WO2021112435A1 - 리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법 - Google Patents

리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법 Download PDF

Info

Publication number
WO2021112435A1
WO2021112435A1 PCT/KR2020/015880 KR2020015880W WO2021112435A1 WO 2021112435 A1 WO2021112435 A1 WO 2021112435A1 KR 2020015880 W KR2020015880 W KR 2020015880W WO 2021112435 A1 WO2021112435 A1 WO 2021112435A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
active material
secondary battery
electrode active
Prior art date
Application number
PCT/KR2020/015880
Other languages
English (en)
French (fr)
Inventor
이종희
유용미
남상봉
최준화
송민섭
이범욱
Original Assignee
(주)이엠티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이엠티 filed Critical (주)이엠티
Publication of WO2021112435A1 publication Critical patent/WO2021112435A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery having excellent battery life characteristics and low internal resistance, a positive electrode including the same, a lithium ion secondary battery including the same, and a method for manufacturing the same.
  • lithium nickel cobalt manganese oxide and lithium nickel cobalt aluminum oxide which are ternary cathode active materials with a nickel content of 60% or more, are applied to a lithium ion secondary battery, but the battery life characteristics are insufficient and the internal resistance of the battery There are problems such as this high.
  • techniques for modifying the surface of the positive electrode active material with various oxides or fluorides have been introduced.
  • it is still insufficient for application to lithium-ion secondary batteries for electric vehicles requiring long-term reliability, and there is a high demand for surface modification technology that can secure long-term reliability and thermal stability.
  • the present invention was completed by developing a technology capable of improving the long-term reliability of a lithium ion secondary battery and reducing internal resistance.
  • An object of the present invention is to provide a positive electrode active material and a method for manufacturing the same.
  • One aspect of the present invention for solving the above problems may be a cathode active material for a lithium ion secondary battery having a coating layer including lithium hexaoxometalate and having a composition of Chemical Formula 1.
  • M includes at least one selected from the group consisting of Mn, Al, Mg, Ti, Zr, Fe, V, Si and Sn. can do.
  • lithium hexaoxometalate may have the composition of Formula 2:
  • M' is at least one metal selected from the group consisting of Mg, Sr, Be and Ba
  • M" is at least one metal selected from the group consisting of Nb, Sb, Ta and Bi.
  • the coverage of the coating layer may be 0.01% to 5%.
  • Another aspect of the present invention is the step of removing lithium remaining on the surface of the positive electrode active material for a lithium secondary battery, preparing a mixture by mixing the positive electrode active material and the surface modifying material, and sintering the mixture to form a surface modifying material on the surface of the positive electrode active material
  • It may be a method of manufacturing a positive electrode active material for a lithium ion secondary battery comprising the step of forming a coating layer containing a.
  • the particle diameter of the lithium hexaoxometallate may be in the range of 20 nm to 1 ⁇ m.
  • lithium hexaoxometalate having the composition of Formula 2 may be used:
  • M' is at least one metal selected from the group consisting of Mg, Sr, Be and Ba
  • M" is at least one metal selected from the group consisting of Nb, Sb, Ta and Bi.
  • the sintering may be performed at 600° C. to 800° C. for 7 hours to 18 hours under an oxygen atmosphere.
  • the internal resistance of the lithium ion secondary battery can be greatly improved and long-term reliability can be secured.
  • the present invention relates to a positive electrode active material for a lithium ion secondary battery having excellent battery life characteristics and low internal resistance, a positive electrode including the same, a lithium ion secondary battery including the same, and a method for manufacturing the same.
  • One aspect of the present invention may be a cathode active material for a lithium ion secondary battery having a coating layer including lithium hexaoxometalate and having a composition of Chemical Formula 1.
  • M includes at least one selected from the group consisting of Mn, Al, Mg, Ti, Zr, Fe, V, Si and Sn. can do.
  • the coating layer may be formed using a surface modifier.
  • the surface modifier does not cover the entire surface of the positive electrode active material, and may occupy a portion of the surface of the positive electrode active material.
  • the coverage can be measured by calculating the ratio of the number of atoms to the main constituent metal elements of each of the positive electrode active material and the surface modifier through XPS analysis, and the visible coverage can be observed through transmission electron microscopy and EDS analysis.
  • the coverage may be 0.01% to 5%. If the coverage ratio is less than 0.01%, there may be a problem in that it is difficult to expect the effect of reducing internal resistance and improving long-term reliability, and if it is greater than 5%, there may be a problem in that the reversible capacity of the battery is reduced.
  • the coating layer has high ionic conductivity with respect to lithium ions, which can significantly reduce the internal resistance of the battery. Due to the presence of the coating layer on the surface of the positive electrode active material, the surface energy of the area under the coating layer and the area around the coating layer is reduced and stabilized, thereby preventing the transition metal from eluting from the surface of the positive electrode active material. Due to this, it is possible to directly suppress a decrease in the capacity of the positive electrode, and by reducing the corrosion rate, an increase in impedance may be suppressed, and thus, the lifespan of the battery may be improved.
  • Lithium hexaoxometalate may have the composition of Formula 2:
  • M' is at least one metal selected from the group consisting of Mg, Sr, Be and Ba
  • M" is at least one metal selected from the group consisting of Nb, Sb, Ta and Bi.
  • Lithium hexaoxometalate may be one in which a part of lithium is substituted with an alkaline earth metal.
  • alkaline earth metals Ca has strong reactivity with moisture and Ra is a radioactive material, so it was excluded from M'.
  • an attacker of lithium is formed, and lattice distortion occurs from the ion size difference between a large number of cations and the substitution material.
  • the charge transport mobility is increased due to this, it is possible to give the effect of improving the resistance and lifespan characteristics lower than the unsubstituted lithium hexaoxometalate.
  • composition of M' is less than 0.0015, the effect due to substitution is insignificant due to insufficient content thereof, and if it exceeds 0.1, alkaline earth metal is generated as a heterogeneous oxide, and a desired long-life low-resistance effect can be obtained.
