WO2021112248A1 - 発光装置、光源ユニット、光源装置、および光ファイバレーザ - Google Patents

発光装置、光源ユニット、光源装置、および光ファイバレーザ Download PDF

Info

Publication number
WO2021112248A1
WO2021112248A1 PCT/JP2020/045326 JP2020045326W WO2021112248A1 WO 2021112248 A1 WO2021112248 A1 WO 2021112248A1 JP 2020045326 W JP2020045326 W JP 2020045326W WO 2021112248 A1 WO2021112248 A1 WO 2021112248A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
light emitting
light
optical
laser beam
Prior art date
Application number
PCT/JP2020/045326
Other languages
English (en)
French (fr)
Inventor
悠太 石毛
ガーボル ガイダーチ
真也 中角
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2021562759A priority Critical patent/JP7190065B2/ja
Priority to CN202080084516.2A priority patent/CN114846703A/zh
Publication of WO2021112248A1 publication Critical patent/WO2021112248A1/ja
Priority to US17/804,924 priority patent/US20220294174A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Definitions

  • the present invention relates to a light emitting device, a light source unit, a light source device, and an optical fiber laser.
  • a light emitting element having a fast axis and a slow axis, a lens collimating in the fast axis direction, and a lens collimating in the slow axis direction are provided, and light emitted from the light emitting element is collimated in the fast axis direction and then slow axis.
  • a light emitting device that collimates in the direction is known (for example, Patent Document 1).
  • the light emitting element is housed in an airtightly sealed case and a lens collimating in the speed axis direction is arranged outside the case, the light from the light emitting element is relatively relatively in the speed axis direction. Since it is collimated in a state of being expanded at a large angle, there is a problem that the beam width in the speed axis direction becomes large.
  • one of the problems of the present invention is, for example, in a configuration in which the light emitting element is housed in the case and a lens for collimating the light emitted from the light emitting element is provided outside the case, the beam diameter is made smaller. It is possible to obtain a light emitting device, a light source unit, a light source device, and an optical fiber laser.
  • the light emitting device of the present invention is provided with, for example, a light emitting element having a fast axis and a slow axis and emitting laser light, and a window accommodating the light emitting element and passing the laser light emitted from the light emitting element.
  • a first optical element provided outside the case and focusing the laser light passing through the window in the speed axis direction, and a beam width of the laser light passing through the first optical element in the speed axis direction. Collimates in the speed axis direction in a state narrower than the beam width in the speed axis direction on the incident surface of the first optical element, and from the focusing point of the laser beam in the speed axis direction by the first optical element.
  • the first optical element may be a convex lens at least in the speed axis direction
  • the second optical element may be a concave lens at least in the speed axis direction
  • the first optical element may be a lens having a plane-symmetrical shape with respect to a virtual center plane intersecting the speed axis direction of the laser beam.
  • the first optical element may be a lens having an axisymmetric shape with respect to the central axis along the optical axis of the laser beam.
  • the light emitting device may include a third optical element that collimates the laser beam that has passed through the first optical element in the slow axis direction.
  • the third optical element may be located between the first optical element and the second optical element.
  • the light emitting device includes a base having a surface substantially along the optical axis direction of the laser beam, and the first optical element and the second optical element are located on the surface, and the first optical element and the first optical element are located on the surface. At least one of the two optical elements may be fixed to the protruding portion protruding from the surface via a joint portion.
  • At least one of the first optical element and the second optical element may be fixed to the protruding portion at a plurality of locations via the joint portion.
  • the joint portion may be interposed between at least one of the first optical element and the second optical element and the protruding portion in a direction along the optical axis.
  • the joint may be interposed between at least one of the first optical element and the second optical element and the protrusion in a direction intersecting the direction along the optical axis. Good.
  • the protruding portion may be the light emitting element.
  • the light emitting device may include a shielding portion that blocks the leaked light of the laser beam toward the joint portion.
  • the shielding portion may have a reflecting portion that reflects the leaked light in a direction deviating from the direction opposite to the incident direction of the leaked light.
  • the shielding portion may have an absorbing portion that absorbs the energy of the leaked light.
  • the first optical element may be fixed to the light emitting element.
  • the case may be hermetically sealed.
  • the light source unit of the present invention includes, for example, the light emitting device and an optical component that guides the light emitted from the light emitting device to an input unit of one optical fiber.
  • the light source unit includes the light emitting element that emits laser light in the first direction, the first optical element and the second optical element that transmit the laser light from the light emitting element in the first direction. From the first subsystem including, the light emitting element located away from the first subsystem in the first direction and emitting laser light in the opposite direction of the first direction, and the light emitting element. A second subsystem including the first optical element and the second optical element that transmit laser light in the opposite direction of the first direction, and leakage light of the laser light from the first subsystem and A shielding portion that shields at least one of the leaked light of the laser light from the second subsystem may be provided.
  • the shielding portion may be located between the first subunit and the second subunit.
  • the light source device of the present invention includes, for example, the light source unit.
  • the optical fiber laser of the present invention includes, for example, the light source device and an optical amplification fiber that amplifies the laser light emitted from the light source device.
  • the beam diameter can be made smaller in a configuration in which the light emitting element is housed in the case and a lens that collimates the light emitted from the light emitting element is provided outside the case.
  • FIG. 1 is an exemplary and schematic side view of the light emitting device of the first embodiment.
  • FIG. 2 is an exemplary and schematic plan view of the light emitting device of the first embodiment.
  • FIG. 3 is an exemplary and schematic side view of the light emitting device of the second embodiment.
  • FIG. 4 is an exemplary and schematic plan view of the light emitting device of the second embodiment.
  • FIG. 5 is an exemplary and schematic side view of the light emitting device of the third embodiment.
  • FIG. 6 is an exemplary and schematic plan view of the light emitting device of the third embodiment.
  • FIG. 7 is an exemplary and schematic plan view of the light source unit of the fourth embodiment.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG. FIG.
  • FIG. 9 is an exemplary and schematic plan view of a part of the light source unit of the fourth embodiment, and is a diagram showing a mounting structure of the first optical element.
  • FIG. 10 is an exemplary and schematic plan view of a part of the light source unit of the fourth embodiment, and is a diagram showing a mounting structure of a second optical element.
  • FIG. 11 is an exemplary and schematic plan view of a part of the light source unit of the fifth embodiment, and is a diagram showing a mounting structure of the first optical element.
  • FIG. 12 is an exemplary and schematic rear view of a part of the light source unit of the fifth embodiment, and is a diagram showing a mounting structure of the first optical element.
  • FIG. 13 is an exemplary and schematic rear view of a part of the light source unit of the sixth embodiment, and is a diagram showing a mounting structure of the first optical element.
  • FIG. 14 is an exemplary and schematic plan view of a part of the light source unit of the seventh embodiment.
  • FIG. 15 is an exemplary and schematic side view of the shielding portion included in the light source unit of the seventh embodiment.
  • FIG. 16 is an exemplary and schematic side view (partial cross-sectional view) of the shielding portion included in the light source unit of the eighth embodiment.
  • FIG. 17 is an exemplary and schematic plan view of a part of the light source unit of the ninth embodiment.
  • FIG. 18 is an exemplary and schematic side view of the shielding portion included in the light source unit of the ninth embodiment.
  • FIG. 19 is an exemplary and schematic plan view of a part of the light source unit of the tenth embodiment.
  • FIG. 20 is an exemplary configuration diagram of the light source device of the eleventh embodiment.
  • FIG. 21 is an exemplary configuration diagram of the optical fiber laser of the twelfth embodiment.
  • the X direction is represented by an arrow X
  • the Y direction is represented by an arrow Y
  • the Z direction is represented by an arrow Z.
  • the X, Y, and Z directions intersect and are orthogonal to each other.
  • the optical path of the laser beam L is indicated by a solid arrow.
  • FIG. 1 is a side view showing the light emitting device 1A of the first embodiment
  • FIG. 2 is a plan view showing the light emitting device 1A.
  • the light emitting device 1A includes a light emitting module 10, a first optical element 41A, a second optical element 42A, and a third optical element 43A.
  • the light emitting module 10 has a light emitting unit 30 and a case 20 accommodating the light emitting unit 30.
  • the case 20 is a rectangular parallelepiped box and houses the light emitting unit 30.
  • the case 20 has a wall member 21 and a window member 22.
  • the wall member 21 is made of, for example, a metal material.
  • the case 20 has a base 21a.
  • the base 21a has a plate-like shape that intersects the Z direction.
  • the base 21a is, for example, a part (bottom wall) of the wall member 21.
  • the base 21a is made of a metal material having high thermal conductivity, such as oxygen-free copper. Oxygen-free copper is an example of a copper-based material.
  • the base 21a may be provided separately from the wall member 21.
  • An opening 21b is provided at the end of the wall member 21 in the X direction.
  • a window member 22 that transmits the laser beam L is attached to the opening 21b.
  • the window member 22 intersects and is orthogonal to the X direction.
  • the laser beam L emitted from the light emitting unit 30 in the X direction passes through the window member 22 and goes out of the light emitting device 1A.
  • the laser beam L is emitted from the light emitting device 1A in the X direction.
  • the window member 22 is an example of a window.
  • the boundary portion of a plurality of members (not shown) constituting the wall member 21 (case 20) and the boundary portion between the wall member 21 and the window member 22 are sealed so that gas cannot pass through. That is, the case 20 is hermetically sealed.
  • the window member 22 is also a part of the wall member 21.
  • the light emitting unit 30 has a sub mount 31 and a light emitting element 32.
  • the submount 31 has, for example, a plate-like shape that intersects and is orthogonal to the Z direction.
  • the submount 31 can be made of an insulating material having a relatively high thermal conductivity, such as aluminum nitride (AIN), ceramics, or glass.
  • a metallized layer (not shown) is formed on the submount 31 as an electrode for supplying electric power to the light emitting element 32.
  • the submount 31 is mounted on the top surface 21c of the base 21a.
  • the light emitting element 32 is mounted on the top surface 31a of the submount 31. That is, the light emitting element 32 is mounted on the base 21a via the submount 31.
  • the light emitting element 32 is, for example, a semiconductor laser element having a fast axis (FA) and a slow axis (SA).
  • the light emitting element 32 has an elongated shape extending in the X direction.
  • the light emitting element 32 emits the laser beam L in the X direction from an emission opening (not shown) provided at the end in the X direction.
  • the light emitting unit 30 is mounted so that the speed axis of the light emitting element 32 is along the Z direction and the slow axis is along the Y direction.
  • the Z direction is an example of the fast axis direction
  • the Y direction is an example of the slow axis direction.
  • the laser beam L emitted from the light emitting element 32 passes through the first optical element 41A, the second optical element 42A, and the third optical element 43A in this order, and is collimated at least in the Z direction and the Y direction.
  • the first optical element 41A, the second optical element 42A, and the third optical element 43A are all provided outside the case 20.
  • the first optical element 41A, the second optical element 42A, and the third optical element 43A are arranged in this order in the X direction, and all of them are lenses.
  • the laser beam L emitted from the light emitting element 32 passes through the first optical element 41A, the second optical element 42A, and the third optical element 43A in this order. Further, the optical axis of the laser beam L is linear until it exits from the light emitting element 32 and passes through the first optical element 41A, the second optical element 42A, and the third optical element 43A, and the laser beam L has a linear optical axis.
  • the fast axis direction is along the Z direction
  • the slow axis direction of the laser beam L is along the Y direction.
  • the first optical element 41A is slightly separated from the window member 22 in the X direction, or is in contact with the window member 22 in the X direction.
  • the laser beam L that has passed through the window member 22 is incident on the first optical element 41A.
  • the first optical element 41A focuses the laser beam L at least in the Z direction.
  • the first optical element 41A is a convex lens at least in the Z direction, in other words, a convex lens in a cross section orthogonal to at least the Y direction.
  • the first optical element 41A has a plane-symmetrical shape with respect to the virtual center plane Vc1 as a plane intersecting and orthogonal to the Z direction.
  • the entrance surface 41a and the exit surface 41b of the first optical element 41A have a generatrix along the Y direction and a pillar surface extending in the Y direction.
  • the incident surface 41a is a convex curved surface that is convex in the direction opposite to the X direction.
  • the exit surface 41b is a convex curved surface that is convex in the X direction.
  • the exit surface 41b projects larger than the incident surface 41a.
  • the first optical element 41A is a cylindrical lens.
  • the beam width Wz of the laser beam L from the first optical element 41A in the Z direction becomes narrower as it travels in the X direction.
  • a tapered laser beam L focused in at least the Z direction is incident on the second optical element 42A via the first optical element 41A.
  • the beam width is the width of a region where the light intensity is equal to or higher than a predetermined value in the beam profile of the laser light.
  • the predetermined value is, for example, 1 / e 2 of the peak light intensity.
  • the second optical element 42A collimates the laser beam L in the Z direction with the beam width Wz2 in the Z direction smaller than the beam width Wz1 in the Z direction at the incident surface 41a on the first optical element 41A.
  • the second optical element 42A is a concave lens at least in the Z direction, in other words, a concave lens in a cross section orthogonal to at least the Y direction.
  • the second optical element 42A may also be referred to as a collimating lens.
  • the second optical element 42A has a plane-symmetrical shape with respect to the virtual central plane Vc2 as a plane intersecting and orthogonal to the Z direction.
  • the entrance surface 42a and the exit surface 42b of the second optical element 42A have a generatrix along the Y direction and a pillar surface extending in the Y direction.
  • the incident surface 42a is a convex curved surface that is convex in the direction opposite to the X direction.
  • the exit surface 42b is a concave curved surface that is concave in the X direction.
  • the central portion of the exit surface 42b in the Z direction is located on the opposite side of the X direction from both ends in the Z direction.
  • the second optical element 42A is located closer to the first optical element 41A than the focusing point Pcz in the Z direction of the laser beam L by the first optical element 41A.
  • the beam width Wy in the Y direction of the laser beam L emitted from the light emitting element 32 and passing through the first optical element 41A and the second optical element 42A widens as it advances in the X direction.
  • a thickened laser beam L spreading in the Y direction is incident on the third optical element 43A via the second optical element 42A.
  • the third optical element 43A collimates the laser beam L in the Y direction.
  • the third optical element 43A is a convex lens at least in the Y direction, in other words, a convex lens in a cross section orthogonal to at least the Y direction.
  • the second optical element 42A may also be referred to as a collimating lens.
  • the third optical element 43A has a plane-symmetrical shape with respect to the virtual central plane Vc3 as a plane intersecting and orthogonal to the Y direction.
  • the entrance surface 43a and the exit surface 43b of the third optical element 43A have a generatrix along the Z direction and a pillar surface extending in the Z direction.
