WO2021107572A1 - 눈부심 방지 필름, 편광판 및 디스플레이 장치 - Google Patents
눈부심 방지 필름, 편광판 및 디스플레이 장치 Download PDFInfo
- Publication number
- WO2021107572A1 WO2021107572A1 PCT/KR2020/016715 KR2020016715W WO2021107572A1 WO 2021107572 A1 WO2021107572 A1 WO 2021107572A1 KR 2020016715 W KR2020016715 W KR 2020016715W WO 2021107572 A1 WO2021107572 A1 WO 2021107572A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glare film
- particles
- coating layer
- inorganic
- light
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F267/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00
- C08F267/06—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00 on to polymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/067—Polyurethanes; Polyureas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/08—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
- C09D4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/286—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3058—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/313—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being gas discharge devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133502—Antiglare, refractive index matching layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/02—Materials and properties organic material
Definitions
- the present invention relates to an anti-glare film, a polarizing plate, and a display device including the same.
- flat panel display technology develops toward large-area and high-resolution, applied products are developing from home and office use such as TV, monitor, and mobile to large-area displays such as outdoor billboards and electronic billboards.
- Flat panel displays such as LCDs, PDPs, OLEDs, and rear-projection TVs, when exposed to external light such as natural light, cause fatigue or headaches due to surface reflected light. Also, there is a problem that the image created inside the display is not recognized as a clear image.
- an anti-glare film is used to scatter external light from the surface by forming irregularities on the display surface, or to induce internal scattering by using the refractive index between the resin and particles forming the coating film.
- the conventional anti-glare film applied to the surface of a display device, etc. has a problem in that an image of external light is formed or light is spread on the film by external light (eg, a lamp, etc.).
- external light eg, a lamp, etc.
- the present invention provides an anti-glare film that exhibits excellent anti-glare properties, and also prevents sparkling (sparkling) defects, rainbow generation, and image formation and light spread of the lamp, and physical properties such as scratch resistance and stain resistance. it is for
- the present invention provides an excellent polarizing plate and display device while exhibiting excellent anti-glare properties, preventing sparkling defects, rainbow generation, and image formation and light spreading of the lamp, and physical properties such as scratch resistance and stain resistance. it is for
- a polarizing plate including the anti-glare film is provided.
- a display device including the anti-glare film is provided.
- (meth)acrylate [(Meth)acrylate] is meant to include both acrylate and methacrylate.
- the photocurable resin refers to a polymer resin polymerized by irradiation of light, for example, by irradiation of visible light or ultraviolet light.
- the (co)polymer is meant to include both a copolymer (co-polymer) and a homo-polymer (homo-polymer).
- the inorganic particle aggregate means secondary or tertiary particles in which two or more inorganic particles in the form of primary particles are aggregated.
- the present inventors found that the first inorganic particle aggregate having an average particle diameter of 1 to 2 ⁇ m in the hard coating layer, the second inorganic particle aggregate having an average particle diameter of 3 to 5 ⁇ m, and an average of an anti-glare film including a light-transmitting substrate and a hard coating layer
- organic particles in the form of primary particles having a particle diameter of 1 to 10 ⁇ m are included, while exhibiting excellent anti-glare properties, sparkling defects are prevented, rainbow generation is also prevented, and the image formation and light diffusion of the lamp are also prevented to provide a visual feeling. It was confirmed that the performance was remarkably excellent, and the present invention was completed.
- the scattering feeling by external light must be excellent.
- the anti-glare film according to the embodiment does not form a lamp image when external light, for example, a lamp is illuminated. While the image is not clearly recognized, the overall light spread is small, so that it is possible to form a visual feeling that is not easily recognized by the eyes of the afterimage of the lamp.
- the hard coating layer included in the anti-glare film includes a binder resin and particles dispersed in the binder resin.
- the particles included in the hard coating layer may be three or more, and specifically, a first inorganic particle aggregate having an average particle diameter of 1 to 2 ⁇ m, a second inorganic particle aggregate having an average particle diameter of 3 to 5 ⁇ m, and an average particle diameter It may be organic particles in the form of primary particles of 1 to 10 ⁇ m.
- the hard coating layer may include two types of inorganic particle aggregates having different average particle diameters, specifically, a first inorganic particle aggregate having an average particle diameter of 1 to 2 ⁇ m, and a second inorganic particle aggregate having an average particle diameter of 3 to 5 ⁇ m. inorganic particle aggregates. Due to the first and second inorganic particle aggregates, fine concavo-convex shapes may be formed on the surface of the hard coating layer. Specifically, a fine concavo-convex shape may be formed on a surface of the hard coating layer opposite to the interface of the light-transmitting substrate, that is, on the surface of the surface of the hard coating layer that is not in contact with the light-transmitting substrate.
- first and second inorganic particle aggregates included in the hard coating layer have secondary particle shapes formed by aggregation of a plurality of first and second inorganic particles in the form of primary particles, and in particular, the first and second inorganic particles included in the hard coating layer. 2 Since the inorganic particles are aggregated in a direction horizontal or perpendicular to the hard coating layer in a plane to form first and second inorganic particle aggregates, respectively, the first and second inorganic particle aggregates form one convex portion on the surface of the hard coating layer.
- the anti-glare film comprises two kinds of inorganic particle aggregates having different average particle diameters in the hard coating layer, specifically, a first inorganic particle aggregate having an average particle diameter of 1 to 2 ⁇ m, and a second inorganic particle having an average particle diameter of 3 to 5 ⁇ m.
- Excellent anti-glare visual feeling including particle aggregates can be realized.
- the hard coating layer includes only the first inorganic particle aggregates having a relatively small average particle diameter, a lamp phase may be formed to cause glare, and when the hard coating layer includes only the second inorganic particle aggregates having a relatively large average particle diameter, the lamp phase is not formed, but the degree of light diffusion The large-scale lamp may be viewed cloudy, and the visibility of the screen may be poor.
- the first inorganic particle aggregate may have an average particle diameter of 1 to 2 ⁇ m, 1.1 to 1.9 ⁇ m, or 1.2 to 1.8 ⁇ m.
- the second inorganic particle aggregate may have an average particle diameter of 3 to 5 ⁇ m, 3.1 to 4.8 ⁇ m, or 3.2 to 4.5 ⁇ m.
- the average particle diameter ratio of the second inorganic particle aggregate to the first inorganic particle aggregate may be 1.5 to 4 times, 2 to 3.5 times, or 2 to 3 times. If the particle size ratio is less than 1.5 times, the size of the surface irregularities may be reduced and the lamp image may be formed on the screen to cause glare. If the particle diameter ratio exceeds 4 times, the light spreading degree is large and the lamp may be viewed cloudy and the visibility of the screen may be poor, and the visibility of the screen may be poor. This can happen.
- the first inorganic particle agglomerate may have a secondary particle shape by aggregating a plurality of first inorganic particles in the form of primary particles.
- 5 or more, 10 or more, 30 or more, or 30 to 50 of the first inorganic particles may be aggregated to form a first inorganic particle aggregate, and the first inorganic particles may be aggregated in a grape cluster shape, etc.
- the first inorganic particles in the form of primary particles may have an average particle diameter of 50 nm or less, 5 to 45 nm, or 10 to 40 nm.
- the second inorganic particle agglomerate may have a secondary particle form by aggregating a plurality of second inorganic particles in the form of primary particles.
- 5 or more, 10 or more, 30 or more, or 30 to 50 of the second inorganic particles may be aggregated to form a second inorganic particle aggregate, and the second inorganic particles may be aggregated in a grape cluster shape, etc.
- the second inorganic particles in the form of primary particles may have an average particle diameter of 50 nm or less, 5 to 45 nm, or 10 to 40 nm.
- the weight ratio of the first inorganic particle aggregate and the second inorganic particle aggregate may be 1:0.1 to 5, 1:0.15 to 4, or 1:0.2 to 3.
- the content of the second inorganic particle aggregate is too small compared to the first inorganic particle aggregate, the size of the surface irregularities is small, and a lamp image may be formed to cause glare, and the content of the second inorganic particle aggregate is higher than that of the first inorganic particle aggregate If there is too much, the degree of light spread is large and the lamp is visually recognized as cloudy, which may cause poor visibility of the screen.
- first inorganic particle aggregate and the second inorganic particle aggregate are not limited thereto, but include, for example, silicon oxide, titanium dioxide, indium oxide, tin oxide, zirconium oxide, zinc oxide and polysilsesquioxane particles ( Specifically, it may be at least one selected from the group consisting of silsesquioxane particles having a cage structure).
- the hard coating layer may include organic particles in the form of primary particles having an average particle diameter of 1 to 10 ⁇ m.
- the organic particles in the form of primary particles may have a refractive index of 1.480 to 1.620, 1.490 to 1.610, or 1.500 to 1.600 based on a wavelength of 500 to 600 nm. Since the hard coating layer contains organic particles having a high refractive index as described above, it is possible to prevent sparkling defects and visibility of mura generated inside the panel while exhibiting excellent anti-glare properties.
- the organic particles in the form of primary particles may have an average particle diameter of 1 to 10 ⁇ m, 1.5 to 8 ⁇ m, and 2 to 6 ⁇ m. If the average particle diameter of the organic particles in the form of primary particles is too large, a problem in which the sparkling defect becomes severe due to the refraction of light by the particles may occur, and if it is too small, the dispersibility of the particles is lowered, resulting in poor appearance due to particle agglomeration. Problems may appear.
- the organic particles in the form of primary particles use the difference in the refractive index with the binder resin in the hard coating layer to realize the haze of the anti-glare film in a specific range, thereby exhibiting excellent visibility, but also causing poor sparking, rainbow generation, and lamp phase formation and light. spread can be prevented.
- the difference in refractive index between the organic particles in the form of primary particles and the binder resin may be 0.05 to 0.1, 0.06 to 0.09 to 0.07 to 0.08.
- the reference of the refractive index may be a wavelength of 500 to 600 nm.
- the content of the organic particles in the form of primary particles may be 30 to 90 parts by weight, 40 to 85 parts by weight, or 40 to 80 parts by weight have. If the content of the organic particles is too small, it is difficult to implement sufficient internal haze at an appropriate thickness, and if the content of the organic particles is too large, the internal haze increases at the appropriate thickness, which may cause a problem in that the black feeling and contrast ratio may be lowered. .
- organic particles in the form of primary particles are not limited thereto, but for example, polystyrene, polymethylmethacrylate, polymethylacrylate, polyacrylate, polyacrylate-co-styrene, polymethylacrylate -co-styrene, polymethyl methacrylate-co-styrene, polycarbonate, polyvinyl chloride, polybutylene terephthalate, polyethylene terephthalate, polyamide, polyimide, polysulfone, polyphenylene oxide, polyacetal , epoxy resin, phenol resin, silicone resin, melamine resin, benzoguanine, polydivinylbenzene, polydivinylbenzene-co-styrene, polydivinylbenzene-co-acrylate, polydiallyl phthalate and triallylisosia
- a single material selected from among nulate polymers or a copolymer of two or more thereof may be used.
- the first inorganic particle aggregate, the second inorganic particle aggregate, and the organic particles in the form of primary particles may have a particle shape such as a spherical shape, an elliptical spherical shape, a rod shape, or an irregular shape.
- a particle shape such as a spherical shape, an elliptical spherical shape, a rod shape, or an irregular shape.
- the length of the largest dimension may satisfy the particle diameter of the above range.
- the average particle diameter of the first inorganic particle aggregate, the second inorganic particle aggregate, and the organic particles in the form of primary particles is, for example, dynamic light scattering method, laser diffraction method, centrifugal sedimentation method, FFF (Field Flow Fractionation) It can be measured by a method, a pore electrical resistance method, or the like.
- the anti-glare film may have a reflection intensity ratio (R) of Equation 1 of 0.6 to 1%, 0.6 to 0.9%, or 0.62 to 0.8%.
- R1 is a reflection intensity value measured at 45° corresponding to the specular reflection of the incident angle after irradiating light at an incident angle of 45° to the hard coating layer
- R2 is a reflection intensity value measured at 45° corresponding to the specular reflection of the incident angle after irradiating light at an incident angle of 45° to the light-transmitting substrate.
- the reflective intensity ratio of Equation 1 is calculated by calculating the reflective intensity value (R1) measured for the hard coating layer as a percentage with respect to the reflective intensity value (R2) measured for the light-transmitting substrate.
- the measured light intensity is defined as R1 reflection intensity and R2 reflection intensity, respectively, according to a measurement target.
- a non-transmissive base material is affixed to the back surface of a measurement object.
- the non-transmissive substrate is a substrate that does not transmit light such as visible light having a light transmittance of approximately 0%, and may be, for example, a black acrylic plate, black cardboard, or a film coated with a black adhesive.
- the film to which the black pressure-sensitive adhesive is applied may be, for example, a polyethylene terephthalate film coated with a black pressure-sensitive adhesive.
