WO2021111725A1 - 自動分析装置及び分注方法 - Google Patents

自動分析装置及び分注方法 Download PDF

Info

Publication number
WO2021111725A1
WO2021111725A1 PCT/JP2020/037938 JP2020037938W WO2021111725A1 WO 2021111725 A1 WO2021111725 A1 WO 2021111725A1 JP 2020037938 W JP2020037938 W JP 2020037938W WO 2021111725 A1 WO2021111725 A1 WO 2021111725A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
dispensing
pressure
automatic analyzer
determination
Prior art date
Application number
PCT/JP2020/037938
Other languages
English (en)
French (fr)
Inventor
和弘 野田
孝伸 濱崎
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to CN202080079513.XA priority Critical patent/CN114729951A/zh
Priority to EP20895573.2A priority patent/EP4071481A4/en
Priority to US17/776,994 priority patent/US20220381799A1/en
Publication of WO2021111725A1 publication Critical patent/WO2021111725A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/1018Detecting inhomogeneities, e.g. foam, bubbles, clots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/102Preventing or detecting loss of fluid by dripping
    • G01N2035/1023Preventing or detecting loss of fluid by dripping using a valve in the tip or nozzle

Definitions

  • This disclosure relates to an automatic analyzer and a dispensing method.
  • Automatic analyzers such as biochemical analyzers and immunoanalyzers perform a dispensing mechanism that sucks a specified amount of a sample such as a biological sample and a reagent and discharges them into a reaction vessel, and analyzes the reaction solution between the sample and the reagent. It has an analytical mechanism to perform.
  • the dispensing mechanism is composed of a probe inserted into a liquid such as a sample or a reagent, a syringe serving as a pressure source for suction and discharge of the liquid, and a flow path connecting the probe and the syringe.
  • the dispensing mechanism inserts a probe into the liquid in the sample container or reagent container, operates the syringe to suck the specified amount of liquid, moves the probe to the reaction container, and discharges the specified amount of liquid.
  • Dispense At the time of dispensing, a disposable tip may be attached to the tip of the probe to prevent the components from being carried over to the next inspection.
  • multiple reagents or both reagents and samples may be held in the probe or chip (dispensing nozzle) at the same time and dispensed into the reaction vessel.
  • a plurality of liquids are held in the dispensing nozzle at the same time in this way, a plurality of types of liquids are continuously sucked, and after sucking all the liquids, the liquids are dispensed by discharging them into the reaction vessel.
  • Patent Document 1 As a method for detecting an abnormality in dispensing, for example, in Patent Document 1, the integrated value of pressure data in a specific time interval and the average pressure calculated at the end of discharge are normally discharged with respect to the pressure fluctuation at the time of sample discharge.
  • a technique for detecting an abnormality in dispensing is disclosed by using the difference from the average pressure calculated at times as an index and comparing these with a preset threshold value.
  • the predetermined liquid is dispensed using the ratio of the pressure at the time of dispensing the reference liquid as the reference for abnormality detection to the pressure at the time of dispensing the predetermined liquid.
  • a technique for detecting an abnormality at the time is disclosed.
  • Patent Document 2 also has an accuracy of abnormality detection depending on the difference in the dispensing amount and physical property value of the reference liquid sucked into the dispensing nozzle prior to the predetermined liquid to be detected for abnormality. May decrease. In addition, it is difficult to miniaturize the device because a portion for holding the reference liquid is required.
  • the liquid to be anomaly detected is subject to abnormality detection regardless of the amount of the liquid sucked before the liquid to be detected for abnormality and the physical property value.
  • the automatic analyzer of the present disclosure includes a dispensing nozzle for dispensing a fluid, a pressure source for generating a pressure fluctuation for dispensing the fluid by the dispensing nozzle, and the dispensing.
  • a storage unit for storing data and a control unit for controlling the drive of the dispensing nozzle and the pressure source are provided, and the control unit includes a first segmented air, a first liquid, and a second segmented air.
  • the dispensing nozzle and the pressure source are controlled so that the second liquid is sucked into the dispensing nozzle in this order, and the suction amount of the first segmented air and the suction amount of the first segmented air are based on the suction amount of the first liquid. It is characterized in that at least one of the suction amounts of the second segmented air is determined.
  • the automatic analyzer of the present disclosure it is possible to detect an abnormality at the time of dispensing of the liquid to be detected for the abnormality with high accuracy. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
  • FIG. 1 is a schematic configuration diagram showing a dispensing mechanism 100 of the automatic analyzer according to the first embodiment.
  • the dispensing mechanism 100 accommodates a chip 101, a probe 102, a flow path 103, a syringe 104, a syringe driving unit 106, a probe driving unit 107, a control unit 108, a water supply pump 109, and a washing water 105.
  • Water supply tank 110 electromagnetic valve 111, reagent container 112 containing reagent 113 (first liquid) according to the analysis item, sample container 114 containing sample 115 (second liquid), reaction container 116, pressure sensor 117.
  • the tip 101 (dispensing nozzle) is removable from the tip of the probe 102.
  • a probe driving unit 107 such as a motor or an actuator (not shown) is connected to the probe 102, whereby the probe 102 can be moved in the horizontal and vertical directions and moved to a predetermined position.
  • the chip 101 is held, for example, in a chip rack (not shown), and the probe driving unit 107 can mount the chip 101 on the probe 102 by moving the probe 102 above the chip rack and lowering the probe 102.
  • the chip 101 may be attached to the probe 102 in a chip buffer that temporarily holds the chip 101.
  • the probe 102 is connected to the syringe 104 via the flow path 103, and the inside thereof is filled with the washing water 105.
  • the syringe 104 has a cylinder 104a and a plunger 104b, and a syringe driving unit 106 is connected to the plunger 104b.
  • the syringe drive unit 106 drives the plunger 104b in the vertical direction with respect to the cylinder 104a, whereby the fluid (liquid and gas) is sucked and discharged from the tip 101 connected to the probe 102.
  • the syringe 104 has a flow path communicating with the water supply tank 110, and the flow path is provided with a solenoid valve 111 and a water supply pump 109.
  • the water supply tank 110 contains the washing water 105, and the inside of the probe 102 can be washed by discharging the washing water 105 from the probe 102 by driving the water supply pump 109. Washing of the probe 102 is performed, for example, before dispensing of the reagent 113 and the sample 115.
  • the automatic analyzer has a reagent storage that holds the reagent container 112, a sample container rack that holds the sample container 114, and a reaction disk that holds the reaction container 116.
  • the holding means of the reagent container 112, the sample container 114, and the reaction container 116 is not limited to the above.
  • the reagent 113 and the sample 115 sucked into the chip 101 are dispensed into the reaction vessel 116.
  • the chip disposal unit 126 discards the chip 101 for which the reagent 113 and the sample 115 have been dispensed into the reaction vessel 116.
  • the control unit 108 controls the operations of the syringe drive unit 106, the probe drive unit 107, the water supply pump 109, and the solenoid valve 111.
  • the control unit 108 may be configured to control the operation of not only each component of the dispensing mechanism 100 but also the entire automatic analyzer.
  • the pressure sensor 117 is connected to a branch block 118 provided in the middle of the flow path 103, and measures the pressure in the flow path 103.
  • the pressure sensor 117 outputs a pressure detection signal to the signal amplifier 119.
  • the position of the pressure sensor 117 may be on the syringe 104 side as shown in FIG. 1, but by connecting the pressure sensor 117 to a position as close to the probe 102 as possible, the pressure fluctuation of the opening of the tip 101 can be prevented. It can be measured with good sensitivity.
  • the signal amplifier 119 amplifies the detection signal of the pressure sensor 117 and outputs the amplified signal to the A / D converter 120.
  • the A / D converter 120 converts the amplified signal into a digital signal and outputs it as a pressure value to the determination unit 121.
  • the determination unit 121 is a circuit for determining the presence or absence of an abnormality during the dispensing operation of the dispensing mechanism 100.
  • the determination unit 121 is stored in the sampling unit 122 that receives the input of the pressure value from the A / D converter 120, the storage unit 123 that stores the data such as the pressure value input to the sampling unit 122, and the storage unit 123. It has a calculation unit 124 that executes processing on the data.
  • the determination unit 121 is configured to be able to communicate with the control unit 108, and when it is determined from the result of the data processing in the calculation unit 124 that the operation stop operation is necessary, the control unit 108 is informed of the operation. To send.
  • the determination unit 121 may be configured as hardware in the automatic analyzer as a dedicated circuit board, or functions as the determination unit 121 when the processor reads and executes the program recorded in the storage unit 123. May be good. Further, a processor in the server connected wirelessly or by wire to the automatic analyzer in a communicable manner may read and execute the program and function as the determination unit 121.
  • the display unit 125 is connected to the control unit 108 and the determination unit 121, and displays the result of data processing in the determination unit 121, information related to the result, and the like.
  • FIG. 2 is a flowchart showing a dispensing method according to the first embodiment.
  • the control unit 108 shown in FIG. 1 actually has each component of the dispensing mechanism 100 (syringe drive unit 106, probe drive unit 107, water supply pump 109, solenoid valve 111, etc.). It is carried out by controlling the operation, but in the following, each component of the dispensing mechanism 100 may be described as the main body of the operation.
  • step S201 the control unit 108 opens the solenoid valve 111, drives the water supply pump 109, and discharges the cleaning water 105 in the water supply tank 110 from the probe 102. This cleans the inside of the probe 102.
  • step S202 the syringe driving unit 106 drives the syringe 104 to suck the first segmented air into the probe 102. This is to prevent the washing water 105 filled in the probe 102 and the reagent 113 to be sucked in the next step from being mixed with each other.
  • step S203 the probe driving unit 107 attaches the chip 101 to the tip of the probe 102 by moving the probe 102 above the chip rack or the chip buffer and then lowering the probe 102.
  • step S204 the probe driving unit 107 moves the probe 102 above the reagent container 112 and lowers the tip 101 until the tip of the tip 101 is immersed in the reagent 113.
  • step S205 the syringe driving unit 106 drives the syringe 104 to suck the reagent 113 into the tip 101.
  • step S206 the probe driving unit 107 raises the probe 102 until the tip of the chip 101 comes out of the reagent 113.
  • the syringe driving unit 106 drives the syringe 104 to suck the second segmented air into the tip 101. This is to prevent the reagent 113 previously sucked into the chip 101 from mixing with the liquid sucked in the next step.
  • steps S204 to S206 are repeated as many times as necessary, and all the reagents to be dispensed and the second segmented air separating them are sucked into the chip 101.
  • step S207 the probe driving unit 107 moves the probe 102 above the sample container 114 and lowers the tip 101 until the tip of the tip 101 is immersed in the sample 115.
  • step S208 the syringe driving unit 106 drives the syringe 104 to suck the sample 115 into the chip 101.
  • the sampling unit 122 of the determination unit 121 accepts the input of the pressure value during the suction operation of the sample 115, and the pressure value during the suction operation of the sample 115 may be referred to as time series data (hereinafter, “pressure history”). ) As stored in the storage unit 123.
  • step S209 the probe driving unit 107 raises the probe 102 until the tip of the tip 101 comes out of the sample 115, and moves the probe 102 so that the tip of the tip 101 is located inside the reaction vessel 116.
  • step S210 the syringe driving unit 106 drives the syringe 104 to discharge the reagent 113 and the sample 115 held in the chip 101 into the reaction vessel 116. At this time, when a plurality of reagents are sucked, all the reagents sucked into the chip 101 are simultaneously discharged into the reaction vessel 116.
  • step S211 the probe driving unit 107 moves the probe 102 to the chip disposal unit 126 and removes the probe 102 from the probe 102 by discarding the chip 101 in the chip disposal unit 126.
  • step S212 the calculation unit 124 of the determination unit 121 determines whether or not there is an abnormality such as clogging or empty suction when the sample 115 is sucked, based on the pressure history at the time of sample suction stored in the storage unit 123 ( Detect anomalies).
  • the pressure history when an abnormality such as dry suction or clogging occurs during suction of the sample 115 is different from the pressure history when normal dispensing is performed. Therefore, the presence or absence of an abnormality can be determined by referring to the pressure history. The method of determining the presence or absence of an abnormality using the pressure history will be described later.
  • the determination unit 121 transmits the determination result of the presence or absence of an abnormality to the display unit 125 and the control unit 108.
  • the display unit 125 displays the determination result.
  • step S212 If it is determined in step S212 that there is no abnormality (No), the process proceeds to step S213.
  • the control unit 108 determines that the dispensing has been completed normally based on the determination result received from the determination unit 121, and ends the dispensing operation.
  • the control unit 108 may repeat steps S201 to S213 according to the analysis item.
  • step S212 If it is determined that there is an abnormality in step S212 (Yes), the process proceeds to step S214.
  • step S214 the control unit 108 determines that there is an abnormality during suction of the sample 115 based on the determination result received from the determination unit 121. At this time, an alert is displayed on the display unit 125, and the dispensing operation of the corresponding sample 115 is completed. In addition, the sample 115 is returned to the user. In this way, by stopping the dispensing of the sample 115 having an abnormality, the consumption of the reagent used for the subsequent analysis can be reduced.
  • step S212 is executed after step S208.
  • the control unit 108 ends the dispensing operation without shifting to step S209. As a result, it is not necessary to discharge the abnormal sample 115 into the reaction vessel 116, so that the consumption of the reaction vessel 116 or the labor for washing can be reduced.
  • FIG. 3 is a flowchart showing a method of determining the presence or absence of an abnormality by the determination unit 121 in step S212 of FIG.
  • step S301 the calculation unit 124 reads out the pressure history at the time of sample suction stored in the storage unit 123.
  • the “pressure history at the time of sample suction” refers to a pressure value in a predetermined time range including the operation time (suction operation time) of the syringe 104 when sucking the sample 115 in step S208.
  • the calculation unit 124 calculates a determination index used for determining the presence or absence of an abnormality based on the pressure history at the time of sample suction.
  • the "judgment index" is, for example, the average of the pressure values during the suction operation of the sample 115, the average of the pressure values before or after the suction operation of the sample 115, the maximum or minimum value of the pressure value, and the pressure pulsation cycle of the pressure history.
  • the amplitude, a statistical distance such as the Euclidean distance between the preset reference pressure history and the pressure history acquired in this step, and the like can be mentioned.
  • the "reference pressure history" is set based on, for example, a large number of pressure values acquired in the past, and may be the pressure value when it is determined that the sample has been normally aspirated. However, it may be the pressure value when it is determined that there is an abnormality at the time of sample suction.