  • Another aspect of the present invention is the step of removing lithium remaining on the surface of the positive electrode active material for a lithium secondary battery, preparing a mixture by mixing the positive electrode active material and the surface modifying material, and sintering the mixture to form a surface modifying material on the surface of the positive electrode active material
  • It may be a method of manufacturing a positive electrode active material for a lithium ion secondary battery comprising the step of forming a coating layer containing a.
  • a lithium compound and a precursor are mixed and then sintered to prepare a lithium composite metal oxide, which is a positive electrode active material.
  • the precursor may be prepared using a co-precipitation method, and may be expressed as in Chemical Formula 3 below.
  • M includes at least one selected from the group consisting of Mn, Al, Mg, Ti, Zr, Fe, V, Si and Sn. can do.
  • the sintering may be performed at 600° C. to 800° C. in an oxygen atmosphere for 7 hours to 18 hours.
  • the prepared lithium composite metal oxide may be represented by the following formula (1).
  • M includes at least one selected from the group consisting of Mn, Al, Mg, Ti, Zr, Fe, V, Si and Sn. can do.
  • the lithium composite metal oxide may be used by purchasing a commercially available positive electrode active material.
  • lithium remaining on the surface of the positive electrode active material may be removed (cleaning and drying).
  • the residual lithium remaining on the surface of the positive electrode active material may be removed by adding the positive electrode active material to washing water.
  • washing water water, alcohol, or a mixture of water and alcohol may be used. After washing, the solid content and the liquid are separated, and the solid content is dried to obtain a cathode active material powder.
  • a layered ternary positive electrode active material having a Ni content of 60% or more can be provided by a lithium ion battery having a high energy density by increasing the reversible capacity, but compared to a conventional ternary positive electrode active material having a Ni content of 50% or less
  • the active material is produced at a low sintering temperature.
  • lithium compounds such as lithium carbonate and lithium hydroxide, which did not participate in the synthesis reaction, have low decomposition, combustion and volatility due to the low sintering temperature, so that the residual amount of the lithium compound is high.
  • Lithium carbonate is electrochemically decomposed during operation of the battery in a high-temperature environment to generate carbon dioxide gas, which may increase the internal pressure of the battery and cause an explosion of the battery. For this reason, it is necessary to remove the lithium compound remaining on the surface of the positive electrode active material.
  • the surface of the positive electrode active material may be modified using lithium hexaoxometalate (surface modification process). That is, the surface of the positive electrode active material can be modified by homogeneously mixing lithium hexaoxometalate and the positive electrode active material and then sintering.
  • lithium hexaoxometalate as shown in Formula 2, a portion of lithium substituted with an alkaline earth metal may be used.
  • M' is at least one metal selected from the group consisting of Mg, Sr, Be and Ba
  • M" is at least one metal selected from the group consisting of Nb, Sb, Ta and Bi.
  • composition of M' is less than 0.0015, the effect due to substitution is insignificant due to insufficient content thereof, and if it exceeds 0.1, alkaline earth metal is generated as a heterogeneous oxide, and a desired long-life low-resistance effect can be obtained.
  • Ca has strong reactivity with moisture and Ra is a radioactive material, so it was excluded from M'.
  • a particle having a particle size of 20 nm to 1 ⁇ m may be used.
  • those having a particle diameter of 50 nm to 300 nm may be used.
  • the particle diameter of lithium hexaoxometallate is less than 20 nm or more than 1 ⁇ m, the particles are too small or too large to be mixed with the positive electrode active material uniformly and the coating may be made non-uniformly, thereby reducing the effect of surface modification can't get
  • the addition ratio of lithium hexaoxometalate for surface modification is preferably in the range of 0.01 wt% to 5 wt% based on the cathode active material, and more preferably in the range of 0.1 wt% to 1 wt%. It is effective in improving the performance of the battery without reducing the reversible capacity of the battery by forming a thin functional film layer.
  • the surface modifier and the positive electrode active material it is preferable to mix for 10 to 15 minutes using a high-speed dry mixer, and the mixed powder is heat-treated at 600°C to 800°C to form lithium hexaoxometalate.
  • a modified positive electrode active material can be obtained.
  • Sintering may be performed at 600°C to 800°C.
  • the sintering temperature is less than 600 °C, it is difficult to give a layered crystal structure, and when it is more than 800 °C, lithium is melted and volatilized, and the yield may be significantly reduced.
  • the sintering time may be 7 to 18 hours. If the sintering time is less than 7 hours, there is a problem in securing the life and capacity of the battery due to insufficient crystallinity of the layered structure. may occur.
  • the sintering atmosphere may be an oxygen atmosphere, which provides a smooth oxygen substitution environment for the positive electrode active material, and may remove residual lithium impurities present on the surface of the positive electrode active material.
  • the surface-modified positive electrode active material may have a structure in which the surface modifying material is fixed to the surface of the positive electrode active material to form a coating layer.
  • the surface modifier does not cover the entire surface of the positive electrode active material, and may occupy a portion of the surface of the positive electrode active material.
  • the coverage can be measured by calculating the ratio of the number of atoms to the main constituent metal elements of each of the positive electrode active material and the surface modifier through XPS analysis, and the visible coverage can be observed through transmission electron microscopy and EDS analysis.
  • the coverage may be 0.01% to 5%. If the coverage ratio is less than 0.01%, there may be a problem in that it is difficult to expect the effect of reducing internal resistance and improving long-term reliability, and if it is greater than 5%, there may be a problem in that the reversible capacity of the battery is reduced.
  • the coating layer has high ionic conductivity with respect to lithium ions, which can significantly reduce the internal resistance of the battery. Due to the presence of the coating layer on the surface of the positive electrode active material, the surface energy of the area under the coating layer and the area around the coating layer is reduced and stabilized, thereby preventing the transition metal from eluting from the surface of the positive electrode active material. Due to this, it is possible to directly suppress the reduction in the capacity of the positive electrode, and also to suppress the increase in impedance by reducing the corrosion rate, and also to improve the lifespan of the battery.
  • Lithium hydroxide (LiOH) and a composite metal hydroxide (Ni 0.80 Co 0.15 Al 0.05 (OH) 2 ) were weighed at a molar ratio of Li:precursor of 1.01:1.00, put into a dry powder mixer, and mixed.
