WO2021114334A1 - Prc utilisé pour un système de microscope hybride afm-sem, et procédé de fabrication correspondant - Google Patents

Prc utilisé pour un système de microscope hybride afm-sem, et procédé de fabrication correspondant Download PDF

Info

Publication number
WO2021114334A1
WO2021114334A1 PCT/CN2019/126323 CN2019126323W WO2021114334A1 WO 2021114334 A1 WO2021114334 A1 WO 2021114334A1 CN 2019126323 W CN2019126323 W CN 2019126323W WO 2021114334 A1 WO2021114334 A1 WO 2021114334A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
substrate
prc
afm
sem
Prior art date
Application number
PCT/CN2019/126323
Other languages
English (en)
Chinese (zh)
Inventor
陈科纶
王纯配
陈俊
孙钰
汝长海
Original Assignee
江苏集萃微纳自动化系统与装备技术研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃微纳自动化系统与装备技术研究所有限公司 filed Critical 江苏集萃微纳自动化系统与装备技术研究所有限公司
Publication of WO2021114334A1 publication Critical patent/WO2021114334A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/16Probe manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques

Definitions

  • the invention relates to the field of AFM-SEM hybrid microscopes, in particular to a PRC applied to an AFM-SEM hybrid microscope system.
  • Hybrid microscopes provide complementary imaging functions. Multi-mode measurement has a higher data collection efficiency than a single microscope. For example, SEM can only provide 2D images of the sample and cannot obtain depth information, but AFM can provide depth information of the sample. Based on different imaging physics principles, AFM and SEM represent two complementary imaging technologies. The traditional sample measurement method is to image the sample separately in AFM and SEM, and then correlate the images to obtain more information about the sample. But transferring the sample back and forth and switching between AFM and SEM may damage the sample, and it can be very difficult to observe the same area of the sample on two microscopes. The AFM-SEM hybrid microscope system composed of AFM integrated in the SEM can make it very convenient to observe the sample.
  • the MEMS process-based PRC pieoresistive Cantilever
  • the MEMS process-based PRC has a compact size and is widely used in AFM-SEM hybrid microscope systems.
  • Two independent piezoelectric resistors are made by adding semiconductor materials on the PRC substrate, one of which contains a cantilever and a probe, and the other is a resistor with a fixed resistance. Since the piezoresistive effect of semiconductor materials is particularly strong, after the probe is subjected to a force, the resistivity of the cantilever changes and the resistance value changes. By collecting the voltage signal caused by the resistance, the current force can be known to change.
  • the technical problem to be solved by the present invention is to provide a PRC applied to an AFM-SEM hybrid microscope system.
  • the present invention provides a PRC applied to an AFM-SEM hybrid microscope system, including: a PCB substrate, a substrate provided on the PCB substrate, and a fixed value resistor provided on the substrate Piezoresistor, piezoresistors, pads and fixing structures arranged on the substrate; the piezoresistors include a cantilever beam and a probe arranged at the front end of the cantilever beam; the fixed value resistor and the fixed structure
  • the piezoelectric resistors are parallel to each other;
  • the PCB substrate is provided with a first conductive coating on the side far away from the substrate, two sides, and the side close to the substrate; the sides of the substrate and The front side is provided with a second conductive coating; wherein, the second conductive coating is not in contact with the fixed value resistor and the piezoelectric resistor, and the first conductive coating and the second conductive coating Turn on
  • the pads are respectively connected to the fixed value resistor and the piezoelectric resistor; the fixing structure is used to fix the fixed value resistor and the piezoelectric resistor on the substrate.
  • the number of the pads is four.
  • the fixing structure is a fixing resin.
  • the first conductive coating is conductive graphite, conductive silver, conductive gold, or conductive tape.
  • the second conductive coating is conductive graphite, conductive silver, conductive gold, or conductive tape.
  • the PRC includes: a pcb substrate, a substrate arranged on the pcb substrate, a fixed value resistor arranged on the substrate, and The piezoelectric resistor, the bonding pad and the fixing structure on the substrate; the piezoelectric resistor includes a cantilever beam and a probe arranged at the front end of the cantilever beam; the fixed value resistor and the piezoelectric resistor
  • the device is parallel to each other; it is characterized in that it comprises: providing a first conductive coating on the side of the PCB substrate away from the substrate, two sides, and the side close to the substrate; A second conductive coating is provided on the side and front side, wherein the second conductive coating is not in contact with the fixed value resistor and the piezoelectric resistor, and the first conductive coating is in contact with the second conductive coating.
  • the coating is conductive.
  • the fixing structure is a fixing resin.
  • the first conductive coating is conductive graphite, conductive silver, conductive gold, or conductive tape.
  • the second conductive coating is conductive graphite, conductive silver, conductive gold, or conductive tape.
  • a method for improving the accuracy of the signal of the PRC applied to the AFM-SEM hybrid microscope system includes: eliminating the negative charge on the PRC.
  • a SEM-compatible AFM including: any of the PRCs.
  • the conductive coating eliminates the charge on the PRC as much as possible, reduces the interference of the SEM electron beam on the PRC, and makes the AFM based on the PRC compatible with the SEM.
  • Figure 1 is the front of the PRC.
  • Figure 2 is the back of the PRC.
  • Figure 3 is a side view of PRC, showing the principle of using forward voltage to absorb SEM electron beam, including external power supply DC voltage DC, voltage VCC for PRC power supply, VCC is not equal to DC, AFM GND and SEM GND are connected by magnetic beads .
  • Figure 4 shows the drift of the back of the PRC when different voltages are applied.
  • the PRC-based AFM When the PRC-based AFM is integrated into the SEM, when the SEM operation is changed during the SEM imaging process (such as image zoom, image quality change, imaging area change, etc.), the electron density falling on the PRC will change. The accumulation of charge will form a fluctuating potential on the PRC. This part of the fluctuating potential can be regarded as noise. The useful signal of the PRC will be submerged in the noise, which will reduce the resolution of the PRC. In addition, the charge itself has quality. If too much charge accumulates on the probe, the cantilever bending resistivity will change, and the PRC signal will also drift. The inventor of the present application discovered for the first time that the electron beam would interfere with the PRC during the operation of the AFM-SEM hybrid microscope and proposed the following solutions in this embodiment.
  • the electronic model of PRC can be regarded as P-JFET.
  • the electron beam falls on the back of the cantilever beam (equivalent to the G pole of the JFET), because there is no additional conductor here, the charge cannot be directed to other places, resulting in
  • the G pole of the JFET accumulates a large amount of negative charge, which generates a fluctuating potential
  • the principle of avoiding the influence of SEM electron beam on PRC is shown in Figure 4.
  • An external power supply is used to provide a positive voltage to the PCB substrate on the back of the PRC to absorb the negative charges falling on the cantilever beam and its surroundings to eliminate the fluctuating potential
  • the principle of smearing is as close as possible to the cantilever beam first, but do not apply to the cantilever beam, otherwise it will short-circuit the PRC.
  • the smearing area should be as large as possible to avoid short-circuiting the PRC.
  • the second application should be even, light and thin.
  • the side of the third substrate and the side of the PCB substrate should also be painted accurately to ensure that the positive voltage applied to the back of the PCB substrate can reach the substrate.
  • the conductive material applied in the fourth application can be conductive graphite, conductive silver, conductive gold or conductive tape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