  • the degree of similarity or dissimilarity with the reference pressure history can also be used as a determination index. Further, a plurality of the above-mentioned indexes may be combined and used as a determination index.
  • the difference between the average pressure value during the suction operation of the sample 115 and the average pressure value before the suction operation is calculated, and this is used to determine whether the dispensing was normal or empty suction. It will be determined whether or not it was.
  • Possible causes of air suction include erroneous detection of the liquid level due to air bubbles unintentionally generated by handling the sample container 114. The bubbles are generated when the blood sample 115 is shaken during transportation.
  • the calculation unit 124 determines the presence or absence of an abnormality at the time of suction of the sample 115 based on the determination index.
  • the method for determining the presence or absence of an abnormality include a method of comparing a determination index with a predetermined determination threshold value, a method of determining an abnormality when a combination of a plurality of determination indexes satisfies a certain condition, and the like.
  • an algorithm for determining the presence or absence of an abnormality by comparing the determination index with a certain determination threshold value is used.
  • the determination threshold value used for determining the presence or absence of an abnormality is stored in the storage unit 123 in advance.
  • the present inventors have diligently studied in order to detect an abnormality during suction of the sample 115 with high accuracy, and as a result, the reagent 113 (first liquid) sucked prior to the suction of the sample 115 (second liquid). It was found that it is effective to reduce the influence of the dispensing amount (volume) of) on the above pressure history.
  • the amount of reagent 113 dispensed depends on the analysis item.
  • the following Hagen-Poiseuille equation (1) is given as an example of the physical equation expressing the pressure loss due to the friction of the flow in the pipeline.
  • P loss 128 ⁇ LQ / ( ⁇ d 4 ) ⁇ ⁇ ⁇ (1)
  • Plus is the pressure loss
  • is the viscosity of the fluid
  • L is the length occupied by the fluid
  • is the pi
  • d the diameter of the pipe
  • Q is the flow rate in the pipe.
  • the pressure loss P loss is calculated for each fluid component.
  • the length L in which the fluid occupies the conduit of the chip 101 or the probe 102 changes.
  • the pressure loss P loss is changed, it affects the pressure history used to determine the presence or absence of abnormality.
  • the pressure history is also affected by the difference in the fluid arrangement in the pipeline caused by the difference in the dispensing amount of the reagent 113 because the pressure wave is reflected by the boundary of the fluid components in the pipeline. Therefore, by reducing the influence of the dispensing amount of the reagent 113 on the pressure history, highly accurate abnormality detection becomes possible. Therefore, in the following, the dispensing operation for reducing the influence on the pressure history due to the difference in the dispensing amount of the reagent 113 will be described.
  • FIG. 4 is a schematic view showing the state of the fluid in the probe 102 and the tip 101 in the dispensing operation shown in FIG.
  • FIG. 4A shows a state immediately after the inside of the probe 102 is washed with the washing water 105 in step S201. As shown in FIG. 4A, the inside of the probe 102 is filled with the washing water 105.
  • FIG. 4B shows a state after sucking the first segmented air 401 in step S202 and mounting the tip 101 in step S203.
  • FIG. 4C shows the state after the reagent 113 is aspirated in step S205.
  • the reagent 113 is located at the tip of the chip 101.
  • FIG. 4D shows a state in which the second segmented air 402 is sucked in step S206. That is, the state before sucking the sample 115 is shown.
  • the second segmented air 402 is located at the tip of the chip 101, and the reagent 113 is located above the tip. Note that FIG. 4D shows a state when only one type of reagent 113 and sample 115 are sucked, but when a plurality of reagents are dispensed, the reagent 113 and the second segmented air 402 are used. It is arranged alternately as many as the number of reagents sucked.
  • FIG. 4E shows a state in which the sample 115 is aspirated in step S208.
  • the sample 115 is located at the tip of the chip 101, the second segmented air 402 is located above the tip 101, and the reagent 113 is located on the second segmented air 402.
  • the presence or absence of abnormality is determined using the pressure history of the sample 115 at the time of suction.
  • the position of the boundary 403 between the washing water 105 and the first segmented air 401 changes depending on the dispensing amount (volume) of the reagent 113.
  • the position of the boundary 403 between the wash water 105 and the first segmented air 401 is the amount of the first segmented air 401 sucked in step S202, the amount of the fluid 113 sucked in step S205, and the second sucked in step S206. It depends on the total amount of segmented air 402 (total volume of fluid). Therefore, the position of the boundary 403 can be made constant by controlling the operation of the syringe 104 so that the total volume of the fluid sucked before the suction of the sample 115 is made constant. Note that the position of the boundary 403 is "constant" does not necessarily mean that the boundary 403 is located at exactly the same position in the dispensing operation of all analyzes.
  • the total may vary by, for example, ⁇ 10 ⁇ L. Needless to say, even if the total volume of the fluid is constant, the position of the boundary 403 between the washing water 105 and the first segmented air 401 changes according to the inner diameter of the probe or the tip.
  • FIG. 5 is a flowchart showing a method of calculating the suction amount of the reagent 113, the first segmented air 401, and the second segmented air 402 in the dispensing operation of FIG.
  • This method is executed by the control unit 108 before the start of the dispensing operation shown in FIG. 2, for example, and the suction operation of the reagent or the segmented air is executed based on the calculated suction amount. Further, before the execution of this method, the total volume of the reagent 113, the first segmented air 401, and the second segmented air 402 is stored in advance in the storage unit of the control unit 108. The total volume of these fluids can be the same regardless of the analysis item.
  • step S501 the control unit 108 calculates the amount of the reagent 113 to be sucked in step S205 and the amount of the second segmented air 402 to be sucked in step S206.
  • the suction amount of the reagent 113 can be set according to the analysis item and the type of the reagent.
  • the control unit 108 adds the sum of the amounts of the reagents sucked in step S205 and the second suction in step S206. Calculate the total amount of segmented air.
  • step S502 the control unit 108 calculates the amount of the first segmented air 401 to be sucked in step S202 based on the amount of reagent 113 and the segmented air amount calculated in step S501. At this time, the amount of the first segmented air 401 is calculated so that the sum of the amount of the first segmented air 401, the amount of the reagent 113, and the amount of the second segmented air 402 is constant.
  • the control unit 108 determines the operating amount of the syringe 104 based on each calculated suction amount, and issues an instruction to the syringe driving unit 106.
  • the probe 102 before suction of the sample 115 is adjusted by adjusting the amount of the first segmented air 401 as described above.
  • the arrangement of the internal fluid (the position of the boundary 403 between the washing water 105 and the first segmented air 401) can be made constant. By keeping the arrangement of the fluid inside the probe 102 constant, it is possible to reduce the influence of the difference in the dispensing amount of the reagent 113 on the pressure history at the time of sample suction.
  • the amount of the reagent 113 to be sucked in step S205 and the amount of the second segmented air 402 to be sucked in step S206 are first calculated, and then the first amount to be sucked in step S201.
  • a configuration is adopted in which the amount of segmented air 401 is adjusted. Instead, the amount of the first segmented air 401 and the amount of the reagent 113 may be calculated first, and then the amount of the second segmented air 402 may be adjusted.
  • a plurality of reference values are stored in the storage unit 123 in advance.
  • the amount of the reagent 113 used differs greatly depending on the analysis item, which reference value may be used may be determined. For example, if the amount of the reagent 113 used is 20 ⁇ L, the total sum is set to 50 ⁇ L, and if the amount of the reagent 113 used is 50 ⁇ L, the total sum can be set to 100 ⁇ L.
  • the suction amount of the segmented air 401 and 402 does not increase even though the amount of the reagent 113 is small. Therefore, an increase in the driving amount of the syringe 104 can be prevented, and the life of the syringe 104 can be improved.
  • FIG. 6A shows the determination index (for example, the average of the pressure values) and the reagent 113 when the amount of the first segmented air 401 is not adjusted and is constant (when the process of FIG. 5 is not executed). It shows the relationship with the dispensing amount of.
  • the plot of ⁇ shows the judgment index when the sample 115 is normally dispensed (normal dispensing group 601).
  • the plot of x indicates a determination index when dry sucking occurs during suction of the sample 115 (dry sucking group 602). As shown in FIG.
  • the determination index of the normal dispensing group 601 and the determination index of the dry suction group 602 greatly change depending on the dispensing amount of the reagent 113. Therefore, it is difficult to determine whether or not dry suction has occurred by comparing the calculated determination index with a certain determination threshold value.
  • FIG. 6B shows the determination index (for example, the average of the pressure values) and the reagent 113 when the amount of the first segmented air 401 (total amount of the volume of the fluid) is adjusted by the method of FIG. It shows the relationship with the dispensing amount of.
  • the plot of ⁇ shows the judgment index when the sample 115 is normally dispensed (normal dispensing group 603).
  • the plot of x indicates a determination index when dry sucking occurs during suction of the sample 115 (dry sucking group 604). As shown in FIG.
  • the determination index of the normal dispensing group 601 and the determination index of the dry suction group 602 are adjusted to the dispensing amount of the reagent 113. Regardless, the values are almost constant. Therefore, it is possible to determine whether or not dry suction has occurred by setting a constant determination threshold value 605 in advance and comparing the calculated determination index with the determination threshold value 605.
  • the automatic analyzer of the present embodiment performs a dispensing operation so that the total volume of the fluid (segmented air and reagents) to be sucked before sucking the sample is constant, and the cleaning liquid existing in the probe is performed.
  • the boundary position between and the segmented air is fixed.
  • the judgment index calculated from the pressure history of normal dispensing and the judgment index calculated from the pressure history of abnormal dispensing are almost constant regardless of the dispensing amount of the reagent.
  • the determination threshold value of a constant value can be set regardless of the dispensing amount of the reagent, that is, regardless of the analysis item, the presence or absence of abnormality can be detected with high accuracy.
  • the sample 115 is used as the liquid to be detected for the dispensing abnormality, but the method of the present embodiment may be applied to the abnormality detection, the dispensing amount estimation and the viscosity estimation at the time of suction of the reagent 113. .. In this case, the above “sample 115" may be read as "reagent 113".
  • the amount of the first segmented air 401 sucked in step S202, the amount of reagent 113 sucked in step S205, and the second sucked in step S206 was adjusted so that the sum of the amount of the segmented air 402 and the total of the segmented air 402 were constant. This reduces the influence of the dispensing amount of the reagent 113 on the pressure history during suction of the sample 115 by making the position of the boundary 403 between the washing water 105 and the first segmented air 401 constant with respect to the probe. This is because the purpose was to do so.
  • the amount of the first segmented air 401 sucked in step S202 depends on the configuration and structure of the dispensing mechanism of the automatic analyzer. May be calculated by a function depending on the amount of the fluid 113 sucked in step S205 and the amount of the second segmented air 402 sucked in step S206. Moreover, this function may be determined for each analysis item.
  • the amount of segmented air is adjusted according to the dispensing amount of the reagent 113, but operations such as the flow rate of the syringe 104 and the depth of immersing the tip 101 in the sample 115 at the time of sucking the sample 115 are performed. A configuration of adjustment may be adopted.
  • FIG. 1 a dispensing mechanism in which a disposable tip is attached to the tip of the probe and a reagent and a sample are sucked into the tip.
  • the configuration of the dispensing mechanism is not limited to that shown in FIG. Therefore, in the second embodiment, as another configuration of the dispensing mechanism, we propose an example in which the reagent and the sample are directly sucked into the probe without using a chip. Even if the configuration of the dispensing mechanism is different in this way, clogging or dry suction during sample suction can be detected in the same manner as in the first embodiment.
  • FIG. 7 is a schematic configuration diagram showing a dispensing mechanism 200 of the automatic analyzer according to the second embodiment.
  • the dispensing mechanism 200 includes a probe 701 (dispensing nozzle) instead of the tip 101 and the probe 102 shown in FIG.
  • the length of the line of the probe 701 can be the same as the total length of the line when the chip 101 of FIG. 1 is attached to the probe 102.
  • the configuration other than the probe 701 is the same as that of the dispensing mechanism 100 of the first embodiment, and thus the description thereof will be omitted.
  • the dispensing mechanism 200 of the present embodiment sucks the reagent 113 and the sample 115 directly into the probe 701.
  • the operation of the probe 701 is controlled by the probe driving unit 107.
  • FIG. 8 is a flowchart showing a dispensing method according to the second embodiment.
  • the dispensing method of the present embodiment is actually carried out by the control unit 108 shown in FIG. 7 controlling the operation of each component of the dispensing mechanism 200, but in the following, each of the dispensing mechanisms 200 A component may be described as the subject of action. Further, the same reference numerals are given to the steps similar to the dispensing method (FIG. 2) of the first embodiment. In the following, only the differences from the first embodiment will be described.
  • steps S203 and S211 in FIG. 2 are not executed.
  • step S801 the control unit 108 opens the solenoid valve 111, drives the water supply pump 109, and discharges the cleaning water 105 in the water supply tank 110 from the probe 701. This cleans the inside of the probe 701.
  • step S802 is executed instead of step S204.
  • the probe drive unit 107 moves the probe 701 above the reagent container 112 and lowers it until the tip of the probe 701 is immersed in the reagent 113.
  • step S803 is executed instead of step S207.
  • the probe drive unit 107 moves the probe 701 above the sample container 114 and lowers the probe 701 until the tip of the probe 701 is immersed in the sample 115.
  • step S212 is the same as the method shown in FIG.
  • FIG. 9 is a schematic view showing the state of the fluid in the probe 701 in the dispensing operation shown in FIG.
  • FIG. 9A shows a state immediately after the inside of the probe 701 is washed with the washing water 105 in step S801. As shown in FIG. 9A, the inside of the probe 701 is filled with the washing water 105.
  • FIG. 9B shows a state after sucking the first segmented air 901 in step S202.
  • FIG. 9C shows the state after the reagent 113 is aspirated in step S205.
  • Reagent 113 is located at the tip of probe 701.
  • FIG. 9D shows a state in which the second segmented air 902 is sucked in step S206. That is, the state before sucking the sample 115 is shown.
  • the second segmented air 902 is located at the tip of the probe 701 and the reagent 113 is located above it.
  • FIG. 9D shows a state when only one type of reagent 113 and sample 115 are sucked, but when a plurality of reagents are dispensed, the reagent 113 and the second segmented air 902 are used. It is arranged alternately as many as the number of reagents sucked.
  • FIG. 9E shows a state in which the sample 115 is aspirated in step S208.
  • the sample 115 is located at the tip of the probe 701, the second segmented air 902 is located above it, and the reagent 113 is located above the second segmented air 902.
  • the presence or absence of abnormality is determined using the pressure history of the sample 115 at the time of suction.