  • the mixed powder was first sintered at 750° C. for 15 hours in an oxygen atmosphere.
  • lithium composite metal oxide having a composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 was obtained through pulverization and classification processes.
  • a cleaning process was performed at room temperature for 10 minutes at a weight ratio of solid content and water of 1.0:1.5 to remove lithium remaining on the surface of the lithium composite metal oxide.
  • the lithium composite metal oxide powder was dried at 120° C. for 12 hours.
  • the lithium composite metal oxide powder and the surface modifier obtained above were put into a high-speed dry mixer and mixed.
  • As the surface modifier lithium hexaoxometalate substituted with an alkaline earth metal represented by Li 6.975 Ba 0.025 TaO 6 was used.
  • the content of the surface modifier was used in an amount of 0.2 wt% based on the lithium composite metal oxide (surface modification process).
  • the mixed powder was sintered at 700° C. for 10 hours.
  • a lithium composite metal oxide was prepared in the same manner as in Example 1, except that 0.1 wt% of the surface modifier was used with respect to the lithium composite metal oxide.
  • a lithium composite metal oxide was prepared in the same manner as in Example 1, except that the content of the surface modifier was 0.8 wt % based on the lithium composite metal oxide.
  • a lithium composite metal oxide was prepared in the same manner as in Example 1, except that the surface modification process was not performed.
  • the coverage was evaluated for the lithium composite metal oxide surface-modified using lithium hexaoxometalate.
  • the surface-modified lithium composite metal oxide particles were observed for coating through scanning electron microscopy and EDS analysis, and XPS analysis was performed to calculate the atomic ratio of each element for Ni and Ta to determine the coverage of lithium composite metal oxide particles. measured.
  • the nickel EDS image, and the tantalum EDS image of the lithium composite metal oxide particles for Example 1 it can be confirmed that the detection regions of tantalum and nickel are identical, from which lithium composite metal oxide It can be seen that the surface of the lithium hexaoxometalate is uniformly coated. Tantalum is a major constituent of lithium hexaoxometalate, which is a surface modification material.
  • An electrode slurry was prepared by mixing the positive electrode active material prepared according to Examples and Comparative Examples, PVDF as a binder, and Denka Black as a conductive material in a ratio of 96:2:2, and adding an NMP solvent.
  • the prepared slurry was coated on aluminum foil, rolled to prepare a positive electrode plate, and dried at 130° C. using a vacuum dryer.
  • a 2:2:6 mixed solvent of EC/EMC/DEC with the positive electrode plate prepared according to Examples and Comparative Examples, Li metal as the counter electrode, polypropylene series as the separator, and 1M LiPF 6 as the electrolyte.
  • a coin cell was manufactured.
  • the charge/discharge test for the coin cell was performed in the range of 3.0 ⁇ 4.3V, and the lifespan characteristics and resistance increase rate according to the cycle were tested under the charge/discharge condition at 1.0C.
  • the test results are shown in Table 1, FIGS. 1 and 2 .
  • lithium composite metal Oxide composition formula surface modification matter surface modification input (parts by weight) coverage (%) room temperature life span (%) room temperature resistance rate of increase (%)
  • Example 1 LiNi 0.8 Co 0.15 Al 0.05 O 2 Lithium Hexoxometallate 0.2 0.98 93.5 236
  • Example 2 LiNi 0.8 Co 0.15 Al 0.05 O 2 Lithium Hexoxometallate 0.1 0.48 87.2 392
  • Example 3 LiNi 0.8 Co 0.15 Al 0.05 O 2 Lithium Hexoxometallate 0.8 3.95 92.3 271 comparative example LiNi 0.8 Co 0.15 Al 0.05 O 2 - - - 83.3 570
  • Example 1 in the case of Example 1, the capacity reduction rate with the lapse of the cycle is small and decreases almost linearly, but in the case of the comparative example, it initially showed a similar behavior to that of Example 1, but it can be confirmed that after about 25 cycles, it rapidly decreases. have.
  • the advantage of being able to predict a more reliable lifespan is when it exhibits a linear behavior over the cycle. From this, it can be inferred that Example 1 has a better lifespan than Comparative Example.
  • Examples 2 and 3 also exhibit superior lifespan characteristics than Comparative Examples. 2 shows the test results for the increase rate of the internal resistance of the battery. Referring to FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 전지의 수명 특성이 우수하고 내부 저항을 작은 리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법에 관한 것이다. 본 발명은 리튬헥사옥소메탈레이트를 포함하는 코팅층을 가지고, 화학식 1의 조성을 가지는 리튬이온이차전지용 양극활물질일 수 있다: [화학식 1] LiNixCoyMzO2, 여기서, 0.6≤x≤0.96, 0.035≤y≤0.20, 0.005≤x≤0.20이고, M은 Mn, Al, Mg, Ti, Zr, Fe, V, Si 및 Sn으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.

Description

리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법
본 발명은 전지의 수명 특성이 우수하고 내부 저항을 작은 리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법에 관한 것이다.
니켈 함량이 60% 이상인 삼성분계 양극활물질인 리튬니켈코발트망간산화물, 리튬니켈코발트알루미늄산화물을 리튬이온이차전지에 적용하면 높은 에너지밀도를 확보할 수 있으나, 전지의 수명 특성이 불충분하고 전지의 내부 저항이 높다는 등의 문제가 있다. 이러한 문제를 해결하기 위하여 다양한 산화물이나 불화물 등으로 양극활물질 표면을 개질하는 기술들이 소개되고 있다. 하지만, 장기 신뢰성이 요구되는 전기차용 리튬이온이차전지에 적용하기에는 여전히 미흡한 실정이며, 장기 신뢰성을 확보하고 열적 안정성 또한 확보할 수 있는 표면개질 기술에 대한 요구가 높다.
이에 연구를 거듭한 끝에 리튬이온이차전지의 장기 신뢰성을 향상시키고 내부 저항을 감소시킬 수 있는 기술을 개발하여 본 발명을 완성하였다.
<선행기술문헌>
1. 대한민국 공개특허공보 제10-2013-0084361호(2013.07.25.)
