WO2021111715A1 - 撮像装置および撮像装置の製造方法 - Google Patents

撮像装置および撮像装置の製造方法 Download PDF

Info

Publication number
WO2021111715A1
WO2021111715A1 PCT/JP2020/037159 JP2020037159W WO2021111715A1 WO 2021111715 A1 WO2021111715 A1 WO 2021111715A1 JP 2020037159 W JP2020037159 W JP 2020037159W WO 2021111715 A1 WO2021111715 A1 WO 2021111715A1
Authority
WO
WIPO (PCT)
Prior art keywords
image pickup
wiring board
image
imaging device
pad
Prior art date
Application number
PCT/JP2020/037159
Other languages
English (en)
French (fr)
Inventor
昌也 長田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2021562471A priority Critical patent/JPWO2021111715A1/ja
Priority to EP20897091.3A priority patent/EP4071795A4/en
Priority to US17/780,293 priority patent/US20220415953A1/en
Publication of WO2021111715A1 publication Critical patent/WO2021111715A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13666Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/211Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/214Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/215Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Definitions

  • the present disclosure relates to an imaging device and a method of manufacturing the imaging device. More specifically, the present invention relates to an image pickup apparatus in which pads of semiconductor chips constituting the image pickup element are rearranged and enclosed in a package, and a method for manufacturing the image pickup apparatus.
  • an imaging device equipped with a package reduced in size to the size of a semiconductor chip has been used.
  • an image sensor device in which a third semiconductor chip and a second semiconductor chip are laminated and a fan-out wafer level package containing the first semiconductor chip is connected via solder bumps to the back surface side of the second semiconductor chip has been proposed.
  • This third semiconductor chip constitutes an image sensor.
  • the third semiconductor chip generates an image signal based on the incident light applied to the light receiving surface, and outputs the image signal to the second semiconductor chip laminated on the back surface side, which is a surface different from the light receiving surface.
  • a logic circuit for processing an image signal generated by an image sensor is arranged on the second semiconductor chip, and the processed image signal is output to the first semiconductor chip.
  • a memory for holding an image signal processed by a logic circuit is arranged on the first semiconductor chip.
  • the fan-out wafer level package (FOWLP: Fan Out Wafer Level Package) is a package in which the rewiring area drawn from the pad of the semiconductor chip is extended to the area of the encapsulant around the semiconductor chip, and is a CSP (CSP). It is a package that can widen the wiring area compared to ChipSizePackage).
  • the above-mentioned conventional technology has a problem that it is difficult to mount the image sensor device.
  • the output image signal of the image sensor device described above is output to a pad arranged on the light receiving surface side of the third semiconductor chip. Therefore, it is necessary to connect a bonding wire or the like to the pad on the light receiving surface side to take out an image signal, which makes it difficult to mount the image sensor device.
  • the present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to configure an imaging device to which a simple mounting method can be applied.
  • the present disclosure has been made to solve the above-mentioned problems, and the first aspect thereof is based on the incident light transmitted through the light-transmitting portion in which a light-transmitting portion that transmits the incident light is arranged.
  • An image sensor that is arranged on a bottom surface different from the surface on which the translucent portion of the image sensor is arranged and that transmits the generated image signal, and the image sensor that transmits the generated image signal.
  • It is an image pickup apparatus provided with a sealing portion which is arranged and seals the image pickup element.
  • the image pickup device may further include a protrusion arranged on the pad, and the wiring board may include the wiring connected to the pad via the protrusion. ..
  • the image pickup device may further include an insulating film arranged on the bottom surface of the image pickup chip.
  • the image sensor sealed by the sealing portion may be arranged on the wiring board.
  • the sealing portion may seal the image pickup element arranged on the wiring board.
  • a connecting portion that is arranged on the back surface of the wiring board, which is a surface different from the front surface, and is connected to the wiring may be further provided.
  • the second semiconductor element arranged on the wiring board may be further provided, and the sealing portion may further seal the side surface of the second semiconductor element.
  • the second semiconductor element may include a processing circuit for processing the output image signal.
  • the second semiconductor element may be a second image pickup element.
  • a plurality of the second semiconductor elements may be arranged on the wiring board, and the sealing portion may further seal the side surfaces of the plurality of second semiconductor elements.
  • the translucent portion may be made of glass.
  • the translucent portion may be made of a resin.
  • an image pickup chip in which a light transmitting portion that transmits incident light is arranged and an image signal is generated based on the incident light transmitted through the light transmitting portion, and the transmission in the image pickup chip.
  • An image sensor having a pad arranged on the bottom surface, which is a surface different from the surface on which the light portion is arranged, and transmitting the generated image signal is connected to the pad and extends to an outer region of the image sensor.
  • a method for manufacturing an image pickup device which comprises a wiring board placement step of arranging on the surface of a wiring board including wiring to be performed, and a sealing step of arranging a sealing member on a side surface adjacent to the bottom surface of the image pickup element. is there.
  • the wiring layer of the wiring board connected to the pad of the image pickup chip of the image pickup device is extended to the outer region of the image pickup device in the image pickup device. It is assumed that the pads of the imaging chip will be rearranged by the wiring layer.
  • FIG. 1 is a diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure.
  • the figure is a perspective view showing a configuration example of the image pickup apparatus 10.
  • the image pickup device 10 in the figure is configured by being enclosed in a semiconductor package having an image pickup device 100.
  • the image pickup device 100 is a semiconductor device that generates an image signal based on incident light.
  • a light transmitting portion 130 that transmits the incident light is arranged on the light receiving surface that is the surface on which the incident light is irradiated.
  • the image pickup device 100 is mounted on the wiring board 20, and the side surface of the image pickup device 100 is sealed by the sealing portion 40.
  • FIG. 2 is a cross-sectional view showing a configuration example of the image pickup apparatus according to the first embodiment of the present disclosure.
  • the image pickup device 10 in the figure includes an image pickup element 100, a wiring board 20, a sealing portion 40, and a connection portion 30.
  • the image pickup device 100 is a semiconductor device that generates an image signal based on incident light, and is insulated from the image pickup chip 110, the translucent portion 130, the adhesive 120, the pad 150, and the bump 160. It includes a film 140.
  • the image pickup chip 110 is a semiconductor substrate on which a plurality of pixels (pixels 102, which will be described later) that generate an image signal based on incident light are arranged.
  • the imaging chip 110 can be made of, for example, silicon (Si).
  • An on-chip lens 111 that collects incident light is arranged in each pixel.
  • an on-chip lens 111 arranged for each pixel on the surface of the image pickup chip 110 is shown.
  • the image pickup chip 110 is provided with a processing circuit or the like that processes an image signal. The details of the configuration of the pixels and the processing circuit will be described later.
  • the light transmitting unit 130 is a substrate that transmits incident light.
  • the translucent unit 130 further protects the image pickup chip 110.
  • the translucent portion 130 can be made of a transparent member such as glass or resin.
  • the adhesive 120 adheres the light transmitting portion 130 to the light receiving surface side of the image pickup chip 110.
  • a transparent resin can be used for the adhesive 120.
  • the pad 150 is an electrode arranged on the bottom surface, which is a surface different from the light receiving surface of the image pickup chip 110. An image signal generated by the pixels is output to the pad 150. Control signals, power supplies, and the like other than the image signal are also transmitted via the pad 150. A plurality of such pads 150 are arranged on the bottom surface of the image pickup chip 110 to form input / output terminals of the image pickup chip 110.
  • the pad 150 can be made of a metal such as copper (Cu).
  • the bump 160 is a columnar protrusion arranged on the pad 150.
  • the pad 150 and the wiring layer 22 of the wiring board 20 described later are connected via the bump 160.
  • the bump 160 can be made of a metal such as Cu or gold (Au).
  • the bump 160 can also be formed by soldering. Further, the bump 160 can be formed by plating or the like, for example.
  • the shape of the bump 160 and the like can be changed according to the pitch at which the bump 160 is arranged.
  • the bump 160 is an example of the protrusion described in the claims.
  • the insulating film 140 insulates the bottom surface of the image pickup chip 110.
  • the insulating film 140 is configured to cover the side surface of the pad 150 and protects the bottom surface of the imaging chip 110 and the pad 150.
  • the insulating film 140 in the figure is configured to cover the side surface of the bump 160, and further protects the bump 160.
  • the insulating film 140 can be made of, for example, a resin such as solder resist. Further, the insulating film 140 can also be formed of an inorganic material such as silicon oxide (SiO 2) or silicon nitride (SiN).
  • the wiring board 20 is a board on which the image sensor 100 is mounted on the surface.
  • the wiring board 20 includes a wiring layer 22 and an insulating layer 21.
  • the wiring layer 22 is wiring for transmitting the signal of the image sensor 100.
  • the wiring layer 22 in the figure is connected to the pad 150 via the bump 160 of the image pickup device 100 and is configured to extend to the outer region of the image pickup device 100.
  • the wiring layer 22 can be made of, for example, a metal such as Cu, Au, nickel (Ni), chromium (Cr) and palladium (Pd).
  • the insulating layer 21 insulates the wiring layer 22.
  • the insulating layer 21 can be made of, for example, an epoxy resin, a polyimide resin, an acrylic resin, a phenol resin, or the like.
  • the wiring layer 22 and the insulating layer 21 can be configured in multiple layers. Wiring layers 22 arranged in different layers are connected by vias 23.
  • the via 23 can be made of a columnar metal or the like.
  • the wiring board pad 24 is arranged on the back surface of the wiring board 20. The wiring board pad 24 is connected to the pad 150 of the image pickup device 100 via the wiring layer 22 and the via 23. Further, a connection portion 30 described later is joined to the wiring board pad 24.
  • the sealing portion 40 seals the image pickup device 100.
  • the sealing portion 40 in the figure is arranged adjacent to the side surface of the image pickup device 100, and seals the side surface of the image pickup device 100. Further, the sealing portion 40 is also arranged adjacent to the region outside the region where the image pickup device 100 of the wiring board 20 is arranged.
  • the sealing portion 40 can be made of an epoxy resin, a polyimide resin, or the like. Further, in order to improve the strength of the sealing portion 40, the filler can be dispersed in these resins. It is preferable to use a material having a low coefficient of thermal expansion for the sealing portion 40. This is because the warp of the wiring board 20 after sealing can be reduced.
  • connection portion 30 is arranged on the back surface, which is a surface different from the surface on which the image sensor 100 of the wiring board 20 is arranged, and is connected to the wiring layer.
  • the connection portion 30 in the figure is connected to the wiring board pad 24.
  • the connection portion 30 constitutes a terminal of the image pickup apparatus 10 and can be made of a metal such as a solder ball.
  • the wiring board 20 is arranged adjacent to the bottom surface of the image sensor 100 and the sealing portion 40.
  • the wiring layer 22 and the via 23 connect the pad 150 of the image sensor 100 and the wiring board pad 24.
  • a part of the wiring board pad 24 is arranged in an area outside the image pickup device 100. That is, the position of the pad 150 of the image sensor 100 is rearranged in a shape extended to the region of the sealing portion 40.