  • the position of the boundary 903 between the washing water 105 and the first segmented air 401 changes depending on the dispensing amount (volume) of the reagent 113.
  • the position of the boundary 903 between the wash water 105 and the first segmented air 901 is the amount of the first segmented air 901 sucked in step S202, the amount of the fluid 113 sucked in step S205, and the second sucked in step S206. It depends on the sum of the amounts of the segmented air 902 (the sum of the volumes of the fluid). Therefore, the position of the boundary 903 can be made constant by controlling the operation of the syringe 104 so that the total volume of the fluid sucked before the suction of the sample 115 is made constant.
  • the suction amounts of the first segmented air 901, the reagent 113, and the second segmented air 902 are also calculated in the same manner as in the method shown in FIG.
  • the control unit 108 determines the operating amount of the syringe 104 based on each calculated suction amount, and issues an instruction to the syringe driving unit 106.
  • the dispensing operation is performed so that the total volume of the fluid (segmented air and reagent) to be sucked before the suction of the sample is constant, and the injection operation is performed in the probe.
  • the boundary position between the existing cleaning fluid and the segmented air is fixed.
  • the sum of the suction amount of the segmented air sucked in front of the sample and the suction amount of the reagent is constant, so that the sample is sucked by the dispensing amount of the reagent.
  • the same configuration as that of the first embodiment (FIG. 1) can be adopted. Further, the dispensing operation is almost the same as the dispensing method (FIG. 2) of the first embodiment. However, in this embodiment, the method for determining the presence or absence of an abnormality in step S212 is different from that in the first embodiment.
  • FIG. 10 is a flowchart showing a method for determining the presence or absence of an abnormality according to the third embodiment.
  • the determination method of FIG. 10 is executed by the determination unit 121 instead of the determination method of the first embodiment shown in FIG.
  • the same reference numerals are given to the steps similar to those in FIG. 3, and the description thereof will be omitted.
  • steps S301 and S302 are executed in the same manner as in the first embodiment, and a determination index is calculated from the pressure history at the time of sample suction.
  • step S1001 the determination unit 121 acquires information about the suction amount of the reagent 113 sucked in step S205 from the control unit 108.
  • the determination unit 121 determines the total amount of reagents sucked from the control unit 108 in step S205 and the second segmented air amount sucked in step S206. Get information about the sum.
  • step S1002 the calculation unit 124 determines whether or not there is an abnormality during suction of the sample 115 based on the determination index calculated in step S302 and the information on the suction amount of the reagent 113 acquired in step S1001.
  • the difference between the average of the pressure values during the suction operation of the sample 115 and the average of the pressure values before the suction operation is used as a determination index, and whether the dispensing is normal or empty suction is performed. It will be determined whether or not it was present.
  • the determination threshold value is a function that changes according to the dispensing amount of the reagent 113, and the presence or absence of an abnormality is determined by comparing the magnitude relationship between the determination threshold value and the determination index.
  • the function of the determination threshold value is stored in the storage unit 123 in advance.
  • FIG. 11 is a diagram showing the relationship between the determination index (for example, the average of the pressure values) and the dispensing amount of the reagent 113 and the determination threshold value.
  • the plot of ⁇ shows the judgment index when the sample 115 is normally dispensed (normal dispensing group 1101).
  • the plot of x indicates a determination index when dry sucking occurs during suction of the sample 115 (dry sucking group 1102).
  • the determination threshold 1103 is set as a broken line function.
  • the determination threshold value 1103 is not limited to the polygonal function, and may be, for example, a linear function or an arbitrary polynomial.
  • the determination threshold used for determining the abnormality a function that changes depending on the dispensing amount of the reagent 113, the distance between the normal dispensing group 1101 and the determination threshold 1103 and the empty suction group 1102 and the determination threshold 1103 can be set.
  • the influence of the change in the dispensing amount of the reagent 113 on the distance can be reduced.
  • the presence or absence of abnormality can be determined with higher accuracy as compared with the case where a determination threshold value of a constant value is used (FIG. 6B).
  • the total amount of the fluid before sucking the sample 115 is kept constant, and the determination threshold value used for determining the abnormality is changed depending on the dispensing amount of the reagent 113. It was a function. However, even when the total amount of the fluid before sucking the sample 115 is not constant, the present embodiment in which the determination threshold value is a function that changes depending on the dispensing amount of the reagent 113 is effective.
  • the judgment threshold value is set as a function according to the dispensing amount of the reagent, and the judgment index calculated from the pressure history at the time of sample suction is compared with the function to be abnormal.
  • the configuration is adopted to determine the presence or absence of.
  • the fluid viscosity ⁇ in the pipeline in the Hagen-Poiseuille equation (1) described above changes.
  • the pressure loss P loss changes, affecting the pressure history used to determine the presence or absence of abnormality.
  • the pressure in the pipe changes due to the difference in the surface tension of the reagent in addition to the difference in the viscosity of the reagent.
  • the pressure in the conduit also changes due to the difference in gravity due to the difference in the density of the reagent.
  • FIG. 12 is a schematic configuration diagram showing a dispensing mechanism 400 of the automatic analyzer according to the fourth embodiment. As shown in FIG. 12, the dispensing mechanism 400 is substantially the same as the dispensing mechanism (FIG. 1) of the first embodiment, but further includes a reagent property value storage unit 1201.
  • the reagent physical property value storage unit 1201 is a database in which physical property values such as viscosity, surface tension, and density of various reagents used for analysis are stored.
  • the reagent physical characteristic value storage unit 1201 is connected to the determination unit 121 or is configured to be communicable, and the information stored in the reagent physical characteristic value storage unit 1201 can be read out by the determination unit 121.
  • the dispensing operation according to the present embodiment is almost the same as the dispensing method (FIG. 2) of the first embodiment. However, in this embodiment, the method for determining the presence or absence of an abnormality in step S212 is different from that in the first embodiment.
  • FIG. 13 is a flowchart showing a method for determining the presence or absence of an abnormality according to the fourth embodiment.
  • the determination method of FIG. 13 is executed instead of the determination method of the first embodiment shown in FIG.
  • the same reference numerals are given to the steps similar to those in FIG. 3, and the description thereof will be omitted.
  • steps S301 and S302 are executed in the same manner as in the first embodiment, and a determination index is calculated from the pressure history at the time of sample suction.
  • step S1301 the determination unit 121 acquires information on the physical property values such as the viscosity, surface tension, and density of the reagent 113 from the reagent property value storage unit 1201.
  • step S1302 the determination unit 121 determines the presence or absence of an abnormality during suction of the sample 115 based on the determination index calculated in step S302 and the information on the physical property values of the reagent 113 acquired in step S1301.
  • the difference between the average of the pressure values during the suction operation of the sample 115 and the average of the pressure values before the suction operation is used as a determination index, and whether the dispensing is normal or empty suction is performed. It will be determined whether or not it was present.
  • the presence or absence of an abnormality is determined based on the viscosity.
  • the determination threshold value is a function that changes according to the viscosity of the reagent 113, and the presence or absence of an abnormality is determined by comparing the magnitude relationship between the determination threshold value and the determination index.
  • the function of the determination threshold value is stored in the storage unit 123 in advance.
  • FIG. 14 is a diagram showing the relationship between the determination index (for example, the average of pressure values) and the viscosity of the reagent 113 and the determination threshold value.
  • the plot of ⁇ shows the judgment index when the sample 115 is normally dispensed (normal dispensing group 1401).
  • the plot of x indicates a determination index when dry sucking occurs during suction of the sample 115 (dry sucking group 1402).
  • the determination threshold value is such that the variation due to the viscosity of the reagent 113 is minimized.
  • 1403 is set as a linear function.
  • the determination threshold value 1403 is not limited to the linear function, and may be, for example, a linear function or an arbitrary polynomial.
  • the determination threshold value used for determining the abnormality a function that changes depending on the viscosity of the reagent 113, the distance between the normal dispensing group 1401 and the determination threshold value 1403 and the distance between the dry suction group 1402 and the determination threshold value 1403 can be obtained. , The influence of the difference in viscosity of the reagent 113 can be reduced. As a result, the presence or absence of an abnormality can be determined with higher accuracy as compared with the case where a determination threshold value of a constant value is used.
  • the function of the viscosity of the reagent 113 is used, but if the surface tension or density of the reagent 113 has a large influence on the pressure history due to the characteristics of the dispensing mechanism, the determination threshold value is set to the reagent 113.
  • the determination threshold value is set to the reagent 113.
  • the total amount of fluid before sucking the sample 115 is kept constant, and the determination threshold value used for determining the abnormality is changed according to the physical property value of the reagent 113. And said.
  • the determination threshold value is a function that changes depending on the physical property value of the reagent 113 is effective.
  • the determination threshold value is set as a function according to the physical property value of the reagent, and the function is compared with the determination index of the pressure history at the time of sample suction to determine the presence or absence of abnormality. Is adopted. Thereby, the abnormality can be detected with higher accuracy than the case where a certain determination threshold value and the determination index are compared as in the first embodiment. Further, since the influence of the physical property value of the reagent on the pressure history at the time of sample suction can be reduced, the abnormality detection based on the pressure history can be made more accurate regardless of the physical property value of the reagent. Therefore, the reliability of the analysis result of the automatic analyzer can be further improved.
  • the dispensing method of the present embodiment is almost the same as the dispensing method shown in FIG. 2, but in step S205, the sampling unit 122 receives the input of the pressure value during the suction operation of the reagent 113 from the pressure sensor 117.
  • the pressure value during the suction operation of the reagent 113 is stored in the storage unit 123 as time-series data (pressure history at the time of suction of the reagent).
  • the “pressure history at the time of suction of the reagent” refers to a pressure value in a predetermined time range including the operation time (suction operation time) of the syringe 104 when sucking the reagent 113 in step S205.
  • the calculation unit 124 calculates the viscosity of the reagent 113 from the pressure history at the time of suction of the reagent 113 stored in the storage unit 123, and stores it in the reagent physical characteristic value storage unit 1201 (FIG. 12).
  • step S212 In the determination of the presence or absence of an abnormality during suction of the sample 115 in step S212, the same step as the determination method of the fourth embodiment shown in FIG. 13 is executed.
  • the density of the reagent 113 may be estimated and used for determining the presence or absence of an abnormality.
  • the density may be calculated from the gravitational head of the pressure value after suction of the reagent 113 in step S205.
  • the physical property value of the reagent is estimated from the pressure history at the time of suction of the reagent, and the determination threshold value used for determining the presence or absence of abnormality is set as a function according to the estimated physical property value of the reagent.
  • the abnormality can be detected with high accuracy even if the information on the physical characteristic value of the reagent used for the analysis is not stored in the reagent physical characteristic value storage unit. Can be done.
  • the dispensing method of this embodiment is almost the same as the dispensing method shown in FIG. 2, but differs in the following points. That is, the suction flow rate of the syringe 104 when sucking the second segmented air in step S206, which is carried out last in steps S204 to S206, which is repeated as many times as the required number of reagents, and when sucking the sample 115 in step S208.
  • the suction flow rate of the syringe 104 of the above is the same. Thereby, it is possible to estimate the influence of the plurality of reagents held in the chip 101 on the pressure history at the time of sample suction.
  • step S206 the sampling unit 122 receives the input of the pressure value during the suction operation of the second segmented air from the pressure sensor 117, and sets the pressure value during the suction operation of the second segmented air. It is stored in the storage unit 123 as a series (pressure history).
  • the calculation unit 124 acquires the pressure history at the time of suction of the segmented air in step S206, and estimates the average (representative value) of the viscosities of the plurality of reagents 113 based on the pressure history and the above formula (1).
  • Other steps can be performed in the same manner as in the fifth embodiment.
  • the representative values of the physical property values of the plurality of reagents are estimated, and the determination threshold value used for determining the presence or absence of abnormality is set to the estimated physical characteristics of the reagents. Set as a function according to the value. As a result, it is not necessary to estimate the physical property values for all of the plurality of reagents, so that the processing is simple and no error is accumulated. Therefore, the abnormality can be detected with high accuracy regardless of the physical property values of the plurality of reagents sucked before the sample is sucked.
  • the suction flow rate of the syringe 104 when sucking the second segmented air in step S206, which is carried out last in steps S204 to S206, and the suction flow rate of the syringe 104 when sucking the sample 115 in step S208 are obtained. With the same configuration, it is possible to more accurately estimate the effect of the viscosity of the reagent 113 on the pressure history when the sample 115 is aspirated.
  • a judgment index in which the influence of the physical characteristic values of the reagents and the dispensing amount is canceled can be used as the judgment index.
  • the judgment index calculated here is the difference between the pressure history immediately before the sample suction and the pressure history after the sample suction, the physical property values and dispensing amounts of the plurality of reagents sucked before the sample suction The effects are offset. By using such a determination index, it is possible to determine the presence or absence of an abnormality with high accuracy regardless of the dispensing amount of the reagent and the physical property value.
  • the dispensing method of each of the above-described embodiments can be executed not only in the automatic analyzer but also in other devices having a fluid dispensing mechanism.
  • the method of each embodiment can be applied to a pharmaceutical manufacturing apparatus, a microreactor, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