2. 대한민국 공개특허공보 제10-2017-0078892호(2017.07.10.)
Ni 함량이 60% 이상인 삼성분계 양극활물질 표면을 알칼리토금속족으로 치환된 리튬헥사옥소메탈레이트로 표면개질하여 리튬이온 이차전지의 수명특성 및 전지의 내부저항을 크게 개선시킴과 동시에 열적 안전성을 확보할 수 있는 양극활물질 및 그 제조방법을 제공하고자 한다.
상기 과제를 해결하기 위한 본 발명의 일 측면은, 리튬헥사옥소메탈레이트를 포함하는 코팅층을 가지고, 화학식 1의 조성을 가지는 리튬이온이차전지용 양극활물질일 수 있다.
[화학식 1]
LiNixCoyMzO2
여기서, 0.6≤x≤0.96, 0.035≤y≤0.20, 0.005≤x≤0.20이고, M은 Mn, Al, Mg, Ti, Zr, Fe, V, Si 및 Sn으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
본 측면에서, 리튬헥사옥소메탈레이트는 화학식 2의 조성을 가질 수 있다:
[화학식 2]
Li7-xM'x M"O6
여기서, 0.0015≤x≤0.1이고, M'은 Mg, Sr, Be 및 Ba로 이루어진 그룹에서 선택된 1종 이상의 금속이고, M"은 Nb, Sb, Ta 및 Bi로 이루어진 그룹에서 선택된 1종 이상의 금속일 수 있다.
본 측면에서, 코팅층의 피복율은 0.01% 내지 5%일 수 있다.
본 발명의 다른 측면은, 리튬이차전지용 양극활물질의 표면에 잔존하는 리튬을 제거하는 단계, 양극활물질과 표면개질재를 혼합하여 혼합물을 제조하는 단계 및 혼합물을 소결하여 양극활물질의 표면에 표면개질재를 함유하는 코팅층을 형성하는 단계를 포함하는 리튬이온이차전지용 양극활물질의 제조방법일 수 있다.
본 측면에서, 리튬헥사옥소메탈레이트의 입경은 20㎚ 내지 1㎛일 수 있다.
본 측면에서, 표면개질재로는, 화학식 2의 조성을 가지는 리튬헥사옥소메탈레이트를 사용하할 수 있다:
[화학식 2]
Li7-xM'x M"O6
여기서, 0.0015≤x≤0.1이고, M'은 Mg, Sr, Be 및 Ba로 이루어진 그룹에서 선택된 1종 이상의 금속이고, M"은 Nb, Sb, Ta 및 Bi로 이루어진 그룹에서 선택된 1종 이상의 금속일 수 있다.
본 측면에서, 소결은 산소 분위기 하 600℃내지 800℃에서 7시간 내지 18시간 동안 수행될 수 있다.
알칼리 토금속족으로 치환된 리튬헥사옥소메탈레이트 복합산화물로 Ni 함량이 60% 이상의 삼성분계 양극활물질을 표면개질함으로써 리튬이온 이차전지의 내부 저항을 크게 개선시킴과 동시에 장기 신뢰성을 확보할 수 있다.
도 1은 실시예 및 비교예에 대하여 수명 시험 결과를 도시한 그래프이다.
도 2는 실시예 및 비교예에 대하여 내부 저항 증가율에 대한 시험 결과를 도시한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 본 발명의 실시 형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다. 본 발명에서, 제1 또는 제2 라는 표현은 순서, 중요도를 의미하는 것이 아니라 단순히 구성요소를 구분하기 위한 것이다.
본 발명은 전지의 수명 특성이 우수하고 내부 저항을 작은 리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법에 관한 것이다.
도 1에는 실시예 및 비교예에 대하여 수명 시험 결과를 도시하였다. 도 2에는 실시예 및 비교예에 대하여 내부 저항 증가율에 대한 시험 결과를 도시하였다.
본 발명의 일 측면은, 리튬헥사옥소메탈레이트를 포함하는 코팅층을 가지고, 화학식 1의 조성을 가지는 리튬이온이차전지용 양극활물질일 수 있다.
[화학식 1]
LiNixCoyMzO2
여기서, 0.6≤x≤0.96, 0.035≤y≤0.20, 0.005≤x≤0.20이고, M은 Mn, Al, Mg, Ti, Zr, Fe, V, Si 및 Sn으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
코팅층은 표면개질재를 이용하여 형성될 수 있다. 표면개질재는 양극활물질 표면 전체를 감싸고 있는 것은 아니며, 양극활물질 표면의 일부를 점유할 수 있다. 피복율은 XPS 분석을 통하여 양극활물질과 표면개질재 각각의 주 구성 금속원소에 대한 원자수 비율를 산출하는 것으로 측정할 수 있으며, 투과 전자현미경과 EDS 분석을 통하여 가시적인 피복 여부를 관찰할 수 있다.
피복율은 0.01% 내지 5% 일 수 있다. 피복율이 0.01% 보다 작으면 내부 저항 감소 및 장기 신뢰성 개선 효과를 기대하기 어려운 문제가 있고, 5% 보다 크면 전지의 가역 용량이 감소하는 문제가 있을 수 있다.
코팅층은 리튬 이온에 대한 이온전도도가 높아 전지의 내부저항을 현저하게 감소시킬 수 있다. 양극활물질의 표면에 코팅층이 존재함으로 인하여 코팅층 아래 영역 및 코팅층 주변 영역의 표면에너지가 감소하여 안정화되어 양극활물질 표면에서 전이금속이 용출되는 것을 억제할 수 있다. 이로 인하여 양극의 용량 감소를 직접적으로 억제할 수 있고, 또한 부식 속도를 감소시킴으로써 임피던스 증가를 억제할 수 있고 또한 이를 통하여 전지의 수명이 향상될 수 있다.
리튬헥사옥소메탈레이트는 화학식 2의 조성을 가질 수 있다:
[화학식 2]
Li7-xM'x M"O6
여기서, 0.0015≤x≤0.1이고, M'은 Mg, Sr, Be 및 Ba로 이루어진 그룹에서 선택된 1종 이상의 금속이고, M"은 Nb, Sb, Ta 및 Bi로 이루어진 그룹에서 선택된 1종 이상의 금속일 수 있다.