L'invention concerne un PRC destiné à un système de microscope hybride AFM-SEM, et un procédé de fabrication correspondant comprenant : un substrat de PCB (2), un substrat (3) disposé sur le substrat de PCB (2), une résistance fixe (5) disposée sur le substrat (3), et une résistance piézoélectrique, un tampon (1), et une structure de fixation (8) disposée sur le substrat (3) ; la résistance piézoélectrique comprend une poutre en porte-à-faux (6) et une sonde (4) disposée à l'extrémité avant de la poutre en porte-à-faux (6) ; la résistance fixe (5) et la résistance piézoélectrique sont parallèles l'une à l'autre ; le substrat de PCB (2) est pourvu d'un premier revêtement conducteur sur le côté opposé au substrat (3), deux bords latéraux, et le côté adjacent au substrat (3). La charge qui tombe sur le PRC est éliminée au maximum au moyen du revêtement conducteur, ce qui réduit l'interférence provoquée par les faisceaux d'électrons SEM vers le PRC, de telle sorte que l'AFM fondée sur un PRC soit compatible avec la SEM.
PCT/CN2019/126323 2019-12-12 2019-12-18 Prc utilisé pour un système de microscope hybride afm-sem, et procédé de fabrication correspondant WO2021114334A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911274839.3 2019-12-12
CN201911274839.3A CN111024988B (zh) 2019-12-12 2019-12-12 应用于afm-sem混合显微镜系统的prc及其制造方法

Publications (1)

Publication Number Publication Date
WO2021114334A1 true WO2021114334A1 (fr) 2021-06-17

Family

ID=70206525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126323 WO2021114334A1 (fr) 2019-12-12 2019-12-18 Prc utilisé pour un système de microscope hybride afm-sem, et procédé de fabrication correspondant

Country Status (2)