異常検知の対象となる液体の分注時における異常を高確度に検知する。本開示の自動分析装置は、流体を分注する分注ノズルと、前記分注ノズルにより前記流体を分注するための圧力変動を発生させる圧力源と、前記分注ノズルと前記圧力源とを接続する流路と、前記分注ノズルが前記流体を分注する際の前記流路内の圧力を測定する圧力センサと、前記圧力センサが測定した前記圧力の時系列データを記憶する記憶部と、前記分注ノズル及び前記圧力源の駆動を制御する制御部と、を備え、前記制御部は、第1の分節空気、第1の液体、第2の分節空気、第2の液体の順に前記分注ノズルに吸引するように、前記分注ノズル及び前記圧力源を制御し、前記第1の液体の吸引量に基づいて、前記第1の分節空気の吸引量及び前記第2の分節空気の吸引量のうち少なくともいずれか一方を決定する。

Description

自動分析装置及び分注方法
 本開示は、自動分析装置及び分注方法に関する。
 生化学分析装置や免疫分析装置などの自動分析装置は、生体試料などの検体及び試薬を規定量吸引して反応容器内に吐出する分注機構と、検体と試薬との反応液についての分析を行う分析機構とを備えている。
 分注機構は、検体や試薬などの液体中に挿入されるプローブと、液体の吸引及び吐出のための圧力源となるシリンジと、プローブとシリンジの間を接続する流路とによって構成される。分注機構は、検体容器又は試薬容器内の液体にプローブを挿入し、シリンジを動作させて規定量の液体を吸引し、プローブを反応容器に移動し、吐出を行うことで、規定量の液体を分注する。なお、分注に際して、次の検査への成分の持ち越しを防ぐために、プローブの先端に使い捨てのチップを装着することもある。
 分析項目によっては、複数の試薬、若しくは試薬と検体の両方を同時にプローブ又はチップ(分注ノズル)内に保持して、反応容器に分注することがある。このように複数の液体を同時に分注ノズル内に保持する場合は、複数種類の液体を連続して吸引し、全ての液体を吸引した後に反応容器へ吐出することで分注する。複数種類の液体を同時に分注することによって、洗浄水の使用量の低減、チップの使用数の低減、分注の所要時間の短縮を実現できる。
 分注に際して、検体容器ハンドリングによって発生した気泡を吸引する、高粘度の検体や検体中のフィブリン等の繊維素により流路内が詰まる、といった異常が起こりうる。それ故、分注状態を正確に推定し、異常が発生したことを高確度に検知することによって、分析結果の確度を高めることができる。
 分注の異常検知を行う手法として、例えば特許文献1には、検体吐出時の圧力変動に対し、特定の時区間における圧力データの積分値や、吐出終了時に算出した平均圧力と正常に吐出した時に算出した平均圧力との差を指標とし、これらを予め設定された閾値と比較することで、分注の異常を検知する技術が開示されている。
 また、特許文献2には、異常検知のための基準とする基準液体を分注するときの圧力と、所定液体を分注するときの圧力との比を使用して、所定液体を分注したときの異常を検知する技術が開示されている。
特許第3633631号公報 特開平11-258244号公報
 しかしながら、特許文献1に記載のように複数種類の液体を同時に分注する場合においては、分注異常の検知対象となる液体に先んじてノズル内に吸引されている他の液体の分注量や物性値の違いによって、異常検知の確度が低下する可能性がある。
 特許文献2についても特許文献1と同様に、異常の検知対象となる所定液体に先んじて分注ノズル内に吸引されている基準液体の分注量や物性値の違いによって、異常検知の確度が低下する可能性がある。また、基準液体を保持する部分を必要とするため、装置の小型化が難しい。
 そこで、本開示は、複数の液体を同時に分注する場合に、異常検知の対象となる液体の前に吸引される液体の分注量や物性値によらず、異常検知の対象となる液体の分注時における異常を高確度に検知可能とする技術を提供する。
 上記課題を解決するため、本開示の自動分析装置は、流体を分注する分注ノズルと、前記分注ノズルにより前記流体を分注するための圧力変動を発生させる圧力源と、前記分注ノズルと前記圧力源とを接続する流路と、前記分注ノズルが前記流体を分注する際の前記流路内の圧力を測定する圧力センサと、前記圧力センサが測定した前記圧力の時系列データを記憶する記憶部と、前記分注ノズル及び前記圧力源の駆動を制御する制御部と、を備え、前記制御部は、第1の分節空気、第1の液体、第2の分節空気、第2の液体の順に前記分注ノズルに吸引するように、前記分注ノズル及び前記圧力源を制御し、前記第1の液体の吸引量に基づいて、前記第1の分節空気の吸引量及び前記第2の分節空気の吸引量のうち少なくともいずれか一方を決定することを特徴とする。
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
 本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味に於いても限定するものではない。
 本開示の自動分析装置によれば、異常検知の対象となる液体の分注時における異常を高確度に検知することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第1の実施形態に係る自動分析装置の分注機構を示す概略構成図である。 第1の実施形態に係る分注方法を示すフローチャートである。 第1の実施形態に係る異常の有無の判定方法を示すフローチャートである。 図2の分注動作におけるプローブ及びチップ内の流体の状態を示す概略図である。 図2の分注動作における試薬及び分節空気の吸引量の算出方法を示すフローチャートである。 第1の実施形態における判定指標と試薬の分注量との関係を示す図である。 第2の実施形態に係る自動分析装置の分注機構を示す概略構成図である。 第2の実施形態に係る分注方法を示すフローチャートである。 図8の分注動作におけるプローブ内の流体の状態を示す概略図である。 第3の実施形態に係る異常の有無の判定方法を示すフローチャートである。 第3の実施形態における判定指標と試薬の分注量との関係及び判定閾値を示す図である。 第4の実施形態に係る自動分析装置の分注機構を示す概略構成図である。 第4の実施形態に係る異常の有無の判定方法を示すフローチャートである。 第4の実施形態における判定指標と試薬の粘度との関係及び判定閾値を示す図である。
[第1の実施形態]
<自動分析装置の分注機構の構成>
 第1の実施形態に係る自動分析装置の分注機構においては、プローブの先端に着脱可能なチップが取り付けられる形態を採用することとする。本実施形態の分注機構は、チップ内に試薬及び検体を順に吸引して同時に反応容器に分注し、このように予めチップ内に試薬を吸引し保持した状態で検体を吸引する際における、気泡の吸引(以下、「空吸い」という)又は詰まりを検知する。
 図1は、第1の実施形態に係る自動分析装置の分注機構100を示す概略構成図である。図1に示すように、分注機構100は、チップ101、プローブ102、流路103、シリンジ104、シリンジ駆動部106、プローブ駆動部107、制御部108、給水ポンプ109、洗浄水105を収容する給水タンク110、電磁弁111、分析項目に応じた試薬113(第1の液体)を収容する試薬容器112、検体115(第2の液体)を収容する検体容器114、反応容器116、圧力センサ117、分岐ブロック118、信号増幅器119、A/D変換器120、判定部121、表示部125、チップ廃棄部126を備える。
 チップ101(分注ノズル)は、プローブ102の先端に対して着脱可能である。プローブ102にはモータやアクチュエータ(不図示)などのプローブ駆動部107が接続されており、これによりプローブ102を水平方向及び垂直方向に移動させ、所定の位置に移動させることができる。チップ101は、例えばチップラック(不図示)に保持されており、プローブ駆動部107がチップラックの上方にプローブ102を移動させ下降させることによりプローブ102にチップ101を装着することができる。なおチップ101は、チップ101を一時的に保持するチップバッファにおいてプローブ102に取り付けられてもよい。
 プローブ102は流路103を介してシリンジ104に接続され、これらの内部は洗浄水105で充填されている。シリンジ104は、シリンダ104a及びプランジャ104bを有し、プランジャ104bにはシリンジ駆動部106が接続されている。シリンジ駆動部106は、プランジャ104bをシリンダ104aに対して上下方向に駆動させ、これによりプローブ102に接続されたチップ101での流体(液体及び気体)の吸引及び吐出を行う。
 シリンジ104は、給水タンク110と通ずる流路を有し、該流路には電磁弁111及び給水ポンプ109が設けられている。給水タンク110には洗浄水105が収容されており、給水ポンプ109の駆動により洗浄水105をプローブ102から吐出することで、プローブ102の内部を洗浄できる。プローブ102の洗浄は、例えば試薬113及び検体115の分注前に行われる。
 図示は省略しているが、自動分析装置は、試薬容器112を保持する試薬庫、検体容器114を保持する検体容器ラック、反応容器116を保持する反応ディスクを有する。試薬容器112、検体容器114及び反応容器116の保持手段は上記のものに限定されない。反応容器116には、チップ101に吸引された試薬113及び検体115が分注される。
 チップ廃棄部126には、反応容器116への試薬113及び検体115の分注が完了したチップ101が廃棄される。
 制御部108は、シリンジ駆動部106、プローブ駆動部107、給水ポンプ109及び電磁弁111の動作を制御する。制御部108は、分注機構100の各構成要素のみならず、自動分析装置全体の動作を制御するように構成されていてもよい。
 圧力センサ117は、流路103の途中に設けられた分岐ブロック118に接続され、流路103内の圧力を測定する。圧力センサ117は、圧力の検出信号を信号増幅器119に出力する。圧力センサ117の位置は、図1に示すようにシリンジ104側であってもよいが、可能な限りプローブ102に近い位置に圧力センサ117を接続することにより、チップ101の開口部の圧力変動を感度良く測定することができる。
 信号増幅器119は、圧力センサ117の検出信号を増幅し、増幅信号をA/D変換器120に出力する。A/D変換器120は、増幅信号をデジタル信号に変換し、圧力値として判定部121に出力する。
 判定部121は、分注機構100の分注動作時における異常の有無を判定するための回路である。判定部121は、A/D変換器120からの圧力値の入力を受け付けるサンプリング部122と、サンプリング部122に入力された圧力値などのデータを記憶する記憶部123と、記憶部123に記憶されたデータについての処理を実行する計算部124と、を有する。
 判定部121は、制御部108と通信可能に構成されており、計算部124におけるデータ処理の結果から、オペレーションの中止動作が必要であると判断される場合には、制御部108に動作の内容を送信する。
 判定部121は、専用の回路基板として自動分析装置内のハードウェアとして構成されていてもよいし、プロセッサが記憶部123に記録されたプログラムを読み込んで実行することで判定部121として機能してもよい。さらには、無線又は有線で自動分析装置と通信可能に接続されたサーバ内のプロセッサがプログラムを読み込んで実行し、判定部121として機能してもよい。
 表示部125は、制御部108及び判定部121に接続され、判定部121におけるデータ処理の結果や、当該結果に関する情報などを表示する。
<分注方法>
 図2は、第1の実施形態に係る分注方法を示すフローチャートである。本実施形態の分注方法は、実際には図1に示した制御部108が分注機構100の各構成要素(シリンジ駆動部106、プローブ駆動部107、給水ポンプ109及び電磁弁111等)の動作を制御することにより実施されるが、以下においては分注機構100の各構成要素を動作の主体として説明する場合がある。
 ステップS201において、制御部108は、電磁弁111を開状態とし、給水ポンプ109を駆動して、給水タンク110内の洗浄水105をプローブ102から吐出する。これにより、プローブ102の内部を洗浄する。
 ステップS202において、シリンジ駆動部106は、シリンジ104を駆動してプローブ102内に第1の分節空気を吸引する。これは、プローブ102内に充填されている洗浄水105と、次のステップで吸引する試薬113とが混ざり合わないようにするためである。
 ステップS203において、プローブ駆動部107は、プローブ102をチップラック又はチップバッファの上方に移動させ、その後下降させることにより、プローブ102の先端にチップ101を装着する。
 ステップS204において、プローブ駆動部107は、プローブ102を試薬容器112の上方に移動させ、チップ101の先端が試薬113に浸漬されるまで下降させる。
 ステップS205において、シリンジ駆動部106は、シリンジ104を駆動して試薬113をチップ101内に吸引する。
 ステップS206において、プローブ駆動部107は、チップ101の先端が試薬113から出るまでプローブ102を上昇させる。その後、シリンジ駆動部106は、シリンジ104を駆動してチップ101内に第2の分節空気を吸引する。これは、先にチップ101に吸引した試薬113と、次のステップで吸引する液体とが混ざり合わないようにするためである。
 本実施形態においては、1種類の試薬113のみを吸引することとするが、分析項目によっては複数の試薬を分注する場合もある。複数の試薬を分注する場合はステップS204~S206を必要な回数繰り返し、分注すべき全ての試薬と、それらを隔てる第2の分節空気とをチップ101内に吸引する。
