WO2021204262A1 - 一种纯电可用功率确定方法、系统及车辆 - Google Patents

一种纯电可用功率确定方法、系统及车辆 Download PDF

Info

Publication number
WO2021204262A1
WO2021204262A1 PCT/CN2021/086223 CN2021086223W WO2021204262A1 WO 2021204262 A1 WO2021204262 A1 WO 2021204262A1 CN 2021086223 W CN2021086223 W CN 2021086223W WO 2021204262 A1 WO2021204262 A1 WO 2021204262A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
fuel cell
motor
vehicle
state
Prior art date
Application number
PCT/CN2021/086223
Other languages
English (en)
French (fr)
Inventor
吴麦青
王胜博
李雷
刘志伟
郝阳
张庚楠
王林啸
申亚洲
周明旺
耿延龙
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP21784976.9A priority Critical patent/EP4129752A4/en
Priority to US17/915,674 priority patent/US20230139991A1/en
Publication of WO2021204262A1 publication Critical patent/WO2021204262A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/71Arrangement of fuel cells within vehicles specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present disclosure relates to the technical field of new energy vehicles, and in particular to a method, system and vehicle for determining the available power of pure electricity.
  • the fuel cell vehicle uses battery packs and fuel cell systems as power devices, and through the control system, the two power devices are organically coordinated and matched to achieve the best energy distribution, so as to achieve low-energy and high-efficiency driving The dual optimal effect of sex and economy.
  • the existing method to determine the available output power of the battery pack requires complicated logical calculations through the gearbox ratio and the motor speed, and due to the large deviation of the motor speed, it is easy to cause a large deviation in the calculated power; At the same time, because energy recovery may occur at any time during the entire operation of the vehicle, if the available output power of the battery pack is displayed on the instrument, the existing method of determining the available power of the battery pack will cause the indicator of the instrument's available power display to jump. Give users a bad visual experience.
  • the present disclosure aims to propose a method, system and vehicle for determining the available power of pure electricity to solve the existing method of determining the available power of pure electricity in fuel cell vehicles, which requires complex logic operations and large deviations in calculation results.
  • the problem aims to propose a method, system and vehicle for determining the available power of pure electricity to solve the existing method of determining the available power of pure electricity in fuel cell vehicles, which requires complex logic operations and large deviations in calculation results.
  • a method for determining the available power of pure electricity is applied to a vehicle including a fuel cell.
  • the vehicle further includes a battery pack and a motor. Both the fuel cell and the battery pack are electrically connected to the motor, wherein the method includes :
  • the pure electric available power is determined.
  • the starting power is the minimum output of the fuel cell when the fuel cell is used to drive the motor, which is more efficient than using the battery pack to drive the motor. power.
  • the current driving state includes the current gear state of the vehicle and the current start-stop state of the energy recovery function.
  • the energy recovery function is in the inactive state, and the fuel cell is in the inactive state, according to the maximum peak power, the maximum output power and The smaller value of the starting power determines the available pure electric power.
  • the obtaining the maximum peak power output by the motor includes:
  • the maximum peak power is determined according to the maximum output torque and the current rotation speed.
  • Another objective of the embodiments of the present disclosure is to provide a pure electric available power determination system, which is applied to a vehicle including a fuel cell.
  • the vehicle also includes a battery pack and a motor.
  • the motor is electrically connected, wherein the system includes:
  • a monitoring module for monitoring the current driving state of the vehicle and the current start-stop state of the fuel cell
  • An obtaining module for obtaining the maximum peak power output by the motor, the maximum output power of the battery pack, and the starting power of the fuel cell;
  • the determining module is configured to determine the available pure electric power according to the current driving state, the current start-stop state of the fuel cell, the maximum peak power, the maximum output power, and the start-up power.
  • the starting power is the minimum output of the fuel cell when the fuel cell is used to drive the motor, which is more efficient than the battery pack to drive the motor. power.
  • the current driving state includes the current gear state of the vehicle and the current start-stop state of the energy recovery function.
  • the determining module includes:
  • the first determining unit is configured to determine when the current gear state of the vehicle is the non-driving gear state, and/or the energy recovery function is in the activated state, and/or the fuel cell is in the activated state
  • the available power of pure electricity is 0;
  • the second determining unit is configured to, when the current gear state of the vehicle is the driving gear state, and the energy recovery function is in the inactive state, and the fuel cell is in the inactive state, according to the maximum peak power , The smaller value of the maximum output power and the starting power determines the available pure electric power.
  • the acquisition module includes:
  • An obtaining unit for obtaining the maximum output torque of the motor and the current rotation speed of the motor
  • the determining unit is configured to determine the maximum peak power according to the maximum output torque and the current rotation speed.
  • Another object of the present disclosure is to provide a vehicle that includes a fuel cell, a battery pack, and a motor, and both the fuel cell and the battery pack are electrically connected to the motor, wherein the vehicle further includes the above The described pure electric available power determination system.
  • the current start-stop state of the fuel cell By monitoring the current driving state of the vehicle, the current start-stop state of the fuel cell, and obtain the maximum peak power output by the motor, the maximum output power of the battery pack, and the start-up power of the fuel cell; The current start-stop state of the fuel cell, the maximum peak power, the maximum output power, and the start-up power determine the available pure electric power. Because only the driving state of the vehicle, the start-stop state of the fuel cell, the maximum peak power of the motor, the maximum output power of the battery pack, and the start-up power of the fuel cell can be used to quickly determine the available power of pure electricity without complicated logic. The calculation takes into account the working status of the vehicle, fuel cell system, motor and battery pack, so that the determined pure electric available power is closer to the actual available power.
  • FIG. 1 is a schematic flowchart of a method for determining available pure electric power proposed by an embodiment of the disclosure
  • FIG. 2 is an execution flow chart of the method for determining the pure electric available power proposed by the embodiment of the disclosure
  • FIG. 3 is a schematic diagram of the structure of the pure electric available power determination system proposed by an embodiment of the disclosure.
  • Fig. 4 schematically shows a block diagram of a computing processing device for executing the method according to the present disclosure.
  • Fig. 5 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present disclosure.
  • FIG. 1 shows a schematic diagram of a flow chart for determining the available power of pure electricity provided by an embodiment of the present disclosure.
  • the method for determining available power of pure electricity provided by the embodiment of the present disclosure is applied to a fuel cell vehicle. It includes a battery pack and a motor, and both the fuel cell and the battery pack are electrically connected to the motor, wherein the method includes steps S100 to S300.
  • both the fuel cell and the battery pack are electrically connected to the motor, that is, both the fuel cell and the battery pack can provide energy for the motor to drive the vehicle.
  • both the fuel cell and the battery pack can provide energy for the motor to drive the vehicle.
  • Step S100 Monitor the current driving state of the vehicle and the current start-stop state of the fuel cell.
  • step S100 because the power requirements of the vehicle are different in different driving states, correspondingly, the working state of each battery will be different to cope with the power demand of the vehicle in different driving states. Therefore, the current driving state of the vehicle needs to be monitored. To determine the available power of the battery pack;
  • step S100 because the vehicle is completely driven by the battery pack when the fuel cell is not started, the available power of the battery pack is determined by the performance of the battery pack itself and the output performance of the motor; and when the fuel cell is started, because of the battery pack’s
  • the energy consumption economy is not as good as that of fuel cells.
  • Step S200 Obtain the maximum peak power output by the motor, the maximum output power of the battery pack, and the starting power of the fuel cell.