  • Such a package is called FOWLP and is a package that can be applied to a semiconductor chip having many pads as compared with CSP.
  • the image pickup device 10 in the figure is a package in which the image pickup device 100 is enclosed in the FOWLP and the side surfaces other than the light receiving surface are sealed by the sealing portion 40. Imaging can be performed without being hindered by the sealing portion 40.
  • chip components such as capacitors can be arranged on the back surface of the wiring board 20.
  • the chip component can be mounted by soldering to the wiring board pad 24 on which the connection portion 30 is not arranged.
  • FIGS. 3 to 6 are diagrams showing an example of a method for manufacturing an image pickup apparatus according to the first embodiment of the present disclosure.
  • 3 to 6 are diagrams showing an example of a manufacturing process of the image pickup apparatus 10.
  • the image sensor 100 is fixed to the support substrate 90.
  • the support substrate 90 is a substrate for supporting the members in the manufacturing process of the image pickup apparatus 10.
  • a glass plate or a semiconductor wafer can be used for the support substrate 90.
  • An adhesive (not shown) can be used for this fixation (A in FIG. 3).
  • the insulating film 140 is arranged on the bottom surface of the image sensor 100. This can be done, for example, by applying a material of the liquid insulating film 140 (B in FIG. 3).
  • the sealing portion 40 is arranged. This can be done, for example, by arranging the liquid sealing portion 40 by a coating method or a screen printing method and curing the sealing portion 40. Further, for example, it can be formed by a molding method using a mold (C in FIG. 3). The process corresponds to a sealing process.
  • the surface of the sealing portion 40 is ground and the surface of the insulating film 140 is ground to expose the bump 160 (D in FIG. 4).
  • the insulating layer 21 is arranged on the surfaces of the insulating film 140 and the sealing portion 40. This can be done, for example, by applying the material film of the insulating layer 21 (E in FIG. 4).
  • An opening 401 is formed in the region of the insulating layer 21 where the wiring layer 22 is arranged. This can be formed by forming a resist by photolithography and etching using this resist as a mask. When the photosensitive resist is applied to the insulating layer 21, the opening 401 can be formed by performing exposure and development after forming the insulating layer 21. (F in FIG. 4).
  • a metal or the like used as a material for the wiring layer 22 is arranged in the opening 401 (G in FIG. 5).
  • It can be formed, for example, by a plating method. Specifically, a barrier layer such as Ti and a seed layer such as Cu are laminated in order on the surface of the insulating layer 21 by sputtering or the like, a mask made of a resist formed by photolithography is arranged, and a Cu layer is formed by plating. Can be done. As a result, the wiring layer 22 can be connected to the pad 150 of the image pickup device 100 via the bump 160. The formation of the insulating layer 21 and the wiring layer 22 is repeated as many times as necessary.
  • the wiring board pad 24 is formed on the back surface of the wiring board 20 by the same process as that of the wiring layer 22. As a result, the wiring board 20 can be arranged (H in FIG. 5). The process corresponds to the wiring board arrangement process.
  • connection portion 30 is arranged on the wiring board pad 24 of the wiring board 20. This can be done, for example, by placing the connecting portion 30 formed of the solder balls on the wiring board pad 24 coated with flux and heating the solder balls with a reflow furnace or the like to melt the solder balls (. I) in FIG.
  • the image pickup apparatus 10 can be manufactured by the above steps.
  • the translucent portion 130 of the image sensor 100 can be protected by the support substrate 90.
  • the wafer process can be applied to the formation of the bump 160.
  • the bump 160 can be easily formed as compared with the case where the bump is formed on the side of the wiring board 20.
  • the insulating film 140 on the bottom surface of the image pickup chip 110, the bump 160 can be protected in the manufacturing process.
  • the manufacturing method of the imaging device is not limited to this example.
  • the bump 160 when the bump 160 is formed by plating, the bump 160 can be formed after the insulating film 140 is arranged on the bottom surface of the image pickup device 100.
  • the bump 160 in B in FIG. 3, the bump 160 can be formed by forming an opening in the region of the insulating film 140 where the bump 160 is formed and embedding Cu formed by plating in the opening.
  • the adhesive 120 is arranged on the entire surface of the light receiving surface of the image pickup chip 110, but the image pickup device 100 having another configuration may be used.
  • FIG. 7 is a cross-sectional view showing another configuration example of the image pickup apparatus according to the first embodiment of the present disclosure.
  • the image pickup device 10 in the figure is different from the image pickup device 10 in FIG. 2 in that a spacer 121 is arranged instead of the adhesive 120 of the image pickup element 100.
  • the spacer 121 is arranged between the image pickup chip 110 and the translucent portion 130 to form a gap 122.
  • the spacer 121 and the sealing portion 40 are in contact with each other.
  • the image pickup apparatus 10 of the first embodiment of the present disclosure constitutes a FOWLP in which the light receiving surface of the image pickup element 100 is exposed by arranging the sealing portion 40 on the side surface of the image pickup element 100. can do.
  • the signal can be taken out from the image pickup device 100 by soldering or the like via the connection portion 30 on the back surface of the image pickup device 10, and the mounting of the image pickup device 10 can be simplified.
  • the wiring board 20 is arranged on the image pickup element 100 after being sealed by the sealing portion 40 in the manufacturing process.
  • the image pickup device 100 is first arranged on the wiring board 20 and then sealed by the sealing portion 40. Different from the embodiment.
  • FIGS. 3 to 6 are diagrams showing an example of a method for manufacturing an image pickup apparatus according to a second embodiment of the present disclosure.
  • 8 to 10 are diagrams showing an example of the manufacturing process of the image pickup apparatus 10 as in FIGS. 3 to 6. It differs from the manufacturing steps of FIGS. 3 to 6 in that the wiring board placement step is executed before the sealing step.
  • the wiring board 20 is arranged on the support board 90. This can be done by applying an adhesive (not shown) to the support substrate 90 and adhering the wiring board 20 to the support substrate 90 (A in FIG. 8).
  • the image sensor 100 is arranged on the wiring board 20. Specifically, the image sensor 100 is placed and joined by aligning the position of the bump 160 of the image sensor 100 with the wiring layer 22 of the wiring board 20. This joining can be performed, for example, by soldering. Further, for example, the image pickup device 100 can be heat-pressed to the wiring board 20 to directly bond the metals of the wiring layer 22 and the bump 160 (B in FIG. 8). The process corresponds to the wiring board arrangement process.
  • the sealing portion 40 is arranged around the image sensor 100 (C in FIG. 8).
  • the process corresponds to a sealing process.
  • the support substrate 90 is removed, and the adhesive on the back surface of the wiring board 20 is removed (D in FIG. 9).
  • connection portion 30 is arranged by soldering to the wiring board pad 24 of the wiring board 20 (E in FIG. 9).
  • the back grind tape 91 is attached to the back surface of the wiring board 20 (F in FIG. 10).
  • the back grind tape 91 is an adhesive tape that protects bumps and the like in the manufacturing process of semiconductor elements.
  • the sealing portion 40 is ground to expose the translucent portion 130 of the image sensor 100 (G in FIG. 10).
  • the height of the image pickup apparatus 10 can be reduced by grinding the translucent portion 130 together with the sealing portion 40.
  • the back grind tape 91 is peeled off.
  • the image pickup apparatus 10 can be manufactured by the above manufacturing process. Since the sealing portion 40 arranged so as to cover the image pickup element 100 is ground to expose the light transmitting portion 130, the light receiving surface of the image pickup element 100 can be protected by the sealing portion 40. In the manufacturing method described above, the number of steps is increased as compared with the manufacturing methods of FIGS. 3 to 6. However, half of the image sensor 100 and the like are mounted on the wiring board 20. Since the conductor elements are arranged so-called face-down, a plurality of semiconductor elements having different thicknesses can be arranged in the package.
  • the manufacturing method of the image pickup apparatus 10 is not limited to this example.
  • the process of removing the support substrate 90 after grinding the sealing portion 40 and arranging the connecting portion 30 can be performed without using the back grind tape 91.
  • the configuration of the imaging device 10 other than this is the same as the configuration of the imaging device 10 described in the first embodiment of the present disclosure, the description thereof will be omitted.
  • the image pickup apparatus 10 of the second embodiment of the present disclosure is manufactured by executing the wiring board arrangement step before the sealing step.
  • a plurality of image pickup devices and the like having different thicknesses can be housed in one package.
  • the insulating film 140 is arranged on the bottom surface of the image pickup device 100.
  • the image pickup apparatus 10 of the third embodiment of the present disclosure is different from the above-described first embodiment in that the insulating film 140 is omitted.
  • FIG. 11 is a cross-sectional view showing a configuration example of the image pickup apparatus according to the third embodiment of the present disclosure. Similar to FIG. 2, FIG. 2 is a diagram showing a configuration example of the image pickup apparatus 10. It differs from the image pickup apparatus 10 of FIG. 2 in that the insulating film 140 is omitted.
  • the insulating film 140 is not arranged on the image sensor 100 in the figure, and the sealing portion 40 is arranged between the image sensor 100 and the wiring board 20.
  • the sealing portion 40 is also arranged around the pad 150 and the bump 160 in the sealing step described with reference to C in FIG.
  • the configuration of the imaging device 10 other than this is the same as the configuration of the imaging device 10 described in the first embodiment of the present disclosure, the description thereof will be omitted.
  • the configuration of the image pickup apparatus 10 can be simplified by omitting the insulating film 140.
  • the light transmitting portion 130 is arranged on the light receiving surface of the image pickup element 100.
  • the image pickup apparatus 10 of the fourth embodiment of the present disclosure is different from the above-described first embodiment in that the translucent unit 130 is omitted.
  • FIG. 12 is a cross-sectional view showing a configuration example of the image pickup apparatus according to the fourth embodiment of the present disclosure. Similar to FIG. 2, FIG. 2 is a diagram showing a configuration example of the image pickup apparatus 10. It differs from the image pickup apparatus 10 of FIG. 2 in that the translucent portion 130 is omitted.
  • the light transmitting portion 130 is not arranged on the image pickup device 100 in the figure, and only the resin layer constituting the adhesive 120 is arranged on the light receiving surface side of the image pickup device 100. Therefore, the configuration of the image pickup apparatus 10 can be simplified, and the height of the image pickup apparatus 10 can be reduced.
  • the adhesive 120 is an example of the translucent portion described in the claims.
  • the configuration of the image pickup apparatus 10 can be simplified by omitting the translucent unit 130.
  • the image pickup apparatus 10 of the first embodiment described above only the image pickup device 100 is enclosed in a package.
  • the image pickup apparatus 10 of the fifth embodiment of the present disclosure is different from the above-described first embodiment in that a plurality of semiconductor elements are enclosed in a package.
  • FIG. 13 is a cross-sectional view showing a configuration example of the image pickup apparatus according to the fifth embodiment of the present disclosure. Similar to FIG. 2, FIG. 2 is a diagram showing a configuration example of the image pickup apparatus 10. It differs from the image pickup apparatus 10 of FIG. 2 in that the semiconductor element 200 is further arranged.
  • the semiconductor element 200 is a semiconductor element in which an electronic circuit that exchanges signals with the image pickup element 100 is arranged.
  • a semiconductor element in which a processing circuit for processing an image signal generated by the image pickup element 100 is arranged can be used.
  • a semiconductor element in which a control circuit for generating a control signal of the image pickup element 100 and supplying the control signal to the image pickup element 100 is arranged can be used as the semiconductor element 200.
  • the semiconductor element 200 includes a semiconductor chip 210.
  • the pad 250 is arranged on the bottom surface of the semiconductor chip 210.