리튬헥사옥소메탈레이트는 리튬의 일부가 알칼리토금속으로 치환된 것일 수 있다. 알카리토금속 중 Ca은 수분과의 반응성이 강하고, Ra은 방사성 물질이기 때문에 M'에서 제외되었다. 리튬 자리 일부를 알카리 토금속으로 치환시킴으로써 리튬의 공격자가 형성되고, 다수의 양이온과 치환 물질 사이의 이온 크기 차이로부터 격자 뒤틀림이 발생하게 된다. 이로 인한 전하운반 이동도가 커지게 됨에 따라 치환하지 않은 리튬헥사옥소메탈레이트 대비 낮은 저항 및 수명 특성 개선의 효과를 부여할 수 있다.
M'의 조성이 0.0015 미만이면 그 함량이 부족하여 치환으로 인한 효과가 미미하고, 0.1 초과하면 알카리토금속이 이종의 산화물로 생성되어 원하는 장수명 저저항 효과를 얻을 수 있다.
본 발명의 다른 측면은, 리튬이차전지용 양극활물질의 표면에 잔존하는 리튬을 제거하는 단계, 양극활물질과 표면개질재를 혼합하여 혼합물을 제조하는 단계 및 혼합물을 소결하여 양극활물질의 표면에 표면개질재를 함유하는 코팅층을 형성하는 단계를 포함하는 리튬이온이차전지용 양극활물질의 제조방법일 수 있다.
먼저, 리튬화합물과 전구체를 혼합한 후 소결하여 양극활물질인 리튬복합금속산화물을 제조할 수 있다.
전구체는 공침법을 이용하여 제조할 수 있으며, 하기 화학식 3과 같이 표기할 수 있다.
[화학식 3]
NixCoyMz(OH)2
여기서, 0.6≤x≤0.96, 0.035≤y≤0.20, 0.005≤z≤0.20이고, M은 Mn, Al, Mg, Ti, Zr, Fe, V, Si 및 Sn으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
소결은 산소 분위기 하 600℃ 내지 800℃에서 7시간 내지 18시간에서 수행할 수 있다.
제조된 리튬복합금속산화물은 하기 화학식 1과 같이 표기할 수 있다.
[화학식 1]
LiNixCoyMzO2
여기서, 0.6≤x≤0.96, 0.035≤y≤0.20, 0.005≤x≤0.20이고, M은 Mn, Al, Mg, Ti, Zr, Fe, V, Si 및 Sn으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
리튬복합금속산화물은 상용의 양극활물질을 구입하여 사용할 수도 있다.
다음으로, 양극활물질의 표면에 잔존하는 리튬을 제거할 수 있다(세정 및 건조).
구체적으로는, 양극활물질을 세정수에 가하여 양극활물질 표면에 잔존하고 있는 잔존 리튬을 제거할 수 있다. 세정수로는 물, 알코올, 또는 물과 알코올 혼합하여 사용할 수 있다. 세정 후에는 고형분과 액체를 분리하고, 고형분을 건조하여 양극활물질 분체를 얻을 수 있다.
Ni 60% 이상의 함량을 갖는 층상구조의 삼성분계 양극활물질은 가역 용량을 증가시켜 높은 에너지밀도를 갖는 리튬이온전지가 제공할 수 있으나, 종래 Ni 50% 이하의 함량을 갖는 삼성분계 양극활물질과 비교하여 낮은 소결온도에서 활물질 제조가 이루어진다. 상기 소결과정에서 합성반응에 참여하지 못한 탄산리튬 및 수산화리튬과 같은 리튬화합물은 낮은 소결온도로 인하여 분해, 연소 및 휘발성이 떨어져 리튬화합물의 잔존량이 높게 된다. 상기 리튬화합물 중 수산화리튬의 함량이 높은 경우에는 강한 염기성으로 인한 전지 제작과정 중 전극 슬러리의 겔화를 야기시켜 바람직한 전극의 제작에 어려움이 발생하게 된다. 탄산리튬은 고온의 환경에서 전지가 작동 중에 전기화학적으로 분해되어 탄산 가스를 발생시키며, 이는 전지의 내압을 상승시켜 전지의 폭발을 야기시킬 수 있다. 이러한 이유로 양극활물질 표면에 잔존하는 리튬화합물의 제거가 필요하다.
다음으로, 리튬헥사옥소메탈레이트를 사용하여 양극활물질의 표면을 개질할 수 있다(표면개질 공정). 즉, 리튬헥사옥소메탈레이트와 양극활물질을 균질하게 혼합한 후 소결함으로써 양극활물질의 표면을 개질할 수 있다.
리튬헥사옥소메탈레이트로는, 화학식 2에 표시된 것처럼, 리튬의 일부가 알칼리토금속으로 치환된 것을 사용할 수 있다.
[화학식 2]
Li7-xM'x M"O6
여기서, 0.0015≤x≤0.1이고, M'은 Mg, Sr, Be 및 Ba로 이루어진 그룹에서 선택된 1종 이상의 금속이고, M"은 Nb, Sb, Ta 및 Bi로 이루어진 그룹에서 선택된 1종 이상의 금속일 수 있다.
M'의 조성이 0.0015 미만이면 그 함량이 부족하여 치환으로 인한 효과가 미미하고, 0.1 초과하면 알카리토금속이 이종의 산화물로 생성되어 원하는 장수명 저저항 효과를 얻을 수 있다.
알카리토금속 중 Ca은 수분과의 반응성이 강하고, Ra은 방사성 물질이기 때문에 M'에서 제외되었다.
화학식 2로 표시되는 리튬헥사옥소메탈레이트의 리튬 자리 일부를 알카리 토금속으로 치환시킴으로써 리튬의 공격자가 형성되고, 다수의 양이온과 치환 물질 사이의 이온 크기 차이로부터 격자 뒤틀림이 발생하게 된다. 이로 인한 전하운반 이동도가 커지게 됨에 따라 치환하지 않은 리튬헥사옥소메탈레이트 대비 낮은 저항 및 수명 특성 개선의 효과를 부여할 수 있다.