  • the incident surface 43a is a plane orthogonal to the X direction.
  • the exit surface 43b is a convex curved surface that is convex in the X direction.
  • the first optical element 41A is provided outside the case 20 and transmits the laser beam L passing through the window member 11 (window) provided in the case 20 in the Z direction (speed axis). Focus on the direction). Then, in the second optical element 42A, the beam width Wz2 in the Z direction of the laser beam L passing through the first optical element 41A is smaller than the beam width Wz1 in the Z direction on the incident surface 41a of the first optical element 41A. In the state, collimate in the Z direction.
  • the beam width of the laser beam L emitted from the light emitting element 32 in the Z direction widens as it advances in the X direction. Therefore, a collimating lens (not shown) that collimates in the Z direction instead of the first optical element 41A at a position where the first optical element 41A is not arranged and the first optical element 41A is provided.
  • a collimated laser beam Lv with a wider beam width Wz1 is obtained, as shown by the alternate long and short dash line in FIG.
  • the laser beam L focused in the Z direction via the first optical element 41A has a beam width Wz2 in the Z direction in the Z direction on the incident surface 41a of the first optical element 41A. In a state narrower than the beam width Wz1 of the above, collimating is performed by the second optical element 42A. Therefore, according to the present embodiment, the beam width Wzc of the collimated laser beam L in the Z direction can be made smaller.
  • the second optical element 42A is located closer to the first optical element 41A than the focusing point Pcz in the Z direction of the laser beam L by the first optical element 41A.
  • the second optical element 42A is located farther from the first optical element 41A than the focusing point Pcz, the second optical element 42A is placed on the optical path of the laser beam L between the first optical element 41A and the second optical element 42A.
  • the focusing point Pcz will appear.
  • inconveniences such as accumulation of dust may occur at the focusing point Pcz having high energy density.
  • the second optical element 42A since the second optical element 42A is located closer to the first optical element 41A than the focusing point Pcz, the second optical element 42A before the laser beam L reaches the focusing point Pcz. Collimated by. That is, according to the present embodiment, since the focusing point Pcz does not appear on the optical path of the laser beam L, it is possible to avoid the inconvenience caused by the focusing point Pcz.
  • the first optical element 41A is a convex lens at least in the Z direction
  • the second optical element 42A is a concave lens at least in the Z direction.
  • the first optical element 41A and the second optical element 42A can be realized by a relatively simple configuration.
  • the first optical element 41A is a lens having a plane-symmetrical shape with respect to the virtual center plane Vc1 intersecting the Z direction.
  • the first optical element 41A can be realized by a relatively simple configuration.
  • the light emitting device 1A includes a third optical element 43A that collimates the laser beam L passing through the first optical element 41A in the Y direction (slow axis direction).
  • the laser beam L can be collimated even in the Y direction.
  • FIG. 3 is a side view showing the light emitting device 1B of the second embodiment
  • FIG. 4 is a plan view showing the light emitting device 1B.
  • the position of the third optical element 43B is the third optical element 43A of the first embodiment. It is different from the position of. Specifically, in the first embodiment, the third optical element 43A is located on the opposite side of the second optical element 42A from the first optical element 41A, whereas in the present embodiment, the third optical element 43A is located.
  • the optical element 43B is located close to the first optical element 41A with respect to the second optical element 42A, that is, between the first optical element 41A and the second optical element 42A.
  • the third optical element 43B has a plane-symmetrical shape with respect to the virtual center plane Vc3 as a plane intersecting and orthogonal to the Y direction as an example. ..
  • the entrance surface 43a and the exit surface 43b of the third optical element 43B have a generatrix along the Z direction and a pillar surface extending in the Z direction.
  • the incident surface 43a is a plane orthogonal to the X direction.
  • the exit surface 43b is a convex curved surface that is convex in the X direction.
  • first optical element 41A and the second optical element 42A in the present embodiment are the same as those in the first embodiment.
  • the third optical element 43B is located between the first optical element 41A and the second optical element 42A.
  • the beam width Wy is narrower.
  • the laser beam L can be collimated in the Y direction. Therefore, according to the present embodiment, the beam width Wyc of the collimated laser beam L in the Y direction can be made smaller.
  • FIG. 5 is a side view showing the light emitting device 1C of the third embodiment
  • FIG. 6 is a plan view showing the light emitting device 1C.
  • the configuration of the first optical element 41C is the first optical element 41A of the first embodiment. It is different from the configuration of. Specifically, in the first embodiment, the first optical element 41A is a lens having a plane-symmetrical shape with respect to the virtual center plane Vc1 as a plane intersecting and orthogonal to the Z direction, whereas in the present embodiment.
  • the first optical element 41C is a lens having an axisymmetric shape with respect to the central axis Ax along the optical axis.
  • the first optical element 41C is configured as a rotating body around the central axis Ax.
  • the first optical element 41C is arranged so that the central axis Ax is along the X direction and overlaps with the optical axis of the laser beam L.
  • the incident surface 41a and the exit surface 41b of the first optical element 41C each have a rotating surface around the central axis Ax extending in the X direction.
  • the exit surface 41b is a convex curved surface that is convex in the X direction.
  • the exit surface 41b projects larger than the incident surface 41a.
  • the second optical element 42A is located closer to the first optical element 41C than the focusing point Pcz in the Z direction of the laser beam L by the first optical element 41C.
  • a focusing point Pcy of the laser beam L in the Y direction appears between the first optical element 41C and the second optical element 42A, but the energy density at the focusing point Pcy is Since it is not so expensive, problems such as the accumulation of dust do not occur.
  • the first optical element 41C is a lens having an axisymmetric shape with respect to the central axis Ax along the optical axis of the laser beam L.
  • the first optical element 41C can be realized by a relatively simple configuration.
  • FIG. 7 is a plan view of the light source unit 100A (100) of the fourth embodiment including the light emitting devices 1C of the third embodiment
  • FIG. 8 is a sectional view taken along line VIII-VIII of FIG.
  • the optical filter 102, the mirror 103, and the condenser lenses 104 and 105 are shown as side views.
  • the light source unit 100A is equipped with the light emitting device 1C of the third embodiment.
  • the light source unit 100A includes a base 101, a plurality of light emitting devices 1C, a plurality of mirrors 103, condensing lenses 104 and 105, an optical filter 102, a housing base 106, and an optical fiber 107.
  • the optical filter 102, the mirror 103, and the condenser lenses 104 and 105 are examples of optical components.
  • Each light emitting device 1C includes a light emitting module 10, a first optical element 41C, a second optical element 42A, and a third optical element 43A.
  • the mirror 103 reflects the light traveling in the X direction from the light emitting device 1C in the Y direction.
  • the mirror 103 is an example of a deflection component.
  • the light reflected by the mirror 103 is collected by the condenser lenses 104 and 105.
  • the subunit 100a including the light emitting device 1C (that is, the light emitting module 10, the first optical element 41C, the second optical element 42A, and the third optical element 43A) and the mirror 103 is , Arranged at approximately equal intervals in the Y direction.
  • the plurality of subunits 100a are arranged so as to be offset from each other in the Z direction.
  • the subunit 100a is mounted on each step of the surface 101b.
  • each subunit 100a (each mirror 103) is arranged at equal intervals in the Z direction on the incident surface of the condenser lens 104.
  • the light from each subunit 100a is input to the input unit 107a of the optical fiber 107 via the condenser lens 104, the optical filter 102, and the condenser lens 105.
  • the optical fiber 107 is supported by a fiber support portion 106a provided on the housing base 106.
  • the light emitting device 1C of the light source unit 100A can be replaced with the light emitting devices 1A and 1B of other embodiments.
  • FIG. 9 is a plan view showing the mounting structure of the first optical element 41C.
  • the first optical element 41C is fixed to the case 20 of the light emitting module 10 via the joint portion 50.
  • the mounting structure of the first optical element 41C can be realized by using the case 20 with a relatively simple configuration.
  • the light emitting module 10 having the case 20 is mounted on the surface 101b and projects from the surface 101b in the Z direction.
  • the light emitting module 10 is an example of a protruding portion.
  • the joint portion 50 may also be referred to as a fixed portion.
  • the Z direction is an example of a direction intersecting the surface 101b.
  • the joint portion 50 is, for example, an adhesive made of a synthetic resin material.
  • the joint portion 50 may be an electromagnetic wave curable adhesive or a thermosetting adhesive.
  • the joint portion 50 is interposed between the corner portion 21f between the side surfaces 21d on both sides of the case 20 in the Y direction and the front surface 21e in the X direction and the peripheral edge portion deviated from the optical path of the laser beam of the first optical element 41C. , The corner portion 21f and the peripheral portion are joined.
  • the case 20 and the first optical element 41C are joined via a joining portion 50 at a plurality of locations.
  • the two joints 50 shown in FIG. 9 are separated from each other in the Y direction.
  • the joint portion 50 (not shown) is also present at a position separated from at least one of the two joint portions 50 shown in FIG. 9 in the opposite direction in the Z direction, and the case 20 and the first optical element 41C are separated from each other. It is joined by three or four joints 50.
  • At least one of the two joints 50 shown in FIG. 9 may extend in the opposite direction in the Z direction by a certain length.
  • the case 20 and the first optical element 41C are joined by two joining portions 50. Therefore, the case 20 and the first optical element 41C can be joined by two or more joining portions 50.
  • the amount of the first optical element 41C in the Z direction is small. Due to the tilt (tilt), the optical axis of the laser beam from the first optical element 41C may be displaced in the Z direction or the opposite direction of the Z direction with respect to the X direction. In this case, the light from each subunit 100a (each mirror 103) may be incident on a position deviated from the desired position of the condenser lens 104 in the Z direction, and the convergence of the laser light in the Z direction may be lowered. is there.
  • the first optical element 41C is bonded to the case 20 of the light emitting module 10 via the bonding portion 50.
  • the case 20 can support the first optical element 41C, the inclination of the first optical element 41C with respect to the Z direction can be suppressed, and the inclination of the laser beam in the Z direction, and thus the inclination of the laser beam in the Z direction, can be suppressed. It is possible to suppress a decrease in the Z-direction convergence of the space-coupled laser beam.
  • the first optical element 41C and the case 20 are joined via a plurality of joining portions 50 separated in the Z direction. According to such a configuration, the inclination of the first optical element 41C with respect to the Z direction can be further suppressed, and the inclination of the laser beam in the Z direction and the decrease in the convergence of the laser light can be further suppressed. Can be done.
  • the base 101 is an example of a base, and the surface 101b is an example of a first surface.
  • the joint portion 50 is interposed between the first optical element 41C and the case 20 in the direction (X direction) along the central axis Ax (optical axis). With such a configuration, even if the joint portion 50 contracts or expands, the first optical element 41C tends to translate in the X direction relative to the case 20. In other words, the first optical element 41C is less likely to tilt.
  • the plurality of joint portions 50 are arranged so as to sandwich the central axis Ax with each other.
  • a virtual straight line (virtual) in which the plurality of joints 50 pass through the central axis Ax when viewed in a direction along the central axis Ax (X direction) It means that they are arranged on opposite sides of each other with a plane (not shown) in between.
  • the plurality of joints 50 may be arranged at two or more locations around the central axis Ax when viewed in the X direction. With such a configuration, even if the joint portion 50 contracts or expands, the first optical element 41C tends to move in translation relative to the case 20. In other words, the first optical element 41C is less likely to tilt.
  • the joint portion 50 may extend with a required area along a virtual plane intersecting the X direction, for example, a YZ plane. In this case, even if the joint portion 50 contracts or expands, the larger the area, the easier it is for the first optical element 41C to move in translation with respect to the case 20. In other words, the first optical element 41C is less likely to tilt.
  • FIG. 10 is a plan view showing a mounting structure of the second optical element 42A.
  • the second optical element 42A is attached to the post 101c projecting from the surface 101b in the Z direction via the joint portion 50.
  • the post 101c has a square columnar shape as an example, but may have another shape such as a columnar shape.
  • the post 101c is an example of a protruding portion.
  • the posts 101c are arranged on both sides in the Y direction with respect to the second optical element 42A.
  • the joint portion 50 (not shown) also exists at a position separated from the joint portion 50 shown in FIG. 10 in the opposite direction in the Z direction, and the two joint portions 50 form the post 101c and the second optical.
  • the element 42A is joined.
  • the post 101c may be attached on the surface 101b of the base 101 via a bonding material such as an adhesive or solder, may be welded, or may be attached via a fixture such as a screw. It may be configured integrally with the base 101.
  • the adhesive may be an electromagnetic wave curable adhesive or a thermosetting adhesive.
  • the post 101c can support the second optical element 42A, the inclination of the second optical element 42A with respect to the Z direction can be suppressed, and the inclination of the laser beam in the Z direction, and thus the inclination of the laser beam in the Z direction, can be suppressed. It is possible to suppress a decrease in the Z-direction convergence of the space-coupled laser beam.
  • the third optical element 43A may also be supported by a post (not shown) similar to the post 101c.
  • FIG. 11 is a plan view of a part of the light source unit 100B (100) of the fifth embodiment, and is a diagram showing a mounting structure of the first optical element 41C.
  • FIG. 12 is a rear view of the mounting structure of the first optical element 41C and the post 101c, that is, the first optical element 41C, as viewed in the X direction.
  • the light source unit 100B has the same configuration as the light source unit 100A of the fourth embodiment except for the mounting structure of the first optical element 41C shown in FIGS. 11 and 12.
  • the first optical element 41C is bonded to the post 101c protruding from the surface 101b in the Z direction via a plurality of bonding portions 50.
  • the posts 101c are arranged on both sides in the Y direction with respect to the second optical element 42A.
  • the two joints 50 are arranged apart in the Z direction.
  • the number of joints 50 in each post 101c is not limited to two and may be three.
  • the two joints 50 are arranged at the upper end and the lower end of the post 101c, but are not limited to this, and are arranged at positions away from the upper end and the lower end of the post 101c. May be done.
  • the first optical element 41C has an overhanging portion 41d protruding outward in the radial direction of the optical axis at the central portion in the X direction (optical axis direction), and the joining portion 50 has the overhanging portion 41d. It is interposed between the end face 41d1 in the opposite direction of the X direction and the post 101c. With such a configuration, it is possible to prevent the joint portion 50 from interfering with the optical path of the laser beam.
  • the post 101c can support the first optical element 41C, the inclination of the first optical element 41C with respect to the Z direction can be suppressed, and the inclination of the laser beam in the Z direction, and thus the spatial coupling, can be suppressed. It is possible to suppress a decrease in the convergence of the laser beam in the Z direction.
  • FIG. 13 is a rear view of the mounting structure of the first optical element 41C and the post 101c of the sixth embodiment, that is, the first optical element 41C, as viewed in the X direction. Except for the mounting structure of the first optical element 41C shown in FIG. 13, the light source unit 100C (100) has the same configuration as the light source unit 100A of the fourth embodiment.