  • Bump 260 is arranged on the pad 250.
  • an insulating film 240 is arranged on the bottom surface of the semiconductor element 200. The side surfaces of the pad 250 and the bump 260 are formed so as to be covered with the insulating film 240.
  • the semiconductor element 200 is an example of the second semiconductor element described in the claims.
  • a wiring layer 25 is arranged on the wiring board 20.
  • the wiring layer 25 is a wiring layer that is commonly connected to the bump 160 of the image pickup device 100 and the bump 260 of the semiconductor element 200. Signals can be exchanged between the image pickup device 100 and the semiconductor device 200 via the wiring layer 25.
  • the entire system can be miniaturized.
  • the configuration of the imaging device 10 is not limited to this example.
  • a semiconductor element in which the control circuit of the image sensor 100 is arranged and a semiconductor element in which the processing circuit of the image signal from the image sensor 100 is arranged can be arranged.
  • the sealing unit 40 seals the image sensor 100 and a plurality of semiconductor elements.
  • the configuration of the imaging device 10 other than this is the same as the configuration of the imaging device 10 described in the first embodiment of the present disclosure, the description thereof will be omitted.
  • the entire system can be miniaturized by further arranging the semiconductor element 200.
  • the image pickup element 100 and the semiconductor element 200 are enclosed in a package.
  • the image pickup apparatus 10 of the sixth embodiment of the present disclosure is different from the fifth embodiment described above in that a plurality of image pickup elements are enclosed in a package.
  • FIG. 14 is a cross-sectional view showing a configuration example of the image pickup apparatus according to the sixth embodiment of the present disclosure. Similar to FIG. 13, FIG. 13 is a diagram showing a configuration example of the image pickup apparatus 10. It differs from the image pickup apparatus 10 of FIG. 13 in that an image pickup device is arranged instead of the semiconductor element 200.
  • the image pickup device 10 in the figure is composed of a compound eye image pickup device in which two image pickup elements 100a and 100b are arranged. That is, in the image pickup device 10 of the figure, the image pickup device 100b is arranged instead of the semiconductor element 200 in FIG.
  • the conventional image sensor 100 is identified by adding "a" to the reference numeral.
  • the image pickup devices 100a and 100b are mounted on the wiring board 20.
  • the wiring layer 25 in the figure is commonly connected to the bump 160a of the image sensor 100a and the bump 160b of the image sensor 100b.
  • the wiring layer 25 corresponds to a signal line that transmits a common signal of the image pickup devices 100a and 100b, for example, a wiring layer that constitutes a power supply line.
  • the image sensor 100b is an example of the second image sensor described in the claims.
  • the compound eye image pickup device 10 can be miniaturized.
  • the configuration of the imaging device 10 is not limited to this example.
  • a configuration in which three or more image pickup devices 100 are arranged in a package can be adopted.
  • the configuration of the imaging device 10 other than this is the same as the configuration of the imaging device 10 described in the fifth embodiment of the present disclosure, the description thereof will be omitted.
  • the compound eye image pickup device can be miniaturized by arranging a plurality of image pickup elements 100a and 100b.
  • FIG. 15 is a diagram showing a configuration example of an image sensor according to the embodiment of the present disclosure.
  • the image sensor 100 in the figure includes a pixel array unit 101, a vertical drive unit 103, a column signal processing unit 104, and a control unit 105.
  • the pixel array unit 101 is configured by arranging the pixels 102 in a two-dimensional grid pattern.
  • the pixel 102 generates an image signal according to the irradiated light.
  • the pixel 102 has a photoelectric conversion unit that generates an electric charge according to the irradiated light.
  • the pixel 102 further has a pixel circuit. This pixel circuit generates an image signal based on the electric charge generated by the photoelectric conversion unit. The generation of the image signal is controlled by the control signal generated by the vertical drive unit 103, which will be described later.
  • the signal lines 106 and 107 are arranged in the pixel array unit 101 in an XY matrix.
  • the signal line 106 is a signal line that transmits a control signal of the pixel circuit in the pixel 102, is arranged for each line of the pixel array unit 101, and is commonly wired to the pixel 102 arranged in each line.
  • the signal line 107 is a signal line that transmits an image signal generated by the pixel circuit of the pixel 102, is arranged in each row of the pixel array unit 101, and is commonly wired to the pixel 102 arranged in each row. To. These photoelectric conversion units and pixel circuits are formed on a semiconductor substrate.
  • the vertical drive unit 103 generates a control signal for the pixel circuit of the pixel 102.
  • the vertical drive unit 103 transmits the generated control signal to the pixel 102 via the signal line 106 in the figure.
  • the column signal processing unit 104 processes the image signal generated by the pixels 102.
  • the column signal processing unit 104 processes the image signal transmitted from the pixel 102 via the signal line 107 in the figure.
  • the processing in the column signal processing unit 104 corresponds to, for example, analog-to-digital conversion that converts an analog image signal generated in the pixel 102 into a digital image signal.
  • the image signal processed by the column signal processing unit 104 is output as an image signal of the image sensor 100.
  • the control unit 105 controls the entire image sensor 100.
  • the control unit 105 controls the image sensor 100 by generating and outputting a control signal for controlling the vertical drive unit 103 and the column signal processing unit 104.
  • the control signal generated by the control unit 105 is transmitted to the vertical drive unit 103 and the column signal processing unit 104 by the signal lines 108 and 109, respectively.
  • the technology according to the present disclosure can be applied to various products.
  • the present technology may be realized as an image pickup device mounted on an image pickup device such as a camera.
  • FIG. 16 is a block diagram showing a schematic configuration example of a camera which is an example of an imaging device to which the present technology can be applied.
  • the camera 1000 in the figure includes a lens 1001, an image pickup element 1002, an image pickup control unit 1003, a lens drive unit 1004, an image processing unit 1005, an operation input unit 1006, a frame memory 1007, a display unit 1008, and the like.
  • a recording unit 1009 is provided.
  • the lens 1001 is a photographing lens of the camera 1000.
  • the lens 1001 collects light from the subject and causes the light to be incident on the image pickup device 1002 described later to form an image of the subject.
  • the image sensor 1002 is a semiconductor element that captures light from a subject focused by the lens 1001.
  • the image sensor 1002 generates an analog image signal according to the irradiated light, converts it into a digital image signal, and outputs the signal.
  • the image pickup control unit 1003 controls the image pickup in the image pickup device 1002.
  • the image pickup control unit 1003 controls the image pickup device 1002 by generating a control signal and outputting the control signal to the image pickup device 1002. Further, the image pickup control unit 1003 can perform autofocus on the camera 1000 based on the image signal output from the image pickup device 1002.
  • the autofocus is a system that detects the focal position of the lens 1001 and automatically adjusts it.
  • a method (image plane phase difference autofocus) in which the image plane phase difference is detected by the phase difference pixels arranged in the image sensor 1002 to detect the focal position can be used. It is also possible to apply a method (contrast autofocus) of detecting the position where the contrast of the image is highest as the focal position.
  • the image pickup control unit 1003 adjusts the position of the lens 1001 via the lens drive unit 1004 based on the detected focal position, and performs autofocus.
  • the image pickup control unit 1003 can be configured by, for example, a DSP (Digital Signal Processor) equipped with firmware.
  • DSP Digital Signal Processor
  • the lens driving unit 1004 drives the lens 1001 based on the control of the imaging control unit 1003.
  • the lens driving unit 1004 can drive the lens 1001 by changing the position of the lens 1001 using a built-in motor.
  • the image processing unit 1005 processes the image signal generated by the image sensor 1002. This processing includes, for example, demosaic to generate an image signal of a color that is insufficient among the image signals corresponding to red, green, and blue for each pixel, noise reduction to remove noise of the image signal, and coding of the image signal. Applicable.
  • the image processing unit 1005 can be configured by, for example, a microcomputer equipped with firmware.
  • the operation input unit 1006 receives the operation input from the user of the camera 1000.
  • a push button or a touch panel can be used for the operation input unit 1006.
  • the operation input received by the operation input unit 1006 is transmitted to the image pickup control unit 1003 and the image processing unit 1005. After that, processing according to the operation input, for example, processing such as imaging of the subject is activated.
  • the frame memory 1007 is a memory that stores a frame that is an image signal for one screen.
  • the frame memory 1007 is controlled by the image processing unit 1005 and holds frames in the process of image processing.
  • the display unit 1008 displays the image processed by the image processing unit 1005.
  • a liquid crystal panel can be used.
  • the recording unit 1009 records the image processed by the image processing unit 1005.
  • a memory card or a hard disk can be used for the recording unit 1009.
  • the cameras to which this disclosure can be applied have been described above.
  • the present technology can be applied to the image pickup device 1002 among the configurations described above.
  • the image pickup device 10 described with reference to FIG. 1 can be applied to the image pickup device 1002.
  • the camera 1000 can be miniaturized.
  • the present technology can have the following configurations.
  • An imaging chip in which a translucent portion that transmits incident light is arranged and generates an image signal based on the incident light transmitted through the transmissive portion, and a surface on which the translucent portion of the imaging chip is arranged. Is arranged on a bottom surface, which is a different surface, and includes a pad for transmitting the generated image signal.
  • Image sensor and A wiring board connected to the pad and provided with wiring extending to an outer region of the image sensor, and the image sensor is arranged on the surface thereof.
  • An image pickup device including a sealing portion that is arranged adjacent to a side surface that is a surface adjacent to the bottom surface of the image pickup element and seals the image pickup element.
  • the image pickup device further includes a protrusion arranged on the pad.
  • the imaging device wherein the wiring board includes the wiring connected to the pad via the protrusion.
  • the image pickup device further includes an insulating film arranged on the bottom surface of the image pickup chip.
  • the wiring board is arranged with the image pickup element sealed by the sealing portion.
  • the sealing portion seals the image pickup element arranged on the wiring board.
  • the image pickup apparatus according to any one of (1) to (5) above, further comprising a connection portion arranged on the back surface of the wiring board, which is a surface different from the front surface, and connected to the wiring.
  • a second semiconductor element arranged on the wiring board is further provided.
  • the imaging device according to any one of (1) to (6) above, wherein the sealing portion further seals the side surface of the second semiconductor element.
  • the second semiconductor element includes a processing circuit for processing the output image signal.
  • the second semiconductor element is a second image pickup device.
  • a plurality of the second semiconductor elements are arranged on the wiring board, and the second semiconductor elements are arranged on the wiring board.
  • the sealing portion further seals the side surfaces of the plurality of second semiconductor elements.
  • the translucent portion is made of glass.
  • Imaging device 20 Wiring board 21 Insulation layer 22, 25 Wiring layer 23 Via 24 Wiring board pad 30 Connection part 40 Sealing part 100, 100a, 100b Imaging element 101 pixel Array part 102 pixels 103 Vertical drive unit 104 Column signal processing unit 105 Control unit 110 Imaging chip 111 On-chip lens 120 Adhesive 121 Spacer 122 Void 130 Translucent unit 140, 240 Insulation film 150, 250 Pad 160, 160a, 160b, 260 bump 200 Semiconductor element 210 Semiconductor Chip 1000 Camera