- the flat non-transmissive substrate having no concavities or convexities or warpage may be affixed on one surface of the light-transmitting substrate to face the hard coating layer. Thereafter, the light beam is incident at an angle of 45° from the normal to the surface of the hard coating layer, and the reflection intensity R1 can be measured at 45° corresponding to the specular reflection of the incident angle.
- the reflection intensity R2 In addition, in order to measure the reflection intensity R2, only a light-transmitting substrate on which a hard coat layer is not formed is prepared, and a non-transmissive substrate is affixed on one surface of the light-transmitting substrate. Then, with respect to one surface of the light-transmitting substrate to which the non-transmissive substrate is not affixed, the light beam is incident at an angle of 45° from the normal to the surface, and the reflection intensity (R2) can be measured at 45° corresponding to the specular reflection of the incident angle. have. Thereafter, the measured reflection intensities R1 and R2 may be substituted in Equation 1 and calculated to calculate the reflection intensity ratio (R).
- the lamp image does not form when the lamp is illuminated, but the light spread is large, so the lamp is viewed cloudy and the visibility of the screen may be poor, and if it exceeds 1.0%, when the lamp is illuminated Condensation on the lamp may cause glare.
- the reflection intensity ratio (R) of the anti-glare film is the average particle diameter of each of the two types of inorganic particle aggregates and the organic particles in the form of primary particles having different average particle diameters included in the hard coating layer, the difference in average particle diameter between them, the inorganic / The volume fraction occupied by organic particles in the hard coating layer, the difference in refractive index between the organic particles and the binder resin included in the hard coating layer, the average height of the irregularities formed in the hard coating layer, the height deviation of the irregularities formed in the hard coating layer, etc. .
- the reflection intensity R1 may be 300 to 700.
- the reflection intensity R2 may be 50000 to 70000.
- the flat non-transmissive substrate is attached to one surface of the light-transmitting substrate to face the hard coating layer, and the light beam is incident at an angle of 45° from the normal line of the surface to the hard coating layer, the angle of incidence
- the diffused light reflected by the incident angle may be emitted at an angle other than 45° corresponding to the specular reflection.
- the angle of the diffused light at which the reflection intensity of 1/10 times the reflection intensity R1 is measured may be 30 to 35° and 55 to 60°.
- the reflected intensity measured at 30 to 35° and 55 to 60° diffused light may be 1/10 times the reflection intensity R1.
- the reflection intensity of 1/10 times the reflection intensity R1 does not appear in the range of the above-described diffused light, the light spread is large and the lamp is viewed cloudy when the lamp is illuminated, so that the visibility of the screen is poor, or the lamp image is condensed and glare may cause
- the angle of the diffused light at which 1/100 times the reflection intensity of the reflection intensity R1 is measured may be 20 to 25° and 65 to 70°.
- the reflected intensity measured at 20 to 25° and 65 to 70° diffused light may be 1/100 times the reflection intensity R1.
- the reflection intensity of 1/10 times the reflection intensity R1 does not appear in the range of the above-described diffused light, the light spread is large and the lamp is viewed cloudy when the lamp is illuminated, so that the visibility of the screen is poor, or the lamp image is condensed and glare may cause
- the anti-glare film has an overall haze of 20 to 40%, 23 to 35% or 25 to 30%, an internal haze of 10 to 20%, 12 to 19%, or 13 to 18%, and an external haze It represents 10 to 30%, 12 to 25%, or 14 to 20%, and thus, while exhibiting excellent visibility, it is possible to prevent sparkling defects, rainbow generation, image formation and light spread of the lamp.
- the ratio of the external haze to the internal haze of the anti-glare film may be 0.6 to 2.0, 0.8 to 1.9, or 1.0 to 1.8.
- the ratio of the external haze to the internal haze of the anti-glare film is the average particle diameter of each of the two types of inorganic particle aggregates and the organic particles in the form of primary particles having different particle diameters included in the hard coating layer, the average particle diameter difference between them, the This may be due to a volume fraction occupied by the inorganic/organic particles in the hard coating layer, a difference in refractive index between the organic particles included in the hard coating layer and the binder resin, and the like.
- the ratio of the external haze to the internal haze is less than 0.6, the anti-glare effect is insufficient due to the lack of anti-glare effect, and when the anti-glare film is located under the cover glass, ANR (Anti-Newton) caused by external irregularities formed on the hard coating layer Ring) effect may be lowered to generate interference fringes, and optical properties may be deteriorated. If it exceeds 2.0, external haze may be increased, resulting in severe sparkling due to external concavities and convexities and deterioration of image sharpness.
- ANR Anti-Newton
- the anti-glare film may have a ratio of an external haze to the reflection intensity ratio (R) of 15 to 30, 20 to 29, or 21 to 28.
- the ratio of the external haze to the reflection intensity ratio (R) is the average particle diameter of each of the two types of inorganic particle aggregates and the organic particles in the form of primary particles having different particle diameters included in the hard coating layer, the difference in average particle diameter between them, the inorganic / It may be due to the volume fraction occupied by the organic particles in the hard coating layer, the difference in refractive index between the organic particles and the binder resin included in the hard coating layer, and the like.
- the ratio of the external haze to the reflection intensity ratio (R) is less than 15, the light reflection increases and the anti-glare effect is lowered, and when the anti-glare film is located under the cover glass, the ANR caused by the external irregularities formed on the hard coating layer ( Anti-Newton Ring) effect is lowered and interference fringes are generated, resulting in deterioration of optical characteristics.
- R reflection intensity ratio
- it exceeds 30 the light spread to external light is severe and the visibility of the screen is reduced, and the sparkling phenomenon due to external irregularities is severe. , and image sharpness may be reduced.
- the binder resin of the hard coating layer included in the anti-glare film may include a (co)polymer of a vinyl-based monomer or a (meth)acrylate-based monomer.
- the vinyl-based monomer or (meth)acrylate-based monomer may include a (meth)acrylate or a monomer or oligomer containing one or more, or two or more, or three or more vinyl groups.
- the monomer or oligomer including the (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) ) acrylate, tripentaerythritol hepta (meth) acrylate, torylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, trimethylolpropane tri(meth)acrylate, trimethylolpropane polyethoxytri(meth)acryl Late, trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, butanediol dimethacrylate, hexaethyl methacrylate, butyl methacrylate, or a mixture of two or more thereof,
- the monomer or oligomer including the vinyl group include divinylbenzene, styrene, or paramethylstyrene.
- the polymer or copolymer included in the binder resin may include a reactive acrylate oligomer group consisting of a urethane acrylate oligomer, an epoxy acrylate oligomer, a polyester acrylate, and a polyether acrylate; and dipentaerythritol hexaacrylate, dipentaerythritol hydroxy pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylene propyl triacrylate, propoxylated glycerol triacrylate, trimethylpropane ethoxy tri At least one selected from the group consisting of polyfunctional acrylate monomers consisting of acrylate, 1,6-hexanediol diacrylate, propoxylated glycero triacrylate, tripropylene glycol diacrylate, and ethylene glycol diacrylate. It may further include a moiety derived from a monomer.
- the hard coating layer may be included in an amount of 2 to 10 parts by weight, 3 to 8 parts by weight, or 4 to 7 parts by weight of the organic particles in the form of primary particles based on 100 parts by weight of the binder resin. If the content of the organic particles relative to 100 parts by weight of the binder resin is less than 2 parts by weight, the haze value due to internal scattering may not be sufficiently implemented, and if it exceeds 10 parts by weight, the haze value due to internal scattering becomes too large and the contrast ratio is lowered. can
- the thickness of the hard coating layer may be 1 to 10 ⁇ m or 2 to 8 ⁇ m. If the thickness of the hard coating layer is less than 1 ⁇ m, it becomes difficult to obtain the desired hardness (hardness), and if it exceeds 10 ⁇ m, it may be curled in the process of curing the resin when forming the hard coating layer.
- the thickness of the hard coating layer may be obtained by observing a cross section of the anti-glare film with a scanning electron microscope (SEM) and measuring the thickness of the binder portion of the hard coating layer.
- SEM scanning electron microscope
- the thickness obtained by subtracting the arithmetic mean roughness Ra of the hard coat layer from the thickness of the entire hard coat layer containing inorganic particles measured using a thickness gauge (product of TESA Co., Ltd.) was determined by the SEM observation. Since it is almost identical to the thickness of the binder part, this method can also be used.
- the light-transmitting substrate may use a plastic film having transparency.
- a plastic film having transparency For example, triacetyl cellulose (TAC), polyester (TPEE), polyethylene terephthalate (PET), polyimide (PI), polyamide (PA), aramid, polyethylene (PE), polyacrylate (PAR), polyether sulfone, polysulfone, diacetyl cellulose, polypropylene (PP), polyvinyl chloride, acrylic resin (PMMA), polycarbonate (PC), epoxy resin, urea resin, urethane resin, melamine resin, and the like.
- the anti-glare film uses triacetyl cellulose as a base material in many cases, but the triacetyl cellulose film is vulnerable to moisture, and in particular, when used for outdoor displays, durability is poor. Accordingly, although a polyethylene terephthalate film having excellent moisture permeability resistance is used as a substrate, there is a problem in that the rainbow defect has to be solved due to the birefringence of the polyethylene terephthalate.
- the light-transmitting substrate included in the anti-glare film according to the embodiment may have an in-plane retardation (Re) measured at a wavelength of 400 nm to 800 nm of 500 mm or less, or 5000 nm or more.
- the light-transmitting substrate has an in-plane retardation (Re) measured at a wavelength of 400 nm to 800 nm of 500 mm or less, 450 nm or less, 10-400 nm, or 5000 nm or more, 5100 nm or more, or 5200 to 8000 nm.
- it may be a polyethylene terephthalate film satisfying the above-described in-plane retardation.
- the in-plane retardation Re may be defined by the following formula when the thickness of the light-transmitting substrate is defined as d, the in-plane refractive index in the slow axis direction is n x , and the in-plane refractive index in the fast axis direction is n y .
- phase difference value may be defined as a positive number as an absolute value.
- the thickness of the light-transmitting substrate may be 10 to 300 ⁇ m, 30 to 250 ⁇ m, or 40 to 200 ⁇ m in consideration of productivity, but is not limited thereto.
- a first inorganic particle aggregate comprising a binder resin and particles dispersed in the binder resin, wherein the particles have an average particle diameter of 1 to 2 ⁇ m; a second inorganic particle aggregate having an average particle diameter of 3 to 5 ⁇ m; And a composition for forming a hard coating layer of an anti-glare film comprising organic particles in the form of primary particles having an average particle diameter of 1 to 10 ⁇ m may be provided.
- the binder resin and particles included in the composition for forming the hard coating layer are the same as those described for the anti-glare film described above.
- the hard coating layer included in the anti-glare film may be formed by applying, drying, and curing the composition for forming the hard coating layer on the light-transmitting substrate.
- the organic particles in the form of the first inorganic particle aggregate, the second inorganic particle aggregate, and the primary particle included in the composition for forming the hard coating layer do not further agglomerate during drying or curing, so that in the finally formed hard coating layer In the first inorganic particle aggregate, the second inorganic particle aggregate, and organic particles in the form of primary particles may exist as such.
- composition for forming the hard coating layer may further include a photoinitiator. Accordingly, the photopolymerization initiator may remain in the hard coat layer prepared from the composition for forming the hard coat layer.
- any compound known to be used in the composition for forming a hard coating layer can be used without any major limitation, and specifically, a benzophenone-based compound, an acetophenone-based compound, a biimidazole-based compound, a triazine-based compound, and an oxime-based compound Or a mixture of two or more thereof may be used.
- the photopolymerization initiator may be used in an amount of 1 to 10 parts by weight, 2 to 9 parts by weight, or 3 to 8 parts by weight.
- the amount of the photopolymerization initiator is too small, an uncured material remaining in the photocuring step of the composition for forming the hard coating layer may be issued. If the amount of the photopolymerization initiator is too large, the unreacted initiator may remain as an impurity or the crosslinking density may be lowered, so that mechanical properties of the produced film may be deteriorated.
- composition for forming the hard coating layer may further include an organic solvent.
- organic solvent include ketones, alcohols, acetates, ethers, benzene derivatives, or a mixture of two or more thereof.
- organic solvent examples include ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, or t-butanol; acetates such as ethyl acetate, i-propyl acetate, and polyethylene glycol monomethyl ether acetate; ethers such as tetrahydrofuran or propylene glycol monomethyl ether; benzene derivatives such as toluene, xylene, and aniline; or a mixture of two or more thereof.
- ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone or isobutyl ketone
- alcohols such as methanol, ethanol, n-propan
- the organic solvent may be added at the time of mixing each component included in the composition for forming the hard coat layer, or may be included in the composition for forming the hard coat layer while each component is added in a dispersed or mixed state in the organic solvent. If the content of the organic solvent in the composition for forming the hard coat layer is too small, the flowability of the composition for forming the hard coat layer may be lowered, and defects such as streaks may occur in the finally manufactured film. In addition, when an excessive amount of the organic solvent is added, the solid content is lowered, and coating and film formation are not sufficiently performed, so that physical properties or surface properties of the film may be deteriorated, and defects may occur during drying and curing. Accordingly, the composition for forming the hard coating layer may include an organic solvent such that the concentration of the total solid content of the components included is 1% to 50% by weight, or 2 to 20% by weight.
