法还包括:
在计时达到所述预定时长时,所述HCU向所述BMS发送所述继电器断开请求。
可选地,在所述BMS控制动力电池的继电器断开之后,所述方法还包括:
所述BMS检测所述动力电池的继电器是否粘连;
所述BMS将检测结果发送至所述HCU;
若所述检测结果指示无粘连,则所述HCU控制所述车辆进入休眠状态。
可选地,所述预设的下电条件包括:车速小于预定的车速阈值、发动机转速小于预定的转速阈值、皮带传动起动发电机退出工作状态、DCDC退出工作状态、低压蓄电池的SOC大于预定的电量阈值以及高压回路中的电流小于预定的电流阈值。
本公开还提供一种车辆下电控制装置,所述装置包括:
HCU,用于若接收到用户触发的车辆下电指示,则判断车辆的状态是否满足预设的下电条件;若判定所述车辆的状态满足所述预设的下电条件,且动力电池的SOC大于预定的荷电阈值,则开始计时;若在计时达到预定时长之前检测到驾驶员不在车内,则向BMS发送继电器断开请求;
所述BMS,用于响应于接收到所述继电器断开请求,控制动力电池的继电器断开。
可选地,所述HCU还用于:
若判定所述车辆的状态满足所述预设的下电条件,且所述动力电池的SOC小于或等于所述预定的荷电阈值,则直接向所述BMS发送所述继电器断开请求。
可选地,所述HCU还用于:
在计时达到所述预定时长时,向所述BMS发送所述继电器断开请求。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开提供的方法的步骤。
本公开还提供一种电子设备,包括:
存储器,其上存储有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现本公开提供的方法的步骤。
通过上述技术方案,若判定车辆的状态满足预设的下电条件,且动力电池的SOC大于预定的荷电阈值,则HCU开始计时;若在计时达到预定时长之前检测到驾驶员不在车内,则HCU向BMS发送继电器断开请求,以使BMS控制动力电池的继电器断开。这样,一方面,当驾驶员不在车内时,再控制动力电池的继电器断开,能够避免继电器触点断开产生的噪音影响到驾驶员;另一方面,还权衡考虑了动力电池的能量状态,使继电器触点的延时断开不会过多影响动力电池的能量的储备,从而在保障车辆现有续航能力的情况下,尽可能地避免了对驾驶员的噪声影响。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是一示例性实施例提供的车辆下电控制方法的流程图;
图2是另一示例性实施例提供的车辆下电控制方法的流程图;
图3是又一示例性实施例提供的车辆下电控制方法的流程图;
图4是又一示例性实施例提供的车辆下电控制方法的流程图;
图5是又一示例性实施例提供的车辆下电控制方法的流程图;
图6是一示例性实施例提供的车辆下电控制装置的框图;
图7是一示例性实施例示出的一种电子设备的框图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
新能源汽车中增加了上下电功能,通过复杂的控制策略控制高压部件及驱动部件进入/退出工作模式。其中,在控制各高压零部件退出工作模式时,最主要的是使动力电池打开继电器,完成高压下电。由于动力电池的硬件特性,在打开动力电池继电器触点时会产生明显的声响,导致在车辆停车下电过程中,驾驶员都能听到明显的异响,这对驾驶员来说是一种噪音。本公开在保障车辆现有续航能力的情况下,尽可能地避免继电器的触点断开对驾驶员的噪声影响。
图1是一示例性实施例提供的车辆下电控制方法的流程图。如图1所示,该方法可 以包括以下步骤。
步骤S11,若接收到用户触发的车辆下电指示,则HCU判断车辆的状态是否满足预设的下电条件。
步骤S12,若判定车辆的状态满足预设的下电条件,且动力电池的SOC大于预定的荷电阈值,则HCU开始计时。
步骤S13,若在计时达到预定时长之前检测到驾驶员不在车内,则HCU向BMS发送继电器断开请求。
步骤S14,响应于接收到继电器断开请求,BMS控制动力电池的继电器断开。