  • the maximum peak power output by the motor refers to the maximum output power that the motor can achieve under the current speed condition. This power is also what the vehicle can actually output on the premise that the output power of the battery pack is sufficient. Upper limit of power.
  • the maximum output power of the battery pack refers to the upper limit of the power that the battery pack can output in the current state, and the maximum output power is determined by the power of the battery pack and the performance of the battery pack.
  • the starting power of the fuel cell refers to the power required by the vehicle that triggers the start of the fuel cell.
  • the aforementioned starting power is the minimum output power of the fuel cell when the fuel cell is used to drive the motor, which is more efficient than the use of the battery pack to drive the motor. That is to say, the fuel cell is preset to start only when the energy consumption economy of the fuel cell is higher than the energy consumption economy of the battery pack. This can optimize the overall energy consumption of the vehicle.
  • the maximum peak power output by the motor can be calculated by combining the current speed of the motor and the external characteristic curve of the motor.
  • the above external characteristic curve shows the output power of the motor and the corresponding relationship between the output torque and the speed.
  • the maximum output power and maximum output torque of the motor can be determined at different speeds.
  • the drive motor is in a constant torque state; when the speed increases to the output of the motor The speed when the power reaches its maximum power value, that is, the inflection point speed; after that, as the speed continues to increase, the output torque of the motor begins to decrease, and its output power remains at the maximum power value, and the motor is in a constant power state.
  • the external characteristic curve needs to be set through experiments in advance. Because of the difference in performance between vehicles, different vehicles need to be configured with different external characteristic curves.
  • the maximum peak power output by the motor can be determined by the current speed of the motor and the maximum output torque in the external characteristic curve.
  • the maximum vehicle output power is a calibrated value (to be determined, TBD), which is determined by the overall performance of the vehicle.
  • the maximum vehicle output power, the maximum output power of the battery pack, and the start-up power of the fuel cell can be obtained by accessing the vehicle controller, battery pack, and fuel cell through the Controller Area Network (CAN), respectively. .
  • CAN Controller Area Network
  • S300 Determine the available pure electric power according to the current driving state, the current start-stop state of the fuel cell, the maximum peak power, the maximum output power, and the start-up power.
  • step S300 by analyzing the current driving state of the vehicle and the current starting state of the fuel cell, it is determined whether the battery pack can output power, and when the battery pack can output power, from the maximum peak power and the maximum output power And the starting power determines the maximum output power when only the battery pack outputs electric energy, that is, the pure electric available power; and by analyzing the current driving state of the vehicle and the current start-stop state of the fuel cell, it is determined that the battery pack cannot output power When, the pure electric output power of the vehicle is zero.
  • the method for determining the available pure electric power described in the present disclosure has the following advantages:
  • the current start-stop state of the fuel cell By monitoring the current driving state of the vehicle, the first start-stop state of the fuel cell, and obtaining the maximum peak power output by the motor, the maximum output power of the battery pack, and the start-up power of the fuel cell;
  • the current start-stop state of the fuel cell, the maximum peak power, the maximum output power, and the start-up power determine the available pure electric power. Because only the driving state of the vehicle, the start-stop state of the fuel cell, the maximum peak power of the motor, the maximum output power of the battery pack, and the start-up power of the fuel cell can be used to quickly determine the available power of pure electricity without complicated logic.
  • the calculation takes into account the working status of the vehicle, fuel cell system, motor and battery pack, making the determined pure electric available power closer to the actual available power, thus solving the existing method of determining the pure electric available power in fuel cell vehicles , It is necessary to carry out complex logic operations and the problem of large deviation of the calculation results.
  • the vehicle provided by the embodiment of the present disclosure is a vehicle with energy recovery function, that is, the above-mentioned motor can be driven by a battery pack and/or fuel cell to drive the vehicle to travel; at the same time, the above-mentioned motor can also be driven by the vehicle.
  • the battery pack is used for both It is used to supply power to the above-mentioned motor and other electrical components of the vehicle, and is also used to store the electrical energy generated when the motor performs energy recovery.
  • the above-mentioned energy recovery process refers to the use of a motor to convert a part of the kinetic energy during braking or deceleration of the vehicle into electrical energy through magnetism and store it in the power battery.
  • a certain braking resistance is generated on the motor to decelerate the vehicle.
  • the process of braking The direction of the braking resistance is opposite to the rotation direction of the motor, so the vehicle can be braked and decelerated. It can be seen from the process of energy recovery that when the vehicle is recovering energy, the battery pack does not need to output power.
  • the current driving state specifically includes the current gear state of the vehicle And the current start-stop status of the energy recovery function.
  • the vehicle has different power requirements in different gear states, correspondingly, the working state of each battery will be different to cope with the power demand of the vehicle in different gear states. Therefore, it is necessary to monitor the vehicle.
  • the current gear status is used to determine the available power of the battery pack.
  • the current start-stop state of the energy recovery function includes two situations where the energy recovery function is in an on state and the energy recovery function is in an inactive state. Because when the energy recovery function of the vehicle is activated or not activated, the power demand of the vehicle is different. Accordingly, the working state of the battery pack will be different to cope with the power demand of the vehicle in different states of the energy recovery function. Therefore, it is necessary to monitor the current start-stop state of the energy recovery function of the vehicle to determine the available power of the battery pack.
  • step S300 specifically includes steps S301 to S302:
  • the system defaults that the vehicle has no power requirements, so the output power of the battery pack is determined to be 0, that is, the pure electric available power is 0; in practical applications, the non-driving gear state is specifically expressed as P gear Or N file.
  • the activated state includes a braking energy recovery active state and a coasting energy recovery active state.
  • the above-mentioned coasting energy recovery activation state is the state when the vehicle is coasting and there is no torque demand on the accelerator pedal.
  • the coasting energy recovery activation state is triggered when the vehicle reaches the vehicle speed threshold and the brake pedal is not stepped on, and the wheel drive torque request from the accelerator pedal is less than -5Nm; preferably, the coasting energy recovery activation state is when the vehicle reaches the vehicle speed threshold, and Triggered when the accelerator pedal and brake pedal are not stepped on.
  • the control is completely driven by the fuel cell, so the battery pack is determined
  • the output power of is 0, that is, the available power of pure electricity is 0.
  • step S302 because when the vehicle is in the driving gear state, the vehicle has a power demand; when the energy recovery function of the vehicle is not started, the battery pack can be used to output electrical energy; at the same time, because the fuel cell is not started, the vehicle needs The power is completely provided by the battery pack. Therefore, when the current gear state of the vehicle is the driving gear state, and the energy recovery function is in the inactive state, and the fuel cell is in the inactive state, the pure electric available power of the battery pack is affected by the performance of the motor.
  • the performance of the battery pack and the performance of the fuel cell are jointly limited and determined, similar to the barrel principle, specifically the minimum of the maximum peak power of the motor, the maximum output power of the battery pack, and the starting power of the fuel cell.
  • the driving gear status is specifically expressed as D gear or R gear.
  • step S302 because the available pure electric power is the maximum peak power of the motor or the maximum output power of the battery pack or the starting power of the fuel cell, and the maximum output power of the battery pack and the starting power of the fuel cell are relatively fixed, and the motor’s