리튬헥사옥소메탈레이트로는 입경이 20㎚ 내지 1㎛ 인 것을 사용할 수 있다. 바람직하게는 입경이 50nm 내지 300nm 인 것을 사용할 수 있다. 리튬헥사옥소메탈레이트의 입경이 20nm 미만이거나 1㎛ 초과인 경우에는 입자가 너무 작거나 너무 커서 양극활물질과의 혼합이 균질하게 이루어지지 않고 피복이 불균일하게 이루어질 수 있고, 이로 인하여 표면개질의 효과를 얻을 수 없다.
표면개질을 위한 리튬헥사옥소메탈레이트의 첨가비는 양극활물질에 대하여 0.01중량% 내지 5중량%의 범위 내에서 혼합하여 사용하는 것이 바람직하며, 보다 바람직하게는 0.1 중량% 내지 1중량% 이내의 범위에서 혼합 사용하는 것이 얇을 기능성 피막층을 형성시켜 전지의 가역용량을 감소시키지 않으면서 전지의 성능 개선에 효과가 있다.
표면개질재와 양극활물질의 균질 혼합을 위하여 고속 건식 혼합기를 사용하여 10분 내지 15분 동안 혼합하는 것이 바람직하며, 혼합이 완료된 분말은 600℃ 내지 800℃에서 열처리를 수행하여 리튬헥사옥소메탈레이트로 개질된 양극활물질을 얻을 수 있다.
소결은 600℃ 내지 800℃에서 수행할 수 있다. 소결 온도가 600℃ 미만인 경우에는 층상구조의 결정구조를 부여하기 어렵고, 800℃ 초과인 경우에는 리튬이 녹아 휘발되어 수득율이 현저하게 저하될 수 있다.
소결 시간은 7시간 내지 18시간일 수 있다. 소결 시간이 7시간 미만인 경우에는 층상구조의 결정성이 부족하여 전지의 수명 및 용량을 확보하는데 문제가 있고, 18시간 초과인 경우에는 입자가 크게 성장하여 전지의 내부저항 증가와 수명 특성 저하의 문제가 발생될 수 있다.
소결 분위기는 산소 분위기일 수 있는데, 이는 양극활물질의 원활한 산소 치환 환경을 제공하고, 양극활물질 표면에 존재하는 잔류 리튬 불순물을 제거할 수 있다.
표면개질된 양극활물질은 양극활물질의 표면에 표면개질재가 고착되어 코팅층을 형성된 구조를 가질 수 있다. 표면개질재는 양극활물질 표면 전체를 감싸고 있는 것은 아니며, 양극활물질 표면의 일부를 점유할 수 있다. 피복율은 XPS 분석을 통하여 양극활물질과 표면개질재 각각의 주 구성 금속원소에 대한 원자수 비율를 산출하는 것으로 측정할 수 있으며, 투과 전자현미경과 EDS 분석을 통하여 가시적인 피복 여부를 관찰할 수 있다.
피복율은 0.01% 내지 5% 일 수 있다. 피복율이 0.01% 보다 작으면 내부 저항 감소 및 장기 신뢰성 개선 효과를 기대하기 어려운 문제가 있고, 5% 보다 크면 전지의 가역 용량이 감소하는 문제가 있을 수 있다.
코팅층은 리튬 이온에 대한 이온전도도가 높아 전지의 내부저항을 현저하게 감소시킬 수 있다. 양극활물질의 표면에 코팅층이 존재함으로 인하여 코팅층 아래 영역 및 코팅층 주변 영역의 표면에너지가 감소하여 안정화되어 양극활물질 표면에서 전이금속이 용출되는 것을 억제할 수 있다. 이로 인하여 양극의 용량 감소를 직접적으로 억제할 수 있고, 또한 부식 속도를 감소시킴으로써 임피던스 증가를 억제할 수 있고 또한 이를 통하여 전지의 수명이 향상될 수 있다.
이하에서는 실시예 및 비교예를 통하여 본 발명에 대하여 보다 상세하게 설명한다.
<실시예 1>
1. 리튬복합금속산화물 제조
수산화리튬(LiOH)과 복합금속수산화물(Ni0.80Co0.15Al0.05(OH)2)을 Li:전구체의 몰비가 1.01:1.00로 칭량하여 건식 분말 혼합기에 투입하고 혼합하였다.
이후, 혼합 분말을 산소분위기에서 750℃에서 15시간 동안 1차 소결하였다.
이후, 분쇄 및 분급공정을 거쳐 LiNi0.80Co0.15Al0.05O2 조성의 리튬복합금속산화물을 얻었다.
2. 리튬복합금속산화물 표면의 잔존 리튬 제거
고형분과 물을 1.0:1.5의 중량비로 하여, 상온에서 10분간 세정 공정을 수행하여 리튬복합금속산화물 표면에 잔존하는 리튬을 제거하였다.
이후, 여과공정을 통하여 세정 후 얻은 현탁액으로부터 여액을 제거하여 리튬복합금속산화물 분체를 얻었다.
이후, 리튬복합금속산화물 분체를 120℃에서 12시간 동안 건조하였다.
3. 표면개질
위에서 얻은 리튬복합금속산화물 분체와 표면개질재를 고속 건식혼합기에 투입하여 혼합하였다. 표면개질재로는 Li6.975Ba0.025TaO6로 표시되는 알칼리토금속으로 치환된 리튬헥사옥소메탈레이트를 사용하였다. 표면개질재의 함량은 리튬복합금속산화물에 대하여 0.2 중량% 사용하였다(표면개질 공정).
이후, 혼합분말을 700℃에서 10시간 동안 소결하였다.
이후, 분쇄 및 분급 공정을 거쳐 최종적으로 표면개질된 리튬복합금속산화물을 얻었다.
<실시예 2>
표면개질재의 함량을 리튬복합금속산화물에 대하여 0.1 중량% 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 리튬복합금속산화물을 제조하였다.
<실시예 3>
표면개질재의 함량을 리튬복합금속산화물에 대하여 0.8 중량% 사용한 점을 제외하고, 실시예 1과 동일한 방법으로 리튬복합금속산화물을 제조하였다.