  • the first optical element 41C and the post 101c are joined by the joining portion 50 extending in the Z direction.
  • the first optical element 41C and the post 101c protruding portion
  • the first optical element is formed even in a configuration having no plurality of joining portions 50.
  • the inclination of 41C with respect to the Z direction can be suppressed, and the inclination of the laser beam in the Z direction and the decrease in the convergence of the spatially coupled laser light in the Z direction can be suppressed.
  • the length of the joint portion 50 in the Z direction may be a length that can suppress the inclination of the first optical element 41C, and is preferably 1/4 or more of the length of the first optical element 41C in the Z direction. It is more preferably 1/3 or more. Further, the extending direction of the joint portion 50 is not limited to the Z direction.
  • the joint portion 50 is interposed between the second optical element 42A and the post 101c in the Y direction intersecting the central axis Ax. With such a configuration, even if the joint portion 50 contracts or expands, the second optical element 42A tends to translate in the Y direction relative to the post 101c. In other words, the second optical element 42A is less likely to tilt.
  • FIG. 14 is a schematic configuration diagram of the light source unit 100D (100) of the seventh embodiment, and is a plan view of the inside of the light source unit 100D as viewed in the opposite direction of the Z direction.
  • the light source unit 100D includes a base 101, an optical fiber 107 fixed to the base 101, a plurality of subunits 100a including a light emitting device 1C and a mirror 103, respectively, and a plurality of subunits 100a. It has a photosynthesis unit 108 that synthesizes laser light from the light source.
  • the optical fiber 107 is an output optical fiber, and is fixed to the base 101 via a fiber support portion 106a that supports an end portion (not shown) thereof.
  • the fiber support portion 106a may be integrally configured with the base 101 as a part of the base 101, or the fiber support portion 106a configured as a member separate from the base 101 may provide a fixture such as a screw. It may be attached to the base 101 via.
  • the base 101 also includes a portion corresponding to the housing base 106 of the fourth embodiment.
  • the base 101 is made of a material having high thermal conductivity, such as a copper-based material or an aluminum-based material. Further, the base 101 is covered with a cover (not shown).
  • the optical fiber 107, the subunit 100a, the photosynthetic unit 108, and the fiber support unit 106a are housed and sealed in a storage chamber formed between the base 101 and the cover.
  • the surface 101b of the base 101 is provided with a step (see FIG. 8) in which the position of the subunit 100a shifts in the opposite direction of the Z direction toward the Y direction.
  • the subunits 100a are arranged on each step. Therefore, the position of the subunit 100a included in the array A1 in the Z direction shifts in the opposite direction to the Z direction as it goes in the Y direction, and the position of the subunit 100a included in the array A2 in the Z direction also goes in the Y direction. As it shifts in the opposite direction of the Z direction.
  • the laser light output from the light emitting modules 10 of the plurality of subunits 100a is synthesized by the photosynthesis unit 108.
  • the photosynthetic unit 108 includes optical components such as a combiner 108a, a mirror 108b, and a 1/2 wave plate 108c.
  • the mirror 108b directs the laser light from the subunit 100a of the array A1 to the combiner 108a via the 1/2 wavelength plate 108c.
  • the 1/2 wave plate 108c rotates the plane of polarization of the light from the array A1.
  • the laser beam from the subunit 100a of the array A2 is directly input to the combiner 108a.
  • the combiner 108a synthesizes the light from the two arrays A1 and A2 and outputs the light to the condenser lens 104.
  • the combiner 108a may also be referred to as a polarization synthesizing element.
  • the base 101 is provided with a refrigerant passage 109 for cooling the subunit 100a (light emitting module 10), the fiber support portion 106a, the condenser lenses 104 and 105, the combiner 108a, and the like.
  • a refrigerant such as a coolant flows.
  • the refrigerant passage 109 passes, for example, near the mounting surface of each component of the base 101, for example, directly below or in the vicinity thereof, and the inner surface of the refrigerant passage 109 and the refrigerant (not shown) in the refrigerant passage 109 are components or parts to be cooled.
  • the subsystem 100a (light emitting module 10), the fiber support portion 106a, the condenser lenses 104, 105, the combiner 108a, and the like. Heat exchange is performed between the refrigerant and the component or portion via the base 101 to cool the component.
  • the inlet 109a and the outlet 109b of the refrigerant passage 109 are provided at the ends of the base 101 in the opposite direction in the Y direction as an example, but may be provided at other positions.
  • the laser beam directed in the X1 direction is reflected by the mirror 103 in the Y direction, and in the sub-unit 100a2 (100a) of the array A2, the X1 direction.
  • the laser beam directed in the X2 direction in the opposite direction is reflected by the mirror 103 in the Y direction.
  • the subunit 100a1 is an example of the first subunit
  • the subunit 100a2 is an example of the second subunit.
  • the X1 direction is an example of the first direction
  • the X2 direction is an example of the opposite direction of the first direction.
  • the laser beam travels in the directions opposite to each other in the subunit 100a1 of the array A1 and the subunit 100a2 of the array A2 in this way, it approaches the other array in the subunit 100a of one of the arrays A1 and A2. Leakage of the laser beam traveling in the direction may interfere with the laser beam in the subunit 100a of the other array.
  • optical components such as the first optical element 41C, the second optical element 42A, and the third optical element 43A are bonded to the base 101 via the bonding portion 50. If this is the case, if the joint portion 50 is irradiated with leaked light, the joint portion 50 may be damaged.
  • the leaked light is derived from, for example, a laser beam that is unintentionally reflected or transmitted by each optical component.
  • a shielding portion 101d1 that blocks leaked light is provided between the array A1 and the array A2.
  • FIG. 15 is a side view of the shielding portion 101d1.
  • the shielding portion 101d1 projects from the surface 101b in the Z direction.
  • the position of the top of the shielding portion 101d1 in the Z direction that is, the height from the surface 101b is set to a height sufficient to block the leaked light Ll indicated by the broken line arrow.
  • the position of the top of the shielding portion 101d1 in the Z direction is at least the same as the position of the top of the first optical element 41C, the second optical element 42A, and the third optical element 43A contained in the subunit 100a in the Z direction. It is located in front of the Z direction.
  • the shielding portion 101d1 may be attached on the surface 101b of the base 101 via a bonding material such as an adhesive or solder, may be welded, or may be attached via a fixture such as a screw. It may be formed integrally with the base 101.
  • the adhesive may be an electromagnetic wave curable adhesive, a thermosetting adhesive, or an adhesive having a relatively high thermal conductivity.
  • the shielding portion 101d1 has a reflecting surface 101da at the end portion in the X1 direction and the end portion in the X2 direction.
  • the reflecting surface 101da reflects the leaking light Ll in a direction deviating from the direction opposite to the incident direction of the leaking light Ll. That is, the reflecting surface 101da on which the leaked light Ll traveling in the X2 direction is incident reflects the leaked light Ll in a direction deviating from the X1 direction, in other words, in a direction inclined from the X1 direction.
  • the reflecting surface 101da on which the leaked light Ll traveling in the X1 direction is incident reflects the leaked light Ll in a direction deviating from the X2 direction, in other words, in a direction inclined from the X2 direction. That is, each of the reflecting surfaces 101da deflects the leaked light Ll from the X1 direction or the X2 direction. As a result, it is possible to prevent the reflected light on the reflecting surface 101da of the leaked light Ll from interfering with the laser light transmitted in the subunit 100a.
  • the reflecting surface 101da is inclined so as to be directed to one of the X1 direction and the X2 direction toward the Z direction, but the inclined direction is not limited to this. Further, the reflecting surface 101da may be, for example, a curved surface. Further, when it is a curved surface, the reflecting surface 101da may be spherical or cylindrical.
  • FIG. 16 is a side view (partial cross-sectional view) of the shielding portion 101d2 included in the light source unit 100E (100) of the eighth embodiment.
  • the light source unit 100E has the same configuration as the light source unit 100D of the seventh embodiment except that the shielding portion 101d2 shown in FIG. 16 is provided in place of the shielding portion 101d1 shown in FIG.
  • the reflective surface 101da of the shielding portion 101d2 is coated with a paint such as black paint that converts the energy of the laser beam into thermal energy.
  • the reflecting surface 101da functions as an absorbing surface that absorbs the energy of the laser beam.
  • the reflective surface 101da is an example of an absorbing surface. According to such a configuration, the intensity of the reflected light on the reflecting surface 101da can be made lower, so that the adverse effect of the reflected light on other parts in the light source unit 100D can be made smaller.
  • the base 101 is provided with a refrigerant passage 109 through which the refrigerant C flows so as to overlap the shielding portion 101d1 in the Z direction.
  • the refrigerant passage 109 is provided so that a part of the section between the inlet 109a and the outlet 109b of the refrigerant passage 109 passes through a position overlapping the shielding portion 101d2 in the Z direction.
  • the refrigerant passage 109 extends in the Y direction along, for example, the shielding portion 101d2.
  • the shielding portion 101d2 and the base 101 are made of a material having high thermal conductivity, for example, a copper-based material or an aluminum-based material, and the shielding portion 101d2, the inner surface of the refrigerant passage 109, and the refrigerant C are thermally connected to each other. It is connected. Therefore, according to the present embodiment, heat exchange is performed between the refrigerant C and the shielding portion 101d2 via the shielding portion 101d2 and the base 101, and the shielding portion 101d2 in which heat based on the energy of the leaked light Ll is generated is cooled. Therefore, it is possible to prevent the temperature around the shielding portion 101d2 and the shielding portion 101d2 from rising.
  • FIG. 17 is a plan view of subunit 100a1 (100a) included in the light source unit 100F (100) of the ninth embodiment.
  • the light source unit 100F has the same configuration as the light source unit 100D of the seventh embodiment except that the subunit 100a shown in FIG. 17 is provided in place of the subunit 100a shown in FIG. ..
  • the subunit 100a1 of the array A1 is shown in FIG. 17, the subunit 100a2 of the array A2 also has the same configuration as that of FIG. 17, that is, a configuration that has a mirror image relationship with the configuration of FIG. ing.
  • the second optical element 42A is joined to the post 101c via the joint portion 50.
  • the posts 101c are provided on both sides of the second optical element 42A in the Y direction, but may be provided on only one side.
  • a shielding portion 101d3 is provided at a position separated from the joint portion 50 in the X1 direction.
  • the junction 50 included in the subunit 100a of one of the arrays A1 and A2 is irradiated with the leakage light Ll from the subunit 100a of the other array of the arrays A1 and A2. This can prevent the joint portion 50 from being damaged.
  • the shielding portion 101d3 can be realized by a more compact configuration.
  • FIG. 18 is a side view of the shielding portion 101d3.
  • the shielding portion 101d3 has the same reflecting surface 101da as in the seventh embodiment.
  • the direction of reflection of the leaked light Ll by the reflecting surface 101da is the same as that of the seventh embodiment.
  • the shielding unit 101d3 has the same configuration as that of the eighth embodiment and may function as an absorbing unit.
  • FIG. 19 is a plan view of the subunit 100a included in the light source unit 100G (100) of the tenth embodiment.
  • the light source unit 100G has the same configuration as the light source unit 100D of the seventh embodiment except that the subunit 100a shown in FIG. 19 is provided in place of the subunit 100a shown in FIG. ..
  • the subunit 100a1 of the array A1 is shown in FIG. 19, the subunit 100a2 of the array A2 also has the same configuration as that of FIG. 17, that is, a configuration that has a mirror image relationship with the configuration of FIG. ing.
  • the second optical element 42A is joined to the shielding portion 101d3 via the joining portion 50. Further, the joint portion 50 is provided on the opposite side of the leaked light with respect to the shielding portion 101d3. Therefore, also in this embodiment, the shielding portion 101d3 blocks the leakage light Ll toward the joining portion 50. That is, it can be said that the shielding portion 101d3 is a functional integration of the post 101c and the shielding portion 101d3 in the configuration of the ninth embodiment. Also in the present embodiment, the shielding portion 101d3 causes the junction portion 50 included in the subunit 100a of one of the arrays A1 and A2 to leak light Ll from the subunit 100a of the other array of the arrays A1 and A2.
  • a configuration capable of suppressing the irradiation of the leakage light Ll to the joint portion 50 and suppressing the inclination of the second optical element 42A can be realized by a simpler configuration.
  • FIG. 20 is a configuration diagram of the light source device 110 of the eleventh embodiment in which the light source unit 100 according to any one of the fourth to tenth embodiments is mounted.
  • the light source device 110 includes a plurality of light source units 100 as excitation light sources.
  • the light (laser light) emitted from the plurality of light source units 100 is propagated to the combiner 90 as an optical coupling portion via the optical fiber 107.
  • the output end of the optical fiber 107 is coupled to a plurality of input ports of the combiner 90 having a plurality of inputs and one output.
  • the light source device 110 is not limited to having a plurality of light source units 100, and may have at least one light source unit 100.
  • FIG. 21 is a configuration diagram of an optical fiber laser 200 on which the light source device 110 of FIG. 20 is mounted.
  • the optical fiber laser 200 includes a light source device 110 and a combiner 90 shown in FIG. 20, a rare earth-added optical fiber 130, and an output side optical fiber 140.
  • Highly reflective FBRs 120 and 121 are provided at the input end and the output end of the rare earth-added optical fiber 130, respectively.
  • the input end of the rare earth-added optical fiber 130 is connected to the output end of the combiner 90, and the input end of the output-side optical fiber 140 is connected to the output end of the rare earth-added optical fiber 130.
  • the incident portion for incident the laser light output from the plurality of light source units 100 onto the rare earth-added optical fiber 130 may have another configuration instead of the combiner 90.
  • the optical fibers 107 of the output units of the plurality of light source units 100 are arranged side by side, and the laser light output from the plurality of optical fibers 107 is transmitted to the rare earth-added optical fiber 130 by using an incident portion such as an optical system including a lens. It may be configured to be incident on the input end of.
  • the rare earth-added optical fiber 130 is an example of an optical amplification fiber.
  • having the light emitting device 1C or the light emitting devices 1A and 1B has advantages such as a smaller beam width or light diameter.
  • the first optical element, the second optical element, and the third optical element are not limited to those disclosed in the embodiments, and reflect or refract light, for example, a mirror, a prism, or a diffractive optical element. , Or other optical element to diffract.
  • the diffractive optical element is, for example, a composite of a plurality of diffraction gratings having different periods.
  • optical axis of the optical path from the light emitting element to the exit of the third optical element does not have to be linear and may be bent as appropriate.
  • the arrangement of the subunit, the light emitting module, each optical element, the photosynthetic part, each optical component, the protruding part, the shielding part, etc. in the light source is not limited to the above embodiment. Further, the traveling direction of the leaked light is not limited to the above-mentioned direction.
  • the present invention can be applied to a light emitting device, a light source unit, a light source device, and an optical fiber laser.
  • Refrigerant passage 109a ... Inlet 109b ... Outlet 110 Light source device 120, 121 ... High reflection FBR 130 ... Rare earth-added optical fiber 140 ... Output side optical fiber 200 ... Optical fiber Laser Ax ... Central axis A1, A2 ... Array C ... Refrigerator L ... Laser light Lv ... Laser light Ll ... Leakage light Pcy ... Focusing point Pcz ... Focusing point Vc1 , Vc2, Vc3 ... Virtual center plane Wz, Wz1, Wz2 ... Beam width Wyc ... (Collected) Beam width Wzc ... (Collected) Beam width X ... Direction X1 ... Direction (first direction) X2 ... direction (opposite direction of the first direction) Y ... direction Z ... direction