Abstract

簡便な実装方法を適用可能な撮像装置を構成する。 撮像装置は、撮像素子、配線基板および封止部を具備する。撮像素子は、入射光を透過する透光部が配置されて当該透光部を透過した入射光に基づいて画像信号を生成する撮像チップおよび当該撮像チップにおける透光部が配置される面とは異なる面である底面に配置されて生成された画像信号を伝達するパッドを備える。配線基板は、パッドに接続されるとともに撮像素子の外側の領域に延在する配線を備えて表面に撮像素子が配置される。封止部は、撮像素子の底面に隣接する面である側面に隣接して配置されて撮像素子を封止する。

Description

撮像装置および撮像装置の製造方法
 本開示は、撮像装置および撮像装置の製造方法に関する。詳しくは、撮像素子を構成する半導体チップのパッドが再配置されてパッケージに封入される撮像装置および当該撮像装置の製造方法に関する。
 従来、半導体チップのサイズに小型化されたパッケージを備える撮像装置が使用されている。例えば、第3半導体チップおよび第2半導体チップが積層され、第2半導体チップの裏面側に第1半導体チップを内包するファンアウトウェハレベルパッケージが半田バンプを介して接続されるイメージセンサ装置が提案されている(例えば、特許文献1参照。)。この第3半導体チップは、イメージセンサを構成する。第3半導体チップは、受光面に照射された入射光に基づいて画像信号を生成し、受光面とは異なる面である裏面側に積層された第2半導体チップに出力する。第2半導体チップには、イメージセンサにより生成された画像信号を処理するロジック回路が配置され、処理された画像信号を第1半導体チップに出力する。第1半導体チップには、ロジック回路により処理された画像信号を保持するメモリが配置される。
 この従来技術において、第3半導体チップおよび第2半導体チップはベアチップの状態であるのに対し、第1半導体チップはファンアウトウェハレベルパッケージに封入される。ここで、ファンアウトウェハレベルパッケージ(FOWLP:Fan Out Wafer Level Package)とは、半導体チップのパッドから引き出す再配線の領域を半導体チップの周囲の封止材の領域に拡張したパッケージであり、CSP(Chip Size Package)と比較して、配線領域を広くすることができるパッケージである。
特開2018-078274号公報
 上述の従来技術では、イメージセンサ装置の実装が困難であるという問題がある。上述のイメージセンサ装置の出力画像信号は、第3半導体チップの受光面側に配置されたパッドに出力される。このため、受光面側のパッドにボンディングワイヤ等を接続して画像信号を取り出す必要があり、イメージセンサ装置の実装が困難となる。
 本開示は、上述した問題点に鑑みてなされたものであり、簡便な実装方法を適用可能な撮像装置を構成することを目的としている。
 本開示は、上述の問題点を解消するためになされたものであり、その第1の態様は、入射光を透過する透光部が配置されて当該透光部を透過した上記入射光に基づいて画像信号を生成する撮像チップおよび当該撮像チップにおける上記透光部が配置される面とは異なる面である底面に配置されて上記生成された画像信号を伝達するパッドを備える撮像素子と、上記パッドに接続されるとともに上記撮像素子の外側の領域に延在する配線を備えて表面に上記撮像素子が配置される配線基板と、上記撮像素子の底面に隣接する面である側面に隣接して配置されて上記撮像素子を封止する封止部とを具備する撮像装置である。