在需要将车辆下电时,用户可以触发特定按键,以向HCU发送车辆下电指示。在相关技术中,接收到车辆下电指示后,HCU控制车辆完成下电。例如,用户按下无钥匙进入及启动(Passive Entry Passive Start,PEPS)系统按键,供电系统断开IG1和IG2继电器,将电源模式切换为OFF模式,即可切断各控制部件的供电,使车辆完成下电。
在本公开中,接收到车辆下电指示后,HCU可以先判断车辆的状态是否满足预设的下电条件。若满足上述预设的下电条件,则可以认为能够切断动力电池的继电器来安全下电了。其中,预设的下电条件可以包括:车速小于预定的车速阈值、发动机转速小于预定的转速阈值(例如小于2km/h,可认为车辆已静止)、皮带传动起动发电机退出工作状态、DCDC退出工作状态、低压蓄电池的SOC大于预定的电量阈值以及高压回路中的电流小于预定的电流阈值。本公开对判断上述条件的先后顺序并不作限定。
若动力电池的SOC大于预定的荷电阈值,则可以认为动力电池目前有较多的电量,从而可以允许通过动力电池的继电器延迟断开来避免对驾驶员产生噪声影响。
对于驾驶员是否离开座椅不在车内,可通过车辆中配置的重力感应座椅反馈的信号来判断。例如,若车内的重力感应座椅反馈的信号指示座椅上的重量大于预定的重量阈值,则可以认为驾驶员还在车内;反之,若重力感应座椅反馈的信号指示座椅上的重量小于或等于预定的重量阈值,则可以认为驾驶员不在车内。
或者,HCU还可根据加速踏板、制动踏板、安全带状态及车门状态综合判断驾驶员是否离位。例如,加速踏板或制动踏板被踩下、安全带未解开、车速减小到零之后车门没有被开启,满足任意一条均可以判断驾驶员还在车内。
用户触发车辆下电指示之后,若驾驶员在计时达到预定时长之前离开车内,则HCU检测到驾驶员不在车内,此时向BMS发送继电器断开请求,以使BMS控制动力电池的 继电器断开。预定时长可以根据试验或经验得到。
通过上述技术方案,若判定车辆的状态满足预设的下电条件,且动力电池的SOC大于预定的荷电阈值,则HCU开始计时;若在计时达到预定时长之前检测到驾驶员不在车内,则HCU向BMS发送继电器断开请求,以使BMS控制动力电池的继电器断开。这样,一方面,当驾驶员不在车内时,再控制动力电池的继电器断开,能够避免继电器触点断开产生的噪音影响到驾驶员;另一方面,还权衡考虑了动力电池的能量状态,使继电器触点的延时断开不会过多影响动力电池的能量的储备,从而在保障车辆现有续航能力的情况下,尽可能地避免了对驾驶员的噪声影响。
图2是另一示例性实施例提供的车辆下电控制方法的流程图。如图2所示,在图1的基础上,该方法还可以包括步骤S120。
步骤S120,若判定车辆的状态满足预设的下电条件,且动力电池的SOC小于或等于预定的荷电阈值,则HCU直接向BMS发送继电器断开请求。
若动力电池的SOC小于或等于预定的荷电阈值,则可以认为动力电池目前电量较少,为了保障后续的用电,不考虑将动力电池的继电器延迟断开,HCU不进行计时,直接将继电器断开来时车辆下电。
该实施例中,优先保障车辆的续航用电,避免因继电器延迟断开而影响车辆的正常行驶。
图3是又一示例性实施例提供的车辆下电控制方法的流程图。如图3所示,在图1的基础上,该方法还可以包括步骤S130。
步骤S130,在计时达到预定时长时,HCU向BMS发送继电器断开请求。
也就是,通过使继电器触点的延时断开的方法来避免对驾驶员产生的噪声影响,是被限定在预定时长内的。若超过预定时长,则不再考虑噪声影响,而是直接控制断开继电器。这样是考虑到车辆不断电会有电量的消耗,利用预定时长,在电量消耗和噪声影响之间进行折衷。该实施例中,兼顾了电量消耗和噪声影响,在保障车辆现有续航能力的情况下,尽可能地避免了对驾驶员的噪声影响。
图4是又一示例性实施例提供的车辆下电控制方法的流程图。如图4所示,在图1的基础上,在BMS控制动力电池的继电器断开的步骤S14之后,该方法还可以包括以下步骤。
步骤S15,BMS检测动力电池的继电器是否粘连。