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

発光装置は、例えば、速軸と遅軸とを有しレーザ光を出射する発光素子と、発光素子を収容し、発光素子から出射されたレーザ光を通す窓が設けられたケースと、当該ケース外に設けられ、窓を通ったレーザ光を速軸方向で集束する第一光学素子と、第一光学素子を経由したレーザ光を、速軸方向でのビーム幅が第一光学素子の入射面における速軸方向でのビーム幅よりも狭い状態で、速軸方向でコリメートし、第一光学素子による速軸方向でのレーザ光の集束点よりも当該第一光学素子の近くに位置された、第二光学素子と、を備える。

Description

発光装置、光源ユニット、光源装置、および光ファイバレーザ
 本発明は、発光装置、光源ユニット、光源装置、および光ファイバレーザに関する。
 従来、速軸と遅軸とを有する発光素子、速軸方向にコリメートするレンズ、および遅軸方向にコリメートするレンズを備え、発光素子から出射された光を速軸方向にコリメートした後、遅軸方向にコリメートする発光装置が、知られている(例えば、特許文献1)。
米国特許出願公開2018/0031850号明細書
 しかしながら、発光素子が気密封止されたケース内に収容されるとともに、速軸方向にコリメートするレンズがケース外に配置された構成にあっては、発光素子からの光が速軸方向に比較的大きな角度で拡がった状態でコリメートされるため、速軸方向におけるビーム幅が大きくなってしまうという問題があった。
 そこで、本発明の課題の一つは、例えば、発光素子がケース内に収容されるとともに、発光素子から出射された光をコリメートするレンズがケース外に設けられた構成において、ビーム径をより小さくすることが可能な、発光装置、光源ユニット、光源装置、および光ファイバレーザを得ること、である。
 本発明の発光装置は、例えば、速軸と遅軸とを有しレーザ光を出射する発光素子と、前記発光素子を収容し、前記発光素子から出射されたレーザ光を通す窓が設けられたケースと、当該ケース外に設けられ、前記窓を通ったレーザ光を速軸方向で集束する第一光学素子と、前記第一光学素子を経由したレーザ光を、前記速軸方向でのビーム幅が前記第一光学素子の入射面における前記速軸方向でのビーム幅よりも狭い状態で、前記速軸方向でコリメートし、前記第一光学素子による前記速軸方向でのレーザ光の集束点よりも当該第一光学素子の近くに位置された、第二光学素子と、を備える。
 前記発光装置では、前記第一光学素子は、少なくとも前記速軸方向において凸レンズであり、前記第二光学素子は、少なくとも前記速軸方向において凹レンズであってもよい。
 前記発光装置では、前記第一光学素子は、レーザ光の速軸方向と交差した仮想中心面に対する面対称形状を有したレンズであってもよい。
 前記発光装置では、前記第一光学素子は、レーザ光の光軸に沿う中心軸に対する軸対称形状を有したレンズであってもよい。
 前記発光装置は、前記第一光学素子を経由したレーザ光を遅軸方向でコリメートする第三光学素子を備えてもよい。
 前記発光装置では、前記第三光学素子は、前記第一光学素子と前記第二光学素子との間に位置されてもよい。
 前記発光装置は、レーザ光の光軸方向に略沿う表面を有したベースを備え、前記第一光学素子および前記第二光学素子は、前記表面上に位置し、前記第一光学素子および前記第二光学素子のうち少なくとも一方は、前記表面から突出した突出部に、接合部を介して固定されてもよい。
 前記発光装置では、前記第一光学素子および前記第二光学素子のうち少なくとも一方は、前記突出部に、複数箇所でそれぞれ前記接合部を介して固定されてもよい。
 前記発光装置では、前記接合部は、前記光軸に沿う方向において、前記第一光学素子および前記第二光学素子のうち少なくとも一方と、前記突出部との間に介在してもよい。
 前記発光装置では、前記接合部は、前記光軸に沿う方向と交差する方向において、前記第一光学素子および前記第二光学素子のうち少なくとも一方と、前記突出部との間に介在してもよい。
 前記発光装置では、前記突出部は、前記発光素子であってもよい。
 前記発光装置は、前記接合部に向かう前記レーザ光の漏れ光を遮る遮蔽部を備えてもよい。
 前記発光装置では、前記遮蔽部は、前記漏れ光を当該漏れ光の入射方向の反対方向から外れた方向に反射する反射部を有してもよい。
 前記発光装置では、前記遮蔽部は、前記漏れ光のエネルギを吸収する吸収部を有してもよい。
 前記発光装置では、前記第一光学素子は、前記発光素子に固定されてもよい。
 前記発光装置では、前記ケースは気密封止されてもよい。
 また、本発明の光源ユニットは、例えば、前記発光装置と、前記発光装置から出射された光を一つの光ファイバの入力部へ導く光学部品と、を備える。
 前記光源ユニットは、第一方向に向けてレーザ光を出射する前記発光素子と、当該発光素子からのレーザ光を前記第一方向に向けて透過する前記第一光学素子および前記第二光学素子と、を含む第一サブユニットと、前記第一サブユニットから前記第一方向に離れて位置し、前記第一方向の反対方向に向けてレーザ光を出射する前記発光素子と、当該発光素子からのレーザ光を前記第一方向の反対方向に向けて透過する前記第一光学素子および前記第二光学素子と、を含む第二サブユニットと、前記第一サブユニットからの前記レーザ光の漏れ光および前記第二サブユニットからの前記レーザ光の漏れ光のうち少なくとも一方の漏れ光を遮蔽する遮蔽部と、を備えてもよい。
 前記光源ユニットでは、前記遮蔽部は、前記第一サブユニットと前記第二サブユニットとの間に位置してもよい。
 また、本発明の光源装置は、例えば、前記光源ユニットを備える。
 また、本発明の光ファイバレーザは、例えば、前記光源装置と、前記光源装置から出射されたレーザ光を増幅する光増幅ファイバと、を備える。
 本発明によれば、発光素子がケース内に収容されるとともに、発光素子から出射された光をコリメートするレンズがケース外に設けられた構成において、ビーム径をより小さくすることができる。
図1は、第1実施形態の発光装置の例示的かつ模式的な側面図である。 図2は、第1実施形態の発光装置の例示的かつ模式的な平面図である。 図3は、第2実施形態の発光装置の例示的かつ模式的な側面図である。 図4は、第2実施形態の発光装置の例示的かつ模式的な平面図である。 図5は、第3実施形態の発光装置の例示的かつ模式的な側面図である。 図6は、第3実施形態の発光装置の例示的かつ模式的な平面図である。 図7は、第4実施形態の光源ユニットの例示的かつ模式的な平面図である。 図8は、図7のVIII-VIII断面図である。 図9は、第4実施形態の光源ユニットの一部の例示的かつ模式的な平面図であって、第一光学素子の取付構造を示す図である。 図10は、第4実施形態の光源ユニットの一部の例示的かつ模式的な平面図であって、第二光学素子の取付構造を示す図である。 図11は、第5実施形態の光源ユニットの一部の例示的かつ模式的な平面図であって、第一光学素子の取付構造を示す図である。 図12は、第5実施形態の光源ユニットの一部の例示的かつ模式的な背面図であって、第一光学素子の取付構造を示す図である。 図13は、第6実施形態の光源ユニットの一部の例示的かつ模式的な背面図であって、第一光学素子の取付構造を示す図である。 図14は、第7実施形態の光源ユニットの一部の例示的かつ模式的な平面図である。 図15は、第7実施形態の光源ユニットに含まれる遮蔽部の例示的かつ模式的な側面図である。 図16は、第8実施形態の光源ユニットに含まれる遮蔽部の例示的かつ模式的な側面図(一部断面図)である。 図17は、第9実施形態の光源ユニットの一部の例示的かつ模式的な平面図である。 図18は、第9実施形態の光源ユニットに含まれる遮蔽部の例示的かつ模式的な側面図である。 図19は、第10実施形態の光源ユニットの一部の例示的かつ模式的な平面図である。 図20は、第11実施形態の光源装置の例示的な構成図である。 図21は、第12実施形態の光ファイバレーザの例示的な構成図である。
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
 以下に示される複数の実施形態は、同様の構成を備えている。よって、各実施形態の構成によれば、当該同様の構成に基づく同様の作用および効果が得られる。また、以下では、それら同様の構成には同様の符号が付与されるとともに、重複する説明が省略される場合がある。
 本明細書において、序数は、部品や部位等を区別するために便宜上付与されており、優先順位や順番を示すものではない。
 また、各図において、X方向を矢印Xで表し、Y方向を矢印Yで表し、Z方向を矢印Zで表す。X方向、Y方向、およびZ方向は、互いに交差するとともに互いに直交している。
 なお、図1~6,14において、レーザ光Lの光路は、実線の矢印で示されている。
[第1実施形態]
 図1は、第1実施形態の発光装置1Aを示す側面図であり、図2は、発光装置1Aを示す平面図である。
[発光装置の構成]
 図1,2に示されるように、発光装置1Aは、発光モジュール10と、第一光学素子41Aと、第二光学素子42Aと、第三光学素子43Aと、を備えている。
 発光モジュール10は、発光ユニット30と、当該発光ユニット30を収容したケース20と、を有している。
 ケース20は、直方体状の箱であり、発光ユニット30を収容している。ケース20は、壁部材21と、窓部材22と、を有している。壁部材21は、例えば金属材料で作られている。
 また、ケース20は、ベース21aを有している。ベース21aは、Z方向と交差した板状の形状を有している。ベース21aは、例えば、壁部材21の一部(底壁)である。ベース21aは、例えば、無酸素銅のような、熱伝導率が高い金属材料で作られている。無酸素銅は、銅系材料の一例である。なお、ベース21aは、壁部材21とは別に設けられてもよい。
 壁部材21のX方向の端部には、開口部21bが設けられている。開口部21bには、レーザ光Lを透過する窓部材22が取り付けられている。窓部材22は、X方向と交差しかつ直交している。発光ユニット30からX方向に出射されたレーザ光Lは、窓部材22を通過して、発光装置1Aの外へ出る。レーザ光Lは、発光装置1AからX方向に出射される。窓部材22は、窓の一例である。
 壁部材21(ケース20)を構成する複数の部材(不図示)の境界部分、ならびに壁部材21と窓部材22との間の境界部分などは、気体が通過できないようにシールされている。すなわち、ケース20は、気密封止されている。なお、窓部材22は、壁部材21の一部でもある。
 発光ユニット30は、サブマウント31と、発光素子32と、を有している。
 サブマウント31は、例えば、Z方向と交差するとともに直交した板状の形状を有している。サブマウント31は、例えば、窒化アルミニウム(AIN)や、セラミック、ガラスのような、熱伝導率が比較的高い絶縁材料で作られうる。サブマウント31上には、発光素子32に電力を供給する電極として、メタライズ層(不図示)が形成されている。
 図1,2に示されるように、サブマウント31は、ベース21aの頂面21c上に実装されている。発光素子32は、サブマウント31の頂面31a上に実装されている。すなわち、発光素子32は、サブマウント31を介してベース21aに実装されている。
 発光素子32は、例えば、速軸(FA)と遅軸(SA)とを有した半導体レーザ素子である。発光素子32は、X方向に延びた細長い形状を有している。発光素子32は、X方向の端部に設けられた出射開口(不図示)から、X方向に、レーザ光Lを出射する。発光ユニット30は、発光素子32の速軸がZ方向に沿い、かつ遅軸がY方向に沿うよう、実装される。Z方向は速軸方向の一例であり、Y方向は、遅軸方向の一例である。
[各光学素子の構成および配置]
 発光素子32から出射されたレーザ光Lは、第一光学素子41A、第二光学素子42A、および第三光学素子43Aをこの順に経由し、少なくともZ方向およびY方向でコリメートされる。第一光学素子41A、第二光学素子42A、および第三光学素子43Aは、いずれもケース20外に設けられている。
 本実施形態では、第一光学素子41A、第二光学素子42A、および第三光学素子43Aは、X方向にこの順に並んでおり、いずれもレンズである。発光素子32から出射されたレーザ光Lは、第一光学素子41A、第二光学素子42A、および第三光学素子43Aを、この順に通過する。また、発光素子32から出て、第一光学素子41A、第二光学素子42A、および第三光学素子43Aを通過する迄の間、レーザ光Lの光軸は直線状であり、レーザ光Lの速軸方向はZ方向に沿い、かつレーザ光Lの遅軸方向はY方向に沿う。
 第一光学素子41Aは、窓部材22からX方向に僅かに離間するか、あるいは窓部材22に対してX方向に接している。
 第一光学素子41Aには、窓部材22を通過したレーザ光Lが入射する。図1に示されるように、第一光学素子41Aは、少なくともZ方向において、レーザ光Lを集束する。第一光学素子41Aは、少なくともZ方向において凸レンズ、言い換えると少なくともY方向と直交する断面において凸レンズである。