  • the maximum peak power is determined by the maximum output torque of the motor and the current rotation speed of the motor, that is, the maximum peak power of the motor and the rotation speed of the motor have a linear change relationship. Therefore, the pure electric available power determined in the state defined in the above step S302 is not There will be a step phenomenon. When the above available output power is displayed on the meter, it will not cause the indicator of the available power display pointer to jump. Instead, the pure electric available power corresponding to the start after parking or parking is 0. To the state where the available power of pure electricity is the above-mentioned smaller value, it increases with the increase of the motor speed, presenting a smooth change process, so as to create a good visual experience.
  • this embodiment not only solves the existing method of determining the available power of pure electricity in fuel cell vehicles, the need to perform complex logic operations and the large deviation of the calculation results, but also solves the existing method of determining the available power of the battery pack. It will cause the indicator of the available power to display the pointer to jump, which will cause the user a problem of bad visual experience.
  • FIG. 2 shows an execution flow chart of the method for determining the pure electric available power proposed by the embodiment of the present disclosure.
  • step S211 first determine the maximum peak power output by the motor by the maximum output torque of the motor and the actual speed of the motor, and then enter step S212;
  • step S212 determine the start-stop state of the fuel cell system, if the fuel cell is in the on state, go to step S213, if the fuel cell is in the off state, go to step S214;
  • step S213 it is determined that the available pure electric power is 0;
  • step S214 it is determined whether the braking energy recovery or coasting energy recovery is activated, that is, it is determined whether the energy recovery function is turned on; if the energy recovery power is turned on, step S213 is entered; if the energy recovery power is not turned on, step S215 is entered middle;
  • step S215 determine the gear state of the vehicle. If the gear state is not in a non-driving gear such as N gear or P gear, go to step S213, otherwise go to step S216;
  • step S216 it is determined whether the maximum peak power output by the motor is greater than the maximum output power of the battery. If the maximum peak power output by the motor is greater than the maximum output power of the battery, step S217 is entered, and it is determined that the available pure electric power is the maximum output power of the battery. Output power; if the maximum peak power output by the motor is not greater than the maximum output power of the battery, go to step S218;
  • step S2128 it is determined whether the maximum peak power output by the motor is greater than the minimum output power after the fuel cell is started, that is, whether the maximum peak power output by the motor is greater than the starting power of the fuel cell; if the maximum peak power output by the motor is greater than the fuel cell's starting power Starting power, go to step S219, and determine that the pure electric available power is the minimum output power after the fuel cell is started; if the maximum peak power output by the motor is not greater than the starting power of the fuel cell, go to step S220 and determine the pure electric power The available power is the maximum peak power output by the motor.
  • Another objective of the present disclosure is to provide a pure electric available power determination system, which is applied to a fuel cell vehicle.
  • the vehicle further includes a battery pack and a motor, and both the fuel cell and the battery pack are electrically connected to the motor, Among them, please refer to FIG. 3, which shows a schematic structural diagram of a pure electric available power determination system proposed by an embodiment of the present disclosure, and the system includes:
  • the monitoring module 10 is used to monitor the current driving state of the vehicle and the current start-stop state of the fuel cell;
  • the obtaining module 20 is configured to obtain the maximum peak power output by the motor, the maximum output power of the battery pack, and the starting power of the fuel cell;
  • the determining module 30 is configured to determine the available pure electric power according to the current driving state, the current start-stop state of the fuel cell, the maximum peak power, the maximum output power, and the start power.
  • the system described in the embodiment of the present disclosure monitors the current driving state of the vehicle and the current start-stop state of the fuel cell through the monitoring module 10, and the acquisition module 20 acquires the maximum peak power output by the motor, the maximum output power of the battery pack, and the The starting power of the fuel cell; the determining module 30 determines the available pure electric power according to the current driving state, the current start-stop state of the fuel cell, the maximum peak power, the maximum output power, and the starting power . Because only the driving state of the vehicle, the start-stop state of the fuel cell, the maximum peak power of the motor, the maximum output power of the battery pack, and the start-up power of the fuel cell can be used to quickly determine the available power of pure electricity without complicated logic. The calculation takes into account the working status of the vehicle, fuel cell system, motor and battery pack, so that the determined pure electric available power is closer to the actual available power.
  • the starting power is when the fuel cell is used to drive the motor, which is more efficient than using the battery pack to drive the motor, the minimum value of the fuel cell is Output Power.
  • the current driving state includes the current gear state of the vehicle and the current start-stop state of the energy recovery function.
  • the determining module 30 includes:
  • the first determining unit is configured to determine when the current gear state of the vehicle is the non-driving gear state, and/or the energy recovery function is in the activated state, and/or the fuel cell is in the activated state
  • the available power of pure electricity is 0;
  • the second determining unit is configured to, when the current gear state of the vehicle is the driving gear state, and the energy recovery function is in the inactive state, and the fuel cell is in the inactive state, according to the maximum peak power , The smaller value of the maximum output power and the starting power determines the available pure electric power.
  • the obtaining module 20 includes:
  • An obtaining unit for obtaining the maximum output torque of the motor and the current rotation speed of the motor
  • the determining unit is configured to determine the maximum peak power according to the maximum output torque and the current rotation speed.
  • Another object of the present disclosure is to provide a vehicle that includes a fuel cell, a battery pack, and a motor, and both the fuel cell and the battery pack are electrically connected to the motor, wherein the vehicle further includes the above The described pure electric available power determination system.
  • the pure electric available power determination system and the vehicle have the same advantages as the foregoing pure electric available power determination method over the prior art, and will not be repeated here.
  • the energy recovery control method, system, and vehicle monitor the current driving state of the vehicle, the current start-stop state of the fuel cell, and obtain the maximum peak power output by the motor, the maximum output power of the battery pack, and The starting power of the fuel cell; and then according to the current driving state, the current start-stop state of the fuel cell, the maximum peak power, the maximum output power, and the starting power, determine the pure electric available power. Because only the driving state of the vehicle, the start-stop state of the fuel cell, the maximum peak power of the motor, the maximum output power of the battery pack, and the start-up power of the fuel cell can be used to quickly determine the available power of pure electricity without complicated logic.
  • the calculation takes into account the working status of the vehicle, fuel cell system, motor and battery pack, making the determined pure electric available power closer to the actual available power, thus solving the existing method of determining the pure electric available power in fuel cell vehicles , Need to carry out complex logic calculations, the calculation results have large deviations, and easily lead to the problem of the indicator of the available power display on the meter jumping.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the various component embodiments of the present disclosure may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals. Such signals can be downloaded from Internet websites, or provided on carrier signals, or provided in any other form.
  • FIG. 4 shows a computing processing device that can implement the method according to the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • Such computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 5.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 4.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable code 1031', that is, code that can be read by a processor such as 1010, which, when run by a computing processing device, causes the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the present disclosure can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item. The use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