步骤S16,BMS将检测结果发送至HCU。
步骤S17,若检测结果指示无粘连,则HCU控制车辆进入休眠状态。
当控制动力电池的继电器断开之后,有可能会发生继电器粘连现象。出于对安全性的考虑,可以在确认继电器无粘连之后,再控制车辆进入休眠状态。可以应用相关技术中的方法来判断继电器是否粘连。该实施例中,在保障继电器无粘连的情况下控制车辆进入休眠状态,增强了车辆的安全性。
图5是又一示例性实施例提供的车辆下电控制方法的流程图。如图5所示,车辆下电控制方法可以包括以下步骤。
(1)当驾驶员按动一键启动开关后,PEPS接收车身电子稳定系统(Electronic Stability Program,ESP)发送的车速,并进行判断;
若满足车速<5km/h的条件,则发送KL15OFF信号给HCU、EMS和各高压零部件。当接收到PEPS发送的KL15OFF信号后,HCU开始判断车辆的状态是否满足预设的下电条件,并请求仪表熄灭Ready灯;
若不满足车速<5km/h的条件,则PEPS保持IG1/IG2吸合,PEPS发送KL15ON信号,以使车浪继续正常行驶。
(2)HCU接收ESP发送的车速,在检测车速<2km/h、发动机状态为退出工作状态(停机)、发动机转速小于预定转速时进行下一步车辆状态的检查;
若发动机未停机、转速未降低至小于预定转速、或者车速≥2km/h,则车辆执行延时下电流程,直至发动机停机、转速小于预定转速且车速<2km/h后,执行下一步操作;
(3)HCU检测皮带传动起动发电机(Belt-Driven Starter Generator,BSG)状态、DCDC状态、12V低压蓄电池状态、电池包温度状态等。若BSG退出工作状态、低压蓄电池的SOC>80%、且DCDC退出工作状态,则HCU检测高压回路中的电流(由BMS发送),若高压回路中的电流大于电流阈值,则HCU请求电机进入主动短路模式(避免过高的反电动势对动力电池、母线电容及其他高压件的损害);若高压回路中的电流小于电流阈值,则HCU判定车辆的状态满足预设的下电条件。
(4)HCU开始做延时打开动力电池继电器的策略,综合考虑驾驶员是否在车内、高压动力电池的状态及持续高压状态的能量消耗,判断发送断开继电器请求给BMS的时机。
具体地,若高压动力电池的SOC小于荷电阈值,则仪表盘显示“动力电池电量低, 请及时充电”,并且HCU发送断开继电器请求给BMS;
若高压动力电池的SOC大于荷电阈值,则HCU开始计时;
若在计时达到预定时长(根据延迟闭合继电器的综合能耗进行标定,例如,30s)之前检测到驾驶员不在车内,则HCU发送断开继电器请求给BMS;
若计时达到预定时长,则HCU发送断开继电器请求给BMS。
(5)当接收到HCU断开继电器的请求后,BMS控制断开继电器并做粘连检测,BMS上报电池状态及粘连检测结果给HCU,若无粘连,则HCU停发报文并进入休眠状态,此时整车下电完成。
图6是一示例性实施例提供的车辆下电控制装置的框图。如图6所示,车辆下电控制装置600可以包括HCU 601和BMS 602。
HCU 601用于若接收到用户触发的车辆下电指示,则判断车辆的状态是否满足预设的下电条件;若判定车辆的状态满足预设的下电条件,且动力电池的SOC大于预定的荷电阈值,则开始计时;若在计时达到预定时长之前检测到驾驶员不在车内,则向BMS 602发送继电器断开请求。
BMS 602用于响应于接收到继电器断开请求,控制动力电池的继电器断开。
可选地,HCU 601还用于若判定车辆的状态满足预设的下电条件,且动力电池的SOC小于或等于预定的荷电阈值,则直接向BMS 602发送继电器断开请求。
可选地,HCU 601还用于在计时达到预定时长时,向BMS 602发送继电器断开请求。
可选地,BMS 602还用于检测动力电池的继电器是否粘连并将检测结果发送至HCU601;HCU 601还用于若检测结果指示无粘连,则控制车辆进入休眠状态。