 本実施形態では、第一光学素子41Aは、一例として、Z方向と交差しかつ直交した平面としての仮想中心面Vc1に対する面対称形状を有している。第一光学素子41Aの入射面41aおよび出射面41bは、Y方向に沿う母線を有しY方向に延びた柱面を有している。入射面41aは、X方向の反対方向に凸の凸曲面である。また、出射面41bは、X方向に凸の凸曲面である。出射面41bは、入射面41aよりも大きく突出している。第一光学素子41Aは、シリンドリカルレンズである。
 図1に示されるように、第一光学素子41Aからのレーザ光LのZ方向のビーム幅Wzは、X方向に進むにつれて狭くなる。第二光学素子42Aには、第一光学素子41Aを経由して少なくともZ方向において集束されている先細りのレーザ光Lが入射する。なお、ビーム幅は、レーザ光のビームプロファイルにおいて、光強度が所定値以上となる領域の幅である。所定値は、例えばピークの光強度の1/eである。
 第二光学素子42Aは、レーザ光Lを、Z方向におけるビーム幅Wz2が、第一光学素子41Aへの入射面41aでのZ方向におけるビーム幅Wz1よりも小さい状態で、Z方向においてコリメートする。第二光学素子42Aは、少なくともZ方向において凹レンズ、言い換えると少なくともY方向と直交する断面において凹レンズである。第二光学素子42Aは、コリメートレンズとも称されうる。
 本実施形態では、第二光学素子42Aは、一例として、Z方向と交差しかつ直交した平面としての仮想中心面Vc2に対する面対称形状を有している。第二光学素子42Aの入射面42aおよび出射面42bは、Y方向に沿う母線を有しY方向に延びた柱面を有している。入射面42aは、X方向の反対方向に凸の凸曲面である。また、出射面42bは、X方向に凹の凹曲面である。Y方向から見た場合、出射面42bのZ方向の中央部は、Z方向の両端部よりもX方向の反対側に位置している。
 また、第二光学素子42Aは、第一光学素子41Aによるレーザ光LのZ方向の集束点Pczよりも第一光学素子41Aの近くに位置されている。
 図2に示されるように、発光素子32から出射され第一光学素子41Aおよび第二光学素子42Aを経由したレーザ光LのY方向のビーム幅Wyは、X方向に進むにつれて拡がる。第三光学素子43Aには、第二光学素子42Aを経由してY方向において拡がっている先太りのレーザ光Lが入射する。第三光学素子43Aは、レーザ光Lを、Y方向においてコリメートする。第三光学素子43Aは、少なくともY方向において凸レンズ、言い換えると少なくともY方向と直交する断面において凸レンズである。第二光学素子42Aは、コリメートレンズとも称されうる。
 本実施形態では、第三光学素子43Aは、一例として、Y方向と交差しかつ直交した平面としての仮想中心面Vc3に対する面対称形状を有している。第三光学素子43Aの入射面43aおよび出射面43bは、Z方向に沿う母線を有しZ方向に延びた柱面を有している。入射面43aは、X方向と直交する平面である。また、出射面43bは、X方向に凸の凸曲面である。
 以上説明したように、本実施形態では、第一光学素子41Aは、ケース20外に設けられ、ケース20に設けられた窓部材11(窓)を通ったレーザ光Lを、Z方向(速軸方向)で集束する。そして、第二光学素子42Aは、第一光学素子41Aを経由したレーザ光Lを、Z方向でのビーム幅Wz2が第一光学素子41Aの入射面41aにおけるZ方向でのビーム幅Wz1よりも小さい状態で、Z方向においてコリメートする。
 図1に示されるように、発光素子32から出射されたレーザ光LのZ方向のビーム幅は、X方向に進むにつれて拡がる。このため、仮に、第一光学素子41Aが配置されず、当該第一光学素子41Aが設けられている位置に、当該第一光学素子41Aに替えて、Z方向にコリメートするコリメートレンズ(不図示)が配置された場合、図1中に二点鎖線で示されるように、より広いビーム幅Wz1でコリメートされたレーザ光Lvが得られる。これに対し、本実施形態では、第一光学素子41Aを経由することによりZ方向に集束されているレーザ光Lを、Z方向のビーム幅Wz2が第一光学素子41Aの入射面41aにおけるZ方向のビーム幅Wz1よりも狭い状態で、第二光学素子42Aによってコリメートする。したがって、本実施形態によれば、コリメートされたレーザ光LのZ方向におけるビーム幅Wzcを、より小さくすることができる。
 また、本実施形態では、第二光学素子42Aは、第一光学素子41Aによるレーザ光LのZ方向の集束点Pczよりも第一光学素子41Aの近くに位置されている。
 仮に、第二光学素子42Aが、集束点Pczよりも第一光学素子41Aの遠くに位置された場合、第一光学素子41Aと第二光学素子42Aとの間のレーザ光Lの光路上に、集束点Pczが出現することになる。この場合、エネルギ密度の高い集束点Pczにおいて塵芥が集積するなどの不都合が生じる虞がある。この点、本実施形態では、第二光学素子42Aが集束点Pczよりも第一光学素子41Aの近くに位置されているため、レーザ光Lが集束点Pczに到達する前に第二光学素子42Aによってコリメートされる。すなわち、本実施形態によれば、レーザ光Lの光路上に集束点Pczが出現しないため、当該集束点Pczによる不都合が生じるのを、回避することができる。
 また、本実施形態では、第一光学素子41Aは、少なくともZ方向において凸レンズであり、第二光学素子42Aは、少なくともZ方向において凹レンズである。
 このような構成によれば、第一光学素子41Aおよび第二光学素子42Aを、比較的簡素な構成によって実現することができる。
 また、本実施形態では、第一光学素子41Aは、Z方向と交差した仮想中心面Vc1に対する面対称形状を有したレンズである。
 このような構成によれば、第一光学素子41Aを、比較的簡素な構成によって実現することができる。
 また、本実施形態では、発光装置1Aは、第一光学素子41Aを経由したレーザ光LをY方向(遅軸方向)でコリメートする第三光学素子43Aを備えている。
 このような構成によれば、レーザ光LをY方向においてもコリメートすることができる。
[第2実施形態]
 図3は、第2実施形態の発光装置1Bを示す側面図であり、図4は、発光装置1Bを示す平面図である。
 図3を図1と比較し、かつ図4を図2と比較すれば明らかとなるように、本実施形態では、第三光学素子43Bの位置が、上記第1実施形態の第三光学素子43Aの位置と相違している。具体的に、第1実施形態では、第三光学素子43Aは、第二光学素子42Aに対して第一光学素子41Aとは反対側に位置されているのに対し、本実施形態では、第三光学素子43Bは、第二光学素子42Aに対して第一光学素子41Aに近い位置、すなわち第一光学素子41Aと第二光学素子42Aとの間に、位置されている。
 なお、本実施形態でも、上記第1実施形態と同様に、第三光学素子43Bは、一例として、Y方向と交差しかつ直交した平面としての仮想中心面Vc3に対する面対称形状を有している。第三光学素子43Bの入射面43aおよび出射面43bは、Z方向に沿う母線を有しZ方向に延びた柱面を有している。入射面43aは、X方向と直交する平面である。また、出射面43bは、X方向に凸の凸曲面である。
 また、本実施形態における第一光学素子41Aおよび第二光学素子42Aの構成および配置は、上記第1実施形態と同様である。
 以上のように、本実施形態では、第三光学素子43Bは、第一光学素子41Aと第二光学素子42Aとの間に位置されている。図3に示されるように、本実施形態では、第三光学素子43Bは、第一光学素子41Aと第二光学素子42Aとの間に位置されているため、ビーム幅Wyがより狭い状態で、レーザ光LをY方向にコリメートすることができる。したがって、本実施形態によれば、コリメートされたレーザ光LのY方向におけるビーム幅Wycを、より小さくすることができる。
[第3実施形態]
 図5は、第3実施形態の発光装置1Cを示す側面図であり、図6は、発光装置1Cを示す平面図である。
 図6を図2と比較し、かつ図5を図1と比較すれば明らかとなるように、本実施形態では、第一光学素子41Cの構成が、上記第1実施形態の第一光学素子41Aの構成と相違している。具体的に、第1実施形態では、第一光学素子41Aは、Z方向と交差しかつ直交した平面としての仮想中心面Vc1に対する面対称形状を有したレンズであるのに対し、本実施形態では、第一光学素子41Cは、光軸に沿う中心軸Axに対する軸対称形状を有したレンズである。
 第一光学素子41Cは、中心軸Ax周りの回転体として構成される。第一光学素子41Cは、当該中心軸AxがX方向に沿うとともにレーザ光Lの光軸と重なるように配置される。第一光学素子41Cの入射面41aおよび出射面41bは、それぞれ、X方向に延びた中心軸Ax周りの回転面を有している。出射面41bは、X方向に凸の凸曲面である。出射面41bは、入射面41aよりも大きく突出している。
 また、本実施形態でも、第二光学素子42Aは、第一光学素子41Cによるレーザ光LのZ方向の集束点Pczよりも第一光学素子41Cの近くに位置されている。
 なお、図6に示されるように、第一光学素子41Cと第二光学素子42Aとの間に、レーザ光LのY方向における集束点Pcyが出現するが、当該集束点Pcyでのエネルギ密度はそれほど高くないため、塵芥の集積のような問題は生じ無い。
 以上のように、本実施形態では、第一光学素子41Cは、レーザ光Lの光軸に沿う中心軸Axに対する軸対称形状を有したレンズである。
 本実施形態によれば、レーザ光Lが、Z方向とY方向との間の方向においても集束されるため、レーザ光Lの収差が小さくなるという効果が得られる。また、本実施形態によれば、第一光学素子41Cを、比較的簡素な構成によって実現することができる。
[第4実施形態]
[光源ユニットの構成]
 図7は、複数の第3実施形態の発光装置1Cを備えた第4実施形態の光源ユニット100A(100)の平面図であり、図8は、図7のVIII-VIII断面図である。なお、図8において、光フィルタ102、ミラー103、および集光レンズ104,105は、側面図として示されている。
 光源ユニット100Aには、一例として、第3実施形態の発光装置1Cが実装されている。光源ユニット100Aは、ベース101と、複数の発光装置1Cと、複数のミラー103と、集光レンズ104,105と、光フィルタ102と、ハウジングベース106と、光ファイバ107と、を備えている。光フィルタ102、ミラー103、および集光レンズ104,105は、光学部品の一例である。各発光装置1Cは、発光モジュール10と、第一光学素子41Cと、第二光学素子42Aと、第三光学素子43Aと、を含む。
 ミラー103は、発光装置1CからのX方向に進む光を、Y方向に反射する。ミラー103は、偏向部品の一例である。ミラー103で反射された光は、集光レンズ104,105で集光される。
 ここで、図7に示されるように、発光装置1C(すなわち、発光モジュール10、第一光学素子41C、第二光学素子42A、および第三光学素子43A)とミラー103とを含むサブユニット100aは、Y方向に略等間隔で並んでいる。また、図8に示されるように、複数のサブユニット100aは、互いにZ方向にずれて配置されている。集光レンズ104に近いほど、サブユニット100aのベース101の底面101aからのZ方向の距離が短くなるよう、構成されている。したがって、図8に示されるように、ベース101の表面101bには、Y方向に向かうにつれてZ方向の反対方向にずれる段差が設けられている。各段差は、Z方向と交差しかつ直交し、X方向およびY方向に略沿って延びている。サブユニット100aは、表面101bの各段差上に実装されている。
 このような構成において、各サブユニット100a(各ミラー103)からの光は、集光レンズ104の入射面で、Z方向に等間隔で並ぶ。各サブユニット100aからの光は、集光レンズ104、光フィルタ102、および集光レンズ105を経由して、光ファイバ107の入力部107aへ入力される。光ファイバ107は、ハウジングベース106に設けられたファイバ支持部106aに支持されている。
 なお、光源ユニット100Aの発光装置1Cは、他の実施形態の発光装置1A,1Bに置き換え可能である。
 図9は、第一光学素子41Cの取付構造を示す平面図である。図9に示されるように、第一光学素子41Cは、発光モジュール10のケース20に接合部50を介して固定されている。このような構成により、ケース20を利用して、第一光学素子41Cの取付構造を、比較的簡素な構成によって実現することができる。ケース20を有した発光モジュール10は、表面101b上に取り付けられており、当該表面101bからZ方向に突出している。発光モジュール10は、突出部の一例である。また、接合部50は、固定部とも称されうる。Z方向は、表面101bと交差した方向の一例である。
 接合部50は、例えば、合成樹脂材料で作られた接着剤である。接合部50は、電磁波硬化性の接着剤や、熱硬化性の接着剤であってもよい。