 ステップS207において、プローブ駆動部107は、プローブ102を検体容器114の上方に移動させ、チップ101の先端が検体115に浸漬されるまで下降させる。
 ステップS208において、シリンジ駆動部106は、シリンジ104を駆動して検体115をチップ101内に吸引する。ここで、判定部121のサンプリング部122は、検体115の吸引動作中の圧力値の入力を受け付け、検体115の吸引動作中の圧力値を時系列データ(以下、「圧力履歴」という場合がある)として記憶部123に記憶する。
 ステップS209において、プローブ駆動部107は、チップ101の先端が検体115から出るまでプローブ102を上昇させ、反応容器116の内部にチップ101の先端が位置するように、プローブ102を移動させる。
 ステップS210において、シリンジ駆動部106は、シリンジ104を駆動してチップ101内に保持されている試薬113及び検体115を反応容器116内に吐出する。このとき、複数の試薬を吸引している場合には、チップ101内に吸引されている全ての試薬が同時に反応容器116内に吐出される。
 ステップS211において、プローブ駆動部107は、プローブ102をチップ廃棄部126まで移動させ、チップ廃棄部126内にチップ101を廃棄することによりプローブ102から取り外す。
 ステップS212において、判定部121の計算部124は、記憶部123に記憶された検体吸引時の圧力履歴に基づいて、検体115の吸引時に詰まりや空吸いなどの異常があったか否かを判定する(異常を検知する)。なお、検体115の吸引時に空吸いや詰まりなどの異常が生じた場合の圧力履歴は、正常な分注が行われた場合の圧力履歴とは異なる。したがって、圧力履歴を参照することにより、異常の有無を判定することができる。圧力履歴を用いた異常の有無の判定方法については、後述する。
 本ステップにおいて、判定部121は、異常の有無の判定結果を表示部125及び制御部108に送信する。また、表示部125は判定結果を表示する。
 ステップS212において異常がないと判定された場合(No)は、ステップS213に移行する。ステップS213において、制御部108は、判定部121から受信した判定結果に基づいて、正常に分注が終了したと判断し、分注動作を終了する。制御部108は、分析項目に応じてステップS201~S213を繰り返してもよい。
 ステップS212において異常があると判定された場合(Yes)は、ステップS214に移行する。ステップS214において、制御部108は、判定部121から受信した判定結果に基づいて、検体115の吸引時に異常があったと判断する。このとき、表示部125にアラートを表示させ、該当する検体115の分注動作を終了する。また、ユーザーに検体115を返却する。このように、異常があった検体115の分注を中止することによって、以降の分析に使用する試薬の消費を低減できる。
 なお、ステップS212~S214とステップS209~S211との順序を入れ替えてもよい。この場合、ステップS208の後にステップS212が実行されることになる。ステップS212において異常ありと判定され、ステップS214に移行した際は、制御部108は、ステップS209に移行せずに分注動作を終了する。これにより、異常があった検体115を反応容器116に吐出しないで済むため、反応容器116の消費又は洗浄の手間を削減できる。
<異常の有無の判定方法>
 図3は、図2のステップS212における判定部121による異常の有無の判定方法を示すフローチャートである。
 ステップS301において、計算部124は、記憶部123に記憶された検体吸引時の圧力履歴を読み出す。本明細書において「検体吸引時の圧力履歴」とは、ステップS208において検体115を吸引する際のシリンジ104の動作時間(吸引動作時間)を含む所定の時間範囲における圧力値を指す。
 ステップS302において、計算部124は、検体吸引時の圧力履歴に基づいて、異常の有無の判定に使用する判定指標を算出する。「判定指標」とは、例えば、検体115の吸引動作中の圧力値の平均、検体115の吸引動作前又は後の圧力値の平均、圧力値の最大値又は最小値、圧力履歴の圧力脈動周期又は振幅、予め設定された基準となる圧力履歴と本ステップで取得した圧力履歴とのユークリッド距離といった統計距離などが挙げられる。「基準となる圧力履歴」とは、例えば、過去に多数取得された圧力値をもとに設定されるものであり、正常に検体が吸引されたと判断された際の圧力値であってもよいし、検体吸引時に異常があったと判断された際の圧力値であってもよい。この基準となる圧力履歴との類似度又は非類似度を判定指標とすることもできる。また、上記した指標を複数組み合わせて、判定指標として用いてもよい。
 本実施形態においては、判定指標として、検体115の吸引動作中の圧力値の平均と、吸引動作前の圧力値の平均との差分を算出し、これを用いて正常な分注であったか空吸いであったかを判定することとする。空吸いの原因としては検体容器114のハンドリングによって意図せず発生した気泡による液面の誤検知などが考えられる。なお、気泡は、血液の検体115が搬送される途中で振られるなどした場合に発生する。
 ステップS303において、計算部124は、判定指標に基づいて、検体115の吸引時における異常の有無を判定する。異常の有無の判定方法としては、例えば、判定指標と所定の判定閾値とを比較する方法、複数の判定指標の組み合わせがある条件を満たした場合に異常と判定する方法などが挙げられる。本実施形態においては、判定指標と一定の判定閾値とを比較して異常の有無を判定するというアルゴリズムを使用することとする。異常の有無の判定に用いられる判定閾値は、予め記憶部123に記憶されている。
 検体115の吸引時における異常の検知を高い確度で行うために、本発明者らは鋭意検討した結果、検体115(第2の液体)の吸引に先立って吸引される試薬113(第1の液体)の分注量(体積)が上記の圧力履歴に与える影響を小さくすることが効果的であることを見出した。
 試薬113の分注量は分析項目によって異なる。管路内の流動の摩擦による圧力損失を表す物理式の一例として、以下のハーゲン・ポアズイユの式(1)が挙げられる。
 Ploss=128μLQ/(πd)・・・(1)
 ここでPlossは圧力損失、μは流体の粘度、Lは流体が管路を占める長さ、πは円周率、dは管路直径、Qは管路内の流量を表す。
 管路内に複数種類の流体が存在する場合、この圧力損失Plossは流体成分ごとに計算される。試薬113の分注量が異なると、流体がチップ101やプローブ102の管路を占める長さLが変化する。このことにより、圧力損失Plossが変化し、異常の有無の判定に使用する圧力履歴に影響を与える。また圧力履歴は、管路内の流体成分の境界による圧力波の反射があるために、試薬113の分注量の違いにより生じる管路内の流体配置の差異の影響も受ける。したがって、試薬113の分注量が圧力履歴に与える影響を小さくすることによって高確度な異常検知が可能となる。そこで、以下においては、試薬113の分注量の違いによる圧力履歴への影響を低減するための分注動作について説明する。
 図4は、図2に示した分注動作におけるプローブ102及びチップ101内の流体の状態を示す概略図である。図4(a)は、ステップS201において洗浄水105によりプローブ102内を洗浄した直後の状態を示している。図4(a)に示すように、プローブ102の内部は洗浄水105により満たされている。
 図4(b)は、ステップS202において第1の分節空気401を吸引し、ステップS203においてチップ101を装着した後の状態を示している。
 図4(c)は、ステップS205において試薬113を吸引した後の状態を示している。試薬113は、チップ101の先端に位置している。
 図4(d)は、ステップS206において第2の分節空気402を吸引した状態を示している。すなわち、検体115を吸引する前の状態が示されている。第2の分節空気402はチップ101の先端に位置し、その上部に試薬113が位置している。なお、図4(d)においては1種類の試薬113と検体115のみを吸引した際の状態を示しているが、複数の試薬を分注する場合は、試薬113及び第2の分節空気402が吸引した試薬の数だけ交互に配置される。
 図4(e)は、ステップS208において検体115を吸引した状態を示している。検体115はチップ101の先端に位置し、その上部に第2の分節空気402が位置し、第2の分節空気402上に試薬113が位置している。
 上述のように、検体115の吸引時の圧力履歴を用いて異常の有無が判断される。検体115を吸引する前の状態(図4(d))において、洗浄水105と第1の分節空気401との境界403の位置は、試薬113の分注量(体積)によって変化する。この境界403の位置を一定とすることによって、試薬113の分注量が検体115の吸引時の圧力履歴に与える影響を低減することが可能となる。
 洗浄水105と第1の分節空気401の境界403の位置は、ステップS202で吸引する第1の分節空気401の量と、ステップS205で吸引する試薬113の量と、ステップS206で吸引する第2の分節空気402の量の総和(流体の体積の総和)によって変化する。したがって、検体115の吸引前に吸引される流体の体積の総和を一定とするようにシリンジ104の動作を制御することで、境界403の位置を一定とすることができる。なお、境界403の位置が「一定」であるとは、必ずしもすべての分析の分注動作において正確に同じ位置に境界403が位置することを意味するのではない。用いる装置やプローブ、チップに応じて、上記総和に例えば±10μL分のばらつきがあってもよい。流体の体積の総和が一定であっても、プローブやチップの内径に応じて洗浄水105と第1の分節空気401との境界403の位置が変わることは言うまでもない。
 図5は、図2の分注動作における試薬113、第1の分節空気401及び第2の分節空気402の吸引量の算出方法を示すフローチャートである。本方法は、例えば図2に示した分注動作の開始前に制御部108により実行され、算出された吸引量に基づいて試薬や分節空気の吸引動作が実行される。また、本方法の実行前に、予め制御部108の記憶部には、試薬113、第1の分節空気401及び第2の分節空気402の体積の総和が記憶されている。これら流体の体積の総和は、分析項目によらず同じ値とすることができる。
 ステップS501において、制御部108は、ステップS205において吸引する試薬113の量と、ステップS206において吸引する第2の分節空気402の量を算出する。試薬113の吸引量は、分析項目や試薬の種類に応じて設定することができる。なお、ステップS204~S206を繰り返して複数種類の試薬を同一チップ内に吸引する場合は、制御部108は、ステップS205で吸引される試薬の量の総和と、ステップS206で吸引される第2の分節空気の量の総和とをそれぞれ算出する。
 ステップS502において、制御部108は、ステップS501で算出した試薬113の量と分節空気量とに基づいて、ステップS202において吸引すべき第1の分節空気401の量を算出する。このとき、第1の分節空気401の量、試薬113の量及び第2の分節空気402の量の総和が一定となるように、第1の分節空気401の量を算出する。制御部108は、算出された各吸引量に基づいてシリンジ104の動作量を決定し、シリンジ駆動部106に指示を出す。
 チップ101が、チップ101からプローブ102に試薬113が流入しないような十分な体積を有する場合には、以上のような第1の分節空気401の量の調整によって、検体115の吸引前におけるプローブ102内部の流体の配置(洗浄水105と第1の分節空気401との境界403の位置)を一定とすることができる。プローブ102内部の流体の配置を一定とすることによって、試薬113の分注量の違いが検体吸引時の圧力履歴に与える影響を低減することが可能となる。
 上述のように、本実施形態においては、ステップS205において吸引する試薬113の量と、ステップS206において吸引する第2の分節空気402の量をまず算出し、その後ステップS201で吸引すべき第1の分節空気401の量を調整するという構成を採用している。この代わりに、第1の分節空気401の量と試薬113の量をまず算出し、その後第2の分節空気402の量を調整するようにしてもよい。
 また、第1の分節空気401の量、試薬113の量及び第2の分節空気402の量の総和について、複数の基準値(総和が20μL、50μL及び100μLなど)が予め記憶部123に記憶されていてもよく、分析項目によって用いる試薬113の量が大きく異なる場合に、どの基準値を用いるか決定するようにしてもよい。例えば、用いられる試薬113の量が20μLであれば上記総和が50μLとなるように設定し、用いられる試薬113の量が50μLであれば、上記総和が100μLとなるように設定することができる。これにより、試薬113の量が少ないにもかかわらず分節空気401及び402の吸引量が大きくなることがない。したがって、シリンジ104の駆動量の増大が防止され、シリンジ104の寿命を向上できる。
 本実施形態による異常検知の確度の向上効果について説明する。図6(a)は、第1の分節空気401の量を調整せず一定とした場合(図5の処理を実行しなかった場合)における、判定指標(例えば、圧力値の平均)と試薬113の分注量との関係を示している。○のプロットは、正常に検体115が分注された場合の判定指標を示す(正常分注群601)。また、×のプロットは、検体115の吸引時に空吸いが生じた場合の判定指標を示す(空吸い群602)。図6(a)に示すように、正常分注群601の判定指標と、空吸い群602の判定指標は、試薬113の分注量によって大きく変化する。したがって、算出した判定指標を一定の判定閾値と比較することによっては、空吸いが生じたかどうかを判断することが困難である。