 また、この第1の態様において、上記撮像素子は、上記パッドに配置される突部をさらに備え、上記配線基板は、上記突部を介して上記パッドに接続される上記配線を備えてもよい。
 また、この第1の態様において、上記撮像素子は、上記撮像チップの底面に配置される絶縁膜をさらに備えてもよい。
 また、この第1の態様において、上記配線基板は、上記封止部により封止された上記撮像素子が配置されてもよい。
 また、この第1の態様において、上記封止部は、上記配線基板に配置された上記撮像素子を上記封止してもよい。
 また、この第1の態様において、上記配線基板の上記表面とは異なる面である裏面に配置されて上記配線に接続される接続部をさらに具備してもよい。
 また、この第1の態様において、上記配線基板に配置される第2の半導体素子をさらに具備し、上記封止部は、上記第2の半導体素子の側面をさらに封止してもよい。
 また、この第1の態様において、上記第2の半導体素子は、上記出力された画像信号を処理する処理回路を備えてもよい。
 また、この第1の態様において、上記第2の半導体素子は、第2の撮像素子であってもよい。
 また、この第1の態様において、複数の上記第2の半導体素子が上記配線基板に配置され、上記封止部は、上記複数の第2の半導体素子の側面をさらに封止してもよい。
 また、この第1の態様において、上記透光部は、ガラスにより構成されてもよい。
 また、この第1の態様において、上記透光部は、樹脂により構成されてもよい。
 また、本開示の第2の態様は、入射光を透過する透光部が配置されて当該透光部を透過した上記入射光に基づいて画像信号を生成する撮像チップおよび当該撮像チップにおける上記透光部が配置される面とは異なる面である底面に配置されて上記生成された画像信号を伝達するパッドを備える撮像素子を上記パッドに接続されるとともに上記撮像素子の外側の領域に延在する配線を備える配線基板の表面に配置する配線基板配置工程と、上記撮像素子の底面に隣接する面である側面に封止部材を配置する封止工程とを具備する撮像装置の製造方法である。
 以上の態様を採ることにより、撮像装置において撮像素子の撮像チップのパッドに接続される配線基板の配線層が撮像素子の外側の領域に延在されるという作用をもたらす。撮像チップのパッドの配線層による再配置が想定される。
本開示の実施の形態に係る撮像装置の構成例を示す図である。 本開示の第1の実施の形態に係る撮像装置の構成例を示す断面図である。 本開示の第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。 本開示の第1の実施の形態に係る撮像装置の他の構成例を示す断面図である。 本開示の第2の実施の形態に係る撮像装置の製造方法の一例を示す図である。 本開示の第2の実施の形態に係る撮像装置の製造方法の一例を示す図である。 本開示の第2の実施の形態に係る撮像装置の製造方法の一例を示す図である。 本開示の第3の実施の形態に係る撮像装置の構成例を示す断面図である。 本開示の第4の実施の形態に係る撮像装置の構成例を示す断面図である。 本開示の第5の実施の形態に係る撮像装置の構成例を示す断面図である。 本開示の第6の実施の形態に係る撮像装置の構成例を示す断面図である。 本開示の実施の形態に係る撮像素子の構成例を示す図である。 本技術が適用され得る撮像装置の一例であるカメラの概略的な構成例を示すブロック図である。
 次に、図面を参照して、本開示を実施するための形態(以下、実施の形態と称する)を説明する。以下の図面において、同一または類似の部分には同一または類似の符号を付している。また、以下の順序で実施の形態の説明を行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.第3の実施の形態
 4.第4の実施の形態
 5.第5の実施の形態
 6.第6の実施の形態
 7.第7の実施の形態
 8.カメラへの応用例
 <1.第1の実施の形態>
 [撮像装置の構成]
 図1は、本開示の実施の形態に係る撮像装置の構成例を示す図である。同図は、撮像装置10の構成例を表す斜視図である。同図の撮像装置10は、撮像素子100を有する半導体パッケージに封入されて構成されたものである。この撮像素子100は、入射光に基づいて画像信号を生成する半導体素子である。この入射光が照射される面である受光面には、入射光を透過する透光部130が配置される。撮像素子100は配線基板20に搭載され、撮像素子100の側面が封止部40により封止される。
 [撮像装置の断面の構成]
 図2は、本開示の第1の実施の形態に係る撮像装置の構成例を示す断面図である。同図の撮像装置10は、撮像素子100と、配線基板20と、封止部40と、接続部30とを備える。
 撮像素子100は、上述のように、入射光に基づいて画像信号を生成する半導体素子であり、撮像チップ110と、透光部130と、接着剤120と、パッド150と、バンプ160と、絶縁膜140とを備える。
 撮像チップ110は、入射光に基づいて画像信号を生成する複数の画素(後述する画素102)が配置される半導体の基板である。この撮像チップ110は、例えば、シリコン(Si)により構成することができる。各画素には、入射光を集光するオンチップレンズ111が配置される。同図には、撮像チップ110の表面の画素毎に配置されるオンチップレンズ111を記載した。撮像チップ110には、画素の他に画像信号を処理する処理回路等が配置される。画素や処理回路の構成の詳細については後述する。
 透光部130は、入射光を透過する基板である。また、透光部130は、撮像チップ110の保護をさらに行う。この透光部130は、ガラスや樹脂等の透明な部材により構成することができる。
 接着剤120は、撮像チップ110の受光面側に透光部130を接着するものである。この接着剤120には、透明な樹脂を使用することができる。
 パッド150は、撮像チップ110の受光面とは異なる面である底面に配置される電極である。このパッド150には、画素により生成された画像信号が出力される。この画像信号以外の制御信号や電源等もパッド150を介して伝達される。撮像チップ110の底面にはこのようなパッド150が複数配置され、撮像チップ110の入出力端子を構成する。パッド150は、銅(Cu)等の金属により構成することができる。
 バンプ160は、パッド150に配置される柱状の突起である。このバンプ160を介してパッド150と後述する配線基板20の配線層22とが接続される。このバンプ160は、Cuや金(Au)等の金属により構成することができる。また、半田によりバンプ160を構成することもできる。また、バンプ160は、例えば、めっき等により形成することができる。なお、バンプ160の形状等は、バンプ160を配置するピッチに応じて変更することができる。なお、バンプ160は、請求の範囲に記載の突部の一例である。
 絶縁膜140は、撮像チップ110の底面を絶縁するものである。この絶縁膜140は、パッド150の側面を覆う形状に構成され、撮像チップ110の底面およびパッド150を保護する。同図の絶縁膜140は、バンプ160の側面を覆う形状に構成され、バンプ160の保護をさらに行う。この絶縁膜140は、例えば、ソルダレジスト等の樹脂により構成することができる。また、酸化シリコン(SiO2)や窒化シリコン(SiN)等の無機材料により絶縁膜140を構成することもできる。
 配線基板20は、表面に撮像素子100が搭載される基板である。この配線基板20は、配線層22および絶縁層21を備える。配線層22は、撮像素子100の信号を伝達する配線である。同図の配線層22は、撮像素子100のバンプ160を介してパッド150に接続されるとともに撮像素子100の外側の領域に延在する形状に構成される。この配線層22は、例えば、Cu、Au、ニッケル(Ni)、クロム(Cr)およびパラジウム(Pd)等の金属により構成することができる。絶縁層21は、配線層22を絶縁するものである。この絶縁層21は、例えば、エポキシ樹脂、ポリイミド樹脂、アクリル樹脂およびフェノール樹脂等により構成することができる。配線層22および絶縁層21は、多層に構成することができる。異なる層に配置される配線層22同士は、ビア23により接続される。このビア23は、柱状の金属等により構成することができる。なお、配線基板20の裏面には、配線基板パッド24が配置される。この配線基板パッド24は、配線層22やビア23を介して撮像素子100のパッド150に接続される。また配線基板パッド24には、後述する接続部30が接合される。

 封止部40は、撮像素子100を封止するものである。同図の封止部40は、撮像素子100の側面に隣接して配置され、撮像素子の側面を封止する。また、封止部40は、配線基板20の撮像素子100が配置される領域の外側の領域にも隣接して配置される。封止部40は、エポキシ樹脂やポリイミド樹脂等により構成することができる。また、封止部40の強度を向上するためフィラーをこれらの樹脂に分散させることもできる。なお、封止部40には、熱膨張係数が低い材料を使用すると好適である。封止後の配線基板20の反りを軽減することができるためである。
 接続部30は、配線基板20の撮像素子100が配置される面とは異なる面である裏面に配置されて配線層に接続されるものである。同図の接続部30は、配線基板パッド24に接続される。この接続部30は、撮像装置10の端子を構成し、半田ボール等の金属により構成することができる。
 配線基板20は、撮像素子100および封止部40の底面に隣接して配置される。配線層22およびビア23は、撮像素子100のパッド150および配線基板パッド24を接続する。この配線基板パッド24の一部は、撮像素子100の外側の領域に配置される。すなわち、撮像素子100のパッド150の位置が封止部40の領域に拡張された形状に再配置される。このようなパッケージは、FOWLPと称され、CSPと比較して多くのパッドを備える半導体チップに適用することが可能なパッケージである。同図の撮像装置10は、撮像素子100がFOWLPに封入されるとともに受光面以外の側面が封止部40により封止されたパッケージである。封止部40に妨げられることなく撮像を行うことができる。
 なお、配線基板20の裏面にキャパシタ等のチップ部品(不図示)を配置することもできる。具体的には、接続部30が配置されない配線基板パッド24にチップ部品を半田付けにより実装することができる。
 [撮像装置の製造方法]
 図3乃至6は、本開示の第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。図3乃至6は、撮像装置10の製造工程の一例を表す図である。
 まず、撮像素子100を支持基板90に固定する。ここで支持基板90は、撮像装置10の製造工程において部材を支持するための基板である。支持基板90には、例えば、ガラス板や半導体ウェハを使用することができる。この支持基板90に撮像素子100の透光部130の側を載置して固定する。この固定には、接着剤(不図示)を使用することができる(図3におけるA)。
 次に、撮像素子100の底面に絶縁膜140を配置する。これは、例えば、液状の絶縁膜140の材料を塗布することにより行うことができる(図3におけるB)。
 次に、封止部40を配置する。これは、例えば、液状の封止部40を塗布法やスクリーン印刷法により配置し、封止部40を硬化させることにより行うことができる。また、例えば、金型を使用したモールド法により形成することもできる(図3におけるC)。当該工程は、封止工程に該当する。
 次に、封止部40の表面を研削するとともに絶縁膜140の表面を研削し、バンプ160を露出させる(図4におけるD)。
 次に、絶縁膜140および封止部40の表面に絶縁層21を配置する。これは、例えば、絶縁層21の材料膜を塗布することにより行うことができる(図4におけるE)。次に