一种纯电可用功率确定方法、系统及车辆,应用于包括燃料电池的车辆,所述车辆还包括电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其中,所述方法包括:监测所述车辆的当前行驶状态、所述燃料电池的当前启停状态;获取所述电机输出的最大峰值功率、所述电池包的最大输出功率及所述燃料电池的启动功率;根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。该方法和系统可以快速确定纯电可用功率,无需经过复杂的逻辑运算,同时兼顾了车辆、燃料电池系统、电机及电池包的工作状态,使得所确定的纯电可用功率更接近实际的可用功率。

Description

一种纯电可用功率确定方法、系统及车辆
相关申请的交叉引用
本公开要求在2020年4月10日提交中国专利局、申请号为202010281158.6、名称为“一种纯电可用功率确定方法、系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及新能源汽车技术领域,特别涉及一种纯电可用功率确定方法、系统及车辆。
背景技术
当前,随着全球环保问题的日益严重,新能源汽车得以快速发展。
燃料电池汽车作为一款绿色环保新能源汽车,采用电池包和燃料电池系统作为动力装置,并通过控制系统使两种动力装置有机的协调匹配,实现最佳的能量分配,从而低能高效地取得驾驶性和经济性的双重最优效果。
而为了实现上述效果,就需要先确定电池包的可用输出功率,以供能量协调使用,保证合理的车速控制、加速性能控制及燃料电池系统启停控制,以在保证整车动力系统正常运转及工作的前提下,实现驾驶员对车辆的动力性和舒适性的要求。
但是,现有确定电池包的可用输出功率方式,需要通过变速箱传动比以及电机的转速进行繁杂的逻辑运算,且由于电机转速存在较大偏差,容易导致计算得出的功率有较大偏差;同时,因为在车辆整个运行过程中,能量回收随时都可能发生,若将电池包的可用输出功率显示在仪表上,现有确定电池包的可用功率的方式则会导致仪表可用功率显示指针跳动,给用户带来不好的视觉感受。
发明内容
有鉴于此,本公开旨在提出一种纯电可用功率确定方法、系统及车辆,以 解决现有确定燃料电池汽车中纯电可用功率的方式,需要进行复杂的逻辑运算、计算结果偏差较大的问题。
为达到上述目的,本公开的技术方案是这样实现的:
一种纯电可用功率确定方法,应用于包括燃料电池的车辆,所述车辆还包括电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其中,所述方法包括:
监测所述车辆的当前行驶状态、所述燃料电池的当前启停状态;
获取所述电机输出的最大峰值功率、所述电池包的最大输出功率及所述燃料电池的启动功率;
根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。
进一步地,所述的纯电可用功率确定方法中,所述启动功率为利用所述燃料电池驱动所述电机,比利用所述电池包驱动所述电机更高效时,所述燃料电池的最小输出功率。
进一步地,所述的纯电可用功率确定方法中,所述当前行驶状态包括所述车辆的当前档位状态及能量回收功能的当前启停状态。
进一步地,所述的纯电可用功率确定方法中,所述根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率,包括:
在所述车辆的当前档位状态为非行车档位状态,和/或所述能量回收功能处于启动状态,和/或所述燃料电池处于启动状态时,确定所述纯电可用功率为0;
在所述车辆的当前档位状态为行车档位状态,且所述能量回收功能处于未启动状态,且所述燃料电池处于未启动状态时,根据所述最大峰值功率、所述最大输出功率及所述启动功率中的较小值,确定所述纯电可用功率。
进一步地,所述的纯电可用功率确定方法中,所述获取所述电机输出的最大峰值功率,包括:
获取所述电机的最大输出扭矩及所述电机的当前转速;
根据所述最大输出扭矩及所述当前转速,确定所述最大峰值功率。
本公开实施例的另一目的还在于提出一种纯电可用功率确定系统,应用 于包括燃料电池的车辆,所述车辆还包括电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其中,所述系统包括:
监测模块,用于监测所述车辆的当前行驶状态、所述燃料电池的当前启停状态;
获取模块,用于获取所述电机输出的最大峰值功率、所述电池包的最大输出功率及所述燃料电池的启动功率;
确定模块,用于根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。
进一步地,所述的纯电可用功率确定系统中,所述启动功率为利用所述燃料电池驱动所述电机,比利用所述电池包驱动所述电机更高效时,所述燃料电池的最小输出功率。
进一步地,所述的纯电可用功率确定系统中,所述当前行驶状态包括所述车辆的当前档位状态及能量回收功能的当前启停状态。
进一步地,所述的纯电可用功率确定系统中,所述确定模块,包括:
第一确定单元,用于在所述车辆的当前档位状态为非行车档位状态,和/或所述能量回收功能处于启动状态,和/或所述燃料电池处于启动状态时,确定所述纯电可用功率为0;
第二确定单元,用于在所述车辆的当前档位状态为行车档位状态,且所述能量回收功能处于未启动状态,且所述燃料电池处于未启动状态时,根据所述最大峰值功率、所述最大输出功率及所述启动功率中的较小值,确定所述纯电可用功率。
进一步地,所述的纯电可用功率确定系统中,所述获取模块,包括:
获取单元,用于获取所述电机的最大输出扭矩及所述电机的当前转速;
确定单元,用于根据所述最大输出扭矩及所述当前转速,确定所述最大峰值功率。
本公开的再一目的在于提出一种车辆,所述车辆包括燃料电池、电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其中,所述车辆还包括如上所述的纯电可用功率确定系统。
相对于在先技术,本公开所述的纯电可用功率确定方法、系统及车辆具有以下优势:
通过监测车辆的当前行驶状态、燃料电池的当前启停状态,并获取电机输出的最大峰值功率、电池包的最大输出功率及所述燃料电池的启动功率;再根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。因为仅需通过车辆的行驶状态、燃料电池的启停状态、电机的最大峰值功率、电池包的最大输出功率及所述燃料电池的启动功率即可以快速确定纯电可用功率,无需经过复杂的逻辑运算,同时兼顾了车辆、燃料电池系统、电机及电池包的工作状态,使得所确定的纯电可用功率更接近实际的可用功率。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例所提出的纯电可用功率确定方法的流程示意图;
图2为本公开实施例所提出的纯电可用功率确定方法的执行流程图;
图3为本公开实施例所提出的纯电可用功率确定系统的结构示意图;
图4示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;并且