 これに対し、図6(b)は、図5の方法により第1の分節空気401の量(流体の体積の総量)を調整した場合における、判定指標(例えば、圧力値の平均)と試薬113の分注量との関係を示している。○のプロットは、正常に検体115が分注された場合の判定指標を示す(正常分注群603)。また、×のプロットは、検体115の吸引時に空吸いが生じた場合の判定指標を示す(空吸い群604)。図6(b)に示すように、第1の分節空気401の量を調整することによって、正常分注群601の判定指標と、空吸い群602の判定指標は、試薬113の分注量に関係なくそれぞれほぼ一定の値となる。したがって、一定の判定閾値605を予め設定しておき、算出した判定指標と判定閾値605とを比較することによって、空吸いが生じたかどうかを判断することができる。
 以上、検体115の吸引時に空吸いが生じたかどうかを検知する例について説明したが、詰まりが生じたかどうかの判定についても同様に、本実施形態の方法を適用することができる。すなわち、試薬113の分注量に関係なく、算出した判定指標と一定の値の判定閾値との比較により、吸引時に詰まりが生じたかどうかを判定することができる。
<技術的効果>
 以上のように、本実施形態の自動分析装置は、検体の吸引前に吸引する流体(分節空気及び試薬)の体積の総量が一定となるように分注動作を行い、プローブ内に存在する洗浄液と分節空気との境界位置を一定とする。これにより、試薬の分注量の違いが検体吸引時の圧力履歴に与える影響を低減することができる。より詳細には、正常な分注での圧力履歴から算出される判定指標と、異常がある分注での圧力履歴から算出される判定指標とを、それぞれ試薬の分注量によらずほぼ一定とすることができる。したがって、試薬の分注量によらず、すなわち分析項目によらず一定の値の判定閾値を設定することができるので、高確度に異常の有無を検知することができる。
 また、異常を高確度に検知できるため、自動分析装置の分析結果の信頼性も向上できる。さらに、異常を検知した際は分注動作を終了するため、試薬のロスも低減できる。
<第1の実施形態の変形例>
 以上、検体115の吸引時における空吸い及び詰まりといった異常検知の方法について説明したが、本実施形態の方法は検体115の分注量推定や粘度推定にもそのまま適用可能である。
 また、本実施形態においては検体115を分注異常の検知対象の液体としたが、試薬113の吸引時における異常検知、分注量推定や粘度推定に本実施形態の方法を適用してもよい。この場合は、上記における「検体115」を「試薬113」と読み替えればよい。
 本実施形態においては、図5を参照して説明したように、ステップS202で吸引する第1の分節空気401の量と、ステップS205で吸引する試薬113の量と、ステップS206で吸引する第2の分節空気402の量と、の総和が一定になるように、ステップS202で吸引する第1の分節空気401の量を調整した。これは、洗浄水105と第1の分節空気401の境界403の位置をプローブに対して一定とすることで、試薬113の分注量が検体115の吸引時の圧力履歴に与える影響を低減することを目的としたためである。
 このように検体115の吸引前に吸引される流体の総和を一定とする代わりに、自動分析装置の分注機構の構成や構造に応じて、ステップS202で吸引する第1の分節空気401の量を、ステップS205で吸引する試薬113の量とステップS206で吸引する第2の分節空気402の量に依存した関数により算出してもよい。また、この関数は分析項目ごとに決定してもよい。
 また、本実施形態では試薬113の分注量に応じて分節空気の量を調整したが、検体115吸引時における、シリンジ104の流量や、検体115へチップ101を浸漬する深さなどの動作を調整するという構成を採用してもよい。
[第2の実施形態]
 第1の実施形態においては、プローブの先端に使い捨て可能なチップを装着し、チップ内に試薬及び検体を吸引する分注機構(図1)について説明した。しかし、分注機構の構成は図1に示したものに限定されない。そこで、第2の実施形態においては、他の分注機構の構成として、チップを使用せずプローブ内に試薬及び検体を直接吸引する例を提案する。このように分注機構の構成が異なっていても、第1の実施形態と同様にして、検体吸引時の詰まり又は空吸いを検知することができる。
<分注機構の構成>
 図7は、第2の実施形態に係る自動分析装置の分注機構200を示す概略構成図である。図7に示すように、分注機構200は、図1に示したチップ101及びプローブ102の代わりに、プローブ701(分注ノズル)を備える。プローブ701の管路の長さは、図1のチップ101をプローブ102に装着した場合の合計の管路の長さと同様とすることができる。プローブ701以外の構成については、第1の実施形態の分注機構100と同様であるため説明を省略する。
 本実施形態の分注機構200は、プローブ701に直接試薬113や検体115を吸引する。プローブ701の動作は、プローブ駆動部107により制御される。
<分注方法>
 図8は、第2の実施形態に係る分注方法を示すフローチャートである。本実施形態の分注方法は、実際には図7に示した制御部108が分注機構200の各構成要素の動作を制御することにより実施されるが、以下においては分注機構200の各構成要素を動作の主体として説明する場合がある。また、第1の実施形態の分注方法(図2)と同様のステップには同じ符号を付している。以下においては第1の実施形態との相違点のみ説明する。
 本実施形態においては、チップ101を使用しないため、図2におけるステップS203及びS211は実行されない。
 まず、ステップS201の代わりに、ステップS801において、制御部108は、電磁弁111を開状態とし、給水ポンプ109を駆動して、給水タンク110内の洗浄水105をプローブ701から吐出する。これにより、プローブ701の内部を洗浄する。
 ステップS202を実行した後、ステップS204の代わりにステップS802が実行される。ステップS802において、プローブ駆動部107は、プローブ701を試薬容器112の上方に移動させ、プローブ701の先端が試薬113に浸漬されるまで下降させる。
 ステップS205及びS206を実行した後、ステップS207の代わりにステップS803が実行される。ステップS803において、プローブ駆動部107は、プローブ701を検体容器114の上方に移動させ、プローブ701の先端が検体115に浸漬されるまで下降させる。
 以降の動作は第1の実施形態と同様である。また、ステップS212における異常の有無の判定方法についても、図3に示した方法と同様である。
 図9は、図8に示した分注動作におけるプローブ701内の流体の状態を示す概略図である。図9(a)は、ステップS801において洗浄水105によりプローブ701内を洗浄した直後の状態を示している。図9(a)に示すように、プローブ701の内部は洗浄水105により満たされている。
 図9(b)は、ステップS202において第1の分節空気901を吸引した後の状態を示している。
 図9(c)は、ステップS205において試薬113を吸引した後の状態を示している。試薬113は、プローブ701の先端に位置している。
 図9(d)は、ステップS206において第2の分節空気902を吸引した状態を示している。すなわち、検体115を吸引する前の状態が示されている。第2の分節空気902はプローブ701の先端に位置し、その上部に試薬113が位置している。なお、図9(d)においては1種類の試薬113と検体115のみを吸引した際の状態を示しているが、複数の試薬を分注する場合は、試薬113及び第2の分節空気902が吸引した試薬の数だけ交互に配置される。
 図9(e)は、ステップS208において検体115を吸引した状態を示している。検体115はプローブ701の先端に位置し、その上部に第2の分節空気902が位置し、第2の分節空気902上に試薬113が位置している。
 上述のように、検体115の吸引時の圧力履歴を用いて異常の有無が判断される。検体115を吸引する前の状態(図9(d))において、洗浄水105と第1の分節空気401との境界903の位置は、試薬113の分注量(体積)によって変化する。この境界903の位置を一定とすることによって、試薬113の分注量が検体115の吸引時の圧力履歴に与える影響を低減することが可能となる。
 洗浄水105と第1の分節空気901の境界903の位置は、ステップS202で吸引する第1の分節空気901の量と、ステップS205で吸引する試薬113の量と、ステップS206で吸引する第2の分節空気902の量の総和(流体の体積の総和)によって変化する。したがって、検体115の吸引前に吸引される流体の体積の総和を一定とするようにシリンジ104の動作を制御することで、境界903の位置を一定とすることができる。第1の分節空気901、試薬113及び第2の分節空気902の吸引量についても、図5に示した方法と同様に算出される。制御部108は、算出された各吸引量に基づいてシリンジ104の動作量を決定し、シリンジ駆動部106に指示を出す。
<技術的効果>
 第2の実施形態においても、第1の実施形態と同様に、検体の吸引前に吸引する流体(分節空気及び試薬)の体積の総量が一定となるように分注動作を行い、プローブ内に存在する洗浄液と分節空気との境界位置を一定とする。これにより、試薬の分注量の違いが検体吸引時の圧力履歴に与える影響を低減することができ、検体115の吸引時における異常を高確度に検知することができる。したがって、自動分析装置の分析結果の信頼性が向上する。さらに、本実施形態においては、チップ101を装着したり脱着したりする必要がないため、第1の実施形態と比較して分注動作をより迅速に行うことができる。
[第3の実施形態]
 第1の実施形態及び第2の実施形態においては、検体の前に吸引される分節空気の吸引量及び試薬の吸引量の総和を一定とすることによって、試薬の分注量による、検体吸引時の圧力履歴への影響を低減し、検体吸引時の異常を高確度に検知する手法について説明した。そこで、第3の実施形態においては、試薬の分注量の影響をさらに低減し、より高確度に検体吸引時の異常を検知する手法を提案する。
 本実施形態に係る自動分析装置の分注機構の構成としては、第1の実施形態と同様の構成(図1)を採用することができる。また、分注動作についても、第1の実施形態の分注方法(図2)とほぼ同様である。ただし、本実施形態においては、ステップS212における異常の有無の判定方法が第1の実施形態と異なっている。
 図10は、第3の実施形態に係る異常の有無の判定方法を示すフローチャートである。図10の判定方法は、図3に示した第1の実施形態の判定方法の代わりに判定部121により実行される。図3と同様のステップには同じ符号を付し、その説明を省略する。
 まず、第1の実施形態と同様にしてステップS301及びS302を実行し、検体吸引時の圧力履歴から判定指標を算出する。
 次に、ステップS1001において、判定部121は、制御部108から、ステップS205にて吸引される試薬113の吸引量についての情報を取得する。なお、複数の試薬を吸引する場合には、ステップS1001において、判定部121は、制御部108から、ステップS205で吸引される試薬量の総和とステップS206で吸引される第2の分節空気量の総和についての情報を取得する。
 ステップS1002において、計算部124は、ステップS302で算出した判定指標と、ステップS1001において取得した試薬113の吸引量についての情報とに基づいて、検体115の吸引時における異常の有無を判定する。このとき、第1の実施形態と同様に、検体115の吸引動作中の圧力値の平均と、吸引動作前の圧力値の平均との差分を判定指標として、正常な分注であったか空吸いであったかを判定することとする。
 本実施形態においては、判定閾値を試薬113の分注量に応じて変化する関数とし、当該判定閾値と判定指標との大小関係を比較することにより、異常の有無を判定する。判定閾値の関数は、予め記憶部123に記憶されている。
 本実施形態に係る判定閾値について説明する。図11は、判定指標(例えば、圧力値の平均)と試薬113の分注量との関係及び判定閾値を示す図である。○のプロットは、正常に検体115が分注された場合の判定指標を示す(正常分注群1101)。また、×のプロットは、検体115の吸引時に空吸いが生じた場合の判定指標を示す(空吸い群1102)。図11に示すように、正常分注群1101と判定閾値1103との距離、空吸い群1102と判定閾値1103との距離それぞれについて、試薬113の分注量による変動が最小化されるように、判定閾値1103が折れ線状の関数として設定されている。折れ線状の関数に限らず、判定閾値1103は例えば一次関数や任意の多項式であってもよい。
 このように、異常の判定に用いる判定閾値を試薬113の分注量によって変化する関数とすることによって、正常分注群1101と判定閾値1103との距離及び空吸い群1102と判定閾値1103との距離について、試薬113の分注量の変化による影響を低減することができる。これにより、一定の値の判定閾値を用いる場合(図6(b))と比較して、より高確度に異常の有無を判定できる。