 接合部50は、ケース20のY方向両側の側面21dとX方向の前面21eとの間の角部21fと、第一光学素子41Cのレーザ光の光路から外れた周縁部との間に介在し、当該角部21fと周縁部とを接合している。
 ケース20と第一光学素子41Cとは、複数箇所において、それぞれ接合部50を介して接合されている。図9に示される二つの接合部50は、Y方向に互いに離間している。また、図9に示される二つの接合部50のうち少なくとも一つからZ方向の反対方向に離れた位置にも接合部50(不図示)が存在し、ケース20と第一光学素子41Cとが三つまたは四つの接合部50によって接合されている。なお、図9に示される二つの接合部50のうち少なくとも一つがZ方向の反対方向に或る程度の長さだけ延びていてもよい。この場合、ケース20と第一光学素子41Cとが二つの接合部50によって接合されている。したがって、ケース20と第一光学素子41Cとは二つ以上の接合部50によって接合されうる。
 仮に、第一光学素子41Cが、当該第一光学素子41Cとベース101の表面101bとの間に介在する接合部50のみによって片持ち支持された場合、第一光学素子41CのZ方向に対する微少な傾き(倒れ)によって、第一光学素子41Cからのレーザ光の光軸が、X方向に対してZ方向またはZ方向の反対方向にずれてしまう虞がある。この場合、各サブユニット100a(各ミラー103)からの光が、集光レンズ104の所期の位置からZ方向に外れた位置に入射し、レーザ光のZ方向の収束性が低くなる虞がある。
 この点、本実施形態では、第一光学素子41Cは、接合部50を介して発光モジュール10のケース20と接合されている。このような構成によれば、ケース20が第一光学素子41Cを支持することができるため、第一光学素子41CのZ方向に対する傾きを抑制することができ、レーザ光のZ方向の傾き、ひいては空間結合されたレーザ光のZ方向の収束性の低下を、抑制することができる。
 また、上述したように、本実施形態では、第一光学素子41Cとケース20とは、Z方向に離れた複数の接合部50を介して接合されている。このような構成によれば、第一光学素子41CのZ方向に対する傾きをより一層抑制することができ、レーザ光のZ方向の傾き、ひいてはレーザ光の収束性の低下を、より一層抑制することができる。ベース101は、ベースの一例であり、表面101bは、第一面の一例である。
 また、本実施形態では、接合部50は、中心軸Ax(光軸)に沿う方向(X方向)において、第一光学素子41Cとケース20との間に介在している。このような構成により、仮に接合部50の収縮や膨張等が生じた場合にあっても、第一光学素子41Cはケース20に対して相対的にX方向に平行移動しやすくなる。言い換えると、第一光学素子41Cは傾き難くなる。
 また、本実施形態では、複数の接合部50は、互いに中心軸Axを挟んで配置されている。複数の接合部50が互いに中心軸Axを挟んで配置されるとは、中心軸Axに沿う方向(X方向)に見た場合に、複数の接合部50が中心軸Axを通る仮想直線(仮想平面、不図示)を挟んで互いに反対側に配置されることを意味する。このような構成により、仮に接合部50の収縮や膨張等が生じた場合にあっても、第一光学素子41CはX方向に平行移動しやすくなる。言い換えると、第一光学素子41Cは傾き難くなる。また、本実施形態では、複数の接合部50は、X方向に見た場合に、中心軸Axの周りの2箇所以上に配置されうる。このような構成により、仮に接合部50の収縮や膨張等が生じた場合にあっても、第一光学素子41Cはケース20に対して相対的に並進運動しやすくなる。言い換えると、第一光学素子41Cは傾き難くなる。
 また、接合部50は、X方向と交差する仮想平面、例えばYZ平面に沿って、所要の面積をもって広がってもよい。この場合、仮に接合部50の収縮や膨張等が生じた場合にあっても、当該面積が広いほど、第一光学素子41Cはケース20に対して相対的に並進運動しやすくなる。言い換えると、第一光学素子41Cは傾き難くなる。
 図10は、第二光学素子42Aの取付構造を示す平面図である。図10に示されるように、第二光学素子42Aは、表面101bからZ方向に突出したポスト101cに、接合部50を介して取り付けられている。ポスト101cは、一例として、四角柱状の形状を有しているが、円柱状など、他の形状を有してもよい。ポスト101cは、突出部の一例である。ポスト101cは、第二光学素子42Aに対してY方向の両側に配置されている。
 また、本実施形態では、図10に示される接合部50からZ方向の反対方向に離れた位置にも接合部50(不図示)が存在し、二つの接合部50によってポスト101cと第二光学素子42Aとが接合されている。
 ポスト101cは、ベース101の表面101b上に、例えば接着剤やはんだのような接合材を介して取り付けられてもよいし、溶接されてもよいし、ねじのような固定具を介して取り付けられてもよいし、ベース101と一体に構成されてもよい。接着剤は、電磁波硬化性の接着剤や、熱硬化性の接着剤であってもよい。
 このような構成によれば、ポスト101cが第二光学素子42Aを支持することができるため、第二光学素子42AのZ方向に対する傾きを抑制することができ、レーザ光のZ方向の傾き、ひいては空間結合されたレーザ光のZ方向の収束性の低下を、抑制することができる。なお、第三光学素子43Aも、ポスト101cと同様のポスト(不図示)によって支持されてもよい。
[第5実施形態]
 図11は、第5実施形態の光源ユニット100B(100)の一部の平面図であって、第一光学素子41Cの取付構造を示す図である。また、図12は、第一光学素子41Cおよびポスト101c、すなわち第一光学素子41Cの取付構造を、X方向に見た背面図である。図11,12に示される第一光学素子41Cの取付構造を除き、光源ユニット100Bは、第4実施形態の光源ユニット100Aと同様の構成を備えている。
 図11,12に示されるように、本実施形態では、第一光学素子41Cは、表面101bからZ方向に突出したポスト101cに、複数の接合部50を介して接合されている。ポスト101cは、第二光学素子42Aに対してY方向の両側に配置されている。各ポスト101cにおいて、二つの接合部50が、Z方向に離間して配置されている。各ポスト101cにおける接合部50の数は、二つには限定されず、三つであってもよい。また、図12に示されるように、二つの接合部50は、ポスト101cの上端と下端とに配置されているが、これには限定されず、ポスト101cの上端および下端から離れた位置に配置されてもよい。
 また、第一光学素子41Cは、X方向(光軸方向)の中央部において、光軸の径方向外側に張り出した張出部41dを有しており、接合部50は、当該張出部41dのX方向の反対方向の端面41d1とポスト101cとの間に介在している。このような構成により、接合部50がレーザ光の光路に干渉するのを抑制することができる。
 本実施形態によっても、ポスト101cが第一光学素子41Cを支持することができるため、第一光学素子41CのZ方向に対する傾きを抑制することができ、レーザ光のZ方向の傾き、ひいては空間結合されたレーザ光のZ方向の収束性の低下を、抑制することができる。
[第6実施形態]
 図13は、第6実施形態の第一光学素子41Cおよびポスト101c、すなわち第一光学素子41Cの取付構造を、X方向に見た背面図である。図13に示される第一光学素子41Cの取付構造を除き、光源ユニット100C(100)は、第4実施形態の光源ユニット100Aと同様の構成を備えている。
 図13に示されるように、本実施形態では、Z方向に延びた接合部50によって、第一光学素子41Cとポスト101cとが接合されている。本実施形態のようにZ方向に延びた接合部50によって第一光学素子41Cとポスト101c(突出部)とを接合することにより、複数の接合部50を有しない構成においても、第一光学素子41CのZ方向に対する傾きを抑制することができ、レーザ光のZ方向の傾き、ひいては空間結合されたレーザ光のZ方向の収束性の低下を、抑制することができる。接合部50のZ方向の長さは、第一光学素子41Cの傾きを抑制できる長さであれば良く、第一光学素子41CのZ方向の長さの1/4以上であることが好ましく、1/3以上であることがさらに好ましい。また、接合部50の延びる方向は、Z方向には限定されない。
 また、本実施形態では、接合部50は、中心軸Axと交差するY方向において、第二光学素子42Aとポスト101cとの間に介在している。このような構成により、仮に接合部50の収縮や膨張等が生じた場合にあっても、第二光学素子42Aはポスト101cに対して相対的にY方向に平行移動しやすくなる。言い換えると、第二光学素子42Aは傾き難くなる。
[第7実施形態]
 図14は、第7実施形態の光源ユニット100D(100)の概略構成図であって、光源ユニット100Dの内部をZ方向の反対方向に見た平面図である。
 図14に示されるように、光源ユニット100Dは、ベース101と、当該ベース101に固定された光ファイバ107と、それぞれ発光装置1Cおよびミラー103を含む複数のサブユニット100aと、複数のサブユニット100aからのレーザ光を合成する光合成部108と、を有している。
 光ファイバ107は、出力光ファイバであって、その端部(不図示)を支持するファイバ支持部106aを介して、ベース101と固定されている。
 ファイバ支持部106aは、ベース101の一部として当該ベース101と一体的に構成されてもよいし、ベース101とは別部材として構成されたファイバ支持部106aが、例えばねじのような固定具を介してベース101に取り付けられてもよい。
 ベース101は、ここでは、上記第4実施形態のハウジングベース106に相当する部位も含むものとする。ベース101は、例えば、銅系材料やアルミニウム系材料のような、熱伝導率が高い材料で作られる。また、ベース101は、カバー(不図示)で覆われている。光ファイバ107、サブユニット100a、光合成部108、およびファイバ支持部106aは、ベース101とカバーとの間に形成された収容室内に収容され、封止されている。
 ベース101の表面101bには、上記第4実施形態と同様に、Y方向に向かうにつれてサブユニット100aの位置がZ方向の反対方向にずれる段差(図8参照)が設けられている。複数のサブユニット100aがY方向に所定間隔(例えば一定間隔)で並ぶアレイA1,A2のそれぞれについて、サブユニット100aは、各段差上に配置されている。したがって、アレイA1に含まれるサブユニット100aのZ方向の位置は、Y方向に向かうにつれてZ方向の反対方向にずれるとともに、アレイA2に含まれるサブユニット100aのZ方向の位置も、Y方向に向かうにつれてZ方向の反対方向にずれている。
 複数のサブユニット100aの発光モジュール10から出力されたレーザ光は、光合成部108によって合成される。光合成部108は、コンバイナ108a、ミラー108b、および1/2波長板108c等の光学部品を有している。
 ミラー108bは、アレイA1のサブユニット100aからのレーザ光を1/2波長板108cを介してコンバイナ108aに向かわせる。1/2波長板108cは、アレイA1からの光の偏波面を回転させる。アレイA2のサブユニット100aからのレーザ光は、コンバイナ108aに直接入力される。
 コンバイナ108aは、二つのアレイA1,A2からの光を合成して集光レンズ104に向けて出力する。コンバイナ108aは、偏波合成素子とも称されうる。
 また、ベース101には、サブユニット100a(発光モジュール10)や、ファイバ支持部106a、集光レンズ104,105、コンバイナ108a等を冷却する冷媒通路109が設けられている。冷媒通路109では、例えば、冷却液のような冷媒が流れる。冷媒通路109は、例えば、ベース101の各部品の実装面の近く、例えば直下またはその近傍を通り、冷媒通路109の内面および冷媒通路109内の冷媒(不図示)は、冷却対象の部品や部位、すなわち、サブユニット100a(発光モジュール10)や、ファイバ支持部106a、集光レンズ104,105、コンバイナ108a等と、熱的に接続されている。ベース101を介して冷媒と部品や部位との間で熱交換が行われ、部品が冷却される。なお、冷媒通路109の入口109aおよび出口109bは、一例として、ベース101のY方向の反対方向の端部に設けられているが、他の位置に設けられてもよい。
 図14に示されるように、アレイA1のサブユニット100a1(100a)においては、X1方向に向かうレーザ光がミラー103でY方向に反射され、アレイA2のサブユニット100a2(100a)においては、X1方向とは反対方向のX2方向に向かうレーザ光がミラー103でY方向に反射される。サブユニット100a1は、第一サブユニットの一例であり、サブユニット100a2は、第二サブユニットの一例である。また、X1方向は第一方向の一例であり、X2方向は、第一方向の反対方向の一例である。