- the method and apparatus commonly used for applying the composition for forming the hard coating layer can be used without any other limitation, for example, a bar coating method such as Meyer bar, a gravure coating method, a 2 roll reverse coating method, a vacuum Slot die coating method, 2 roll coating method, etc. can be used.
- ultraviolet or visible light having a wavelength of 200 to 400 nm may be irradiated, and the exposure amount during irradiation is preferably 100 to 4,000 mJ/cm 2 .
- the exposure time is not particularly limited, either, and can be appropriately changed depending on the exposure apparatus used, the wavelength of the irradiation light, or the exposure amount.
- nitrogen purging may be performed to apply nitrogen atmospheric conditions.
- a polarizing plate including the anti-glare film may be provided.
- the polarizing plate may include a polarizing film and an anti-glare film formed on at least one surface of the polarizing film.
- the material and manufacturing method of the polarizing film are not particularly limited, and conventional materials and manufacturing methods known in the art may be used.
- the polarizing film may be a polyvinyl alcohol-based polarizing film.
- a protective film may be provided between the polarizing film and the anti-glare film.
- the protective film are not limited, for example, COP (cycloolefin polymer)-based film, acrylic film, TAC (triacetylcellulose)-based film, COC (cycloolefin copolymer)-based film, PNB (polynorbornene)-based film and PET (polyethylene terephtalate) ) may be any one or more of the based films.
- a substrate for forming a single coating layer may be used as it is when the anti-glare film is manufactured.
- the polarizing film and the anti-glare film may be laminated by an adhesive such as a water-based adhesive or a non-aqueous adhesive.
- a display device including the above-described anti-glare film may be provided.
- a specific example of the display device is not limited, and may be, for example, a liquid crystal display device, a plasma display device, or an organic light emitting diode device (Organic Light Emitting Diodes).
- the display device may include a pair of polarizing plates facing each other; a thin film transistor, a color filter and a liquid crystal cell sequentially stacked between the pair of polarizing plates; And it may be a liquid crystal display device including a backlight unit.
- the anti-glare film may be positioned on one surface of the polarizing plate that is relatively far from the backlight unit among the pair of polarizing plates.
- the anti-glare film may be provided on the outermost surface of the viewer side or the backlight side of the display panel. More specifically, the display device may be a display device for a notebook computer, a display device for TV, or a large-area display device for advertisement, and the anti-glare film is the largest of the display device for a notebook computer, a display device for TV, and a large-area display device for advertisement. It may be located on the outer surface.
- a polarizing plate and a display device including the same may be provided.
- a binder resin 50 parts by weight of EB-1290 (photocurable aliphatic urethane hexaacrylate, manufactured by SK Entis, weight average molecular weight 1000) and 50 parts by weight of trimethylolpropane triacrylate were prepared, and based on 100 parts by weight of the binder resin, the initiator 5 parts by weight of IRG184 phosphorus IRG184 (Irgacure 184, hydroxycyclohexylphenyl ketone, manufactured by Ciba Specialty Chemicals, Switzerland), 50 parts by weight of toluene as a solvent, 50 parts by weight of methyl ethyl ketone as a solvent, SS-50F as the first inorganic particle aggregate (Surface-treated hydrophobic silica, average particle diameter of 1 to 2 ⁇ m, manufactured by Tosoh Silica Co., Ltd.) 5.5 parts by weight, Acematt 3600 (silica aggregate, average particle diameter of 3-4 ⁇ m, manufactured by Evonik De
- the average particle diameter of each of the inorganic particle aggregate and the organic particle can be confirmed through a commonly known method, for example, calculated and derived by measuring the radius of individual particles identified in electron micrographs (SEM, TEM, etc.), It may be an average particle diameter of inorganic particle aggregates or organic particles calculated through X-ray scattering experiments.
- binder resin 50 parts by weight of EB-1290 (photocurable aliphatic urethane hexaacrylate, manufactured by SK Entis, weight average molecular weight 1000) and 50 parts by weight of pentaerythritol triacrylate (product of SK Entis) were prepared, and 100 parts by weight of the binder resin Based on parts, 5 parts by weight of IRG184 (Irgacure 184, hydroxycyclohexylphenylketone, manufactured by Ciba Specialty Chemical, Switzerland) as an initiator, 50 parts by weight of toluene as a solvent, 50 parts by weight of methyl ethyl ketone as a solvent, first inorganic particles 7.5 parts by weight of the aggregate SS-50 (surface-treated hydrophobic silica aggregate, average particle diameter of 1 to 2 ⁇ m, manufactured by Tosoh Silica Co., Ltd.), 1.5 parts by weight of Acematt 3600 as the second inorganic particle aggregate, PS as organic particles in the
- a composition for forming a hard coating layer of Preparation Example 4 was prepared in the same manner as in Preparation Example 1, except that 9.5 parts by weight and 5.0 parts by weight of PS spherical particles a, which are organic particles in the form of primary particles, were used.
- Preparation Example 1 A composition for forming a hard coating layer of Preparation Example 7 was prepared in the same manner.
- compositions for forming the hard coating layer of Preparation Examples 1 to 7 thus obtained were coated on triacetyl cellulose (TAC, thickness 60 ⁇ m), which is a light-transmitting substrate, with #10 meyer bar as shown in Table 1 below, and dried at 90° C. for 1 minute.
- TAC triacetyl cellulose
- a hard coating layer was formed by irradiating 150 mJ/cm 2 of ultraviolet light to this dried material, and an anti-glare film was prepared.
- the thickness of the hard coating layer is shown in Table 1 below.
- Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Composition for forming a hard coating layer Preparation Example 1 Preparation Example 2 Preparation 3 Preparation 4 Production Example 5 Preparation 6 Preparation 7 Hard coating layer thickness ( ⁇ m) 5 5 4 4 6 7 5
- a specimen was prepared by attaching a polyethylene terephthalate film coated with a flat black pressure-sensitive adhesive without irregularities or warping on one surface of the light-transmitting substrate to face the hard coating layer of the anti-glare film obtained in each of the Examples and Comparative Examples. Then, the specimen was installed in a goniometer (GC5000L, Nippon Denshoku Industries Co., Ltd.), and the light beam was incident at an angle of 45° from the normal line of the surface with respect to the surface of the hard coating layer of the specimen. After the light beam was incident on the surface of the hard coating layer, the reflection intensity (R1) was measured at 45° corresponding to the specular reflection of the incident angle.
- GC5000L Nippon Denshoku Industries Co., Ltd.
- the light-transmitting substrate on which the hard coating layer was not formed specifically, the light-transmitting substrate described in Table 1 was prepared.
- Prepare a specimen by attaching a polyethylene terephthalate film coated with a flat black adhesive without irregularities or warping on one surface of the light-transmissive substrate, and measure the reflection intensity (R2) in the same way as the method for measuring the reflection intensity (R1) measured.
- Equation 1 the reflection intensity ratio (R) was calculated, and the results are shown in Table 2 below.
- a specimen was prepared by attaching a polyethylene terephthalate film coated with a flat black pressure-sensitive adhesive without irregularities or warping on one surface of the light-transmitting substrate to face the hard coating layer of the anti-glare film obtained in each of the Examples and Comparative Examples. Thereafter, the visual field was observed from the specular reflection direction of each anti-glare film using a fluorescent lamp lighting having two rows of lamps as a light source, and the visual perception was measured by distinguishing the reflected image of the fluorescent lamp.
- the visual evaluation criteria are as described below, and the results are shown in Table 2 below.
- a specimen was prepared by attaching a polyethylene terephthalate film coated with a flat black pressure-sensitive adhesive without irregularities or warping on one surface of the light-transmitting substrate to face the hard coating layer of the anti-glare film obtained in each of the Examples and Comparative Examples. Then, when light of a 4 mm lamp size was irradiated from a height of 20 cm, the light spread was evaluated by the size of the image appearing on the specimen. Specifically, the light spread evaluation criteria were evaluated as described below according to the size of the image, and the results are shown in Table 2 below.
- Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Transmittance (%) 90.3 90.2 90.7 90.5 90.0 90.7 90.7 Internal Haze (%) 10.5 12.2 12.0 10.0 11.0 13.0 10.5 External Haze (%) 17.0 16.0 14.0 15.0 23.0 7.0 15.0 External Haze/Internal Haze 1.6 1.3 1.2 1.5 2.1 0.5 1.4 Reflection Intensity Ratio (%) 0.63 0.65 4.20 1.10 0.41 5.70 1.23 External Haze/Reflection Intensity Ratio 27.0 24.6 3.3 13.6 56.1 1.2 12.2 Diffusion angle range with reflection intensity R1 X 1/10 (°) 34-35, 55 ⁇ 56 33-34, 56-57 40-41, 50-51 36-37, 53 ⁇ 54 28-29, 61 ⁇ 62 43-44, 46-47 36-37, 53 ⁇ 54 Diffusion angle range with reflection intensity R1 X 1/100 (°) 24-25, 66 ⁇ 67 24-25,
- Comparative Example 1 in which inorganic particles are not used and does not satisfy the above-mentioned numerical range
- Comparative Examples 2 and 5 in which the second inorganic particle agglomerate is not used and does not satisfy the numerical range described above
- Comparative Example 3 in which the first inorganic particle aggregate is not used and does not satisfy the above-mentioned numerical range
- Comparative Example 4 in which inorganic particle aggregates were not used and did not satisfy the above-mentioned particle range, was confirmed that light condensing occurred or light spreading occurred.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Organic Chemistry (AREA)
- Nonlinear Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Optical Elements Other Than Lenses (AREA)
- Laminated Bodies (AREA)
Abstract
본 발명은 광투과성 기재; 및 바인더 수지와 상기 바인더 수지에 분산된 무기 입자를 포함하는 하드 코팅층;을 포함하고, 상기 입자는, 평균 입경이 1 내지 2㎛인 제 1 무기 입자 응집체; 평균 입경이 3 내지 5㎛인 제2 무기 입자 응집체; 및 평균 입경이 1 내지 10㎛인 1차 입자 형태의 유기 입자를 포함하는 눈부심 방지 필름, 이를 포함한 편광판 및 디스플레이 장치에 관한 것이다.
Description
관련 출원(들)과의 상호 인용
본 출원은 2019년 11월 26일자 한국 특허 출원 제10-2019-0153705호 및 2020년 11월 23일자 한국 특허 출원 제10-2020-0157960호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 눈부심 방지 필름, 편광판 및 이를 포함하는 디스플레이 장치에 관한 것이다.
평판 디스플레이 기술이 대면적화, 고해상도 쪽으로 발전하면서 적용 제품이 TV, 모니터, 모바일 등 가정용 및 사무실 용에서 옥외 광고판, 전광판 등 대면적 디스플레이로 발전하고 있다. LCD나 PDP, OLED, 후사 투영(Rear-projection) TV 등의 평판 디스플레이(FPD; Flat Panel Display)는 자연광 등의 외부 빛에 노출될 경우, 표면 반사광으로 인하여 이용자의 눈에 피로감을 주거나 두통을 유발하기도 하며, 디스플레이 내부에서 만들어지는 이미지가 선명한 상으로서 인식되지 못하는 문제를 안고 있다.
이러한 단점을 해결하기 위해 디스플레이 표면에 요철을 형성하여 외부의 광을 표면에서 산란시키거나, 코팅막을 형성하는 수지와 입자 간의 굴절률을 이용하여 내부 산란을 유도하기 위한 눈부심 방지 필름(Anti-Glare Film)을 적용하게 된다. 이와 같은 목적으로 표시 장치 등의 표면에 적용되는 종래의 눈부심 방지 필름은 외부광(예를 들어, 램프 등)에 의해 필름에 외부광의 상이 맺히거나 빛퍼짐이 발생하는 문제점이 있다. 이로 인해, 눈부심 방지 효과뿐 아니라, 외부광에 의해 표시 장치에 상이 맺히거나 빛퍼짐이 발생하는 것을 방지하는 눈부심 방지 필름이 요구되는 실정이다.
본 발명은 우수한 눈부심 방지 특성을 나타내면서도, 스파클링 (sparkling) 불량, 레인보우 발생, 및 램프의 상 맺힘과 빛 퍼짐을 방지하고, 내스크래치성 및 내오염성 등의 물리적 특성 또한 우수한 눈부심 방지 필름을 제공하기 위한 것이다.
또한, 본 발명은 우수한 눈부심 방지 특성을 나타내면서도, 스파클링 불량, 레인보우 발생, 및 램프의 상 맺힘과 빛 퍼짐을 방지하고, 내스크래치성 및 내오염성 등의 물리적 특성 또한 우수한 편광판 및 디스플레이 장치를 제공하기 위한 것이다.