可选地,预设的下电条件包括:车速小于预定的车速阈值、发动机转速小于预定的转速阈值、皮带传动起动发电机退出工作状态、DCDC退出工作状态、低压蓄电池的SOC大于预定的电量阈值以及高压回路中的电流小于预定的电流阈值。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
通过上述技术方案,一方面,当驾驶员不在车内时,再控制动力电池的继电器断开,能够避免继电器触点断开产生的噪音影响到驾驶员;另一方面,还权衡考虑了动力电池的能量状态,使继电器触点的延时断开不会过多影响动力电池的能量的储备,从而在保障车辆现有续航能力的情况下,尽可能地避免了对驾驶员的噪声影响。
图7是一示例性实施例示出的一种电子设备700的框图。如图7所示,该电子设备700可以包括:处理器701,存储器702。该电子设备700还可以包括多媒体组件703,输入/输出(I/O)接口704,以及通信组件705中的一者或多者。
其中,处理器701用于控制该电子设备700的整体操作,以完成上述的车辆下电控制方法中的全部或部分步骤。存储器702用于存储各种类型的数据以支持在该电子设备700的操作,这些数据例如可以包括用于在该电子设备700上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器702可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件703可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器702或通过通信组件705发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口704为处理器701和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件705用于该电子设备700与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、NB-IOT、eMTC、或其他5G等等,或它们中的一种或几种的组合,在此不做限定。因此相应的该通信组件705可以包括:Wi-Fi模块,蓝牙模块,NFC模块等等。
在一示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的车辆下电控制方法。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程 序指令被处理器执行时实现上述的车辆下电控制方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器702,上述程序指令可由电子设备700的处理器701执行以完成上述的车辆下电控制方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的车辆下电控制方法的代码部分。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被 本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述 了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种车辆下电控制方法,其特征在于,所述方法包括:
    若接收到用户触发的车辆下电指示,则HCU判断车辆的状态是否满足预设的下电条件;
    若判定所述车辆的状态满足所述预设的下电条件,且动力电池的SOC大于预定的荷电阈值,则所述HCU开始计时;
    若在计时达到预定时长之前检测到驾驶员不在车内,则所述HCU向BMS发送继电器断开请求;