、絶縁層21の配線層22を配置する領域に開口部401を形成する。これは、フォトリソグラフィによりレジストを形成し、このレジストをマスクとしてエッチングを行うことにより形成することができる。なお、感光性レジストを絶縁層21に適用する場合には、絶縁層21を形成後に露光および現像を行うことにより開口部401を形成することができる。(図4におけるF)。次に、開口部401に配線層22の材料となる金属等を配置する(図5におけるG)。これは、例えば、めっき法により形成することができる。具体的には、スパッタリング等により絶縁層21の表面にTi等のバリア層およびCu等のシード層を順に積層し、フォトリソグラフィにより形成されたレジストによるマスクを配置し、めっきによりCu層を形成して行うことができる。これにより、バンプ160を介して撮像素子100のパッド150に配線層22を接続することができる。この絶縁層21および配線層22の形成を必要な回数繰り返す。なお、配線基板20の裏面には、配線層22と同様の工程により、配線基板パッド24を形成する。これにより、配線基板20を配置することができる(図5におけるH)。当該工程は、配線基板配置工程に該当する。
 次に、配線基板20の配線基板パッド24に接続部30を配置する。これは、例えば、半田ボールに構成された接続部30をフラックスが塗布された配線基板パッド24の上に載置し、リフロー炉等により加熱して半田ボールを熔解させることにより行うことができる(図6におけるI)。
 次に、支持基板90を除去し、接着剤を除去して撮像素子100の透光部130の面を露出させる(図6におけるJ)。以上の工程により、撮像装置10を製造することができる。
 このような製造方法を採ることにより、支持基板90により撮像素子100の透光部130を保護することができる。また、撮像素子100のパッド150と配線基板20の配線層22とを接続するバンプ160を撮像素子100の側に配置することにより、バンプ160の形成にウェハプロセスを適用することができる。バンプを配線基板20の側に形成する場合と比較して、容易にバンプ160を形成することができる。また、絶縁膜140を撮像チップ110の底面に配置することにより、製造工程においてバンプ160を保護することができる。
 なお、撮像装置の製造方法は、この例に限定されない。例えば、バンプ160をめっきにより形成する際には、撮像素子100の底面に絶縁膜140を配置した後にバンプ160を形成することができる。具体的には、図3におけるBにおいて、絶縁膜140のバンプ160を形成する領域に開口部を形成し、この開口部にめっきにより形成したCuを埋め込むことによりバンプ160を形成することができる。
 [変形例]
 上述の撮像素子100は、撮像チップ110の受光面の全面に接着剤120が配置されていたが、他の構成の撮像素子100を使用してもよい。
 [撮像装置の他の構成]
 図7は、本開示の第1の実施の形態に係る撮像装置の他の構成例を示す断面図である。同図の撮像装置10は、撮像素子100の接着剤120の代わりにスペーサ121が配置される点で、図2の撮像装置10と異なる。
 スペーサ121は、撮像チップ110および透光部130の間に配置されて空隙122を形成するものである。同図の撮像装置10においては、スペーサ121と封止部40とが接する形状に構成される。

 以上説明したように、本開示の第1の実施の形態の撮像装置10は、撮像素子100の側面に封止部40を配置することにより、撮像素子100の受光面を露出させたFOWLPを構成することができる。撮像素子100からの信号の取り出しは、撮像装置10の裏面の接続部30を介した半田付け等により行うことができ、撮像装置10の実装を簡便化することができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態の撮像装置10は、製造工程において封止部40により封止された後の撮像素子100に配線基板20が配置されていた。これに対し、本開示の第2の実施の形態の撮像装置10は、撮像素子100が配線基板20に先に配置された後に封止部40により封止される点で、上述の第1の実施の形態と異なる。
 [撮像装置の製造方法]
 図8乃至10は、本開示の第2の実施の形態に係る撮像装置の製造方法の一例を示す図である。図8乃至10は、図3乃至6と同様に、撮像装置10の製造工程の一例を表す図である。封止工程の前に配線基板配置工程が実行される点で、図3乃至6の製造工程と異なる。
 まず、支持基板90に配線基板20を配置する。これは、支持基板90に接着剤(不図示)を塗布し、配線基板20を支持基板90に接着することにより行うことができる(図8におけるA)。
 次に、配線基板20に撮像素子100を配置する。具体的には、配線基板20の配線層22に撮像素子100のバンプ160の位置を合わせて撮像素子100を載置し、接合する。この接合は、例えば、半田付けにより行うことができる。また、例えば、撮像素子100を配線基板20に加熱圧接して配線層22およびバンプ160の金属同士を直接接合することにより行うこともできる(図8におけるB)。当該工程は、配線基板配置工程に該当する。
 次に、封止部40を撮像素子100の周囲に配置する(図8におけるC)。当該工程は、封止工程に該当する。
 次に、支持基板90を除去し、配線基板20の裏面の接着剤を除去する(図9におけるD)。
 次に、配線基板20の配線基板パッド24に接続部30を半田付けにより配置する(図9におけるE)。
 次に、配線基板20の裏面にバックグラインドテープ91を貼着する(図10におけるF)。このバックグラインドテープ91は、半導体素子の製造工程においてバンプ等を保護する粘着テープである。
 次に、封止部40を研削し、撮像素子100の透光部130を露出させる(図10におけるG)。なお、この際、封止部40とともに透光部130を研削することにより、撮像装置10を低背化することもできる。その後、バックグラインドテープ91を剥離する。
 以上の製造工程により、撮像装置10を製造することができる。撮像素子100を覆う形状に配置された封止部40を研削して透光部130を露出させるため、封止部40により撮像素子100の受光面を保護することができる。以上説明した製造方法は、図3乃至6の製造方法と比較して工程が増加する。しかし、配線基板20に撮像素子100等の半

導体素子をいわゆるフェイスダウンにして配置するため、厚さが異なる複数の半導体素子をパッケージに配置することができる。
 なお、撮像装置10の製造方法は、この例に限定されない。例えば、バックグラインドテープ91を使用せず、封止部40の研削の後に支持基板90を除去し、接続部30を配置する工程にすることもできる。
 これ以外の撮像装置10の構成は本開示の第1の実施の形態において説明した撮像装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第2の実施の形態の撮像装置10は、封止工程の前に配線基板配置工程を実行することにより製造される。厚さが異なる複数の撮像素子等を1つのパッケージに納めることができる。
 <3.第3の実施の形態>
 上述の第1の実施の形態の撮像装置10は、撮像素子100の底面に絶縁膜140が配置されていた。これに対し、本開示の第3の実施の形態の撮像装置10は、絶縁膜140を省略する点で、上述の第1の実施の形態と異なる。
 [撮像装置の断面の構成]
 図11は、本開示の第3の実施の形態に係る撮像装置の構成例を示す断面図である。同図は、図2と同様に、撮像装置10の構成例を表す図である。絶縁膜140が省略される点で、図2の撮像装置10と異なる。
 上述のように、同図の撮像素子100には絶縁膜140が配置されず、撮像素子100と配線基板20との間には、封止部40が配置される。同図の撮像装置10を製造する際には、図3におけるCにおいて説明した封止工程において、封止部40がパッド150およびバンプ160の周囲にも配置される。
 これ以外の撮像装置10の構成は本開示の第1の実施の形態において説明した撮像装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第3の実施の形態の撮像装置10は、絶縁膜140を省略することにより、撮像装置10の構成を簡略化することができる。
 <4.第4の実施の形態>
 上述の第1の実施の形態の撮像装置10は、撮像素子100の受光面に透光部130が配置されていた。これに対し、本開示の第4の実施の形態の撮像装置10は、透光部130を省略する点で、上述の第1の実施の形態と異なる。
 [撮像装置の断面の構成]
 図12は、本開示の第4の実施の形態に係る撮像装置の構成例を示す断面図である。同図は、図2と同様に、撮像装置10の構成例を表す図である。透光部130が省略される点で、図2の撮像装置10と異なる。
 上述のように、同図の撮像素子100には透光部130が配置されず、撮像素子100の受光面側には接着剤120を構成する樹脂層のみが配置される。このため、撮像装置10の構成を簡略化することができ、撮像装置10を低背化することができる。なお、接着剤120は、請求の範囲に記載の透光部の一例である。