图5示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开 实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面将参考附图更详细地描述本申请的实施例。虽然附图中显示了本申请的实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更彻底地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
请参阅图1,示出了本公开实施例所提供的一种纯电可用功率确定的流程示意图,本公开实施例所提供的纯电可用功率确定方法,应用于燃料电池车辆,所述车辆还包括电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其中,所述方法包括步骤S100~S300。
本公开实施例中,燃料电池及电池包均与电机电连接,即燃料电池及电池包均可为电机供能,以驱动车辆运行。在实际应用中,需要根据车辆的动力需求、行驶状态及能耗经济性,确定是由燃料电池和/或电池包驱动电机转动,也即确定用于驱动电机运行的能量在燃料电池与电池包之间的具体分配情况。
步骤S100、监测所述车辆的当前行驶状态、所述燃料电池的当前启停状态。
上述步骤S100中,因为车辆在不同的行驶状态下的动力需求不同,相应地,各个电池的工作状态也会不同,以应对车辆在不同行驶状态下的动力需求,因而需要监测车辆的当前行驶状态,以用于确定电池包的可用功率;
上述步骤S100中,因为在燃料电池未启动时,车辆是完全由电池包驱动,电池包的可用功率由电池包自身性能及电机的输出性能共同决定;而在燃料电池启动时,因为电池包的能耗经济性不如燃料电池,为了实现更佳的能耗经济性,也需要调整电池包的可用功率也需要作相应调整。也即燃料电池的启停状态也影响着电池包的可用功率。因而需要监测燃料电池的当前启停状态,以用于确定电池包的可用功率。
步骤S200、获取所述电机输出的最大峰值功率、所述电池包的最大输出功率及所述燃料电池的启动功率。
在上述步骤S200中,电机输出的最大峰值功率指的是电机在当前转速条件下所能够达到的最大输出功率,该功率也即是在电池包的输出功率足够的前提下,车辆实际可以输出的功率上限值。
电池包的最大输出功率指的是电池包在当前状态下能够输出的功率上限值,该最大输出功率由电池包的电量及电池包性能决定。燃料电池的启动功率指的是触发燃料电池启动的车辆需求功率。
可选地,上述启动功率为利用所述燃料电池驱动所述电机,比利用所述电池包驱动所述电机更高效时,所述燃料电池的最小输出功率。也即预先设置燃料电池在其能耗经济性比电池包的能耗经济性更高的车辆功率需求下才会启动,这样可以使得车辆的整体能耗最优。
可选地,电机输出的最大峰值功率可以通过电机的当前转速结合电机外特性曲线计算得到。
上述外特性曲线表示了电机的输出功率及输出扭矩与转速的对应关系。根据该外特性曲线,即可以确定在不同转速下,电机的最大输出功率及最大输出扭矩。其中,在上述外特性曲线中,也即随着电机转速的提升,电机的输出功率逐渐增大,而其输出扭矩保持不变,此时驱动电机处于恒扭矩状态;在转速增加至电机的输出功率达到其最大功率值时的转速,即拐点转速;此后,随着转速的继续增加,电机的输出扭矩则开始降低,而其输出功率则保持在最大功率值状态,此时电机处于恒功率状态。
在实际应用中,该外特性曲线需要预先通过实验设定,因为车辆之间性能的差异,不同的车辆需要配置不同的外特性曲线
可选地,电机输出的最大峰值功率可以由电机的当前转速及上述外特性曲线中的最大输出扭矩所确定。具体地,电机输出的最大峰值功率Pm可通过以下公式计算得到:Pm=电机的最大输出扭矩×电机的当前转速/9550。
在实际应用中,可以将上述最大峰值功率Pm显示于车辆仪表上,并在其后增加显示最大车辆输出功率,以更直观地展示电机工作状态。具体地,可以按Pm=(电机最大输出扭矩×电机实际转速/9550)/最大车辆输出功率*100%的方式进行展示。其中,最大车辆输出功率为标定值(to be determined,TBD), 由车辆的整体性能确定。
在实际应用中,最大车辆输出功率、电池包的最大输出功率以及燃料电池的启动功率,可以分别通过控制器局域网络(Controller Area Network,CAN)访问整车控制器、电池包及燃料电池获取得到。
S300、根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。
上述步骤S300中,即通过分析车辆的当前行驶状态、燃料电池的当前启动状态,确定电池包是否可以输出功率,并在电池包可以输出功率时,从所述最大峰值功率、所述最大输出功率及所述启动功率中确定仅由电池包输出电能时的最大可输出功率,即纯电可用功率;而在通过分析车辆的当前行驶状态、燃料电池的当前启停状态,确定电池包无法输出功率时,则车辆的纯电输出功率为0。
相对于现有技术,本公开所述的纯电可用功率确定方法具有以下优势:
通过监测车辆的当前行驶状态、燃料电池的第一启停状态,并获取电机输出的最大峰值功率、电池包的最大输出功率及所述燃料电池的启动功率;再根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。因为仅需通过车辆的行驶状态、燃料电池的启停状态、电机的最大峰值功率、电池包的最大输出功率及所述燃料电池的启动功率即可以快速确定纯电可用功率,无需经过复杂的逻辑运算,同时兼顾了车辆、燃料电池系统、电机及电池包的工作状态,使得所确定的纯电可用功率更接近实际的可用功率,从而解决了现有确定燃料电池汽车中纯电可用功率的方式,需要进行复杂的逻辑运算、计算结果偏差较大的问题。
可选地,本公开实施例所提供的车辆为具有能量回收功能的车辆,即上述电机可以在电池包和/或燃料电池的驱动下转动,以驱动车辆行驶;同时,上述电机还可以在车辆需要减速、制动时,将车辆的部分动能经磁电转化为电能后对上述电池包充电,以将转化后的电能存储在上述电池包中,从而实现能量回收的目的;上述电池包既用于向上述电机及车辆的其他用电部件进行供电,还用于存储电机进行能量回收时所产生的电能。
上述能量回收的过程,指的是利用电机将车辆制动或减速时的一部分动 能通过磁电转换为电能,并存储于动力电池中,同时在电机上产生一定的制动阻力,以使车辆减速制动的过程。该制动阻力方向与电机的转动方向相反,因而可以使车辆制动、减速。由能量回收的过程可以看出,在车辆进行能量回收时,无需电池包输出功率。
因而,在一种实施方式中,在上述燃料电池车辆具有能量回收功能时,本公开实施例所提供的纯电可用功率确定方法中,所述当前行驶状态具体包括所述车辆的当前档位状态及能量回收功能的当前启停状态。
在本实施方式中,因为车辆在不同档位状态下的动力需求不同,相应地,各个电池的工作状态也会不同,以应对车辆在不同档位状态下的动力需求,因而,因而需要监测车辆的当前档位状态,以用于确定电池包的可用功率。
本实施方式中,能量回收功能的当前启停状态包括能量回收功能处于开启状态及能量回收功能处于未开启状态两种情况。因为在车辆的能量回收功能处于启动状态或处于未启动状态下时,车辆的动力需求不同,相应地,电池包的工作状态也会不同,以应对能量回收功能的不同状态下车辆的动力需求,因而,因而需要监测车辆的能量回收功能所处的当前启停状态,以用于确定电池包的可用功率。