본 명세서에서는, 광투과성 기재; 및 바인더 수지와 상기 바인더 수지에 분산된 입자를 포함하는 하드 코팅층;을 포함하고, 상기 입자는, 평균 입경이 1 내지 2 ㎛인 제 1 무기 입자 응집체; 평균 입경이 3 내지 5 ㎛인 제2 무기 입자 응집체; 및 평균 입경이 1 내지 10 ㎛인 1차 입자 형태의 유기 입자를 포함하는 눈부심 방지 필름이 제공될 수 있다.
또한, 본 명세서에서는, 상기 눈부심 방지 필름을 포함하는 편광판이 제공된다.
또한, 본 명세서에서는, 상기 눈부심 방지 필름을 포함하는 디스플레이 장치가 제공된다.
이하 발명의 구체적인 구현예에 따른 눈부심 방지 필름, 이를 포함하는 편광판 및 디스플레이 장치에 관하여 보다 상세하게 설명하기로 한다.
본 명세서에서, 제1 및 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, (메타)아크릴레이트는[(Meth)acrylate]은 아크릴레이트(acrylate) 및 메타크릴레이트(Methacrylate) 양쪽 모두를 포함하는 의미이다.
또한, 광경화성 수지는 빛의 조사에 의해, 예를 들어 가시 광선 또는 자외선의 조사에 의해 중합된 고분자 수지를 통칭한다.
또한, (공)중합체는 공중합체(co-polymer) 및 단독 중합체(homo-polymer) 양쪽 모두를 포함하는 의미이다.
또한, 무기 입자 응집체는 1차 입자 형태의 무기 입자 2개 이상 응집된 2차 또는 3차 입자를 의미한다.
발명의 일 구현예에 따르면, 광투과성 기재; 및 바인더 수지와 상기 바인더 수지에 분산된 무기 입자를 포함하는 하드 코팅층;을 포함하고, 상기 입자는, 평균 입경이 1 내지 2㎛인 제 1 무기 입자 응집체; 평균 입경이 3 내지 5㎛인 제2 무기 입자 응집체; 및 평균 입경이 1 내지 10㎛인 1차 입자 형태의 유기 입자를 포함하는 눈부심 방지 필름이 제공될 수 있다.
본 발명자들은 광투과성 기재와 하드 코팅층을 포함하는 눈부심 방지 필름이 상기 하드 코팅층에 평균 입경이 1 내지 2 ㎛인 제 1 무기 입자 응집체, 평균 입경이 3 내지 5 ㎛인 제2 무기 입자 응집체, 및 평균 입경이 1 내지 10 ㎛인 1차 입자 형태의 유기 입자를 포함하는 경우, 우수한 눈부심 방지 특성을 나타내면서도, 스파클링 불량을 방지하고, 레인보우 발생도 방지하고, 램프의 상 맺힘과 빛 퍼짐 또한 방지하여 시감성이 현저히 우수하다는 점을 확인하고 본 발명을 완성하였다.
구체적으로, 눈부심 방지 필름의 경우 눈부심 방지 특징 외에도 외부광에 의한 산란 시감이 우수하여야 하는데, 상기 일 구현예에 따른 눈부심 방지 필름은 외부광, 예를 들어 램프를 비추었을 때 램프 상이 맺히지 않아 램프의 상이 또렷하게 시인되지 않으면서, 전체 빛 퍼짐이 적어 램프의 잔상 눈에 잘 시인되지 않는 시감을 형성할 수 있다.
상기 눈부심 방지 필름에 포함되는 하드 코팅층은 바인더 수지와 상기 바인더 수지에 분산된 입자를 포함한다. 또한, 상기 하드 코팅층에 포함되는 입자는 3종 이상일 수 있으며, 구체적으로 평균 입경이 1 내지 2㎛인 제 1 무기 입자 응집체, 평균 입경이 3 내지 5㎛인 제2 무기 입자 응집체, 및 평균 입경이 1 내지 10㎛인 1차 입자 형태의 유기 입자일 수 있다.
특히, 상기 하드 코팅층은 평균 입경이 상이한 2종의 무기 입자 응집체를 포함할 수 있으며, 구체적으로 상기 평균 입경이 1 내지 2㎛인 제 1 무기 입자 응집체, 및 평균 입경이 3 내지 5㎛인 제2 무기 입자 응집체를 포함할 수 있다. 이러한 제1 및 제2 무기 입자 응집체로 인해 하드 코팅층의 표면에 미세 요철 형상이 형성될 수 있다. 구체적으로, 하드 코팅층과 광투과성 기재의 계면에 대향하는 면, 즉, 하드 코팅층에서 광투과성 기재와 접하지 않는 면의 표면에 미세 요철 형상이 형성될 수 있다.
종래에는 1차 입자 형태의 개개의 유기 또는 무기 입자가 하드 코팅층의 표면을 돌출시켜어 요철이 형성되었다. 그러나, 상기 하드 코팅층에 포함되는 제1 및 제2 무기 입자 응집체는 1차 입자 형태의 제1 및 제2 무기 입자 복수개가 각각 응집되어 형성된 2차 입자 형태를 가진 것으로, 특히, 상기 제1 및 제2 무기 입자가 면내에서 하드 코팅층과 수평 또는 수직하는 방향으로 응집되어 각각 제1 및 제2 무기 입자 응집체를 형성함으로 인해, 상기 제1 및 제2 무기 입자 응집체가 하드 코팅층의 표면에서 하나의 볼록부(凸部)가 되어, 하드 코팅층 표면의 미세 요철 형상을 형성할 수 있다. 상기 하드 코팅층 표면에 상술한 미세 요철이 형성됨으로 인하여, 우수한 눈부심 방지 특성을 나타내면서도, 스파클링 불량, 램프의 상 맺힘과 빛 퍼짐을 방지할 수 있다.
또한, 상기 눈부심 방지 필름은 하드 코팅층에 평균 입경이 상이한 2종의 무기 입자 응집체, 구체적으로 상기 평균 입경이 1 내지 2㎛인 제 1 무기 입자 응집체, 및 평균 입경이 3 내지 5㎛인 제2 무기 입자 응집체를 포함하여 우수한 방현 시감을 구현할 수 있다. 상기 하드 코팅층이 평균 입경이 상대적으로 작은 제1 무기 입자 응집체만을 포함하는 경우 램프 상이 맺혀 눈부심을 유발할 수 있고, 평균 입경이 상대적으로 큰 제2 무기 입자 응집체만을 포함하는 경우 램프 상은 맺히지 않으나 빛 퍼짐 정도가 커 램프가 뿌옇게 시인되어 화면의 시인성이 좋지 않을 수 있다.
상기 제1 무기 입자 응집체는 평균 입경이 1 내지 2 ㎛, 1.1 내지 1.9 ㎛, 또는 1.2 내지 1.8 ㎛일 수 있다. 또한, 상기 제2 무기 입자 응집체는 평균 입경이 3 내지 5 ㎛, 3.1 내지 4.8 ㎛, 또는 3.2내지 4.5 ㎛일 수 있다.
상기 제 1 무기 입자 응집체에 대한 제2 무기 입자 응집체의 평균 입경 비율은 1.5 내지 4배, 2 내지 3.5 배 또는 2 내지 3 배일 수 있다. 상기 입경 비율이 1.5배 미만이면 표면 요철의 크기가 작아져 램프 상이 화면에 맺혀 눈부심을 유발할 수 있고, 4배 초과하면 빛 퍼짐 정도가 커 램프가 뿌옇게 시인되어 화면의 시인성이 좋지 않을 수 있으며 스파클링 불량이 발생할 수 있다.
상술한 바와 같이, 상기 제1 무기 입자 응집체는 1차 입자 형태의 제1 무기 입자 복수개가 응집되어 2차 입자 형태를 갖는 것일 수 있다. 구체적으로, 상기 제1 무기 입자 5개 이상, 10개 이상, 30개 이상, 또는 30 내지 50개가 응집되어 제1 무기 입자 응집체를 형성할 수 있으며, 상기 제1 무기 입자가 포도 송이 모양 등으로 응집될 수 있다. 또한, 상기 1차 입자 형태의 제 1 무기 입자는 평균 입경이 50nm 이하, 5 내지 45nm, 또는 10 내지 40nm일 수 있다.
또한, 상기 제2 무기 입자 응집체는 1차 입자 형태의 제2 무기 입자 복수개가 응집되어 2차 입자 형태를 갖는 것일 수 있다. 구체적으로, 상기 제2 무기 입자 5개 이상, 10개 이상, 30개 이상, 또는 30 내지 50개가 응집되어 제2 무기 입자 응집체를 형성할 수 있으며, 상기 제2 무기 입자가 포도 송이 모양 등으로 응집될 수 있다. 또한, 상기 1차 입자 형태의 제2 무기 입자는 평균 입경이 50nm 이하, 5 내지 45nm, 또는 10 내지 40nm일 수 있다.
상기 제1 무기 입자 응집체 및 제2 무기 입자 응집체의 중량비는 1: 0.1 내지 5, 1: 0.15 내지 4, 또는 1:0.2 내지 3일 수 있다. 상기 제1 무기 입자 응집체에 비해 제2 무기 입자 응집체의 함량이 지나치게 적으면 표면 요철의 크기가 작아 램프 상이 맺혀 눈부심을 유발할 수 있으며, 상기 제1 무기 입자 응집체에 비해 제2 무기 입자 응집체의 함량이 지나치게 많으면 빛 퍼짐 정도가 커 램프가 뿌옇게 시인되어 화면의 시인성이 좋지 않을 수 있다.
상기 제1 무기 입자 응집체 및 제2 무기 입자 응집체의 구체적인 종류는 이로써 한정되는 것은 아니나, 예를 들어 산화규소, 이산화티탄, 산화인듐, 산화주석, 산화지르코늄, 산화아연 및 폴리실세스퀴옥산 입자(구체적으로, 케이지 구조의 실세스퀴옥산 입자)로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 하드 코팅층은 상기 평균 입경이 1 내지 10 ㎛인 1차 입자 형태의 유기 입자를 포함할 수 있다. 상기 1차 입자 형태의 유기 입자는 500 내지 600nm의 파장 기준 1.480 내지 1.620, 1.490 내지 1.610, 또는 1.500 내지 1.600의 굴절률을 가질 수 있다. 상기 하드 코팅층에 상술한 바와 같이 높은 굴절률을 갖는 유기 입자를 포함함으로 인해, 우수한 눈부심 방지 특성을 나타내면서도 스파클링 불량, 패널 내부에서 발생하는 무라의 시인을 방지할 수 있다.
상기 1차 입자 형태의 유기 입자는 평균 입경이 1 내지 10 ㎛, 1.5 내지 8 ㎛, 2 내지 6㎛일 수 있다. 상기 1차 입자 형태의 유기 입자의 평균 입경이 지나치게 크면 입자에 의한 빛의 굴절에 의해 스파클링 불량이 심해지는 문제가 발생할 수 있고, 지나치게 작으면 입자의 분산성이 저하되어 입자 뭉침에 의한 외관 불량이 나타나는 문제점이 발생할 수 있다.
상기 1차 입자 형태의 유기 입자는 하드 코팅층 내에서 상기 바인더 수지와의 굴절률 차이를 이용해 눈부심 방지 필름의 헤이즈를 특정 범위로 구현하여 우수한 시인성을 나타내면서도 스파클링 불량, 레인보우 발생, 램프의 상 맺힘과 빛 퍼짐을 방지할 수 있다. 구체적으로, 상기 1차 입자 형태의 유기 입자와 바인더 수지의 굴절률 차이는 0.05 내지 0.1, 0.06 내지 0.09 내지 0.07 내지 0.08일 수 있다. 상기 유기 입자와 바인더 수지의 굴절률 차이가 지나치게 적으면 적절한 헤이즈를 구현하기 위해 다량의 입자가 포함되어야 하므로 상선명도가 낮아지는 문제점이 발생할 수 있고, 유기 입자와 바인더 수지의 굴절률 차이가 지나치게 크면 백탁도가 심해지는 문제점이 발생할 수 있다. 상기 굴절률의 기준은 500 내지 600nm의 파장일 수 있다.
상기 제1 무기 입자 응집체 및 제2 무기 입자 응집체 총 중량 100중량부에 대비, 상기 1차 입자 형태의 유기 입자의 함량은 30 내지 90 중량부, 40 내지 85 중량부, 또는 40 내지 80 중량부일 수 있다. 상기 유기 입자의 함량이 지나치게 적으면 적정 두께에서 충분한 내부 헤이즈를 구현하기 어렵고, 유기 입자의 함량이 지나치게 많으면 적정 두께에서 내부 헤이즈가 높아져 블랙감이 저하되고 콘트라스트 비가 저하될 수 있는 문제점이 발생할 수 있다.