Country Link
CN (1) CN111024988B (fr)
WO (1) WO2021114334A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533085B (zh) * 2020-05-13 2023-03-21 东华大学 一种二维材料超精密加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1877277A (zh) * 2005-06-09 2006-12-13 Tdk株式会社 微结构、悬臂、扫描探针显微镜以及用于测量微结构的形变量的方法
US7193424B2 (en) * 2004-06-07 2007-03-20 National Applied Research Laboratories Electrical scanning probe microscope apparatus
EP2023372B1 (fr) * 2007-08-09 2010-10-06 Hitachi, Ltd. Unité de lentille électrostatique
CN102662111A (zh) * 2012-05-25 2012-09-12 电子科技大学 一种压电系数检测方法
CN102662086A (zh) * 2012-04-20 2012-09-12 中国科学院半导体研究所 基于微纳操作臂的多自由度近场光学显微镜
CN109073674A (zh) * 2016-04-08 2018-12-21 特瑞克股份有限公司 具有改进的屏蔽的静电力检测器以及使用静电力检测器的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188022B2 (ja) * 1993-03-24 2001-07-16 オリンパス光学工業株式会社 集積型afmセンサー駆動回路
US5883705A (en) * 1994-04-12 1999-03-16 The Board Of Trustees Of The Leland Stanford, Jr. University Atomic force microscope for high speed imaging including integral actuator and sensor
JPH085642A (ja) * 1994-06-23 1996-01-12 Olympus Optical Co Ltd 集積型多機能spmセンサー
SE0000555D0 (sv) * 2000-02-22 2000-02-22 Nanofactory Instruments Ab Mätanordning för transmissions-elektron-mikroskop
KR100469478B1 (ko) * 2002-10-25 2005-02-02 엘지전자 주식회사 압저항 센서가 구비된 압전 캔틸레버
DE10307561B4 (de) * 2003-02-19 2006-10-05 Suss Microtec Test Systems Gmbh Meßanordnung zur kombinierten Abtastung und Untersuchung von mikrotechnischen, elektrische Kontakte aufweisenden Bauelementen
CN108051614B (zh) * 2017-12-05 2020-03-24 湘潭大学 一种基于扫描电镜原位力学测试系统的光/力/电耦合测试装置及其测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193424B2 (en) * 2004-06-07 2007-03-20 National Applied Research Laboratories Electrical scanning probe microscope apparatus
CN1877277A (zh) * 2005-06-09 2006-12-13 Tdk株式会社 微结构、悬臂、扫描探针显微镜以及用于测量微结构的形变量的方法
EP2023372B1 (fr) * 2007-08-09 2010-10-06 Hitachi, Ltd. Unité de lentille électrostatique
CN102662086A (zh) * 2012-04-20 2012-09-12 中国科学院半导体研究所 基于微纳操作臂的多自由度近场光学显微镜
CN102662111A (zh) * 2012-05-25 2012-09-12 电子科技大学 一种压电系数检测方法
CN109073674A (zh) * 2016-04-08 2018-12-21 特瑞克股份有限公司 具有改进的屏蔽的静电力检测器以及使用静电力检测器的方法

Also Published As

Publication number Publication date
CN111024988B (zh) 2021-07-13
CN111024988A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
US9891292B2 (en) Monolithic three-axis linear magnetic sensor and manufacturing method thereof
WO2020173086A1 (fr) Capteur mems et dispositif électronique
US8502332B2 (en) Magnetic sensor and magnetic head
CN101957246B (zh) 一种用于微力微位移测量系统的集成探测器
JP2961452B2 (ja) 情報処理装置
US20090189485A1 (en) Piezoelectric actuator provided with a displacement meter, piezoelectric element used therefor, and positioning device using a piezoelectric actuator
JPH04291101A (ja) 磁気センサおよび位置検出装置
WO2021114334A1 (fr) Prc utilisé pour un système de microscope hybride afm-sem, et procédé de fabrication correspondant
CN114252679A (zh) 电流传感器设备
US8861136B2 (en) Spin conduction element and magnetic sensor and magnetic head using spin conduction
JP6132085B2 (ja) 磁気検出装置
CN107131819A (zh) 基于隧道磁阻效应的单轴微机械位移传感器
JP2020134419A (ja) 磁気センサ及びその製造方法
JP2019174140A (ja) 磁気センサ
US11867779B2 (en) Sensor
TWI662259B (zh) 振動感測器
JP2851855B2 (ja) 記録再生装置
US6717402B2 (en) Probe having at least one magnetic resistive element for measuring leakage magnetic field
WO2021114335A1 (fr) Procédé de compensation de température pour pont de wheatstone servant de capteur de position afm
CN104155620A (zh) 磁传感装置及其感应方法、制备工艺
CN206905691U (zh) 一种基于隧道磁阻效应的单轴微机械位移传感器
JP2702210B2 (ja) 磁気ヘッド
WO2018198627A1 (fr) Capteur de champ magnétique
JP2004245644A (ja) 位置検出装置
US20230090999A1 (en) Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955918

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19955918

Country of ref document: EP

Kind code of ref document: A1