 これ以外の撮像装置10の構成は本開示の第1の実施の形態において説明した撮像装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第4の実施の形態の撮像装置10は、透光部130を省略することにより、撮像装置10の構成を簡略化することができる。
 <5.第5の実施の形態>
 上述の第1の実施の形態の撮像装置10は、撮像素子100のみがパッケージに封入されていた。これに対し、本開示の第5の実施の形態の撮像装置10は、複数の半導体素子がパッケージに封入される点で、上述の第1の実施の形態と異なる。
 [撮像装置の断面の構成]
 図13は、本開示の第5の実施の形態に係る撮像装置の構成例を示す断面図である。同図は、図2と同様に、撮像装置10の構成例を表す図である。半導体素子200がさらに配置される点で、図2の撮像装置10と異なる。
 半導体素子200は、撮像素子100と信号のやり取りを行う電子回路が配置される半導体素子である。半導体素子200には、例えば、撮像素子100により生成される画像信号を処理する処理回路が配置される半導体素子を使用することができる。また、例えば、撮像素子100の制御信号を生成して撮像素子100に供給する制御回路が配置される半導体素子を半導体素子200として使用することもできる。
 半導体素子200は、半導体チップ210を備える。この半導体チップ210の底面にパッド250が配置される。このパッド250には、バンプ260が配置される。また、半導体素子200の底面には絶縁膜240が配置される。パッド250およびバンプ260の側面は、絶縁膜240に覆われる形状となる。なお、半導体素子200は、請求の範囲に記載の第2の半導体素子の一例である。
 配線基板20には、配線層25が配置される。この配線層25は、撮像素子100のバンプ160および半導体素子200のバンプ260に共通に接続される配線層である。この配線層25を介して撮像素子100および半導体素子200の間の信号のやり取りを行うことができる。
 このように、撮像素子100の処理回路等を有する半導体素子200を1つのパッケージに配置することにより、システム全体を小型化することができる。
 同図の撮像装置10においては、撮像素子100と厚さが異なる半導体素子200が配置されるため、図8乃至10において説明した製造方法を適用することができる。
 なお、撮像装置10の構成は、この例に限定されない。例えば、2つ以上の半導体素子が撮像素子100とともにパッケージに配置される構成を採ることもできる。例えば、撮像素子100の制御回路が配置される半導体素子および撮像素子100からの画像信号の処理回路が配置される半導体素子を配置する構成にすることができる。この場合、封止部40は、撮像素子100および複数の半導体素子を封止する。
 これ以外の撮像装置10の構成は本開示の第1の実施の形態において説明した撮像装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第5の実施の形態の撮像装置10は、半導体素子200をさらに配置することにより、システム全体を小型化することができる。
 <6.第6の実施の形態>
 上述の第5の実施の形態の撮像装置10は、撮像素子100および半導体素子200がパッケージに封入されていた。これに対し、本開示の第6の実施の形態の撮像装置10は、複数の撮像素子がパッケージに封入される点で、上述の第5の実施の形態と異なる。
 [撮像装置の断面の構成]
 図14は、本開示の第6の実施の形態に係る撮像装置の構成例を示す断面図である。同図は、図13と同様に、撮像装置10の構成例を表す図である。半導体素子200の代わりに撮像素子が配置される点で、図13の撮像装置10と異なる。
 同図の撮像装置10は、2つ撮像素子100aおよび100bが配置され、複眼の撮像装置に構成される。すなわち、同図の撮像装置10は、図13における半導体素子200の代わりに撮像素子100bが配置される。なお、従前の撮像素子100には符号に「a」を付加して識別する。撮像素子100aおよび100bは、配線基板20に搭載される。同図の配線層25は、撮像素子100aのバンプ160aおよび撮像素子100bのバンプ160bに共通に接続される。この配線層25は、撮像素子100aおよび100bの共通の信号を伝達する信号線、例えば、電源線を構成する配線層に該当する。なお、撮像素子100bは、請求の範囲に記載の第2の撮像素子の一例である。
 このように、撮像素子100aおよび100bを1つのパッケージに配置することにより、複眼の撮像装置10を小型化することができる。
 同図の撮像装置10においては、同じ厚さの撮像素子100aおよび100bが配置されるため、図3乃至6および図8乃至10において説明した製造方法を適用することができる。
 なお、撮像装置10の構成は、この例に限定されない。例えば、3つ以上の撮像素子100がパッケージに配置される構成を採ることもできる。
 これ以外の撮像装置10の構成は本開示の第5の実施の形態において説明した撮像装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第6の実施の形態の撮像装置10は、複数の撮像素子100aおよび100bを配置することにより、複眼の撮像装置を小型化することができる。
 <7.第7の実施の形態>
 上述の実施の形態においては、撮像素子100を使用していた。本開示の第7の実施の形態においては、撮像素子100の構成について説明する。
 [撮像素子の構成]
 図15は、本開示の実施の形態に係る撮像素子の構成例を示す図である。同図の撮像素子100は、画素アレイ部101と、垂直駆動部103と、カラム信号処理部104と、制御部105とを備える。
 画素アレイ部101は、画素102が2次元格子状に配置されて構成されたものである。ここで、画素102は、照射された光に応じた画像信号を生成するものである。この画素102は、照射された光に応じた電荷を生成する光電変換部を有する。また画素102は、画素回路をさらに有する。この画素回路は、光電変換部により生成された電荷に基づく画像信号を生成する。画像信号の生成は、後述する垂直駆動部103により生成された制御信号により制御される。画素アレイ部101には、信号線106および107がXYマトリクス状に配置される。信号線106は、画素102における画素回路の制御信号を伝達する信号線であり、画素アレイ部101の行毎に配置され、各行に配置される画素102に対して共通に配線される。信号線107は、画素102の画素回路により生成された画像信号を伝達する信号線であり、画素アレイ部101の列毎に配置され、各列に配置される画素102に対して共通に配線される。これら光電変換部および画素回路は、半導体基板に形成される。
 垂直駆動部103は、画素102の画素回路の制御信号を生成するものである。この垂直駆動部103は、生成した制御信号を同図の信号線106を介して画素102に伝達する。カラム信号処理部104は、画素102により生成された画像信号を処理するものである。このカラム信号処理部104は、同図の信号線107を介して画素102から伝達された画像信号の処理を行う。カラム信号処理部104における処理には、例えば、画素102において生成されたアナログの画像信号をデジタルの画像信号に変換するアナログデジタル変換が該当する。カラム信号処理部104により処理された画像信号は、撮像素子100の画像信号として出力される。制御部105は、撮像素子100の全体を制御するものである。この制御部105は、垂直駆動部103およびカラム信号処理部104を制御する制御信号を生成して出力することにより、撮像素子100の制御を行う。制御部105により生成された制御信号は、信号線108および109により垂直駆動部103およびカラム信号処理部104に対してそれぞれ伝達される。
 <8.カメラへの応用例>
 本開示に係る技術(本技術)は、様々な製品に応用することができる。例えば、本技術は、カメラ等の撮像装置に搭載される撮像素子として実現されてもよい。
 図16は、本技術が適用され得る撮像装置の一例であるカメラの概略的な構成例を示すブロック図である。同図のカメラ1000は、レンズ1001と、撮像素子1002と、撮像制御部1003と、レンズ駆動部1004と、画像処理部1005と、操作入力部1006と、フレームメモリ1007と、表示部1008と、記録部1009とを備える。
 レンズ1001は、カメラ1000の撮影レンズである。このレンズ1001は、被写体からの光を集光し、後述する撮像素子1002に入射させて被写体を結像させる。
 撮像素子1002は、レンズ1001により集光された被写体からの光を撮像する半導体素子である。この撮像素子1002は、照射された光に応じたアナログの画像信号を生成し、デジタルの画像信号に変換して出力する。
 撮像制御部1003は、撮像素子1002における撮像を制御するものである。この撮像制御部1003は、制御信号を生成して撮像素子1002に対して出力することにより、撮像素子1002の制御を行う。また、撮像制御部1003は、撮像素子1002から出力された画像信号に基づいてカメラ1000におけるオートフォーカスを行うことができる。ここでオートフォーカスとは、レンズ1001の焦点位置を検出して、自動的に調整するシステムである。このオートフォーカスとして、撮像素子1002に配置された位相差画素により像面位相差を検出して焦点位置を検出する方式(像面位相差オートフォーカス)を使用することができる。また、画像のコントラストが最も高くなる位置を焦点位置として検出する方式(コントラストオートフォーカス)を適用することもできる。撮像制御部1003は、検出した焦点位置に基づいてレンズ駆動部1004を介してレンズ1001の位置を調整し、オートフォーカスを行う。なお、撮像制御部1003は、例えば、ファームウェアを搭載したDSP(Digital Signal Processor)により構成することができる。
 レンズ駆動部1004は、撮像制御部1003の制御に基づいて、レンズ1001を駆動するものである。このレンズ駆動部1004は、内蔵するモータを使用してレンズ1001の位置を変更することによりレンズ1001を駆動することができる。
 画像処理部1005は、撮像素子1002により生成された画像信号を処理するものである。この処理には、例えば、画素毎の赤色、緑色および青色に対応する画像信号のうち不足する色の画像信号を生成するデモザイク、画像信号のノイズを除去するノイズリダクションおよび画像信号の符号化等が該当する。画像処理部1005は、例えば、ファームウェアを搭載したマイコンにより構成することができる。
 操作入力部1006は、カメラ1000の使用者からの操作入力を受け付けるものである。この操作入力部1006には、例えば、押しボタンやタッチパネルを使用することができる。操作入力部1006により受け付けられた操作入力は、撮像制御部1003や画像処理部1005に伝達される。その後、操作入力に応じた処理、例えば、被写体の撮像等の処理が起動される。
 フレームメモリ1007は、1画面分の画像信号であるフレームを記憶するメモリである。このフレームメモリ1007は、画像処理部1005により制御され、画像処理の過程におけるフレームの保持を行う。
 表示部1008は、画像処理部1005により処理された画像を表示するものである。この表示部1008には、例えば、液晶パネルを使用することができる。
 記録部1009は、画像処理部1005により処理された画像を記録するものである。この記録部1009には、例えば、メモリカードやハードディスクを使用することができる。
 以上、本開示が適用され得るカメラについて説明した。本技術は以上において説明した構成のうち、撮像素子1002に適用され得る。具体的には、図1において説明した撮像装置10は、撮像素子1002に適用することができる。撮像素子1002に撮像装置10を適用することにより、カメラ1000を小型化することができる。
 最後に、上述した各実施の形態の説明は本開示の一例であり、本開示は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無い。また、他の効果があってもよい。
 また、上述の実施の形態における図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。
 なお、本技術は以下のような構成もとることができる。
(1)入射光を透過する透光部が配置されて当該透光部を透過した前記入射光に基づいて画像信号を生成する撮像チップおよび当該撮像チップにおける前記透光部が配置される面とは異なる面である底面に配置されて前記生成された画像信号を伝達するパッドを備える