可选地,在一种实施方式中,本公开实施例所提供的纯电可用功率确定方法中,上述步骤S300具体包括步骤S301~S302:
S301、在所述车辆的当前档位状态为非行车档位状态,和/或所述能量回收功能处于启动状态,和/或所述燃料电池处于启动状态时,确定所述纯电可用功率为0。
因为车辆在非行车档位状态时,系统默认车辆无动力要求,因而确定电池包的输出功率为0,即纯电可用功率为0;在实际应用中,非行车档位状态具体表现为P档或N档。
因为在能量回收功能处于启动状态时,车辆无动力需求,且电池包要用于存储能量回收所生成的电能,因而确定电池包的输出功率为0,即纯电可用功率为0;在实际应用中,上述能量回收公开处于启动状态包括制动能量回收激活状态、以及滑行能量回收激活状态。上述滑行能量回收激活状态即车辆处于滑行且加速踏板无扭矩需求时的状态。该滑行能量回收激活状态由车辆达到车速阈值,且未踩踏制动踏板,且来自加速踏板的轮边驱动扭矩请求小于-5Nm 时触发;优选地,滑行能量回收激活状态由车辆达到车速阈值,且未踩踏加速踏板及制动踏板时触发。
因为在燃料电池处于启动状态时,燃料电池的能耗经济性比电池包的能耗经济性更高,为了使车辆的能耗实现最优效果,控制完全由燃料电池驱动车辆,因而确定电池包的输出功率为0,即纯电可用功率为0。
S302、在所述车辆的当前档位状态为行车档位状态,且所述能量回收功能处于未启动状态,且所述燃料电池处于未启动状态时,根据所述最大峰值功率、所述最大输出功率及所述启动功率中的较小值,确定所述纯电可用功率。
上述步骤S302中,因为在车辆处于行车档位状态时,车辆有动力需求;而在车辆的能量回收功能未开始时,可以利用电池包输出电能;同时,因为燃料电池未启动,因而车辆的需求动力完全由电池包提供。因此,在所述车辆的当前档位状态为行车档位状态,且所述能量回收功能处于未启动状态,且所述燃料电池处于未启动状态时,电池包的纯电可用功率受电机性能、电池包性能以及燃料电池性能共同限制确定,类似木桶原理,具体为电机的最大峰值功率、电池包的最大输出功率及燃料电池的启动功率中的最小值。在实际应用中,行车档位状态具体表现为D档或R档。
上述步骤S302中,因为纯电可用功率为电机的最大峰值功率或者电池包的最大输出功率或者燃料电池的启动功率,而电池包的最大输出功率与燃料电池的启动功率均相对固定,且电机的最大峰值功率由电机的最大输出扭矩与电机的当前转速确定,也即电机的最大峰值功率与电机的转速呈线性变化关系,因而在上述步骤S302所限定的状态下所确定的纯电可用功率不会出现阶跃现象,在将上述可用输出功率显示在仪表上,不会导致仪表可用功率显示指针跳动,而是从驻车后启动或停车后启动所对应的纯电可用功率为0的状态,到纯电可用功率为上述较小值的状态之间,随着电机转速的增加而增加,呈现一种平顺变化的过程,从而给用于营造良好的视觉感受。
通过本实施方式,不仅解决了现有确定燃料电池汽车中纯电可用功率的方式,需要进行复杂的逻辑运算、计算结果偏差较大的问题,还解决了现有确定电池包的可用功率的方式会导致仪表可用功率显示指针跳动,给用户带来不好的视觉感受的问题。
在实际应用中,请参阅图2,示出了本公开实施例所提出的纯电可用功率 确定方法的执行流程图。
如图2所示,在步骤S211中,先通过电机最大输出扭矩及电机实际转速确定电机输出的最大峰值功率,然后进入步骤S212;
在步骤S212中,判断燃料电池系统的启停状态,若燃料电池处于开启状态,则进入步骤S213中,若燃料电池处于关闭状态,则进入步骤S214中;
在步骤S213中,确定纯电可用功率为0;
在步骤S214中,判断制动能量回收或滑行能量回收是否激活,即判断能量回收功能是否开启;若能量回收功率处于开启状态,则进入步骤S213中;若能量回收功率未开启,则进入步骤S215中;
在步骤S215中,判断车辆的档位状态,若档位状态未N档或P档等非行车档位,则进入步骤S213中,否则进入步骤S216中;
在步骤S216中,判断电机输出的最大峰值功率是否大于电池的最大输出功率,若电机输出的最大峰值功率大于电池的最大输出功率,则进入步骤S217中,并确定纯电可用功率为电池的最大输出功率;若电机输出的最大峰值功率不大于电池的最大输出功率,则进入步骤S218中;
在步骤S218中,判断电机输出的最大峰值功率是否大于燃料电池启动后的最小输出功率,即判断电机输出的最大峰值功率是否大于燃料电池的启动功率;若电机输出的最大峰值功率大于燃料电池的启动功率,则进入步骤S219中,并确定纯电可用功率为燃料电池启动后的最小输出功率;若电机输出的最大峰值功率不大于燃料电池的启动功率,则进入步骤S220中,并确定纯电可用功率为电机输出的最大峰值功率。
本公开的另一目标在于提出一种纯电可用功率确定系统,应用于燃料电池车辆,所述车辆还包括电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其中,请参阅图3,图3示出了本公开实施例所提出的一种纯电可用功率确定系统的结构示意图,所述系统包括:
监测模块10,用于监测所述车辆的当前行驶状态、所述燃料电池的当前启停状态;
获取模块20,用于获取所述电机输出的最大峰值功率、所述电池包的最大输出功率及所述燃料电池的启动功率;
确定模块30,用于根据所述当前行驶状态、所述燃料电池的当前启停状 态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。
本公开实施例所述的系统,通过监测模块10监测车辆的当前行驶状态、燃料电池的当前启停状态,并由获取模块20获取电机输出的最大峰值功率、电池包的最大输出功率及所述燃料电池的启动功率;再由确定模块30根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。因为仅需通过车辆的行驶状态、燃料电池的启停状态、电机的最大峰值功率、电池包的最大输出功率及所述燃料电池的启动功率即可以快速确定纯电可用功率,无需经过复杂的逻辑运算,同时兼顾了车辆、燃料电池系统、电机及电池包的工作状态,使得所确定的纯电可用功率更接近实际的可用功率。
可选地,所述的纯电可用功率确定系统中,所述启动功率为利用所述燃料电池驱动所述电机,比利用所述电池包驱动所述电机更高效时,所述燃料电池的最小输出功率。
可选地,所述的纯电可用功率确定系统中,所述当前行驶状态包括所述车辆的当前档位状态及能量回收功能的当前启停状态。
可选地,所述的纯电可用功率确定系统中,所述确定模块30,包括:
第一确定单元,用于在所述车辆的当前档位状态为非行车档位状态,和/或所述能量回收功能处于启动状态,和/或所述燃料电池处于启动状态时,确定所述纯电可用功率为0;
第二确定单元,用于在所述车辆的当前档位状态为行车档位状态,且所述能量回收功能处于未启动状态,且所述燃料电池处于未启动状态时,根据所述最大峰值功率、所述最大输出功率及所述启动功率中的较小值,确定所述纯电可用功率。
可选地,所述的纯电可用功率确定系统中,所述获取模块20,包括:
获取单元,用于获取所述电机的最大输出扭矩及所述电机的当前转速;
确定单元,用于根据所述最大输出扭矩及所述当前转速,确定所述最大峰值功率。
本公开的再一目的在于提出一种车辆,所述车辆包括燃料电池、电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其中,所述车辆还包 括如上所述的纯电可用功率确定系统。