    响应于接收到所述继电器断开请求,所述BMS控制动力电池的继电器断开。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若判定所述车辆的状态满足所述预设的下电条件,且所述动力电池的SOC小于或等于所述预定的荷电阈值,则所述HCU直接向所述BMS发送所述继电器断开请求。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在计时达到所述预定时长时,所述HCU向所述BMS发送所述继电器断开请求。
  4. 根据权利要求1-3中任一权利要求所述的方法,其特征在于,在所述BMS控制动力电池的继电器断开之后,所述方法还包括:
    所述BMS检测所述动力电池的继电器是否粘连;
    所述BMS将检测结果发送至所述HCU;
    若所述检测结果指示无粘连,则所述HCU控制所述车辆进入休眠状态。
  5. 根据权利要求1-4中任一权利要求所述的方法,其特征在于,所述预设的下电条件包括:车速小于预定的车速阈值、发动机转速小于预定的转速阈值、皮带传动起动发电机退出工作状态、DCDC退出工作状态、低压蓄电池的SOC大于预定的电量阈值以及高压回路中的电流小于预定的电流阈值。
  6. 一种车辆下电控制装置,其特征在于,所述装置包括:
    HCU,用于若接收到用户触发的车辆下电指示,则判断车辆的状态是否满足预设的 下电条件;若判定所述车辆的状态满足所述预设的下电条件,且动力电池的SOC大于预定的荷电阈值,则开始计时;若在计时达到预定时长之前检测到驾驶员不在车内,则向BMS发送继电器断开请求;
    所述BMS,用于响应于接收到所述继电器断开请求,控制动力电池的继电器断开。
  7. 根据权利要求6所述的装置,其特征在于,所述HCU还用于:
    若判定所述车辆的状态满足所述预设的下电条件,且所述动力电池的SOC小于或等于所述预定的荷电阈值,则直接向所述BMS发送所述继电器断开请求。
  8. 根据权利要求6或7所述的装置,其特征在于,所述HCU还用于:
    在计时达到所述预定时长时,向所述BMS发送所述继电器断开请求。
  9. 根据权利要求6-8中任一权利要求所述的装置,其特征在于,所述BMS还用于检测所述动力电池的继电器是否粘连,并将检测结果发送至所述HCU;
    所述HCU还用于若所述检测结果指示无粘连,则控制所述车辆进入休眠状态。
  10. 根据权利要求6-9中任一权利要求所述的装置,其特征在于,所述预设的下电条件包括:车速小于预定的车速阈值、发动机转速小于预定的转速阈值、皮带传动起动发电机退出工作状态、DCDC退出工作状态、低压蓄电池的SOC大于预定的电量阈值以及高压回路中的电流小于预定的电流阈值。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-5中任一项所述方法的步骤。
  12. 一种电子设备,其特征在于,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1-5中任一项所述方法的步骤。
PCT/CN2022/084180 2021-05-20 2022-03-30 车辆下电控制方法、装置、介质及设备 WO2022242331A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22803656.2A EP4328080A1 (en) 2021-05-20 2022-03-30 Vehicle power-off control method and apparatus, and medium and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110553911.7A CN114347850A (zh) 2021-05-20 2021-05-20 车辆下电控制方法、装置、介质及设备
CN202110553911.7 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022242331A1 true WO2022242331A1 (zh) 2022-11-24