<비교예>
표면개질 공정을 실시하지 않은 점을 제외하고는, 실시예 1과 동일하게 리튬복합금속산화물을 제조하였다.
<리튬복합금속산화물 입자의 특성 평가>
실시예1, 2, 3에 따라 리튬헥사옥소메탈레이트를 이용하여 표면 개질된 리튬복합금속산화물에 대하여 피복율을 평가하였다. 표면개질된 리튬복합금속산화물 입자에 대하여 주사전자현미경과 EDS 분석을 통하여 피복 여부를 관찰하고, XPS 분석을 실시하여 Ni과 Ta에 대한 원소별 원자수비를 산출하여 리튬복합금속산화물 입자의 피복율을 측정하였다.
실시예 1에 대한 리튬복합금속산화물 입자에 대한 주사전자현미경 사진과, 니켈 EDS 이미지와, 탄탈륨 EDS 이미지를 참조하면, 탄탈륨과 니켈의 검출영역이 일치함을 확인할 수 있는데, 이로부터 리튬복합금속산화물의 표면에 리튬헥사옥소메탈레이트가 균일하게 피복되어 있음을 확인할 수 있다. 탄탈륨은 표면 개질 물질인 리튬헥사옥소메탈레이트의 주 구성 원소이다.
<전지의 특성 평가>
1. 코인셀 제작
실시예 및 비교예에 따라 제조된 양극활물질, 바인더로 PVDF, 도전재로 덴카블랙을 96:2:2의 비율로 혼합하고 NMP 용매를 첨가하여 전극슬러리를 제조하였다. 제조한 슬러리를 알루미늄 호일에 코팅하였으며, 이를 압연하여 양극판을 제조하고, 진공건조기를 이용하여 130℃에서 건조하였다. 실시예 및 비교예에 따라 제조된 양극판, 상대 전극으로는 Li metal, 분리막으로는 폴리프로필렌 계열, 전해액으로는 1M LiPF6가 첨가된 EC/EMC/DEC의 2:2:6 혼합용매를 사용하여 코인셀을 제작하였다.
2. 충방전 시험
코인셀에 대한 충방전 시험은 3.0~4.3V의 범위에서 수행하였고, 1.0C 충방전 조건으로 사이클(cycle) 경과에 따른 수명 특성 및 저항증가율을 시험하였다. 시험 결과를 표 1, 도 1 및 도 2에 나타내었다.
리튬복합금속
산화물 조성식
표면개질
물질
표면개질
투입량
(중량부)
피복율
(%)
상온
수명
(%)
상온
저항
증가율
(%)
실시예 1 LiNi0.8Co0.15Al0.05O2 리튬헥사옥소메탈레이트 0.2 0.98 93.5 236
실시예 2 LiNi0.8Co0.15Al0.05O2 리튬헥사옥소메탈레이트 0.1 0.48 87.2 392
실시예 3 LiNi0.8Co0.15Al0.05O2 리튬헥사옥소메탈레이트 0.8 3.95 92.3 271
비교예 LiNi0.8Co0.15Al0.05O2 - - - 83.3 570
도 1을 참조하면, 실시예 1의 경우 사이클 경과에 따른 용량 저하율이 작고 거의 직선적으로 감소하지만, 비교예의 경우 초기에는 실시예 1과 유사한 거동을 보였지만 약 25사이클 경과 후부터는 급격하게 감소함을 확인할 수 있다. 사이클 경과에 따라 직선적인 거동을 보이는 경우 보다 신뢰성 있는 수명 예측이 가능하다는 장점이 있다. 이로부터 실시예 1이 비교예보다 수명이 우수함을 유추할 수 있다. 또한 실시예 2 및 실시예 3의 경우도 비교예보다 우수한 수명 특성을 보임을 확인할 수 있다. 도 2에 전지의 내부 저항 증가율에 대한 시험결과를 나타내었다. 도 2를 참조하면, 실시예 1의 경우 저항 증가율이 작은 비율로 거의 직선적으로 증가하지만, 비교예의 경우 초기부터 저항 증가율이 급격하게 증가함을 확인할 수 있다. 사이클 경과에 따라 직선적인 거동을 보이는 경우 보다 신뢰성 있는 수명 예측이 가능하다는 장점이 있다. 또한 실시예 2 및 실시예 3의 경우도 비교예보다 내부 저항 특성이 우수함을 확인할 수 있다.
상기 결과로부터 리튬헥사옥소메탈레이트를 이용하여 표면개질한 양극활물질을 사용한 실시예의 경우가 표면개질하지 않은 양극활무질을 사용한 비교예의 경우보다 수명 특성 및 저항 특성이 현저하게 우수함을 확인할 수 있다.
본 발명에서 사용하는 용어는 특정한 실시형태를 설명하기 위한 것으로 본 발명을 한정하고자 하는 것이 아니다. 단수의 표현은 문맥상 명백하지 않는 한, 복수의 의미를 포함한다고 보아야 할 것이다. "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것이 존재한다는 것을 의미하는 것이지, 이를 배제하기 위한 것이 아니다. 본 발명은 상술한 실시형태 및 첨부한 도면에 의하여 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자 한다. 따라서 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술 분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 보아야 할 것이다.

Claims (9)

  1. 리튬헥사옥소메탈레이트를 포함하는 코팅층을 가지고, 화학식 1의 조성을 가지는 리튬이온이차전지용 양극활물질:
    [화학식 1]
    LiNixCoyMzO2
    여기서, 0.6≤x≤0.96, 0.035≤y≤0.20, 0.005≤x≤0.20이고, M은 Mn, Al, Mg, Ti, Zr, Fe, V, Si 및 Sn으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.
  2. 제1항에 있어서,
    상기 리튬헥사옥소메탈레이트는 화학식 2의 조성을 가지는, 리튬이온이차전지용 양극활물질:
    [화학식 2]
    Li7-xM'x M"O6
    여기서, 0.0015≤x≤0.1이고, M'은 Mg, Sr, Be 및 Ba로 이루어진 그룹에서 선택된 1종 이상의 금속이고, M"은 Nb, Sb, Ta 및 Bi로 이루어진 그룹에서 선택된 1종 이상의 금속일 수 있다.