所述纯电可用功率确定系统、车辆与上述纯电可用功率确定方法相对于现有技术所具有的优势相同,在此不再赘述
综上所述,本申请提供的能量回收控制方法、系统及车辆,通过监测车辆的当前行驶状态、燃料电池的当前启停状态,并获取电机输出的最大峰值功率、电池包的最大输出功率及所述燃料电池的启动功率;再根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。因为仅需通过车辆的行驶状态、燃料电池的启停状态、电机的最大峰值功率、电池包的最大输出功率及所述燃料电池的启动功率即可以快速确定纯电可用功率,无需经过复杂的逻辑运算,同时兼顾了车辆、燃料电池系统、电机及电池包的工作状态,使得所确定的纯电可用功率更接近实际的可用功率,从而解决了现有确定燃料电池汽车中纯电可用功率的方式,需要进行复杂的逻辑运算、计算结果偏差较大、且容易导致仪表上可用功率显示指针跳动的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的 信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图4示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图5所述的便携式或者固定存储单元。该存储单元可以具有与图4的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些 单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种纯电可用功率确定方法,应用于包括燃料电池的车辆,所述车辆还包括电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其特征在于,所述方法包括:
    监测所述车辆的当前行驶状态、所述燃料电池的当前启停状态;
    获取所述电机输出的最大峰值功率、所述电池包的最大输出功率及所述燃料电池的启动功率;
    根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。
  2. 根据权利要求1所述的纯电可用功率确定方法,其特征在于,所述启动功率为利用所述燃料电池驱动所述电机,比利用所述电池包驱动所述电机更高效时,所述燃料电池的最小输出功率。
  3. 根据权利要求1所述的纯电可用功率确定方法,其特征在于,所述当前行驶状态包括所述车辆的当前档位状态及能量回收功能的当前启停状态。
  4. 根据权利要求3所述的纯电可用功率确定方法,其特征在于,所述根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率,包括:
    在所述车辆的当前档位状态为非行车档位状态,和/或所述能量回收功能处于启动状态,和/或所述燃料电池处于启动状态时,确定所述纯电可用功率为0;
    在所述车辆的当前档位状态为行车档位状态,且所述能量回收功能处于未启动状态,且所述燃料电池处于未启动状态时,根据所述最大峰值功率、所述最大输出功率及所述启动功率中的较小值,确定所述纯电可用功率。
  5. 根据权利要求1所述的纯电可用功率确定方法,其特征在于,所述获取所述电机输出的最大峰值功率,包括:
    获取所述电机的最大输出扭矩及所述电机的当前转速;
    根据所述最大输出扭矩及所述当前转速,确定所述最大峰值功率。
  6. 一种纯电可用功率确定系统,应用于包括燃料电池的车辆,所述车辆还包括电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其特征在于,所述系统包括:
    监测模块,用于监测所述车辆的当前行驶状态、所述燃料电池的当前启停状态;
    获取模块,用于获取所述电机输出的最大峰值功率、所述电池包的最大输出功率及所述燃料电池的启动功率;
    确定模块,用于根据所述当前行驶状态、所述燃料电池的当前启停状态、所述最大峰值功率、所述最大输出功率及所述启动功率,确定纯电可用功率。
  7. 根据权利要求6所述的纯电可用功率确定系统,其特征在于,所述启动功率为利用所述燃料电池驱动所述电机,比利用所述电池包驱动所述电机更高效时,所述燃料电池的最小输出功率。
  8. 根据权利要求6所述的纯电可用功率确定系统,其特征在于,所述当前行驶状态包括所述车辆的当前档位状态及能量回收功能的当前启停状态;
    所述确定模块,包括:
    第一确定单元,用于在所述车辆的当前档位状态为非行车档位状态,和/或所述能量回收功能处于启动状态,和/或所述燃料电池处于启动状态时,确定所述纯电可用功率为0;
    第二确定单元,用于在所述车辆的当前档位状态为行车档位状态,且所述能量回收功能处于未启动状态,且所述燃料电池处于未启动状态时,根据所述最大峰值功率、所述最大输出功率及所述启动功率中的较小值,确定所述纯电可用功率。
  9. 根据权利要求6所述的纯电可用功率确定系统,其特征在于,所述获取模块,包括:
    获取单元,用于获取所述电机的最大输出扭矩及所述电机的当前转速;
    确定单元,用于根据所述最大输出扭矩及所述当前转速,确定所述最大峰值功率。
  10. 一种车辆,所述车辆包括燃料电池、电池包及电机,所述燃料电池及所述电池包均与所述电机电连接,其特征在于,所述车辆还包括如权利要求6~9任一所述的纯电可用功率确定系统。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执 行时,所述计算处理设备执行如权利要求1-5中任一项所述的纯电可用功率确定方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中任一项所述的纯电可用功率确定方法。
  13. 一种计算机可读介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2021/086223 2020-04-10 2021-04-09 一种纯电可用功率确定方法、系统及车辆 WO2021204262A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21784976.9A EP4129752A4 (en) 2020-04-10 2021-04-09 METHOD AND SYSTEM FOR DETERMINING THE PURE AVAILABLE ELECTRICAL POWER AND VEHICLE
US17/915,674 US20230139991A1 (en) 2020-04-10 2021-04-09 Pure electric available power determination method and system, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281158.6 2020-04-10
CN202010281158.6A CN113511110B (zh) 2020-04-10 2020-04-10 一种纯电可用功率确定方法、系统及车辆