 なお、本実施形態においては、第1の実施形態と同様に検体115を吸引する前の流体の総量を一定とした上で、異常の判定に用いる判定閾値を試薬113の分注量によって変化する関数とした。しかしながら、検体115を吸引する前の流体の総量を一定としない場合にも、判定閾値を試薬113の分注量によって変化する関数とする本実施形態は有効である。
<技術的効果>
 以上のように、第3の実施形態は、判定閾値を、試薬の分注量に応じた関数として設定しておき、検体吸引時の圧力履歴から算出される判定指標を関数と比較して異常の有無を判定するという構成を採用している。これにより、第1の実施形態のように判定指標とある一定の判定閾値とを比較する場合よりも、高確度に異常を検知することができる。したがって、自動分析装置の分析結果の信頼性をより向上することができる。
[第4の実施形態]
 第1の実施形態~第3の実施形態においては、検体(第2の液体)の吸引前に吸引される試薬(第1の液体)の分注量が圧力履歴に与える影響を低減することで、検体吸引時の異常を高確度に検知する手法について説明した。しかしながら、試薬の分注量だけでなく試薬の粘度といった物性値が圧力履歴に与える影響を小さくすることも効果的である。そこで第4の実施形態においては、より高確度に異常を検知するために、試薬の物性値が圧力履歴に与える影響についても考慮する手法を提案する。
 試薬の物性値のうち粘度が変化すると、上述のハーゲン・ポアズイユの式(1)における管路内の流体粘度μが変化する。これにより圧力損失Plossが変化するため、異常の有無の判定に使用する圧力履歴に影響を与える。また、試薬が微小な径の管路を通過する場合は、試薬の粘度の違い以外に、試薬の表面張力の違いによって管路内の圧力が変化する。管路内の試薬が占める部分の鉛直長さが長い場合は、試薬の密度の違いによる重力の違いによっても、管路内の圧力が変化する。
<分注機構の構成>
 図12は、第4の実施形態に係る自動分析装置の分注機構400を示す概略構成図である。図12に示すように、分注機構400は、第1の実施形態の分注機構(図1)とほぼ同様であるが、試薬物性値保存部1201をさらに備えている。
 試薬物性値保存部1201は、分析に用いられる様々な試薬の粘度、表面張力、密度などの物性値が保存されているデータベースである。試薬物性値保存部1201は、判定部121と接続されているか、又は通信可能に構成されており、試薬物性値保存部1201に保存されている情報は判定部121により読み出すことができる。
<分注方法>
 本実施形態に係る分注動作については、第1の実施形態の分注方法(図2)とほぼ同様である。ただし、本実施形態においては、ステップS212における異常の有無の判定方法が第1の実施形態と異なっている。
 図13は、第4の実施形態に係る異常の有無の判定方法を示すフローチャートである。図13の判定方法は、図3に示した第1の実施形態の判定方法の代わりに実行される。図3と同様のステップには同じ符号を付し、その説明を省略する。
 まず、第1の実施形態と同様にしてステップS301及びS302を実行し、検体吸引時の圧力履歴から判定指標を算出する。
 次に、ステップS1301において、判定部121は、試薬物性値保存部1201から試薬113の粘度、表面張力、密度などの物性値の情報を取得する。
 ステップS1302において、判定部121は、ステップS302で算出した判定指標と、ステップS1301において取得した試薬113の物性値についての情報とに基づいて、検体115の吸引時における異常の有無を判定する。このとき、第1の実施形態と同様に、検体115の吸引動作中の圧力値の平均と、吸引動作前の圧力値の平均との差分を判定指標として、正常な分注であったか空吸いであったかを判定することとする。
 ここで、試薬113の物性値の一例として、粘度に基づいて異常の有無を判定する。より詳細には、判定閾値を試薬113の粘度に応じて変化する関数とし、当該判定閾値と判定指標との大小関係を比較することにより、異常の有無を判定する。判定閾値の関数は、予め記憶部123に記憶されている。
 本実施形態に係る判定閾値について説明する。図14は、判定指標(例えば、圧力値の平均)と試薬113の粘度との関係及び判定閾値を示す図である。○のプロットは、正常に検体115が分注された場合の判定指標を示す(正常分注群1401)。また、×のプロットは、検体115の吸引時に空吸いが生じた場合の判定指標を示す(空吸い群1402)。図14に示すように、正常分注群1401と判定閾値1403との距離、空吸い群1402と判定閾値1403との距離それぞれについて、試薬113の粘度による変動が最小化されるように、判定閾値1403が直線状の関数として設定されている。直線状の関数に限らず、判定閾値1403は例えば一次関数や任意の多項式であってもよい。
 このように、異常の判定に用いる判定閾値を試薬113の粘度によって変化する関数とすることで、正常分注群1401と判定閾値1403との距離及び空吸い群1402と判定閾値1403との距離について、試薬113の粘度の違いによる影響を低減することができる。これにより、一定の値の判定閾値を用いる場合と比較して、より高確度に異常の有無を判定できる。
 なお、本実施形態では、試薬113の粘度の関数を用いることとしたが、分注機構の特性上、試薬113の表面張力や密度が圧力履歴に与える影響が大きい場合は、判定閾値を試薬113の表面張力や密度の関数にすることで、高精度に異常を検知できる。これにより、例えば使用するチップやプローブの径によって、どの物性値が圧力履歴に与える影響が大きいかを考慮して異常の検知を行うことができる。
 なお、本実施形態においては、第1の実施形態と同様に検体115を吸引する前の流体の総量を一定とした上で、異常の判定に用いる判定閾値を試薬113の物性値によって変化する関数とした。しかしながら、検体115を吸引する前の流体の総量を一定としない場合にも、判定閾値を試薬113の物性値によって変化する関数とする本実施形態は有効である。
<技術的効果>
 以上のように、第4の実施形態は、判定閾値を、試薬の物性値に応じた関数として設定しておき、当該関数と検体吸引時の圧力履歴の判定指標とを比較して異常の有無を判定するという構成を採用している。これにより、第1の実施形態のようにある一定の判定閾値と判定指標とを比較する場合よりも、高確度に異常を検知することができる。また、検体吸引時の圧力履歴に対する試薬の物性値による影響を低減できるため、試薬の物性値によらず、圧力履歴に基づいた異常検知をより高確度にすることができる。したがって、自動分析装置の分析結果の信頼性をより向上することができる。
[第5の実施形態]
 第4の実施形態においては、試薬の粘度、表面張力、密度などの物性値が圧力履歴に与える影響を考慮して異常の有無を判定する例について説明した。しかしながら、試薬の種類が多い場合には、全ての種類の試薬の物性値を計測し、データベース(試薬物性値保存部)に保持しておくことが困難である。そこで、第5の実施形態においては、検体吸引前に試薬113の物性値を推定する手法を提案する。
<分注機構の構成>
 本実施形態に係る自動分析装置の分注機構の構成としては、第4の実施形態と同様の構成(図12)を採用することができるため、説明を省略する。
<分注方法>
 本実施形態の分注方法は、図2に示した分注方法とほぼ同様であるが、ステップS205において、サンプリング部122は、圧力センサ117から試薬113の吸引動作中の圧力値の入力を受け付け、試薬113の吸引動作中の圧力値を時系列データ(試薬吸引時の圧力履歴)として記憶部123に記憶する。「試薬吸引時の圧力履歴」とは、ステップS205において試薬113を吸引する際のシリンジ104の動作時間(吸引動作時間)を含む所定の時間範囲における圧力値を指す。
 試薬113の吸引時の圧力履歴は、式(1)に示すように試薬113の粘度を反映しているため、この圧力履歴から試薬113の粘度を推定することが可能である。計算部124は、記憶部123に記憶された試薬113の吸引時の圧力履歴から、試薬113の粘度を算出し、試薬物性値保存部1201(図12)に保存する。
 ステップS212における検体115の吸引時における異常の有無の判定においては、図13に示した第4の実施形態の判定方法と同様のステップを実行する。
 以上、試薬113の物性値の一つとして粘度を推定する例を説明したが、試薬113の密度を推定し、異常の有無の判定に用いてもよい。この場合は、ステップS205における試薬113の吸引後における圧力値の重力水頭により、密度を算出してもよい。
<技術的効果>
 第5の実施形態は、試薬吸引時の圧力履歴から試薬の物性値を推定し、異常の有無の判定に用いられる判定閾値を、推定された試薬の物性値に応じた関数として設定する。これにより、第4の実施形態と同様の効果が得られることに加えて、分析に用いる試薬の物性値に関する情報が試薬物性値保存部に記憶されていなくとも、高確度に異常を検知することができる。
[第6の実施形態]
 第5の実施形態においては、試薬吸引時の圧力履歴を使用して試薬の物性値を推定する手法を説明した。しかしながら、同時に分注すべき試薬が複数ある場合は、図2のステップS204~S206を繰り返して吸引する試薬ごとに物性値を推定することになるため、処理が煩雑となってしまう。また、複数の試薬それぞれについて物性値を推定すると、誤差が積み重なり異常検知の確度が低下する可能性がある。
 そこで、第6の実施形態においては、複数の試薬を分注する場合に、検体吸引前に吸引されている複数の試薬が、検体吸引時の圧力履歴に与える影響を考慮する手法を提案する。
<分注方法>
 本実施形態の分注方法は、図2に示した分注方法とほぼ同様であるが、以下の点で異なっている。すなわち、必要な試薬の数だけ繰り返されるステップS204~S206のうち最後に実施されるステップS206において第2の分節空気を吸引する際のシリンジ104の吸引流量と、ステップS208において検体115を吸引する際のシリンジ104の吸引流量とを、同一とする。これにより、チップ101内に保持された複数の試薬が検体吸引時の圧力履歴に与える影響を推定することができる。
 より具体的には、ステップS206において、サンプリング部122は、圧力センサ117から第2の分節空気の吸引動作中の圧力値の入力を受け付け、第2の分節空気の吸引動作中の圧力値を時系列(圧力履歴)として記憶部123に記憶する。計算部124は、ステップS206における分節空気の吸引時の圧力履歴を取得して、この圧力履歴と上記式(1)に基づいて、複数の試薬113の粘度の平均(代表値)を推定する。その他のステップについては第5の実施形態と同様に実行することができる。
<技術的効果>
 第6の実施形態は、複数の試薬を同時に分注する場合に、複数の試薬の物性値の代表値を推定して、異常の有無の判定に用いられる判定閾値を、推定された試薬の物性値に応じた関数として設定する。これにより、複数の試薬すべてについて物性値を推定する必要がないため、処理が簡単である上に、誤差が蓄積されることがない。したがって、検体の吸引より前に吸引されている複数の試薬の物性値によらず高確度に異常を検知することができる。
 また、ステップS204~S206のうち最後に実施されるステップS206において第2の分節空気を吸引する際のシリンジ104の吸引流量と、ステップS208において検体115を吸引する際のシリンジ104の吸引流量とを、同一とする構成によって、検体115を吸引する際の圧力履歴に試薬113の粘度が与える影響をより正確に推定することが可能となる。
<第6の実施形態の変形例>
 上述のように、複数の試薬の物性値の代表値を推定する代わりに、判定指標として、試薬の物性値や分注量の影響をキャンセルした判定指標を用いることもできる。具体的には、図3に示した異常の有無の判定方法において、判定指標として、ステップS206における第2の分節空気の吸引における圧力履歴と、ステップS208における検体115の吸引における圧力履歴との差分を算出する。ここで算出される判定指標は、検体吸引直前の圧力履歴と検体吸引後の圧力履歴との差分であるため、検体の吸引より前に吸引されている複数の試薬の物性値や分注量の影響が相殺されている。このような判定指標を用いることによっても、試薬の分注量や物性値によらず高確度に異常の有無を判定することができる。
[変形例]
 本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除又は置換することもできる。
 上記した各実施形態の分注方法は、自動分析装置だけでなく、流体の分注機構を有するその他の装置において実行することも可能である。例えば、各実施形態の手法は、医薬品製造装置やマイクロリアクタ等にも適用できる。
100、200、400…分注機構
101…チップ
102…プローブ
103…流路
104…シリンジ
104a…シリンダ
104b…プランジャ
105…洗浄水
106…シリンジ駆動部
107…プローブ駆動部
108…制御部
109…給水ポンプ
110…給水タンク
111…電磁弁
112…試薬容器
113…試薬
114…検体容器
115…検体
116…反応容器
117…圧力センサ
118…分岐ブロック
119…信号増幅器
120…A/D変換器
121…判定部
122…サンプリング部
123…記憶部
124…計算部
125…表示部
126…チップ廃棄部
401…第1の分節空気
402…第2の分節空気
403…境界
601、603…正常分注群
602、604…空吸い群
605…判定閾値
701…プローブ
901…第1の分節空気
902…第2の分節空気
903…境界
1101…正常分注群
1102…空吸い群
1103…判定閾値
1201…試薬物性値保存部
1401…正常分注群
1402…空吸い群
1403…判定閾値