撮像素子と、
 前記パッドに接続されるとともに前記撮像素子の外側の領域に延在する配線を備えて表面に前記撮像素子が配置される配線基板と、
 前記撮像素子の底面に隣接する面である側面に隣接して配置されて前記撮像素子を封止する封止部と
を具備する撮像装置。
(2)前記撮像素子は、前記パッドに配置される突部をさらに備え、
 前記配線基板は、前記突部を介して前記パッドに接続される前記配線を備える
前記(1)に記載の撮像装置。
(3)前記撮像素子は、前記撮像チップの底面に配置される絶縁膜をさらに備える前記(1)または(2)に記載の撮像装置。
(4)前記配線基板は、前記封止部により封止された前記撮像素子が配置される前記(1)に記載の撮像装置。
(5)前記封止部は、前記配線基板に配置された前記撮像素子を前記封止する前記(1)に記載の撮像装置。
(6)前記配線基板の前記表面とは異なる面である裏面に配置されて前記配線に接続される接続部をさらに具備する前記(1)から(5)の何れかに記載の撮像装置。
(7)前記配線基板に配置される第2の半導体素子をさらに具備し、
 前記封止部は、前記第2の半導体素子の側面をさらに封止する
前記(1)から(6)の何れかに記載の撮像装置。
(8)前記第2の半導体素子は、前記出力された画像信号を処理する処理回路を備える前記(7)に記載の撮像装置。
(9)前記第2の半導体素子は、第2の撮像素子である前記(7)に記載の撮像装置。
(10)複数の前記第2の半導体素子が前記配線基板に配置され、
 前記封止部は、前記複数の第2の半導体素子の側面をさらに封止する
前記(7)に記載の撮像装置。
(11)前記透光部は、ガラスにより構成される前記(1)から(10)の何れかに記載の撮像装置。
(12)前記透光部は、樹脂により構成される前記(1)から(10)の何れかに記載の撮像装置。
(13)入射光を透過する透光部が配置されて当該透光部を透過した前記入射光に基づいて画像信号を生成する撮像チップおよび当該撮像チップにおける前記透光部が配置される面とは異なる面である底面に配置されて前記生成された画像信号を伝達するパッドを備える撮像素子を前記パッドに接続されるとともに前記撮像素子の外側の領域に延在する配線を備える配線基板の表面に配置する配線基板配置工程と、
 前記撮像素子の底面に隣接する面である側面に封止部材を配置する封止工程と
を具備する撮像装置の製造方法。
 10 撮像装置
 20 配線基板
 21 絶縁層
 22、25配線層
 23 ビア
 24 配線基板パッド
 30 接続部
 40 封止部
 100、100a、100b 撮像素子
 101 画素アレイ部
 102 画素

 103 垂直駆動部
 104 カラム信号処理部
 105 制御部
 110 撮像チップ
 111 オンチップレンズ
 120 接着剤
 121 スペーサ
 122 空隙
 130 透光部
 140、240 絶縁膜
 150、250 パッド
 160、160a、160b、260 バンプ
 200 半導体素子
 210 半導体チップ
 1000 カメラ

Claims (13)

  1.  入射光を透過する透光部が配置されて当該透光部を透過した前記入射光に基づいて画像信号を生成する撮像チップおよび当該撮像チップにおける前記透光部が配置される面とは異なる面である底面に配置されて前記生成された画像信号を伝達するパッドを備える撮像素子と、
     前記パッドに接続されるとともに前記撮像素子の外側の領域に延在する配線を備えて表面に前記撮像素子が配置される配線基板と、
     前記撮像素子の底面に隣接する面である側面に隣接して配置されて前記撮像素子を封止する封止部と
    を具備する撮像装置。
  2.  前記撮像素子は、前記パッドに配置される突部をさらに備え、
     前記配線基板は、前記突部を介して前記パッドに接続される前記配線を備える
    請求項1記載の撮像装置。
  3.  前記撮像素子は、前記撮像チップの底面に配置される絶縁膜をさらに備える請求項1記載の撮像装置。
  4.  前記配線基板は、前記封止部により封止された前記撮像素子が配置される請求項1記載の撮像装置。
  5.  前記封止部は、前記配線基板に配置された前記撮像素子を前記封止する請求項1記載の撮像装置。
  6.  前記配線基板の前記表面とは異なる面である裏面に配置されて前記配線に接続される接続部をさらに具備する請求項1記載の撮像装置。
  7.  前記配線基板に配置される第2の半導体素子をさらに具備し、
     前記封止部は、前記第2の半導体素子の側面をさらに封止する
    請求項1記載の撮像装置。
  8.  前記第2の半導体素子は、前記出力された画像信号を処理する処理回路を備える請求項7記載の撮像装置。
  9.  前記第2の半導体素子は、第2の撮像素子である請求項7記載の撮像装置。
  10.  複数の前記第2の半導体素子が前記配線基板に配置され、
     前記封止部は、前記複数の第2の半導体素子の側面をさらに封止する
    請求項7記載の撮像装置。
  11.  前記透光部は、ガラスにより構成される請求項1記載の撮像装置。
  12.  前記透光部は、樹脂により構成される請求項1記載の撮像装置。
  13.  入射光を透過する透光部が配置されて当該透光部を透過した前記入射光に基づいて画像信号を生成する撮像チップおよび当該撮像チップにおける前記透光部が配置される面とは異なる面である底面に配置されて前記生成された画像信号を伝達するパッドを備える撮像素子を前記パッドに接続されるとともに前記撮像素子の外側の領域に延在する配線を備える配線基板の表面に配置する配線基板配置工程と、

     前記撮像素子の底面に隣接する面である側面に封止部材を配置する封止工程と
    を具備する撮像装置の製造方法。
PCT/JP2020/037159 2019-12-04 2020-09-30 撮像装置および撮像装置の製造方法 WO2021111715A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021562471A JPWO2021111715A1 (ja) 2019-12-04 2020-09-30
EP20897091.3A EP4071795A4 (en) 2019-12-04 2020-09-30 IMAGING DEVICE AND METHOD OF MANUFACTURING THE IMAGING DEVICE
US17/780,293 US20220415953A1 (en) 2019-12-04 2020-09-30 Imaging device and method for manufacturing imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-219543 2019-12-04
JP2019219543 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021111715A1 true WO2021111715A1 (ja) 2021-06-10

Family

ID=76222505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037159 WO2021111715A1 (ja) 2019-12-04 2020-09-30 撮像装置および撮像装置の製造方法

Country Status (4)

Country Link
US (1) US20220415953A1 (ja)
EP (1) EP4071795A4 (ja)
JP (1) JPWO2021111715A1 (ja)
WO (1) WO2021111715A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226080A (ja) * 1988-07-14 1990-01-29 Olympus Optical Co Ltd 半導体素子
JPH0321859A (ja) * 1989-06-20 1991-01-30 Nippondenso Co Ltd 酸素センサー
WO2016129409A1 (ja) * 2015-02-13 2016-08-18 ソニー株式会社 撮像素子、製造方法、および電子機器
WO2017094777A1 (ja) * 2015-12-02 2017-06-08 マイクロモジュールテクノロジー株式会社 光学装置及び光学装置の製造方法
JP2018078274A (ja) 2016-11-10 2018-05-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. イメージセンサー装置及びそれを含むイメージセンサーモジュール

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6885331B2 (ja) * 2015-07-23 2021-06-16 ソニーグループ株式会社 半導体装置およびその製造方法、並びに電子機器
CN106571377A (zh) * 2016-09-20 2017-04-19 苏州科阳光电科技有限公司 图像传感器模组及其制作方法
CN114730785A (zh) * 2019-12-04 2022-07-08 索尼半导体解决方案公司 成像设备及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226080A (ja) * 1988-07-14 1990-01-29 Olympus Optical Co Ltd 半導体素子
JPH0321859A (ja) * 1989-06-20 1991-01-30 Nippondenso Co Ltd 酸素センサー
WO2016129409A1 (ja) * 2015-02-13 2016-08-18 ソニー株式会社 撮像素子、製造方法、および電子機器
WO2017094777A1 (ja) * 2015-12-02 2017-06-08 マイクロモジュールテクノロジー株式会社 光学装置及び光学装置の製造方法
JP2018078274A (ja) 2016-11-10 2018-05-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. イメージセンサー装置及びそれを含むイメージセンサーモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071795A4

Also Published As

Publication number Publication date
EP4071795A4 (en) 2023-01-11
EP4071795A1 (en) 2022-10-12
US20220415953A1 (en) 2022-12-29
JPWO2021111715A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
TWI692860B (zh) 影像感測器半導體封裝及相關方法
JP3540281B2 (ja) 撮像装置
US8823872B2 (en) Image pickup module with improved flatness of image sensor and via electrodes
JP5764781B2 (ja) フレキシブル基板上のイメージ撮像デバイスの実装におけるシステムと方法
JP4542768B2 (ja) 固体撮像装置及びその製造方法
US20060171698A1 (en) Chip scale image sensor module and fabrication method of same
JP2007142058A (ja) 半導体撮像素子およびその製造方法並びに半導体撮像装置とその製造方法
TW200837902A (en) Image sensor module having build-in package cavity and the method of the same
WO2020184027A1 (ja) 半導体装置、撮像装置および半導体装置の製造方法
JP2008205429A (ja) イメージセンサパッケージおよびその形成方法
JP2011018747A (ja) 撮像ユニット
WO2021111716A1 (ja) 撮像装置および撮像装置の製造方法
WO2021111715A1 (ja) 撮像装置および撮像装置の製造方法
JP7389029B2 (ja) 固体撮像装置、電子機器、および固体撮像装置の製造方法
JP2011066092A (ja) 撮像ユニット
JP2014045048A (ja) 固体撮像装置及びその製造方法
JP6409575B2 (ja) 積層型半導体装置
JP2011066093A (ja) 撮像ユニット
JP2006245359A (ja) 光電変換装置及びその製造方法
JP2008166521A (ja) 固体撮像装置
JP2002222935A (ja) 固体撮像装置およびその製造方法、固体撮像システム
TWI728737B (zh) 攝像模組封裝結構
KR100990945B1 (ko) 이미지 센서 모듈 및 이의 제조 방법
JP2004260082A (ja) 撮像装置の実装構造
JP2012090033A (ja) 撮像モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562471

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897091

Country of ref document: EP

Effective date: 20220704