상기 1차 입자 형태의 유기 입자의 구체적인 종류는 이로써 한정되는 것은 아니나, 예를 들어 폴리스티렌, 폴리메틸메타크릴레이트, 폴리메틸아크릴레이트, 폴리아크릴레이트, 폴리아크릴레이트-co-스티렌, 폴리메틸아크릴레이트-co-스티렌, 폴리메틸메타크릴레이트-co-스티렌, 폴리카보네이트, 폴리비닐클로라이드, 폴리부틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리아마이드계, 폴리이미드계, 폴리술폰, 폴리페닐렌옥사이드, 폴리아세탈, 에폭시레진, 페놀레진, 실리콘 수지, 멜라민 수지, 벤조구아민, 폴리디비닐벤젠, 폴리디비닐벤젠-co-스티렌, 폴리디비닐벤젠-co-아크릴레이트, 폴리디알릴프탈레이트 및 트리알릴이소시아눌레이트폴리머 중에서 선택된 하나의 단일물 또는 이들의 2 이상의 코폴리머(copolymer)인 것을 사용할 수 있다.
상기 제1 무기 입자 응집체, 제2 무기 입자 응집체, 및 1차 입자 형태의 유기 입자는 구형, 타원 구형, 막대형 또는 부정형 등의 입자 형태를 가질 수 있다. 막대형이나 무정형인 경우, 가장 큰 차원의 길이가 상기 범위의 입경 등을 만족할 수 있다.
또한, 상기 제1 무기 입자 응집체, 제2 무기 입자 응집체, 및 1차 입자 형태의 유기 입자의 평균 입경은, 예를 들면 동적 광 산란법, 레이저 회절법, 원심 침강법, FFF(Field Flow Fractionation)법, 세공(細孔) 전기 저항법 등에 의해 측정할 수가 있다.
상기 눈부심 방지 필름은 하기 식 1의 반사 강도 비율(R)이 0.6 내지 1 %, 0.6 내지 0.9 %, 또는 0.62 내지 0.8%일 수 있다.
[식 1]
반사 강도 비율(R) = (R1/R2) × 100
상기 식 1에서,
R1은 상기 하드 코팅층에 대해 45°의 입사각에서 빛을 조사한 후, 입사각의 정반사에 해당하는 45°에서 측정된 반사 강도 값이고,
R2는 상기 광투과성 기재에 대해 45°의 입사각에서 빛을 조사한 후, 입사각의 정반사에 해당하는 45°에서 측정된 반사 강도 값이다.
상기 식 1의 반사 강도 비율은 상기 광투과성 기재에 대해 측정된 반사 강도 값(R2)에 대한, 상기 하드 코팅층에 대해 측정된 반사 강도 값(R1)을 백분율로 계산한 것이다.
측정 대상인 하드 코팅층 또는 광투과성 기재에 대해 면의 법선으로부터 45°의 각도에서 가시광도를 조사하면, 입사각의 정반사에 해당하는 45°에서 일부 광이 확산되는데, 이때, 입사각의 정반사 방향인 45°에서 측정된 광의 강도를 측정 대상에 따라 각각 R1 반사 강도 및 R2 반사 강도로 정의한다. 또한, 이면 반사를 억제하고, 실 사용시의 조건에 맞추기 위하여, 측정 대상의 이면에는 비투광성 기재를 첩부한다.
상기 비투광성 기재는 광투과도가 대략 0 %인 가시광선 등의 광이 전혀 투과되지 않는 기재로, 예를 들어, 흑(黑)아크릴판, 흑마분지, 또는 흑색 점착제가 도포된 필름일 수 있다. 상기 흑색 점착제가 도포된 필름으로는, 예들 들어, 흑색 점착제가 도포된 폴리에틸렌 테레프탈레이트 필름일 수 있다.
보다 구체적으로, 상기 반사 강도(R1)를 측정하기 위해서, 먼저, 하드 코팅층에 대향하도록 광투과성 기재의 일면에 요철이나 휨이 없는 평탄한 상기 비투광성 기재를 첩부할 수 있다. 이후, 하드 코팅층 면에 대하여 면의 법선으로부터 45°의 각도에서 광속을 입사하고, 입사각의 정반사에 해당하는 45°에서 반사 강도(R1)를 측정할 수 있다.
또한, 상기 반사 강도(R2)를 측정하기 위해서, 하드 코팅층이 형성되지 않는 광투과성 기재만을 준비하고, 상기 광투과성 기재의 일면에 비투광성 기재를 첩부한다. 이후, 상기 비투광성 기재가 첩부되지 않은 광투과성 기재의 일면에 대하여, 면의 법선으로부터 45°의 각도에서 광속을 입사하고, 입사각의 정반사에 해당하는 45°에서 반사 강도(R2)를 측정할 수 있다. 이후, 측정된 반사 강도 R1 및 R2를 상기 식 1에 대입하고 계산하여 반사 강도 비율(R)을 계산할 수 있다.
상기 반사 강도 비율(R)이 0.6 % 미만이면 램프를 비추었을 때 램프 상이 맺히지는 않으나 빛 퍼짐 정도가 커 램프가 뿌옇게 시인되어 화면의 시인성이 좋지 않을 수 있고, 1.0 % 초과하면 램프를 비추었을 때 램프 상이 맺혀 눈부심을 유발할 수 있다.
상기 눈부심 방지 필름이 갖는 반사 강도 비율(R)은 상기 하드 코팅층에 포함되는 평균 입경이 상이한 2종의 무기 입자 응집체와 1차 입자 형태의 유기 입자 각각의 평균 입경, 이들 간의 평균 입경 차이, 상기 무기/유기 입자가 하드 코팅층 내에서 차지하는 부피 분율, 하드 코팅층에 포함되는 유기 입자와 바인더 수지의 굴절률 차이, 하드코팅층에 형성된 요철들의 평균 높이, 하드코팅층에 형성된 요철들의 높이 편차 등으로 기인한 것일 수 있다.
또한, 상기 반사 강도(R1)은 300 내지 700일 수 있다. 또한, 상기 반사 강도(R2)는 50000 내지 70000일 수 있다.
또한, 상기 하드 코팅층에 대향하도록 광투과성 기재의 일면에 요철이나 휨이 없는 평탄한 상기 비투광성 기재를 첩부하고, 상기 하드 코팅층에 대해 면의 법선으로부터 45°의 각도에서 광속을 입사하였을 때, 입사각의 정반사에 해당하는 45°외의 다른 각도에서도 상기 입사각이 반사된 확산광이 나올 수 있다.
이때, 반사 강도 R1의 1/10배의 반사 강도가 측정되는 확산광의 각도는 30 내지 35° 및 55 내지 60°일 수 있다. 구체적으로, 상기 하드 코팅층에 대해 45°의 입사각에서 빛을 조사한 후, 30 내지 35° 및 55 내지 60°의 확산광에서 측정된 반사 강도는 상기 반사 강도 R1의 1/10배일 수 있다. 상기 반사 강도 R1의 1/10배의 반사 강도가, 상술한 확산광의 범위에서 나타나지 않는 경우, 빛 퍼짐 정도가 커 램프를 비추었을 때 램프가 뿌옇게 시인되어 화면의 시인성이 좋지 않거나, 램프 상이 맺혀 눈부심을 유발할 수 있다.
또한, 반사 강도 R1의 1/100배의 반사 강도가 측정되는 확산광의 각도는 20 내지 25° 및 65 내지 70°일 수 있다. 구체적으로, 상기 하드 코팅층에 대해 45°의 입사각에서 빛을 조사한 후, 20 내지 25° 및 65 내지 70°의 확산광에서 측정된 반사 강도는 상기 반사 강도 R1의 1/100배일 수 있다. 상기 반사 강도 R1의 1/10배의 반사 강도가, 상술한 확산광의 범위에서 나타나지 않는 경우, 빛 퍼짐 정도가 커 램프를 비추었을 때 램프가 뿌옇게 시인되어 화면의 시인성이 좋지 않거나, 램프 상이 맺혀 눈부심을 유발할 수 있다.
한편, 일반적으로 헤이즈 값이 높을수록 외부광의 확산 정도가 커져, 눈부심 방지 효과가 탁월한 반면, 표면의 산란에 의한 이미지의 왜곡 현상과 내부 산란에 의한 백화 현상으로 명암비가 떨어지는 문제점이 나타난다. 이에 반해, 상기 눈부심 방지 필름은 전체 헤이즈가 20 내지 40%, 23 내지 35% 또는 25 내지 30%이고, 내부 헤이즈가 10 내지 20%, 12 내지 19%, 또는 13 내지 18%이고, 외부 헤이즈가 10 내지 30%, 12 내지 25%, 또는 14 내지 20%를 나타내며, 이로 인해, 우수한 시인성을 나타내면서도 스파클링 불량, 레인보우 발생, 램프의 상 맺힘과 빛 퍼짐을 방지할 수 있다.
또한, 상기 눈부심 방지 필름은 내부 헤이즈에 대한 외부 헤이즈의 비율이 0.6 내지 2.0, 0.8 내지 1.9, 또는 1.0 내지 1.8일 수 있다. 상기 눈부심 방지 필름이 갖는 내부 헤이즈에 대한 외부 헤이즈의 비율은 상기 하드 코팅층에 포함되는 입경이 상이한 2종의 무기 입자 응집체와 1차 입자 형태의 유기 입자 각각의 평균 입경, 이들 간의 평균 입경 차이, 상기 무기/유기 입자가 하드 코팅층 내에서 차지하는 부피 분율, 하드 코팅층에 포함되는 유기 입자와 바인더 수지의 굴절률 차이 등으로 기인한 것일 수 있다.
상기 내부 헤이즈에 대한 외부 헤이즈의 비율이 0.6 미만이면 방현 시감이 부족하여 눈부심 방지 효과가 저하되며, 커버 글라스 하부에 상기 눈부심 방지 필름이 위치하는 경우 하드 코팅층에 형성된 외부 요철에 의한 ANR(Anti-Newton Ring) 효과가 저하되어 간섭무늬가 발생하여 광학특성이 저하될 수 있고, 2.0 초과하면 외부 헤이즈가 높아져 외부 요철에 의한 스파클링 현상이 심해지고 상선명도가 저하될 수 있다.
상기 눈부심 방지 필름은 상기 반사 강도 비율(R)에 대한 외부 헤이즈의 비율이 15 내지 30, 20 내지 29, 또는 21 내지 28일 수 있다. 상기 반사 강도 비율(R)에 대한 외부 헤이즈의 비율은 상기 하드 코팅층에 포함되는 입경이 상이한 2종의 무기 입자 응집체와 1차 입자 형태의 유기 입자 각각의 평균 입경, 이들 간의 평균 입경 차이, 상기 무기/유기 입자가 하드 코팅층 내에서 차지하는 부피 분율, 하드 코팅층에 포함되는 유기 입자와 바인더 수지의 굴절률 차이 등으로 기인한 것일 수 있다.
상기 반사 강도 비율(R)에 대한 외부 헤이즈의 비율이 15 미만이면 빛 반사가 커져 눈부심 방지 효과가 저하되고, 커버 글라스 하부에 상기 눈부심 방지 필름이 위치하는 경우 하드 코팅층에 형성된 외부 요철에 의한 ANR(Anti-Newton Ring) 효과가 저하되어 간섭무늬가 발생하여 광학특성이 저하되는 문제점이 발생하고, 30 초과하면 외부 광에 대한 빛 퍼짐이 심해 화면의 시인성이 저하되고, 외부 요철에 의한 스파클링 현상이 심해지고, 상선명도가 저하될 수 있다.
상기 눈부심 방지 필름에 포함되는 하드코팅층의 바인더 수지는, 비닐계 단량체 또는 (메트)아크릴레이트계 단량체의 (공)중합체를 포함할 수 있다.
상기 비닐계 단량체 또는 (메트)아크릴레이트계 단량체는 (메트)아크릴레이트 또는 비닐기를 1 이상, 또는 2 이상, 또는 3 이상 포함하는 단량체 또는 올리고머를 포함할 수 있다.
상기 (메트)아크릴레이트를 포함한 단량체 또는 올리고머의 구체적인 예로는, 펜타에리스리톨 트리(메트)아크릴레이트, 펜타에리스리톨 테트라(메트)아크릴레이트, 디펜타에리스리톨 펜타(메트)아크릴레이트, 디펜타에리스리톨 헥사(메트)아크릴레이트, 트리펜타에리스리톨 헵타(메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 트리메틸올프로판 트리(메트)아크릴레이트, 트리메틸올프로판 폴리에톡시 트리(메트)아크릴레이트, 트리메틸롤프로판트리메타크릴레이트, 에틸렌글리콜 디메타크릴레이트, 부탄디올 디메타크릴레이트, 헥사에틸 메타크릴레이트, 부틸 메타크릴레이트 또는 이들의 2종 이상의 혼합물이나, 또는 우레탄 변성 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머, 또는 이들의 2종 이상의 혼합물을 들 수 있다. 이때 상기 올리고머의 중량평균분자량은 1,000 내지 10,000일 수 있다.
상기 비닐기를 포함하는 단량체 또는 올리고머의 구체적인 예로는, 디비닐벤젠, 스티렌 또는 파라메틸스티렌을 들 수 있다.