 このようにアレイA1のサブユニット100a1とアレイA2のサブユニット100a2とで、レーザ光が互いに対向する方向に進む場合、アレイA1,A2のうち一方のアレイのサブユニット100a内で他方のアレイに近づく方向に進むレーザ光の漏れ光が、当該他方のアレイのサブユニット100a内のレーザ光に干渉する虞がある。また、上記第4~第6実施形態のように、第一光学素子41Cや、第二光学素子42A、第三光学素子43A等の光学部品が、接合部50を介してベース101と接合されている場合、当該接合部50に漏れ光が照射されると、当該接合部50が損傷してしまう虞もある。漏れ光は、例えば、各光学部品において不本意に反射したり透過したりするレーザ光に由来する。
 そこで、本実施形態では、アレイA1とアレイA2との間に、漏れ光を遮る遮蔽部101d1が設けられている。
 図15は、遮蔽部101d1の側面図である。遮蔽部101d1は、表面101bからZ方向に突出している。遮蔽部101d1のZ方向の頂部の位置、すなわち表面101bからの高さは、破線の矢印で示される漏れ光Llを遮断するのに十分な高さに設定されている。例えば、遮蔽部101d1のZ方向の頂部の位置は、少なくともサブユニット100a内に含まれる第一光学素子41C、第二光学素子42A、第三光学素子43AのZ方向の頂部の位置と同じかあるいはよりZ方向の前方に位置している。
 遮蔽部101d1は、ベース101の表面101b上に、例えば接着剤やはんだのような接合材を介して取り付けられてもよいし、溶接されてもよいし、ねじのような固定具を介して取り付けられてもよいし、ベース101と一体に構成されてもよい。接着剤は、電磁波硬化性の接着剤や、熱硬化性の接着剤であってもよいし、熱伝導率が比較的高い接着剤であるのが好ましい。
 また、本実施形態では、遮蔽部101d1は、X1方向の端部およびX2方向の端部に、反射面101daを有している。反射面101daは、漏れ光Llの入射方向の反対方向から外れた方向に、漏れ光Llを反射する。すなわち、X2方向に進む漏れ光Llが入射する反射面101daは、当該漏れ光Llを、X1方向から外れた方向、言い換えるとX1方向と傾斜した方向に反射する。また、X1方向に進む漏れ光Llが入射する反射面101daは、当該漏れ光Llを、X2方向から外れた方向、言い換えるとX2方向と傾斜した方向に反射する。すなわち、反射面101daは、いずれも、漏れ光LlをX1方向またはX2方向から反らす。これにより、漏れ光Llの反射面101daでの反射光が、サブユニット100a内で伝送されるレーザ光に干渉するのを抑制することができる。なお、反射面101daは、Z方向に向かうにつれてX1方向およびX2方向のうち一方に向かうように傾斜しているが、傾斜方向はこれには限定されない。また、反射面101daは、例えば、曲面であってもよい。また、曲面である場合、反射面101daは、球面状であってもよいし、円筒面状であってもよい。
[第8実施形態]
 図16は、第8実施形態の光源ユニット100E(100)に含まれる遮蔽部101d2の側面図(一部断面図)である。図15に示される遮蔽部101d1に替えて図16に示される遮蔽部101d2が設けられている点を除き、光源ユニット100Eは、第7実施形態の光源ユニット100Dと同様の構成を備えている。
 ただし、本実施形態では、遮蔽部101d2の反射面101daには、例えば黒色塗料のような、レーザ光のエネルギを熱エネルギに変換する塗料が塗られている。この場合、反射面101daは、レーザ光のエネルギを吸収する吸収面として機能する。反射面101daは、吸収面の一例である。このような構成によれば、反射面101daにおける反射光の強度をより低くすることができるため、反射光が光源ユニット100D内の他の部位に与える悪影響をより小さくすることができる。
 また、図16に示されるように、ベース101には、遮蔽部101d1とZ方向に重なるように、冷媒Cが流れる冷媒通路109が設けられている。冷媒通路109は、冷媒通路109の入口109aから出口109bまでの間の一部の区間が、遮蔽部101d2に対してZ方向と重なる位置を通るように設けられている。当該区間において、冷媒通路109は、例えば、遮蔽部101d2に沿ってY方向に延びている。
 遮蔽部101d2およびベース101は、例えば、銅系材料やアルミニウム系材料のような、熱伝導率が高い材料で作られており、遮蔽部101d2と冷媒通路109の内面および冷媒Cとが熱的に接続されている。よって、本実施形態によれば、遮蔽部101d2およびベース101を介して冷媒Cと遮蔽部101d2との間で熱交換が行われ、漏れ光Llのエネルギに基づく熱が生じた遮蔽部101d2が冷却され、遮蔽部101d2および当該遮蔽部101d2の周辺の温度が上昇するのを抑制することができる。
[第9実施形態]
 図17は、第9実施形態の光源ユニット100F(100)に含まれるサブユニット100a1(100a)の平面図である。図14に示されるサブユニット100aに替えて、図17に示されるサブユニット100aが設けられている点を除き、光源ユニット100Fは、第7実施形態の光源ユニット100Dと同様の構成を備えている。なお、図17には、アレイA1のサブユニット100a1が示されているが、アレイA2のサブユニット100a2も、図17と同様の構成、すなわち、図17の構成と鏡像関係にある構成を有している。
 図17に示されるように、第二光学素子42Aは、ポスト101cに、接合部50を介して接合されている。なお、ポスト101cは、第二光学素子42Aに対して、Y方向の両側に設けられているが、片側のみに設けられてもよい。
 そして、接合部50に対してX1方向に離れた位置に、遮蔽部101d3が設けられている。このような構成により、アレイA1,A2のうち一方のアレイのサブユニット100aに含まれる接合部50に、アレイA1,A2のうち他方のアレイのサブユニット100aからの漏れ光Llが照射され、これにより当該接合部50が損傷するのを、抑制することができる。本実施形態によれば、遮蔽部101d3を、よりコンパクトな構成によって実現できる。
 図18は、遮蔽部101d3の側面図である。図18に示されるように、本実施形態でも、遮蔽部101d3は、上記第7実施形態と同様の反射面101daを有している。反射面101daによる漏れ光Llの反射方向は、上記第7実施形態と同様である。これにより、反射面101daでの漏れ光Llの反射光がサブユニット100a内で伝送されるレーザ光に干渉するのを、抑制することができる。なお、遮蔽部101d3は、第8実施形態と同様の構成を有し、吸収部として機能してもよい。
[第10実施形態]
 図19は、第10実施形態の光源ユニット100G(100)に含まれるサブユニット100aの平面図である。図14に示されるサブユニット100aに替えて、図19に示されるサブユニット100aが設けられている点を除き、光源ユニット100Gは、第7実施形態の光源ユニット100Dと同様の構成を備えている。なお、図19には、アレイA1のサブユニット100a1が示されているが、アレイA2のサブユニット100a2も、図17と同様の構成、すなわち、図19の構成と鏡像関係にある構成を有している。
 図19に示されるように、第二光学素子42Aは、遮蔽部101d3に、接合部50を介して接合されている。また、接合部50は、遮蔽部101d3に対して漏れ光の反対側に設けられている。よって、本実施形態でも、遮蔽部101d3は、接合部50に向かう漏れ光Llを遮っている。すなわち、遮蔽部101d3は、第9実施形態の構成におけるポスト101cと遮蔽部101d3とを機能的に統合したものであると言える。本実施形態によっても、遮蔽部101d3により、アレイA1,A2のうち一方のアレイのサブユニット100aに含まれる接合部50に、アレイA1,A2のうち他方のアレイのサブユニット100aからの漏れ光Llが照射され、これにより当該接合部50が損傷するのを、抑制することができる。本実施形態によれば、接合部50への漏れ光Llの照射を抑制できるとともに第二光学素子42Aの傾きを抑制することができる構成を、より簡素な構成によって実現することができる。
[第11実施形態]
[光源装置、光ファイバレーザの構成]
 図20は、上記第4~第10実施形態のいずれかの光源ユニット100が実装された第11実施形態の光源装置110の構成図である。光源装置110は、励起光源として、複数の光源ユニット100を備えている。複数の光源ユニット100から出射された光(レーザ光)は、光ファイバ107を介して光結合部としてのコンバイナ90に伝搬される。光ファイバ107の出力端は、複数入力1出力のコンバイナ90の複数の入力ポートにそれぞれ結合されている。なお、光源装置110は、複数の光源ユニット100を有するものに限定されるものではなく、少なくとも1つの光源ユニット100を有していればよい。
[第12実施形態]
 図21は、図20の光源装置110が実装された光ファイバレーザ200の構成図である。光ファイバレーザ200は、図20に示された光源装置110およびコンバイナ90と、希土類添加光ファイバ130と、出力側光ファイバ140と、を備える。希土類添加光ファイバ130の入力端及び出力端には、それぞれ高反射FBR120,121(fiber brag grating)が設けられている。
 コンバイナ90の出力端には、希土類添加光ファイバ130の入力端が接続され、希土類添加光ファイバ130の出力端には、出力側光ファイバ140の入力端が接続されている。なお、複数の光源ユニット100から出力されるレーザ光を希土類添加光ファイバ130に入射させる入射部は、コンバイナ90に換えて他の構成を使用してもよい。例えば、複数の光源ユニット100における出力部の光ファイバ107を並べて配置し、複数の光ファイバ107から出力されたレーザ光を、レンズを含む光学系等の入射部を用いて、希土類添加光ファイバ130の入力端に入射させるように構成してもよい。希土類添加光ファイバ130は、光増幅ファイバの一例である。
 上述した光源ユニット100、光源装置110、および光ファイバレーザ200によれば、発光装置1Cあるいは発光装置1A,1Bを有することにより、ビームの幅あるいは光径をより小さくできる等の利点が得られる。
 以上、本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
 例えば、第一光学素子、第二光学素子、第三光学素子は、実施形態に開示されたものには限定されず、例えば、ミラー、プリズム、または回折光学素子のような、光を反射、屈折、または回折させる他の光学素子であってもよい。なお、回折光学素子は、例えば、周期の異なる複数の回折格子を複合して一体に構成したものである。
 また、発光素子から第三光学素子を出るまでの光路の光軸は、直線状である必要は無く、適宜屈曲されてもよい。
 また、光源におけるサブユニットや、発光モジュール、各光学素子、光合成部、各光学部品、突出部、遮蔽部等の配置は、上記実施形態には限定されない。また、漏れ光の進行方向も、上述した方向には限定されない。
 本発明は、発光装置、光源ユニット、光源装置、および光ファイバレーザに適用することができる。
1A,1B,1C…発光装置
10…発光モジュール(突出部)
11…窓部材
20…ケース
21…壁部材
21a…ベース
21b…開口部
21c…頂面
21d…側面
21e…前面
21f…角部
22…窓部材
30…発光ユニット
31…サブマウント
31a…頂面
32…発光素子
41A,41C…第一光学素子
41a…入射面
41b…出射面
41d…張出部
41d1…端面
42A…第二光学素子
42a…入射面
42b…出射面
43A,43B…第三光学素子
43a…入射面
43b…出射面
50…接合部
90…コンバイナ
100,100A~100G…光源ユニット
100a…サブユニット
100a1…サブユニット(第一サブユニット)
100a2…サブユニット(第二サブユニット)
101…ベース
101a…底面
101b…表面
101c…ポスト(突出部)
101d1,101d2,101d3…遮蔽部
101da…反射面(吸収面)
102…光フィルタ
103…ミラー
104,105…集光レンズ
106…ハウジングベース
106a…ファイバ支持部
107…光ファイバ
107a…入力部
108…光合成部
108a…コンバイナ
108b…ミラー
108c…1/2波長板
109…冷媒通路
109a…入口
109b…出口
110…光源装置
120,121…高反射FBR
130…希土類添加光ファイバ
140…出力側光ファイバ
200…光ファイバレーザ
Ax…中心軸
A1,A2…アレイ
C…冷媒
L…レーザ光
Lv…レーザ光
Ll…漏れ光
Pcy…集束点
Pcz…集束点
Vc1,Vc2,Vc3…仮想中心面
Wz,Wz1,Wz2…ビーム幅
Wyc…(コリメートされた)ビーム幅
Wzc…(コリメートされた)ビーム幅
X…方向
X1…方向(第一方向)
X2…方向(第一方向の反対方向)
Y…方向
Z…方向