  3. 제1항에 있어서,
    상기 코팅층의 피복율은 0.01% 내지 5% 인, 리튬이온이차전지용 양극활물질.
  4. 리튬이차전지용 양극활물질의 표면에 잔존하는 리튬을 제거하는 단계;
    상기 양극활물질과 표면개질재를 혼합하여 혼합물을 제조하는 단계; 및
    상기 혼합물을 소결하여 상기 양극활물질의 표면에 표면개질재를 함유하는 코팅층을 형성하는 단계;를 포함하는, 리튬이온이차전지용 양극활물질의 제조방법.
  5. 제4항에 있어서,
    상기 리튬헥사옥소메탈레이트의 입경은 20㎚ 내지 1㎛인, 리튬이온이차전지용 양극활물질.
  6. 제4항에 있어서,
    상기 표면개질재로는, 화학식 2의 조성을 가지는 리튬헥사옥소메탈레이트를 사용하는 리튬이온이차전지용 양극활물질의 제조방법:
    [화학식 2]
    Li7-xM'x M"O6
    여기서, 0.0015≤x≤0.1이고, M'은 Mg, Sr, Be 및 Ba로 이루어진 그룹에서 선택된 1종 이상의 금속이고, M"은 Nb, Sb, Ta 및 Bi로 이루어진 그룹에서 선택된 1종 이상의 금속일 수 있다.
  7. 제4항에 있어서,
    상기 소결은 산소 분위기 하 600℃내지 800℃에서 7시간 내지 18시간 동안 수행되는, 리튬이온이차전지용 양극활물질의 제조방법.
  8. 제1항의 양극활물질을 포함하는 리튬이온이차전지용 양극.
  9. 제8항의 양극을 포함하는 리튬이온이차전지.
PCT/KR2020/015880 2019-12-04 2020-11-12 리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법 WO2021112435A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0159727 2019-12-04
KR1020190159727A KR102291950B1 (ko) 2019-12-04 2019-12-04 리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2021112435A1 true WO2021112435A1 (ko) 2021-06-10

Family

ID=76222530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015880 WO2021112435A1 (ko) 2019-12-04 2020-11-12 리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR102291950B1 (ko)
WO (1) WO2021112435A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277307A (ja) * 2001-10-16 2008-11-13 Hanyang Hak Won Co Ltd リチウム二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池
KR20170081705A (ko) * 2014-11-28 2017-07-12 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 상기 정극 활물질을 이용한 비수계 전해질 이차 전지
KR20170103662A (ko) * 2016-03-03 2017-09-13 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 이의 제조 방법
JP2018032543A (ja) * 2016-08-25 2018-03-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469436B1 (ko) 2012-01-17 2014-12-08 주식회사 엘지화학 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법
KR20170078892A (ko) 2015-12-29 2017-07-10 전자부품연구원 불소계 코팅층이 형성된 리튬 이온 이차 전지용 니켈계 양극 활물질 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277307A (ja) * 2001-10-16 2008-11-13 Hanyang Hak Won Co Ltd リチウム二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池
KR20170081705A (ko) * 2014-11-28 2017-07-12 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 상기 정극 활물질을 이용한 비수계 전해질 이차 전지
KR20170103662A (ko) * 2016-03-03 2017-09-13 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 이의 제조 방법
JP2018032543A (ja) * 2016-08-25 2018-03-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CLAUS MÜHLE, ROBERT E. DINNEBIER, LEO VAN WÜLLEN, GEORG SCHWERING, MARTIN JANSEN: "New Insights into the Structural and Dynamical Features of Lithium Hexaoxometalates Li 7 MO 6 (M = Nb, Ta, Sb, Bi)", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY., vol. 43, no. 3, 1 February 2004 (2004-02-01), pages 874 - 881, XP055190254, ISSN: 00201669, DOI: 10.1021/ic030208w *

Also Published As

Publication number Publication date
KR20210070433A (ko) 2021-06-15
KR102291950B1 (ko) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2011025080A1 (ko) 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
WO2015133692A1 (ko) 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
WO2010058990A2 (ko) 이차 전지용 전극활물질 및 그 제조방법
WO2021025479A1 (ko) 이차전지용 활물질
WO2019107878A1 (ko) 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
WO2017003083A1 (ko) 고출력 에너지 저장 장치용 첨가제 및 이를 포함하는 고출력 에너지 저장 장치
WO2021025370A1 (ko) 리튬 이차전지용 양극 활물질
WO2012064053A2 (ko) 리튬 망간 복합 산화물 및 이의 제조 방법
WO2019225879A1 (ko) 리튬 이차전지용 음극활물질 및 이의 제조방법
WO2019066480A2 (ko) 전극 슬러리의 공정성 예측 및 전극 바인더 선정 방법
WO2014077663A1 (ko) 나트륨 이차전지용 양극활물질 및 이의 제조 방법
WO2012141503A2 (ko) 양극 활물질, 그 제조 방법 및 이를 채용한 양극 및 리튬 전지
WO2021112435A1 (ko) 리튬이온이차전지용 양극활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이온이차전지 및 그 제조방법
WO2021125870A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2022149675A1 (ko) 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법
WO2022014858A1 (ko) 리튬 이차전지용 양극 활물질
WO2020111318A1 (ko) 리튬 이차전지용 양극 활물질
WO2016137287A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2020256358A1 (ko) 리튬 이차전지용 양극 활물질
WO2015137728A1 (ko) 환원된 티타늄 산화물 함유 전극 활물질 및 이를 이용한 전기화학소자
WO2021145493A1 (ko) 코팅층을 포함하고 있는 양극 활물질 제조용 전구체 입자
WO2019039893A1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2022139187A1 (ko) 리튬 이차 전지용 양극 활물질과 이의 제조 방법 및 리튬 이차 전지
WO2017026690A1 (ko) 3차원 리튬 확산이 가능한 올리빈계 양극재 및 이의 제조방법
WO2023101078A1 (ko) 전극활물질의 제조방법, 전극활물질 및 이를 포함하는 리튬 이온 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896881

Country of ref document: EP

Kind code of ref document: A1