또한, 상기 바인더 수지에 포함되는 중합체 또는 공중합체는 우레탄 아크릴레이트 올리고머, 에폭시 아크릴레이트 올리고머, 폴리에스터 아크릴레이트, 및 폴리에테르 아크릴레이트로 이루어진 반응성 아크릴레이트 올리고머 군; 및 디펜타에리스리톨 헥사아크릴레이트, 디펜타에리스리톨 하이드록시 펜타아크릴레이트, 펜타에리스리톨 테트라아크릴레이트, 펜타에리스리톨 트리아크릴레이트, 트리메틸렌 프로필 트리아크릴레이트, 프로폭시레이티드 글리세롤 트리아크릴레이트, 트리메틸프로판 에톡시 트리아크릴레이트, 1,6-헥산디올디아크릴레이트, 프로폭시레이티드 글리세로 트리아크릴레이트, 트리프로필렌 글리콜 디아크릴레이트, 및 에틸렌글리콜 디아크릴레이트로 이루어진 다관능성 아크릴레이트 단량체 군에서 선택되는 1 종 이상의 단량체로부터 유래한 부분을 더 포함할 수 도 있다.
상기 하드 코팅층은 상기 바인더 수지 100 중량부 대비 상기 1차 입자 형태의 유기 입자 2 내지 10 중량부, 3 내지 8 중량부, 또는 4 내지 7 중량부로 포함될 수 있다. 상기 바인더 수지 100 중량부 대비 상기 유기 입자의 함량이 2 중량부 미만이면 내부 산란에 의한 헤이즈 값이 충분히 구현되지 않을 수 있고, 10 중량부 초과하면 내부 산란에 의한 헤이즈 값이 너무 커져 콘트라스트 비가 저하될 수 있다.
상기 하드 코팅층의 두께는 1 내지 10㎛ 또는 2 내지 8㎛일 수 있다. 상기 하드 코팅층의 두께가 1㎛ 미만이면 원하는 딱딱함(경도)을 얻는 것이 곤란하게 되며, 10㎛ 초과하면 하드 코팅층 형성 시 수지를 경화시키는 과정에서 컬(curl)될 수 있다.
상기 하드 코팅층의 두께는 눈부심 방지 필름을 절단한 단면을 주사 전자 현미경(SEM; scanning electron microscope) 관찰하고, 하드 코팅층의 바인더부의 두께를 측정함으로써 구할 수 있다. 한편, 두께 측정기(TESA 주식회사 제품)를 이용해서 측정한 무기 입자를 포함하는 하드 코팅층 전체의 두께로부터, 하드 코팅층의 산술 평균 거칠음(roughness) Ra를 빼는 수법에 의해 구한 두께가 상기 SEM 관찰에 의해 구한 바인더부의 두께와 거의 일치하기 때문에, 이 수법을 이용할 수도 있다.
상기 광투과성 기재는 투명성을 가지는 플라스틱 필름을 이용할 수 있다. 예를 들어, 트리아세틸 셀룰로오스(TAC), 폴리에스테르(TPEE), 폴리에틸렌 테레프탈레이트(PET), 폴리이미드(PI), 폴리아미드(PA), 아라미드, 폴리에틸렌(PE), 폴리아크릴레이트(PAR), 폴리에테르 술폰, 폴리술폰, 디아세틸 셀룰로오스, 폴리프로필렌(PP), 폴리 염화 비닐, 아크릴 수지(PMMA), 폴리카보네이트(PC), 에폭시 수지, 요소 수지, 우레탄 수지, 멜라민 수지 등일 수 있다. 특히, 종래에는 눈부심 방지 필름은 트리아세틸 셀룰로오스를 기재로 사용하는 경우가 많았으나, 상기 트리아세틸 셀룰로오스 필름이 수분에 취약하여 특히, 옥외 디스플레이에 사용되는 경우 내구성이 나쁜 단점이 있다. 이에, 내투습성이 뛰어난 폴리에틸렌 테레프탈레이트 필름을 기재로 이용하고 있으나, 폴리에틸렌 테레프탈레이트의 복굴절로 인해 레인보우 불량을 해결해야 하는 문제점이 있다.
그러나, 상기 일 구현예에 따른 눈부심 방지 필름에 포함된 광투과성 기재는 파장 400㎚ 내지 800㎚에서 측정되는 면내 위상차(Re)가 500 mm 이하이거나, 5000 nm 이상일 수 있다. 구체적으로, 상기 광투과성 기재는 파장 400㎚ 내지 800㎚에서 측정되는 면내 위상차(Re)가 500 mm 이하, 450 nm 이하, 10 내지 400nm이거나, 5000 nm 이상, 5100 nm 이상, 또는 5200 내지 8000 nm일 수 있다. 보다 구체적으로, 상술한 면내 위상차를 만족하는 폴리에틸렌 테레프탈레이트 필름일 수 있다. 이러한 필름을 광투과성 기재로 사용함으로 인해 가시광선의 간섭에 의한 레인보우 현상이 방지될 수 있다.
면내 위상차(Re)는 광투과성 기재의 두께를 d, 면내의 지상축 방향의 굴절률을 n
x, 면내의 진상축 방향의 굴절률을 n
y라고 정의할 경우에, 하기 식으로 정의될 수 있다.
Re = (n
x-n
y)*d
또한, 상기 위상차 값은 절대값으로 양수로 정의할 수 있다
상기 광투과성 기재의 두께는 생산성 등을 고려하여 10 내지 300 ㎛, 30 내지 250 ㎛ 또는 40 내지 200 ㎛일 수 있으나, 이에 한정하는 것은 아니다.
발명의 다른 구현예에 따르면, 바인더 수지와 상기 바인더 수지에 분산된 입자들을 포함하고, 상기 입자는, 평균 입경이 1 내지 2 ㎛인 제 1 무기 입자 응집체; 평균 입경이 3 내지 5 ㎛인 제2 무기 입자 응집체; 및 평균 입경이 1 내지 10 ㎛인 1차 입자 형태의 유기 입자를 포함하는 눈부심 방지 필름의 하드 코팅층 형성용 조성물이 제공될 수 있다.
상기 하드 코팅층 형성용 조성물에 포함된 바인더 수지 및 입자 등은 상술한 눈부심 방지 필름에서 설명한 바와 같다.
상기 하드 코팅층 형성용 조성물을 상기 광투과성 기재 상에 도포, 건조 및 경화하여 상기 눈부심 방지 필름에 포함된 하드 코팅층을 형성할 수 있다.
또한, 상기 하드 코팅층 형성용 조성물에 포함된 상기 제 1 무기 입자 응집체, 제2 무기 입자 응집체 및 1차 입자 형태의 유기 입자는 건조 또는 경화되는 과정에서 추가 응집이 발생하지 않아, 최종 형성된 하드코팅층 내에서 상기 제 1 무기 입자 응집체, 제2 무기 입자 응집체 및 1차 입자 형태의 유기 입자 자체로 존재할 수 있다.
또한, 상기 하드 코팅층 형성용 조성물은 광개시제를 더 포함할 수 있다. 이에 따라, 상술한 하드 코팅층 형성용 조성물로부터 제조되는 하드 코팅층에는 상기 광중합 개시제가 잔류할 수 있다.
상기 광중합 개시제로는 하드 코팅층 형성용 조성물에 사용될 수 있는 것으로 알려진 화합물이면 크게 제한 없이 사용 가능하며, 구체적으로 벤조 페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2종 이상의 혼합물을 사용할 수 있다.
상기 바인더 수지 100중량부에 대하여, 상기 광중합 개시제는 1 내지 10 중량부, 2 내지 9 중량부, 또는 3 내지 8 중량부의 함량으로 사용될 수 있다. 상기 광중합 개시제의 양이 너무 작으면, 상기 하드 코팅층 형성용 조성물의 광경화 단계에서 미경화되어 잔류하는 물질이 발행할 수 있다. 상기 광중합 개시제의 양이 너무 많으면, 미반응 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 필름의 기계적 물성이 저하될 수 있다.
또한, 상기 하드 코팅층 형성용 조성물을 유기 용매를 더 포함할 수 있다. 상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코올류, 아세테이트류, 에테르류, 벤젠 유도체류 또는 이들의 2종 이상의 혼합물을 들 수 있다.
이러한 유기 용매의 구체적인 예로는, 메틸에틸케톤, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, n-프로판올, i-프로판올, n-부탄올, i-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 톨루엔, 크실렌, 아닐린 등의 벤젠 유도체류; 또는 이들의 2종 이상의 혼합물을 들 수 있다.
상기 유기 용매는 상기 하드 코팅층 형성용 조성물에 포함되는 각 성분들을 혼합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 혼합된 상태로 첨가되면서 상기 하드 코팅층 형성용 조성물에 포함될 수 있다. 상기 하드 코팅층 형성용 조성물 중 유기 용매의 함량이 너무 작으면, 상기 하드 코팅층 형성용 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 충분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 하드 코팅층 형성용 조성물은 포함되는 성분들의 전체 고형분의 농도가 1중량% 내지 50중량%, 또는 2 내지 20중량%가 되도록 유기 용매를 포함할 수 있다.
한편, 상기 하드 코팅층 형성용 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 roll reverse 코팅법, vacuum slot die 코팅법, 2 roll 코팅법 등을 사용할 수 있다.
상기 하드 코팅층 형성용 조성물을 광경화시키는 단계에서는 200 내지 400nm 파장의 자외선 또는 가시 광선을 조사할 수 있고, 조사시 노광량은 100 내지 4,000 mJ/㎠ 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용 되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다. 또한, 상기 하드 코팅층 형성용 조성물을 광경화시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 퍼징 등을 할 수 있다.
발명의 다른 구현예에 따르면, 상기 눈부심 방지 필름을 포함하는 편광판이 제공될 수 있다. 상기 편광판은 편광막과 상기 편광막의 적어도 일면에 형성된 눈부심 방지 필름을 포함할 수 있다.
상기 편광막의 재료 및 제조방법은 특별히 한정하지 않으며, 당 기술분야에 알려져 있는 통상적인 재료 및 제조방법을 사용할 수 있다. 예를 들어, 상기 편광막은 폴리비닐알코올계 편광막일 수 있다.
상기 편광막과 눈부심 방지 필름 사이에는 보호 필름이 구비될 수 있다. 상기 보호 필름의 예가 한정되는 것은 아니며, 예를 들어 COP(cycloolefin polymer)계 필름, 아크릴계 필름, TAC(triacetylcellulose)계 필름, COC(cycloolefin copolymer)계 필름, PNB(polynorbornene)계 필름 및 PET(polyethylene terephtalate)계 필름 중 어느 하나 이상일 수 있다.
상기 보호필름은 상기 눈부심 방지 필름의 제조시 단일 코팅층을 형성하기 위한 기재가 그대로 사용될 수도 있다. 상기 편광막과 상기 눈부심 방지 필름은 수계 접착제 또는 비수계 접착제 등의 접착제에 의하여 합지될 수 있다.
발명의 또 다른 구현예에 따르면, 상술한 눈부심 방지 필름을 포함하는 디스플레이 장치가 제공될 수 있다.
상기 디스플레이 장치의 구체적인 예가 한정되는 것은 아니며, 예를 들어 액정표시장치 (Liquid Crystal Display]), 플라즈마 디스플레이 장치, 유기발광 다이오드 장치(Organic Light Emitting Diodes) 등의 장치일 수 있다.
하나의 일 예로, 상기 디스플레이 장치는 서로 대향하는 1쌍의 편광판; 상기 1쌍의 편광판 사이에 순차적으로 적층된 박막트랜지스터, 컬러필터 및 액정셀; 및 백라이트 유닛을 포함하는 액정디스플레이 장치일 수 있다. 상기 눈부심 방지 필름을 포함하는 디스플레이 장치는, 1쌍의 편광판 중에서 상대적으로 백라이트 유닛과 거리가 먼 편광판의 일면에 눈부심 방지 필름이 위치할 수 있다.
상기 디스플레이 장치에서 상기 눈부심 방지 필름은 디스플레이 패널의 관측자측 또는 백라이트측의 최외각 표면에 구비될 수 있다. 보다 구체적으로, 상기 디스플레이 장치는 노트북용 디스플레이 장치, TV용 디스플레이 장치, 광고용 대면적 디스플레이 장치일 수 있고, 상기 눈부심 방지 필름은 상기 노트북용 디스플레이 장치, TV용 디스플레이 장치, 광고용 대면적 디스플레이 장치의 최외각면에 위치할 수 있다.