Claims (14)

  1.  流体を分注する分注ノズルと、
     前記分注ノズルにより前記流体を分注するための圧力変動を発生させる圧力源と、
     前記分注ノズルと前記圧力源とを接続する流路と、
     前記分注ノズルが前記流体を分注する際の前記流路内の圧力を測定する圧力センサと、
     前記圧力センサが測定した前記圧力の時系列データを記憶する記憶部と、
     前記分注ノズル及び前記圧力源の駆動を制御する制御部と、を備え、
     前記制御部は、
     第1の分節空気、第1の液体、第2の分節空気、第2の液体の順に前記分注ノズルに吸引するように、前記分注ノズル及び前記圧力源を制御し、
     前記第1の液体の吸引量に基づいて、前記第1の分節空気の吸引量及び前記第2の分節空気の吸引量のうち少なくともいずれか一方を決定する自動分析装置。
  2.  請求項1に記載の自動分析装置において、
     前記時系列データに基づいて前記第2の液体の分注時の異常を検知する判定部をさらに備える自動分析装置。
  3.  請求項1に記載の自動分析装置において、
     前記制御部は、
     前記第2の液体の吸引以前に前記分注ノズルに吸引される全ての流体の体積の総量が一定になるように、前記第1の分節空気の吸引量及び前記第2の分節空気の吸引量のうち少なくともいずれか一方を決定する自動分析装置。
  4.  請求項3に記載の自動分析装置において、
     前記制御部は、
     前記第2の液体の吸引以前に前記分注ノズルに吸引される全ての流体の体積の総量が一定になるように、前記第1の分節空気の吸引量を決定する自動分析装置。
  5.  請求項2に記載の自動分析装置において、
     前記時系列データは、前記第2の液体の吸引時における圧力履歴を含み、
     前記判定部は、
     前記圧力履歴に基づいて判定指標を算出し、予め設定された判定閾値と前記判定指標とを比較することにより前記第2の液体の分注時の異常を検知する自動分析装置。
  6.  請求項5に記載の自動分析装置において、
     前記判定部は、
     前記判定指標として、前記第2の液体を吸引する前の圧力値と前記第2の液体を吸引中の圧力値との差分を算出することを特徴とする自動分析装置。
  7.  請求項1に記載の自動分析装置において、
     前記制御部は、
     前記第2の分節空気の吸引量と、前記第2の液体の吸引量とが同一となるように、前記圧力源を制御する自動分析装置。
  8.  請求項7に記載の自動分析装置において、
     前記時系列データに基づいて前記第2の液体の分注時の異常を検知する判定部をさらに備え、
     前記判定部は、
     前記第2の分節空気を吸引するときの圧力値と前記第2の液体を吸引するときの圧力値との差分を判定指標として算出して、予め設定された判定閾値と前記判定指標とを比較することにより、前記異常を検知する自動分析装置。
  9.  請求項2に記載の自動分析装置において、
     前記時系列データは、前記第2の液体の吸引時における圧力履歴を含み、
     前記判定部は、
     前記圧力履歴に基づいて判定指標を算出し、予め設定された判定閾値と前記判定指標とを比較することにより、前記異常を検知し、
     前記判定閾値は、前記第1の液体の吸引量に基づいて変化する関数であり、
     前記制御部から前記第1の液体の吸引量を取得して、取得した前記第1の液体の吸引量における前記判定閾値と前記判定指標とを比較する自動分析装置。
  10.  請求項2に記載の自動分析装置において、
     前記時系列データは、前記第2の液体の吸引時における圧力履歴を含み、
     前記判定部は、
     前記圧力履歴に基づいて判定指標を算出し、予め設定された判定閾値と前記判定指標とを比較することにより、前記異常を検知し、
     前記判定閾値は、前記第1の液体の物性値に基づいて変化する関数であり、
     前記制御部から前記第1の液体の物性値を取得して、取得した前記第1の液体の物性値における前記判定閾値と前記判定指標とを比較する自動分析装置。
  11.  請求項1に記載の自動分析装置において、
     前記制御部は、
     前記第1の液体及び前記第2の液体を交互に複数回前記分注ノズルに吸引するように、前記分注ノズル及び前記圧力源を制御する自動分析装置。
  12.  流体を分注する分注ノズルと、
     前記分注ノズルにより前記流体を分注するための圧力変動を発生させる圧力源と、
     前記分注ノズルと前記圧力源とを接続する流路と、
     前記分注ノズルが前記流体を分注する際の前記流路内の圧力を測定する圧力センサと、
     前記圧力センサが測定した前記圧力の時系列データを記憶する記憶部と、
     前記分注ノズル及び前記圧力源の駆動を制御する制御部と、
     前記時系列データに基づいて、異常の検知対象となる流体の分注時における異常を検知する判定部と、を備え、
     前記制御部は、
     第1の分節空気、第1の液体、第2の分節空気、第2の液体の順に前記分注ノズルに吸引するように、前記分注ノズル及び前記圧力源を制御し、
     前記判定部は、
     前記第1の液体の吸引量又は物性値に基づいて設定される判定閾値を用いて、前記第2の液体の吸引時における前記異常を検知する自動分析装置。
  13.  請求項12に記載の自動分析装置において、
     前記時系列データは、前記第2の液体の吸引時における圧力履歴を含み、
     前記判定部は、
     前記圧力履歴に基づいて判定指標を算出し、予め設定された判定閾値と前記判定指標とを比較することにより、前記異常を検知し、
     前記判定閾値は、前記第1の液体の吸引量又は物性値に基づいて変化する関数であり、
     前記制御部から前記第1の液体の吸引量又は物性値を取得して、取得した前記第1の液体の吸引量又は物性値における前記判定閾値と前記判定指標とを比較する自動分析装置。
  14.  自動分析装置を用いた流体の分注方法であって、
     前記自動分析装置は、
     前記流体を分注する分注ノズルと、
     前記分注ノズルにより前記流体を分注するための圧力変動を発生させる圧力源と、
     前記分注ノズル及び前記圧力源の駆動を制御する制御部と、を備え、
     前記分注方法は、
     前記制御部が前記圧力源を駆動することにより、
     前記分注ノズルに第1の分節空気を吸引することと、
     前記第1の分節空気の吸引後、前記分注ノズルに第1の液体を吸引することと、
     前記第1の液体の吸引後、前記分注ノズルに第2の分節空気を吸引することと、
     前記第2の分節空気の吸引後、前記分注ノズルに第2の液体を吸引することと、
     前記制御部により、前記第1の液体の吸引量に基づいて、前記第1の分節空気の吸引量及び前記第2の分節空気の吸引量のうち少なくともいずれか一方を決定することと、を含む分注方法。
PCT/JP2020/037938 2019-12-05 2020-10-07 自動分析装置及び分注方法 WO2021111725A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080079513.XA CN114729951A (zh) 2019-12-05 2020-10-07 自动分析装置以及分注方法
EP20895573.2A EP4071481A4 (en) 2019-12-05 2020-10-07 AUTOMATIC ANALYZER AND OUTPUT METHOD
US17/776,994 US20220381799A1 (en) 2019-12-05 2020-10-07 Automatic analysis device and dispensing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-220385 2019-12-05
JP2019220385A JP7269869B2 (ja) 2019-12-05 2019-12-05 自動分析装置及び分注方法

Publications (1)

Publication Number Publication Date
WO2021111725A1 true WO2021111725A1 (ja) 2021-06-10

Family

ID=76220068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037938 WO2021111725A1 (ja) 2019-12-05 2020-10-07 自動分析装置及び分注方法

Country Status (5)

Country Link
US (1) US20220381799A1 (ja)
EP (1) EP4071481A4 (ja)
JP (1) JP7269869B2 (ja)
CN (1) CN114729951A (ja)
WO (1) WO2021111725A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019060716A1 (en) * 2017-09-25 2019-03-28 Freenome Holdings, Inc. SAMPLE EXTRACTION METHODS AND SYSTEMS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633631B2 (ja) 1982-04-15 1988-01-25 Tada Seisakusho
JP2002139506A (ja) * 1995-12-14 2002-05-17 Abbott Lab 流体を処理する流体ハンドラおよび方法
JP2010256200A (ja) * 2009-04-27 2010-11-11 Aloka Co Ltd 分注装置
WO2014013836A1 (ja) * 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ 自動分析装置
WO2017047481A1 (ja) * 2015-09-14 2017-03-23 アイエス・テクノロジー・ジャパン株式会社 切替バルブ、及びこれを備える吸入吐出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019060716A1 (en) * 2017-09-25 2019-03-28 Freenome Holdings, Inc. SAMPLE EXTRACTION METHODS AND SYSTEMS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633631B2 (ja) 1982-04-15 1988-01-25 Tada Seisakusho
JP2002139506A (ja) * 1995-12-14 2002-05-17 Abbott Lab 流体を処理する流体ハンドラおよび方法
JP2010256200A (ja) * 2009-04-27 2010-11-11 Aloka Co Ltd 分注装置
WO2014013836A1 (ja) * 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ 自動分析装置
WO2017047481A1 (ja) * 2015-09-14 2017-03-23 アイエス・テクノロジー・ジャパン株式会社 切替バルブ、及びこれを備える吸入吐出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071481A4

Also Published As

Publication number Publication date
JP7269869B2 (ja) 2023-05-09
JP2021089232A (ja) 2021-06-10
US20220381799A1 (en) 2022-12-01
CN114729951A (zh) 2022-07-08
EP4071481A1 (en) 2022-10-12
EP4071481A4 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
JP5123390B2 (ja) 臨床サンプリング・ピペットにおける詰まりの検出
US9335335B2 (en) Automatic analyzer
JP5277214B2 (ja) 自動分析装置
US7926325B2 (en) Differentiating between abnormal sample viscosities and pipette clogging during aspiration
JP6018828B2 (ja) 自動分析装置
JP2004125780A (ja) サンプル分注装置およびそれを用いた自動分析装置
JP5899075B2 (ja) 自動分析装置
JP3700402B2 (ja) 吸引流路の詰まりまたは吸引量不足の検出方法、試料液吸引装置、及び分注装置
JP2007322285A (ja) 分注装置
US11320443B2 (en) Automatic analysis device
JP2004239697A (ja) 化学分析装置
WO2021111725A1 (ja) 自動分析装置及び分注方法
JPWO2015111442A1 (ja) 自動分析装置
JP2009174911A (ja) 自動分析装置、および自動分析方法
JP2002333449A (ja) サンプル分注装置及びそれを用いた自動分析装置
WO2020188897A1 (ja) 自動分析装置
CN111602061B (zh) 自动分析装置
JP3120180U (ja) 自動分析装置
CN110291406B (zh) 自动分析装置
JPH11258244A (ja) 分注装置の異常検知方法および異常検知装置
JP2015031586A (ja) 分析装置及び液体吸引装置
JP4601811B2 (ja) 自動分析装置
WO2010150502A1 (ja) 自動分析装置
JP7167037B2 (ja) 自動分析装置および検体分注機構の異常検出方法
CN117805425A (zh) 一种样本分析仪及样本分析仪的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020895573

Country of ref document: EP

Effective date: 20220705