Family

ID=81096373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084180 WO2022242331A1 (zh) 2021-05-20 2022-03-30 车辆下电控制方法、装置、介质及设备

Country Status (3)

Country Link
EP (1) EP4328080A1 (zh)
CN (1) CN114347850A (zh)
WO (1) WO2022242331A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114537146B (zh) * 2022-04-25 2022-08-23 潍柴动力股份有限公司 一种车辆控制方法、装置、电子设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341265A (zh) * 2009-03-03 2012-02-01 株式会社Lg化学 用于控制混合动力车辆中的继电器的装置和方法
JP2017135035A (ja) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 リレー固着検出システム
WO2018066624A1 (ja) * 2016-10-06 2018-04-12 株式会社デンソー 電源システム制御装置
CN108608865A (zh) * 2016-12-09 2018-10-02 上海大郡动力控制技术有限公司 电动汽车整车控制器控制高压上下电的方法
CN109484182A (zh) * 2018-11-12 2019-03-19 安徽鑫盛汽车制造有限公司 一种电动汽车高压下电控制方法
CN109795374A (zh) * 2019-01-25 2019-05-24 汉腾汽车有限公司 一种混合动力汽车中氢燃料电池的控制方法及系统
CN109849733A (zh) * 2019-02-19 2019-06-07 广州小鹏汽车科技有限公司 用于电动车辆高压继电器粘连检测及处理的装置和方法
CN113135112A (zh) * 2021-04-20 2021-07-20 宝能汽车科技有限公司 下电控制方法、系统、电子设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829307B1 (ko) * 2007-06-04 2008-05-13 현대자동차주식회사 하이브리드 전기 차량의 고전압 릴레이 고장진단 제어방법
CN207190815U (zh) * 2017-07-25 2018-04-06 郑州宇通客车股份有限公司 一种车辆及电动车蓄电池供电系统
CN110254236A (zh) * 2019-06-18 2019-09-20 广西汽车集团有限公司 一种高压上电控制方法、装置和电动汽车
CN110466355B (zh) * 2019-08-29 2021-10-12 广州小鹏汽车科技有限公司 电动汽车智能高压延时下电控制方法及电动汽车
CN112477605B (zh) * 2020-12-04 2022-04-08 浙江吉利控股集团有限公司 一种车辆上下电的控制方法和控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341265A (zh) * 2009-03-03 2012-02-01 株式会社Lg化学 用于控制混合动力车辆中的继电器的装置和方法
JP2017135035A (ja) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 リレー固着検出システム
WO2018066624A1 (ja) * 2016-10-06 2018-04-12 株式会社デンソー 電源システム制御装置
CN108608865A (zh) * 2016-12-09 2018-10-02 上海大郡动力控制技术有限公司 电动汽车整车控制器控制高压上下电的方法
CN109484182A (zh) * 2018-11-12 2019-03-19 安徽鑫盛汽车制造有限公司 一种电动汽车高压下电控制方法
CN109795374A (zh) * 2019-01-25 2019-05-24 汉腾汽车有限公司 一种混合动力汽车中氢燃料电池的控制方法及系统
CN109849733A (zh) * 2019-02-19 2019-06-07 广州小鹏汽车科技有限公司 用于电动车辆高压继电器粘连检测及处理的装置和方法
CN113135112A (zh) * 2021-04-20 2021-07-20 宝能汽车科技有限公司 下电控制方法、系统、电子设备及存储介质

Also Published As

Publication number Publication date
EP4328080A1 (en) 2024-02-28
CN114347850A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN107662501B (zh) 纯电动汽车下电控制方法及纯电动汽车
JP6574456B2 (ja) 電動車両の制御装置
JP4578420B2 (ja) バッテリ上り防止装置
US9043081B2 (en) Electronic control device and vehicle control system
CN106585529B (zh) 车辆电气系统
JP2017537589A (ja) 電気自動車用のステアリングパワーシステム及びそれを制御する方法
JP5216106B2 (ja) 自動車用電気システムおよび始動モータの制御方法およびこのような電気システムにおけるバッテリアイソレータ
JP2017099250A (ja) 車両用バッテリーの過放電防止装置及びその方法
CN108790848B (zh) 一种燃料电池车辆坡道起步控制系统、方法及车辆
JP2008193871A (ja) 車両用電池管理装置
WO2022242331A1 (zh) 车辆下电控制方法、装置、介质及设备
WO2021143743A1 (zh) 混动车辆的电池包的保护方法和装置
KR20150044201A (ko) 차량용 배터리 소모전류 차단 장치 및 그 방법
JP2012070581A (ja) 車両用電源装置
KR20180008976A (ko) 자동차용 배터리 과충전 방지 시스템 및 그 제어방법
JP2008154383A (ja) 車両用発電機の制御装置
CN116461489A (zh) 发动机启停控制方法、装置、存储介质和车辆
JP4086656B2 (ja) 電気自動車のバッテリ制御装置
CN113135112A (zh) 下电控制方法、系统、电子设备及存储介质
CN114537211A (zh) 一种充电控制方法、装置与车辆
CN114454719A (zh) 车辆控制方法和装置、介质、设备、车辆
KR102598634B1 (ko) 차량 전원 제어 장치 및 방법
CN114643902B (zh) 轨道车辆充电控制方法、休眠唤醒装置以及轨道车辆
WO2023021161A1 (en) Extended-use mode for an ancillary vehicle function
KR102496195B1 (ko) 차량의 능동형 전력 제어 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022803656

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022803656

Country of ref document: EP

Effective date: 20231120

NENP Non-entry into the national phase

Ref country code: DE