본 발명에 따르면, 우수한 눈부심 방지 특성을 나타내면서도, 스파클링 (sparkling) 불량, 레인보우 발생, 및 램프의 상 맺힘과 빛 퍼짐을 방지하고, 내스크래치성 및 내오염성 등의 물리적 특성 또한 우수한 눈부심 방지 필름과, 이를 포함하는 편광판 및 디스플레이 장치가 제공될 수 있다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예 및 비교예: 눈부심 방지 필름의 제조>
(1) 하드 코팅층 형성용 조성물의 제조
(1-1) 제조예 1
바인더 수지로 EB-1290(광경화형 지방족 우레탄 헥사아크릴레이트, SK Entis 제품, 중량평균분자량 1000) 50중량부 및 트리메틸올프로판 트리아크릴레이트 50중량부를 준비하고, 상기 바인더 수지 100중량부를 기준으로, 개시제인 IRG184(이르가큐어 184, 히드록시시클로헥실페닐케톤, 스위스 시바 스페셜티 케미컬 제품) 5중량부, 용매인 톨루엔 50중량부, 용매인 메틸에틸케톤 50중량부, 제1 무기 입자 응집체인 SS-50F(표면 처리 소수성 실리카, 평균 입경 1~2 ㎛, 토소·실리카 주식회사 제품) 5.5중량부, 제2 무기 미립자 응집체인 Acematt 3600(실리카 응집체, 평균 입경 3~4 ㎛, 에보닉 데구사 제조) 2.3중량부, 1차 입자 형태의 유기 입자인 PS 구형입자a(폴리스티렌 구형입자, 평균 입경 2 ㎛, 굴절률 1.595) 4.0중량부를 준비하고, 이들을 혼합하여 제조예 1의 하드 코팅층 형성용 조성물을 제조하였다.
또한, 무기 입자 응집체 및 유기 입자 각각의 평균 입경은 통상적으로 알려진 방법을 통하여 확인할 수 있으며, 예를 들어 전자 현미경 사진(SEM, TEM 등)에서 확인되는 개별 입자의 반경을 측정하여 계산 및 도출하거나, X-ray 산란 실험을 통해 계산된 무기 입자 응집체 또는 유기 입자의 평균 입경일 수 있다.
(1-2) 제조예 2
바인더 수지로 EB-1290(광경화형 지방족 우레탄 헥사아크릴레이트, SK Entis 제품, 중량평균분자량 1000) 50중량부 및 펜타에리트리톨 트리아크릴레이트(SK Entis 제품) 50중량부를 준비하고, 상기 바인더 수지 100중량부를 기준으로, 개시제인 IRG184(이르가큐어 184, 히드록시시클로헥실페닐케톤, 스위스 시바 스페셜티 케미컬 제품) 5중량부, 용매인 톨루엔 50중량부, 용매인 메틸에틸케톤 50중량부, 제1 무기 입자 응집체인 SS-50 (표면 처리 소수성 실리카 응집체, 평균 입경 1~2㎛, 토소·실리카 주식회사 제품) 7.5중량부, 제2 무기 미립자 응집체인 Acematt 3600 1.5중량부, 1차 입자 형태의 유기 입자인 PS 구형입자b(폴리스티렌 구형입자, 평균 입경 1.3 ㎛, 굴절률 1.595) 5.3중량부를 준비하고, 이들을 혼합하여 제조예 2의 하드 코팅층 형성용 조성물을 제조하였다.
(1-3) 제조예 3
제1 무기 입자 응집체인 SS-50F 5.5중량부, 제2 무기 미립자 응집체인 Acematt 3600 2.3중량부, 1차 입자 형태의 유기 입자인 PS 구형입자a 4.0중량부 대신 PS-PMMA 구형입자a(폴리스티렌-폴리메틸 메타크릴레이트 공중합 구형입자, 평균 입경 5 ㎛, 굴절률 1.555) 7.5중량부 및 PS-PMMA 구형입자(폴리스티렌-폴리메틸 메타크릴레이트 공중합 구형입자, 평균 입경 3.5 ㎛, 굴절률 1.515) 5.8중량부를 사용하였다는 점을 제외하고, 제조예 1과 동일한 방법으로 제조예 3의 하드 코팅층 형성용 조성물을 제조하였다.
(1-4) 제조예 4
제1 무기 입자 응집체인 SS-50F 5.5중량부, 제2 무기 미립자 응집체인 Acematt 3600 2.3중량부, 1차 입자 형태의 유기 입자인 PS 구형입자a 4.0중량부 대신 제1 무기 입자 응집체인 SS-50 9.5중량부 및 1차 입자 형태의 유기 입자인 PS 구형입자a 5.0중량부를 사용하였다는 점을 제외하고, 제조예 1과 동일한 방법으로 제조예 4의 하드 코팅층 형성용 조성물을 제조하였다.
(1-5) 제조예 5
펜타에리트리톨 트리아크릴레이트(SK Entis 제품) 50중량부 및 트리메틸올프로판 트리아크릴레이트 50중량부를 준비하고, 상기 바인더 수지 100중량부를 기준으로, 개시제인 IRG184(이르가큐어 184, 히드록시시클로헥실페닐케톤, 스위스 시바 스페셜티 케미컬 제품) 5중량부, 용매인 톨루엔 50중량부, 용매인 메틸에틸케톤 50중량부, 제2 무기 미립자 응집체인 Acematt 3600 10중량부, 및 1차 입자 형태의 유기 입자인 PS 구형입자a 4.5중량부를 준비하고, 이들을 혼합하여 제조예 5의 하드 코팅층 형성용 조성물을 제조하였다.
(1-6) 제조예 6
제2 무기 미립자 응집체인 Acematt 3600 10중량부 및 1차 입자 형태의 유기 입자인 PS 구형입자a 대신 1차 입자 형태의 무기 입자인 T145A(POSS(Silsesquioxane), 평균 입경 5 ㎛, 굴절률 1.42, Toshiba 제품) 4.5중량부 및 PS-PMMA 구형입자b 7중량부를 사용하였다는 점을 제외하고, 제조예 5와 동일한 방법으로 제조예 6의 하드 코팅층 형성용 조성물을 제조하였다.
(1-7) 제조예 7
제2 무기 미립자 응집체인 Acematt 3600 2.3 중량부 대신 SS-50 (표면 처리 소수성 실리카 응집체, 평균 입경 1~2㎛, 토소·실리카 주식회사 제품) 4.5중량부를 사용하였다는 점을 제외하고, 제조예 1과 동일한 방법으로 제조예 7의 하드 코팅층 형성용 조성물을 제조하였다.
(2) 눈부심 방지 필름의 제조
이와 같이 얻어진 제조예 1 내지 7의 하드 코팅층 형성용 조성물을 하기 표1과 같이 광투광성 기재인 트리아세틸 셀룰로오스 (TAC, 두께 60㎛)에 #10 meyer bar로 코팅하고 90℃에서 1분 건조하였다. 이러한 건조물에 150 mJ/㎠의 자외선을 조사하여 하드 코팅층을 형성하고 눈부심 방지 필름을 제조하였다. 이때, 하드 코팅층의 두께는 하기 표 1에 기재하였다.
실시예1 | 실시예2 | 비교예1 | 비교예2 | 비교예3 | 비교예4 | 비교예5 | |
하드 코팅층 형성용 조성물 | 제조예1 | 제조예2 | 제조예3 | 제조예4 | 제조예5 | 제조예6 | 제조예7 |
하드 코팅층 두께(㎛) | 5 | 5 | 4 | 4 | 6 | 7 | 5 |
<
실험예
>
1. 투광도 및 헤이즈 측정
상기 실시예 및 비교예 각각에서 얻어진 눈부심 방지 필름으로부터 4cm × 4cm의 시편을 준비하고, 헤이즈 측정기(HM-150, A 광원, 무라카미社)로 3회 측정하여 평균값을 계산하고, 이를 전체 헤이즈 값으로 산출하였다. 이때, 투광도와 전체 헤이즈는 동시에 측정되며, 투광도는 JIS K 7361 규격, 헤이즈는 JIS K 7136 규격에 의해 측정하였다.
내부 헤이즈 측정 시에는, 측정 대상 광학 필름의 코팅면에 전체 헤이즈가 0인 점착 필름을 붙여 표면의 요철을 평탄하게 만들어준 후, 위 전체 헤이즈와 동일 방법으로 내부 헤이즈를 측정하였다. 외부 헤이즈는 전체 헤이즈와 내부 헤이즈의 측정 값 차이를 계산한 값의 평균 값으로 산출하고, 투광도, 내부 헤이즈 및 외부 헤이즈를 하기 표 2에 나타내었다.
2. 반사 강도 비율 측정
상기 실시예 및 비교예 각각에서 얻어진 눈부심 방지 필름의 하드 코팅층에 대향하도록 광투과성 기재의 일면에 요철이나 휨이 없는 평탄한 흑색 점착제가 도포된 폴리에틸렌 테레프탈레이트 필름을 첩부하여 시편을 준비하였다. 이후, 시편을 고니오미터(GC5000L, 닛폰 전색 공업社)에 설치하고, 시편의 하드 코팅층 면에 대하여 면의 법선으로부터 45°의 각도에서 광속을 입사했다. 광속이 하드 코팅층 면에 입사한 후, 입사각의 정반사에 해당하는 45°에서 반사 강도(R1)를 측정하였다.
또한, 실시예 및 비교예에서 상기 하드 코팅층이 형성되지 않은 광투과성 기재, 구체적으로, 상기 표 1에 기재된 광투과성 기재를 준비했다. 상기 광투과성 기재의 일면에 요철이나 휨이 없는 평탄한 흑색 점착제가 도포된 폴리에틸렌 테레프탈레이트 필름을 첩부하여 시편을 준비하고, 상기 반사 강도(R1)를 측정하는 방법과 동일한 방법으로 반사 강도(R2)를 측정하였다.
측정된 반사 강도 R1 및 R2를 하기 식 1에 대입하여, 반사 강도 비율(R)을 계산하고 그 결과를 하기 표 2에 나타내었다.
[식 1]
반사 강도 비율(R) = (R1/R2) × 100
또한, 반사 강도 R1의 1/10배 및 1/100배의 반사 강도가 측정되는 확산광의 범위를 확인하고, 그 결과를 하기 표 2에 나타내었다.
3. 시감(램프 상 맺힘) 평가
상기 실시예 및 비교예 각각에서 얻어진 눈부심 방지 필름의 하드 코팅층에 대향하도록 광투과성 기재의 일면에 요철이나 휨이 없는 평탄한 흑색 점착제가 도포된 폴리에틸렌 테레프탈레이트 필름을 첩부하여 시편을 준비하였다. 이후, 2열의 램프를 가지는 형광 램프 조명을 광원으로 하여 각각의 눈부심 방지 필름에서의 정반사 방향으로부터 시야를 관찰하여 형광램프의 반사된 상의 이미지를 구분하는 방법으로 시감을 측정하였다. 시감 평가 기준은 하기에 기재된 바와 같고, 그 결과를 하기 표 2에 나타내었다.
양호: 램프 상이 관찰되지 않음
불량: 램프 상이 뚜렷이 보임.
4. 빛 퍼짐 평가
상기 실시예 및 비교예 각각에서 얻어진 눈부심 방지 필름의 하드 코팅층에 대향하도록 광투과성 기재의 일면에 요철이나 휨이 없는 평탄한 흑색 점착제가 도포된 폴리에틸렌 테레프탈레이트 필름을 첩부하여 시편을 준비하였다. 이후, 4mm 램프 사이즈의 빛을 20cm 높이에서 비추었을 때, 시편에 나타나는 상의 크기로 빛 퍼짐을 평가하였다. 구체적으로, 빛 퍼짐 평가 기준은 상의 크기에 따라 하기에 기재된 바와 같이 평가되고, 그 결과를 하기 표 2에 나타내었다.
양호: 램프 상이 관찰되지 않거나, 램프 상의 크기가 5cm미만.
불량: 램프 상의 크기가 5cm초과.
실시예1 | 실시예2 | 비교예1 | 비교예2 | 비교예3 | 비교예4 | 비교예5 | |
투광도 (%) | 90.3 | 90.2 | 90.7 | 90.5 | 90.0 | 90.7 | 90.7 |
내부 헤이즈 (%) | 10.5 | 12.2 | 12.0 | 10.0 | 11.0 | 13.0 | 10.5 |
외부 헤이즈 (%) | 17.0 | 16.0 | 14.0 | 15.0 | 23.0 | 7.0 | 15.0 |
외부 헤이즈/내부 헤이즈 | 1.6 | 1.3 | 1.2 | 1.5 | 2.1 | 0.5 | 1.4 |
반사 강도 비율 (%) | 0.63 | 0.65 | 4.20 | 1.10 | 0.41 | 5.70 | 1.23 |
외부 헤이즈 /반사 강도 비율 | 27.0 | 24.6 | 3.3 | 13.6 | 56.1 | 1.2 | 12.2 |
반사강도R1 X 1/10인 확산각 범위(°) | 34~35,
55~56 |
33~34,
56~57 |
40~41,
50~51 |
36-37,
53~54 |
28-29,
61~62 |
43~44,
46~47 |
36~37,
53~54 |
반사강도R1 X 1/100인 확산각 범위(°) | 24~25,
66~67 |
24~25,
66~67 |
34~35,
54~55 |
26~27,
63-64 |
18~19,
71~72 |
37~38,
52~53 |
26~27,
63~64 |
시감(램프 상맺힘) 평가 | 양호 | 양호 | 불량 | 불량 | 양호 | 불량 | 불량 |
빛 퍼짐 평가 | 양호 | 양호 | 양호 | 양호 | 불량 | 양호 | 불량 |
상기 표 2에 따르면, 반사 강도 비율이 0.6 내지 1 %이고, 반사 강도 비율에 대한 외부 헤이즈의 비율이 15 내지 30이고, 외부 헤이즈에 대한 내부 헤이즈의 비율이 0.6 내지 2인 실시예 1 및 2의 눈부심 방지 필름은 램프 상 맺힘 및 빛 퍼짐이 발생하지 않는다는 점을 확인했다.