Claims (21)

  1.  速軸と遅軸とを有しレーザ光を出射する発光素子と、
     前記発光素子を収容し、前記発光素子から出射されたレーザ光を通す窓が設けられたケースと、
     当該ケース外に設けられ、前記窓を通ったレーザ光を速軸方向で集束する第一光学素子と、
     前記第一光学素子を経由したレーザ光を、前記速軸方向でのビーム幅が前記第一光学素子の入射面における前記速軸方向でのビーム幅よりも狭い状態で、前記速軸方向でコリメートし、前記第一光学素子による前記速軸方向でのレーザ光の集束点よりも当該第一光学素子の近くに位置された、第二光学素子と、
     を備えた、発光装置。
  2.  前記第一光学素子は、少なくとも前記速軸方向において凸レンズであり、
     前記第二光学素子は、少なくとも前記速軸方向において凹レンズである、請求項1に記載の発光装置。
  3.  前記第一光学素子は、レーザ光の速軸方向と交差した仮想中心面に対する面対称形状を有したレンズである、請求項1または2に記載の発光装置。
  4.  前記第一光学素子は、レーザ光の光軸に沿う中心軸に対する軸対称形状を有したレンズである、請求項1~3のうちいずれか一つに記載の発光装置。
  5.  前記第一光学素子を経由したレーザ光を遅軸方向でコリメートする第三光学素子を備えた、請求項1~4のうちいずれか一つに記載の発光装置。
  6.  前記第三光学素子は、前記第一光学素子と前記第二光学素子との間に位置された、請求項5に記載の発光装置。
  7.  レーザ光の光軸方向に略沿う表面を有したベースを備え、
     前記第一光学素子および前記第二光学素子は、前記表面上に位置し、
     前記第一光学素子および前記第二光学素子のうち少なくとも一方は、前記表面から突出した突出部に、接合部を介して固定された、請求項1~6のうちいずれか一つに記載の発光装置。
  8.  前記第一光学素子および前記第二光学素子のうち少なくとも一方は、前記突出部に、複数箇所でそれぞれ前記接合部を介して固定された、請求項7に記載の発光装置。
  9.  前記接合部は、前記光軸に沿う方向において、前記第一光学素子および前記第二光学素子のうち少なくとも一方と、前記突出部との間に介在した、請求項7または8に記載の発光装置。
  10.  前記接合部は、前記光軸と交差する方向において、前記第一光学素子および前記第二光学素子のうち少なくとも一方と、前記突出部との間に介在した、請求項7~9のうちいずれか一つに記載の発光装置。
  11.  前記突出部は、前記発光素子である、請求項7~10のうちいずれか一つに記載の発光装置。
  12.  前記接合部に向かう前記レーザ光の漏れ光を遮る遮蔽部を備えた、請求項7~11のうちいずれか一つに記載の発光装置。
  13.  前記遮蔽部は、前記漏れ光を当該漏れ光の入射方向の反対方向から外れた方向に反射する反射部を有した、請求項12に記載の発光装置。
  14.  前記遮蔽部は、前記漏れ光のエネルギを吸収する吸収部を有した、請求項12または13に記載の発光装置。
  15.  前記第一光学素子は、前記発光素子に固定された、請求項1~14のうちいずれか一つに記載の発光装置。
  16.  前記ケースは気密封止されている、請求項1~15のうちいずれか一つに記載の発光装置。
  17.  請求項1~16のうちいずれか一つに記載の発光装置と、
     前記発光装置から出射された光を一つの光ファイバの入力部へ導く光学部品と、
    を備えた、光源ユニット。
  18.  前記光源ユニットは、
     第一方向に向けてレーザ光を出射する前記発光素子と、当該発光素子からのレーザ光を前記第一方向に向けて透過する前記第一光学素子および前記第二光学素子と、を含む第一サブユニットと、
     前記第一サブユニットから前記第一方向に離れて位置し、前記第一方向の反対方向に向けてレーザ光を出射する前記発光素子と、当該発光素子からのレーザ光を前記第一方向の反対方向に向けて透過する前記第一光学素子および前記第二光学素子と、を含む第二サブユニットと、
     前記第一サブユニットからの前記レーザ光の漏れ光および前記第二サブユニットからの前記レーザ光の漏れ光のうち少なくとも一方の漏れ光を遮蔽する遮蔽部と、
     を備えた、
     請求項17に記載の光源ユニット。
  19.  前記遮蔽部は、前記第一サブユニットと前記第二サブユニットとの間に位置した、請求項18に記載の光源ユニット。
  20.  請求項17~19のうちいずれか一つに記載の光源ユニットを備えた、光源装置。
  21.  請求項20に記載の光源装置と、
     前記光源装置から出射されたレーザ光を増幅する光増幅ファイバと、
     を備えた、光ファイバレーザ。
PCT/JP2020/045326 2019-12-06 2020-12-04 発光装置、光源ユニット、光源装置、および光ファイバレーザ WO2021112248A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021562759A JP7190065B2 (ja) 2019-12-06 2020-12-04 発光装置、光源ユニット、光源装置、および光ファイバレーザ
CN202080084516.2A CN114846703A (zh) 2019-12-06 2020-12-04 发光装置、光源单元、光源装置及光纤激光器
US17/804,924 US20220294174A1 (en) 2019-12-06 2022-06-01 Light emitting apparatus, light source unit, light source apparatus, and optical fiber laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019221501 2019-12-06
JP2019-221501 2019-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/804,924 Continuation US20220294174A1 (en) 2019-12-06 2022-06-01 Light emitting apparatus, light source unit, light source apparatus, and optical fiber laser

Publications (1)

Publication Number Publication Date
WO2021112248A1 true WO2021112248A1 (ja) 2021-06-10

Family

ID=76221761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045326 WO2021112248A1 (ja) 2019-12-06 2020-12-04 発光装置、光源ユニット、光源装置、および光ファイバレーザ

Country Status (4)

Country Link
US (1) US20220294174A1 (ja)
JP (1) JP7190065B2 (ja)
CN (1) CN114846703A (ja)
WO (1) WO2021112248A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033083A1 (ja) * 2021-09-01 2023-03-09 古河電気工業株式会社 光学装置、光源装置、および光ファイバレーザ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020118421B4 (de) * 2020-07-13 2023-08-03 Focuslight Technologies Inc. Laservorrichtung

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371589A (en) * 1976-12-08 1978-06-26 Toshiba Corp Semiconductor light emission device
JPS60130661U (ja) * 1984-02-10 1985-09-02 キヤノン株式会社 半導体レ−ザ装置
JPS6153960U (ja) * 1984-09-13 1986-04-11
JP2003294991A (ja) * 2002-03-29 2003-10-15 Ngk Insulators Ltd 光学部品
JP2004006641A (ja) * 2002-01-28 2004-01-08 Fujifilm Electronic Imaging Ltd レーザダイオードコリメータシステム
JP2007199657A (ja) * 2005-12-28 2007-08-09 Kyocera Corp 光配線モジュール
JP2010186735A (ja) * 2008-09-19 2010-08-26 Komatsu Ltd 極端紫外光源装置、極端紫外光源装置用レーザ光源装置及び極端紫外光源装置用レーザ光源の調整方法
US20170235057A1 (en) * 2016-02-16 2017-08-17 Nlight, Inc. Passively aligned single element telescope for improved package brightness
US20170358900A1 (en) * 2016-04-26 2017-12-14 Nlight, Inc. Low Size and Weight, High Power Fiber Laser Pump
WO2018043752A1 (ja) * 2016-09-05 2018-03-08 古河電気工業株式会社 レーザ装置及び光源装置
JP2019184729A (ja) * 2018-04-05 2019-10-24 株式会社島津製作所 光源モジュール
JP2020087988A (ja) * 2018-11-16 2020-06-04 株式会社島津製作所 レーザビームポインティング位置調整方法及びレーザ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19800590B4 (de) * 1998-01-09 2005-12-01 Jenoptik Ag Optische Anordnung zur Symmetrierung der Strahlung eines oder mehrerer übereinander angeordneter Hochleistungsdiodenlaser
US8049966B2 (en) * 2008-11-04 2011-11-01 Massachusetts Institute Of Technology External-cavity one-dimensional multi-wavelength beam combining of two-dimensional laser elements

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371589A (en) * 1976-12-08 1978-06-26 Toshiba Corp Semiconductor light emission device
JPS60130661U (ja) * 1984-02-10 1985-09-02 キヤノン株式会社 半導体レ−ザ装置
JPS6153960U (ja) * 1984-09-13 1986-04-11
JP2004006641A (ja) * 2002-01-28 2004-01-08 Fujifilm Electronic Imaging Ltd レーザダイオードコリメータシステム
JP2003294991A (ja) * 2002-03-29 2003-10-15 Ngk Insulators Ltd 光学部品
JP2007199657A (ja) * 2005-12-28 2007-08-09 Kyocera Corp 光配線モジュール
JP2010186735A (ja) * 2008-09-19 2010-08-26 Komatsu Ltd 極端紫外光源装置、極端紫外光源装置用レーザ光源装置及び極端紫外光源装置用レーザ光源の調整方法
US20170235057A1 (en) * 2016-02-16 2017-08-17 Nlight, Inc. Passively aligned single element telescope for improved package brightness
US20170358900A1 (en) * 2016-04-26 2017-12-14 Nlight, Inc. Low Size and Weight, High Power Fiber Laser Pump
WO2018043752A1 (ja) * 2016-09-05 2018-03-08 古河電気工業株式会社 レーザ装置及び光源装置
JP2019184729A (ja) * 2018-04-05 2019-10-24 株式会社島津製作所 光源モジュール
JP2020087988A (ja) * 2018-11-16 2020-06-04 株式会社島津製作所 レーザビームポインティング位置調整方法及びレーザ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033083A1 (ja) * 2021-09-01 2023-03-09 古河電気工業株式会社 光学装置、光源装置、および光ファイバレーザ

Also Published As

Publication number Publication date
JP7190065B2 (ja) 2022-12-14
JPWO2021112248A1 (ja) 2021-06-10
US20220294174A1 (en) 2022-09-15
CN114846703A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
US10422506B2 (en) Compact high-spectral-radiance fluorescent light source including a parabolic mirror
US8553737B2 (en) Laser emitter modules and methods of assembly
US20220294174A1 (en) Light emitting apparatus, light source unit, light source apparatus, and optical fiber laser
US9318876B1 (en) Arrangement of multiple diode laser module and method for operating the same
JP4188795B2 (ja) 光パワー合成用光学系および光源モジュール
US10264660B2 (en) Beam trap, beam guide device, EUV radiation generating apparatus, and method for absorbing a beam
CN111468825B (zh) 光源组件
US20120140469A1 (en) Optical projection system and method for a cooled light source
US20230375791A1 (en) Optical apparatus, light source apparatus, and optical fiber laser
WO2021010488A1 (ja) 半導体レーザモジュール、光源ユニット、光源装置および光ファイバレーザ
CN107000122A (zh) 用于激光加工机械的加工头部和激光加工机械
WO2023033083A1 (ja) 光学装置、光源装置、および光ファイバレーザ
JP2023112789A (ja) 光学装置および光源装置
CN218513862U (zh) 光学装置、光源装置以及光纤激光器
CN112955692A (zh) 包括抛物面镜和平凸荧光体的紧凑型高光谱辐射光源
WO2023189268A1 (ja) 発光装置および光源装置
JP6130427B2 (ja) レーザモジュール
US20240019709A1 (en) Optical apparatus
JP2023088354A (ja) 光学装置および光学装置の製造方法
CN116154617B (zh) 一种半导体激光器
JP2022173880A (ja) Ldモジュール、光学デバイス及び熱加工機
JP2022071757A (ja) 半導体レーザモジュール
KR20200089784A (ko) 고출력 레이저용 광 집속장치
JP2020120000A (ja) 光源ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897504

Country of ref document: EP

Kind code of ref document: A1