Publications (1)

Publication Number Publication Date
WO2021204262A1 true WO2021204262A1 (zh) 2021-10-14

Family

ID=78022992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086223 WO2021204262A1 (zh) 2020-04-10 2021-04-09 一种纯电可用功率确定方法、系统及车辆

Country Status (4)

Country Link
US (1) US20230139991A1 (zh)
EP (1) EP4129752A4 (zh)
CN (1) CN113511110B (zh)
WO (1) WO2021204262A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112297858B (zh) * 2020-02-24 2021-09-24 长城汽车股份有限公司 一种能量回收控制方法、系统及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266917A (ja) * 2000-03-15 2001-09-28 Toyota Motor Corp 動力装置およびその制御方法
CN105083268A (zh) * 2015-09-16 2015-11-25 唐棣 一种燃料电池混合动力汽车系统的控制方法
CN107719163A (zh) * 2017-10-09 2018-02-23 福建福安闽东亚南电机有限公司 燃料电池汽车的控制方法及控制系统
CN108790848A (zh) * 2018-03-30 2018-11-13 潍柴动力股份有限公司 一种燃料电池车辆坡道起步控制系统、方法及车辆
CN108819767A (zh) * 2018-06-29 2018-11-16 奇瑞汽车股份有限公司 氢燃料电池汽车动力系统的控制方法及装置
CN110194065A (zh) * 2019-05-29 2019-09-03 中国第一汽车股份有限公司 车辆的整车能量控制方法、装置、车辆和存储介质
CN110789403A (zh) * 2019-11-07 2020-02-14 奇瑞汽车股份有限公司 汽车的电源控制方法、装置及存储介质
CN111717077A (zh) * 2020-06-28 2020-09-29 重庆长安新能源汽车科技有限公司 车用燃料电池的能量分配方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460881B1 (ko) * 2002-06-28 2004-12-09 현대자동차주식회사 연료전지 하이브리드 전기자동차의 동력분배 제어시스템및 제어방법
CN100581867C (zh) * 2006-12-28 2010-01-20 奇瑞汽车股份有限公司 混合动力汽车的燃料电池动力系统
JP6586999B2 (ja) * 2015-12-25 2019-10-09 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
CN107472075B (zh) * 2016-08-29 2020-01-17 宝沃汽车(中国)有限公司 动力系统的控制方法、动力系统的控制系统及车辆
KR102507227B1 (ko) * 2017-11-27 2023-03-08 현대자동차주식회사 연료전지 차량의 전력 분배 시스템 및 방법
CN108556672B (zh) * 2018-05-25 2020-08-11 中车青岛四方机车车辆股份有限公司 一种燃料电池混合动力系统的控制方法及系统
CN109823157B (zh) * 2019-01-18 2020-06-23 清华大学 一种混合动力系统及其耦合运行方法
CN110040038B (zh) * 2019-04-24 2020-03-17 中通客车控股股份有限公司 一种氢-电混合燃料电池客车能量管理控制方法及系统
CN110395144A (zh) * 2019-08-06 2019-11-01 爱驰汽车有限公司 车载双源电池包的能源管理系统、方法、设备及存储介质
CN110549876B (zh) * 2019-09-27 2021-04-20 江铃汽车股份有限公司 一种能量输出控制方法、装置和氢燃料混合动力汽车
CN110861538B (zh) * 2019-11-01 2021-11-12 深圳国氢新能源科技有限公司 燃料电池汽车混合动力控制方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266917A (ja) * 2000-03-15 2001-09-28 Toyota Motor Corp 動力装置およびその制御方法
CN105083268A (zh) * 2015-09-16 2015-11-25 唐棣 一种燃料电池混合动力汽车系统的控制方法
CN107719163A (zh) * 2017-10-09 2018-02-23 福建福安闽东亚南电机有限公司 燃料电池汽车的控制方法及控制系统
CN108790848A (zh) * 2018-03-30 2018-11-13 潍柴动力股份有限公司 一种燃料电池车辆坡道起步控制系统、方法及车辆
CN108819767A (zh) * 2018-06-29 2018-11-16 奇瑞汽车股份有限公司 氢燃料电池汽车动力系统的控制方法及装置
CN110194065A (zh) * 2019-05-29 2019-09-03 中国第一汽车股份有限公司 车辆的整车能量控制方法、装置、车辆和存储介质
CN110789403A (zh) * 2019-11-07 2020-02-14 奇瑞汽车股份有限公司 汽车的电源控制方法、装置及存储介质
CN111717077A (zh) * 2020-06-28 2020-09-29 重庆长安新能源汽车科技有限公司 车用燃料电池的能量分配方法

Also Published As

Publication number Publication date
CN113511110B (zh) 2022-10-14
EP4129752A4 (en) 2023-10-11
CN113511110A (zh) 2021-10-19
US20230139991A1 (en) 2023-05-04
EP4129752A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
CN110834621B (zh) 轻混汽车扭矩分配控制方法、存储介质及车辆
WO2021249556A1 (zh) 干涉扭矩控制方法、装置、控制器、设备、程序、介质
US9771060B2 (en) Control method and system for hybrid vehicle
CN111824110B (zh) 一种发动机停机控制方法、装置、设备及存储介质
US20160107637A1 (en) Control apparatus and method of power transmission system for hybrid elecric vehicle
WO2023030360A1 (zh) 汽车输出扭矩的控制方法、装置、电子设备及介质
CN103879441B (zh) 油电混合动力车辆的转向装置及其控制方法
WO2022247275A1 (zh) 发动机起动控制方法、装置、电子设备以及存储介质
WO2021204262A1 (zh) 一种纯电可用功率确定方法、系统及车辆
US20170120898A1 (en) Apparatus and method for shift control of hybrid vehicle
WO2021197438A1 (zh) 发动机启停控制方法、系统以及车辆
WO2023169314A1 (zh) 四驱混动车辆控制方法、装置、车辆及存储介质
CN113954639B (zh) 电机轮端扭矩能力确定方法、装置、电子设备及存储介质
CN114906107A (zh) 一种车辆的二级制动辅助及多段式减速扭矩控制系统
US9610937B2 (en) Apparatus and method for controlling torque reduction of hybrid electric vehicle
CN112298157B (zh) 一种控制方法、装置、设备及存储介质
CN113147721A (zh) 控制发动机起动方法、装置、电子设备以及存储介质
WO2013121544A1 (ja) 制御装置、制御システム
WO2023246945A1 (zh) 一种带有犬牙离合器的车辆控制方法和控制装置
WO2021115110A1 (zh) 一种发动机控制方法、系统及车辆
CN112959894B (zh) 一种车辆节能控制方法、装置、存储介质及计算机设备
CN113954842A (zh) 混合轮端扭矩能力确定方法、装置、电子设备及存储介质
WO2021197436A1 (zh) 用于燃料电池车辆的绝缘检测方法及装置、车辆
US20170129476A1 (en) Hybrid electric vehicle and method of efficiently controlling transmission thereof
US20160368478A1 (en) Apparatus and method for controlling torque reduction of hybrid electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021784976

Country of ref document: EP

Effective date: 20221028

NENP Non-entry into the national phase

Ref country code: DE