반면, 무기 입자가 사용되지 않고, 상술한 수치 범위를 만족하지 않는 비교예 1; 제2 무기 입자 응집체가 사용되지 않고, 상술한 수치 범위를 만족하지 않는 비교예 2 및 5; 제1 무기 입자 응집체가 사용되지 않고, 상술한 수치 범위를 만족하지 않는 비교예 3; 및 무기 입자 응집체가 사용되지 않고, 상술한 입자 범위를 만족하지 않는 비교예 4는 램프 상 맺힘이 발생하거나, 빛 퍼짐이 발생함을 확인했다.
Claims (18)
- 광투과성 기재; 및 바인더 수지와 상기 바인더 수지에 분산된 입자들을 포함하는 하드 코팅층;을 포함하고,상기 입자는, 평균 입경이 1 내지 2 ㎛인 제 1 무기 입자 응집체; 평균 입경이 3 내지 5 ㎛인 제2 무기 입자 응집체; 및 평균 입경이 1 내지 10 ㎛인 1차 입자 형태의 유기 입자를 포함하는, 눈부심 방지 필름.
- 제1항에 있어서,하기 식 1의 반사 강도 비율(R)이 0.6 내지 1 %인, 눈부심 방지 필름:[식 1]반사 강도 비율(R) = (R1/R2) × 100상기 식 1에서,R1은 상기 하드 코팅층에 대해 45°의 입사각에서 빛을 조사한 후, 입사각의 정반사에 해당하는 45°에서 측정된 반사 강도 값이고,R2는 상기 광투과성 기재에 대해 45°의 입사각에서 빛을 조사한 후, 입사각의 정반사에 해당하는 45°에서 측정된 반사 강도 값이다.
- 제2항에 있어서,상기 하드 코팅층에 대해 45°의 입사각에서 빛을 조사한 후, 30 내지 35° 및 55 내지 60°의 확산광에서 측정된 반사 강도 값은, 상기 반사 강도 값 R1의 1/10배인, 눈부심 방지 필름.
- 제2항에 있어서,상기 하드 코팅층에 대해 45°의 입사각에서 빛을 조사한 후, 20 내지 25° 및 65 내지 70°의 확산광에서 측정된 반사 강도 값은, 상기 반사 강도 값 R1의 1/100배인, 눈부심 방지 필름.
- 제1항에 있어서,상기 제 1 무기 입자 응집체는, 1차 입자 형태의 제1 무기 입자 5개 이상이 응집된 2차 입자 형태를 갖고,상기 1차 입자 형태의 제1 무기 입자는 평균 입경이 50 nm 이하인, 눈부심 방지 필름.
- 제1항에 있어서,상기 제 2 무기 입자 응집체는, 1차 입자 형태의 제2 무기 입자 5개 이상이 응집된 2차 입자 형태를 갖고,상기 1차 입자 형태의 제2 무기 입자는 평균 입경이 50 nm 이하인, 눈부심 방지 필름.
- 제1항에 있어서,상기 평균 입경이 1 내지 10㎛인 1차 입자 형태의 유기 입자와 상기 바인더 수지의 굴절률 차이의 절대값이 0.05 내지 0.1인, 눈부심 방지 필름.
- 제1항에 있어서,상기 제 1 무기 입자 응집체에 대한 제2 무기 입자 응집체의 평균 입경 비율은 1.5 내지 4배인, 눈부심 방지 필름.
- 제1항에 있어서,상기 제1 무기 입자 응집체 및 제2 무기 입자 응집체의 중량비는 1: 0.1 내지 5인, 눈부심 방지 필름.
- 제1항에 있어서,상기 제1 무기 입자 응집체 및 제2 무기 입자 응집체 총 중량 100중량부 대비, 상기 1차 입자 형태의 유기 입자의 함량은 30 내지 90 중량부인, 눈부심 방지 필름.
- 제2항에 있어서,상기 눈부심 방지 필름이 갖는 반사 강도 비율(R)에 대한 외부 헤이즈의 비율이 15 내지 30인, 눈부심 방지 필름.
- 제1항에 있어서,상기 눈부심 방지 필름이 갖는 내부 헤이즈에 대한 외부 헤이즈의 비율이 0.6 내지 2인, 눈부심 방지 필름.
- 제1항에 있어서,상기 바인더 수지는 비닐계 단량체 또는 (메트)아크릴레이트계 단량체의 (공)중합체를 포함하는, 눈부심 방지 필름.
- 제1항에 있어서,상기 하드 코팅층은 상기 바인더 수지 100 중량부 대비 상기 1차 입자 형태의 유기 입자 2 내지 10 중량부를 포함하는, 눈부심 방지 필름.
- 제1항에 있어서,상기 광투과성 기재는 파장 400㎚ 내지 800㎚에서 측정되는 면내 위상차(Re)가 500 mm 이하이거나, 5000 nm 이상인, 눈부심 방지 필름.
- 바인더 수지와 상기 바인더 수지에 분산된 입자들을 포함하고,상기 입자는, 평균 입경이 1 내지 2 ㎛인 제 1 무기 입자 응집체; 평균 입경이 3 내지 5 ㎛인 제2 무기 입자 응집체; 및 평균 입경이 1 내지 10 ㎛인 1차 입자 형태의 유기 입자를 포함하는, 눈부심 방지 필름의 하드 코팅층 형성용 조성물.
- 제1항에 따른 눈부심 방지 필름을 포함하는 편광판.
- 제1항에 따른 눈부심 방지 필름을 포함하는 디스플레이 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/601,634 US12092794B2 (en) | 2019-11-23 | 2020-11-24 | Anti-glare film, polarizing plate and display apparatus |
CN202080021332.1A CN113631962B (zh) | 2019-11-26 | 2020-11-24 | 防眩膜、偏光板和显示装置 |
EP20894275.5A EP3923039A4 (en) | 2019-11-26 | 2020-11-24 | ANTI-GLOSS FILM, POLARIZATION PLATE AND INDICATOR |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0153705 | 2019-11-26 | ||
KR20190153705 | 2019-11-26 | ||
KR10-2020-0157960 | 2020-11-23 | ||
KR1020200157960A KR102492778B1 (ko) | 2019-11-26 | 2020-11-23 | 눈부심 방지 필름, 편광판 및 디스플레이 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021107572A1 true WO2021107572A1 (ko) | 2021-06-03 |
Family
ID=76128847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/016715 WO2021107572A1 (ko) | 2019-11-23 | 2020-11-24 | 눈부심 방지 필름, 편광판 및 디스플레이 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12092794B2 (ko) |
EP (1) | EP3923039A4 (ko) |
WO (1) | WO2021107572A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140036771A (ko) * | 2012-09-18 | 2014-03-26 | 에스케이이노베이션 주식회사 | 광학적층체 및 이를 포함하는 편광판 및 표시장치 |
KR20140072859A (ko) * | 2011-10-12 | 2014-06-13 | 다이니폰 인사츠 가부시키가이샤 | 화상 표시 장치용 방현 시트 |
KR20150120264A (ko) * | 2014-04-17 | 2015-10-27 | 다이니폰 인사츠 가부시키가이샤 | 방현 필름, 편광판, 액정 패널 및 화상 표시 장치 |
KR20170031640A (ko) * | 2015-09-11 | 2017-03-21 | 주식회사 엘지화학 | 반사 방지 필름 및 디스플레이 장치 |
KR20170100555A (ko) * | 2014-12-26 | 2017-09-04 | 가부시키가이샤 도판 도모에가와 옵티컬 필름 | 광학 적층체, 편광판 및 표시 장치 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4004025B2 (ja) | 2001-02-13 | 2007-11-07 | 日東電工株式会社 | 透明導電性積層体およびタッチパネル |
JP4544952B2 (ja) | 2004-03-31 | 2010-09-15 | 大日本印刷株式会社 | 反射防止積層体 |
US8354162B2 (en) | 2007-03-29 | 2013-01-15 | Dai Nippon Printing Co., Ltd. | Curable resin composition for anti-glare layer, and anti-glare film |
EP2144094A4 (en) * | 2007-05-09 | 2011-04-06 | Sony Corp | ANTIBLEND FILM, MANUFACTURING PROCESS THEREFOR AND THE FILM USING DISPLAY DEVICE |
JP2010128108A (ja) | 2008-11-26 | 2010-06-10 | Dainippon Printing Co Ltd | 光学シートの製造方法及び光学シート |
JP5455144B2 (ja) | 2009-03-31 | 2014-03-26 | 日本製紙株式会社 | 防眩ハードコートフィルム |
KR101256554B1 (ko) | 2010-02-19 | 2013-04-19 | 주식회사 엘지화학 | 눈부심 방지 필름용 코팅층 및 이를 포함하는 눈부심 방지 필름 |
US10048407B2 (en) | 2010-10-22 | 2018-08-14 | Dai Nippon Printing Co., Ltd. | Antiglare film, polarizer, and image display device |
JP6212844B2 (ja) | 2012-09-14 | 2017-10-18 | 大日本印刷株式会社 | 光学フィルム、偏光板、液晶パネルおよび画像表示装置 |
JP2014112257A (ja) | 2014-03-05 | 2014-06-19 | Dainippon Printing Co Ltd | 光学シート |
JP2015206837A (ja) | 2014-04-17 | 2015-11-19 | 大日本印刷株式会社 | 防眩フィルム、偏光板、液晶パネルおよび画像表示装置 |
KR20240118192A (ko) | 2014-11-25 | 2024-08-02 | 도요보 가부시키가이샤 | 액정표시장치 및 편광판 |
KR102166844B1 (ko) | 2017-09-15 | 2020-10-16 | 주식회사 엘지화학 | 하드 코팅 필름 |
JP2019105692A (ja) | 2017-12-11 | 2019-06-27 | 株式会社ダイセル | 防眩フィルム並びにその製造方法及び用途 |
-
2020
- 2020-11-24 WO PCT/KR2020/016715 patent/WO2021107572A1/ko unknown
- 2020-11-24 US US17/601,634 patent/US12092794B2/en active Active
- 2020-11-24 EP EP20894275.5A patent/EP3923039A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140072859A (ko) * | 2011-10-12 | 2014-06-13 | 다이니폰 인사츠 가부시키가이샤 | 화상 표시 장치용 방현 시트 |
KR20140036771A (ko) * | 2012-09-18 | 2014-03-26 | 에스케이이노베이션 주식회사 | 광학적층체 및 이를 포함하는 편광판 및 표시장치 |
KR20150120264A (ko) * | 2014-04-17 | 2015-10-27 | 다이니폰 인사츠 가부시키가이샤 | 방현 필름, 편광판, 액정 패널 및 화상 표시 장치 |
KR20170100555A (ko) * | 2014-12-26 | 2017-09-04 | 가부시키가이샤 도판 도모에가와 옵티컬 필름 | 광학 적층체, 편광판 및 표시 장치 |
KR20170031640A (ko) * | 2015-09-11 | 2017-03-21 | 주식회사 엘지화학 | 반사 방지 필름 및 디스플레이 장치 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3923039A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3923039A4 (en) | 2022-06-22 |
US12092794B2 (en) | 2024-09-17 |
EP3923039A1 (en) | 2021-12-15 |
US20220206188A1 (en) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI767118B (zh) | 防眩光膜及顯示設備 | |
WO2020101396A1 (ko) | 광학 적층체, 편광판, 및 디스플레이 장치 | |
WO2020105977A1 (ko) | 기판 | |
WO2020091552A1 (ko) | 원편광판 | |
WO2021107572A1 (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
WO2016104976A1 (ko) | 광학시트, 이를 포함하는 편광판 및 액정표시장치 | |
KR102350469B1 (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
WO2011031087A2 (ko) | 방현 필름, 이를 구비한 편광판 및 표시 장치 | |
WO2021177688A1 (ko) | 광학 필름 및 이를 포함하는 마이크로 엘이디 디스플레이 | |
KR102492778B1 (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
WO2020149583A1 (ko) | 편광판, 및 디스플레이 장치 | |
WO2020060239A1 (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
KR20210112651A (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
WO2022019609A1 (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
WO2022080801A1 (ko) | 방현 필름 적층체, 편광판, 및 디스플레이 장치 | |
WO2015093718A1 (ko) | 광 확산 필름 | |
WO2023244030A1 (ko) | 방현성 저반사 필름, 편광판 및 광학 표시 장치 | |
WO2020080859A1 (ko) | 반사 방지 필름, 편광판 및 디스플레이 장치 | |
KR20220010990A (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
KR20220012701A (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
JP2024120333A (ja) | 防眩性フィルム、光学部材、及び画像表示装置 | |
KR20220010989A (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
KR20210131697A (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20894275 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020894275 Country of ref document: EP Effective date: 20210907 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |