WO2021106097A1 - 接合基板の製造方法 - Google Patents

接合基板の製造方法 Download PDF

Info

Publication number
WO2021106097A1
WO2021106097A1 PCT/JP2019/046299 JP2019046299W WO2021106097A1 WO 2021106097 A1 WO2021106097 A1 WO 2021106097A1 JP 2019046299 W JP2019046299 W JP 2019046299W WO 2021106097 A1 WO2021106097 A1 WO 2021106097A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate product
surface pressure
temperature
copper plate
brazing material
Prior art date
Application number
PCT/JP2019/046299
Other languages
English (en)
French (fr)
Inventor
隆 海老ヶ瀬
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021560819A priority Critical patent/JP7460656B2/ja
Priority to PCT/JP2019/046299 priority patent/WO2021106097A1/ja
Publication of WO2021106097A1 publication Critical patent/WO2021106097A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a method for manufacturing a bonded substrate.
  • Silicon nitride ceramics have high thermal conductivity and high insulation. Therefore, a bonded substrate in which a copper plate is bonded to a silicon nitride ceramic substrate via a bonding layer is suitably used as an insulating heat-dissipating substrate on which a power semiconductor element is mounted.
  • the bonded substrate is prepared by producing an intermediate product having a brazing material layer between the copper plate and the silicon nitride ceramic substrate, and the produced intermediate product is heat-treated to form the copper plate and the silicon nitride ceramic plate. It is manufactured by forming a bonding layer between them.
  • a brazing material is coated on one main surface of a silicon nitride substrate, a copper plate is superposed on the coated surface of the coated brazing material, and a bonded substrate is obtained by heat and pressure bonding.
  • the manufactured bonded substrate may be deformed such as waviness.
  • An object to be solved by the present invention is to suppress deformation of the manufactured bonded substrate when hot pressing is performed on the intermediate product when the bonded substrate is manufactured.
  • a silicon nitride ceramic substrate is prepared.
  • a brazing material layer containing an active metal brazing material and a binder is formed on the main surface of the silicon nitride ceramics substrate.
  • a copper plate is placed on the brazing filler metal layer.
  • Hot press is performed on the intermediate product.
  • a bonding layer for bonding the copper plate to the silicon nitride ceramic substrate is formed.
  • the temperature of the intermediate product is raised to the binder removal temperature without pressurizing the intermediate product.
  • the binder is removed from the binder.
  • the temperature of the intermediate product is raised from the binder removal temperature to the maximum temperature. On the way, the surface pressure applied to the intermediate product is raised to the maximum surface pressure.
  • the surface pressure applied to the copper plate after the temperature of the copper plate rises and the copper plate becomes easily plastically deformed can be raised to the maximum surface pressure. Therefore, it is possible to prevent stress from remaining inside the copper plate after the bonded substrate is manufactured. As a result, it is possible to suppress the deformation of the bonded substrate due to the stress remaining inside the copper plate.
  • FIG. 1 shows the 1st example of the temperature profile and the surface pressure profile at the time of performing a hot press in the process of manufacturing the bonded substrate of 1st Embodiment. It is a figure which shows the 2nd example of the temperature profile and the surface pressure profile at the time of performing a hot press in the process of manufacturing the bonded substrate of 1st Embodiment. It is sectional drawing which shows typically the cross section of the intermediate product before and after starting to apply pressure for bonding to the intermediate product in the process of manufacturing the bonding substrate of 1st Embodiment. FIG.
  • FIG. 7 is a diagram illustrating an ultrasonic flaw detector (SAT) image of an intermediate product of the bonded substrate of the first embodiment, which has been hot-pressed according to the temperature profile and surface pressure profile shown in FIG. 7.
  • FIG. 8 is a diagram illustrating a SAT image of an intermediate product of the bonding substrate of the first embodiment, which has been hot-pressed according to the temperature profile and surface pressure profile shown in FIG.
  • SAT ultrasonic flaw detector
  • FIG. 1 is a cross-sectional view schematically illustrating an example of the bonded substrate of the first embodiment.
  • the bonding substrate 1 of the first embodiment shown in FIG. 1 includes a silicon nitride ceramic substrate 11, a copper plate 12, and a bonding layer 13.
  • the bonding substrate 1 may include elements other than these elements.
  • the copper plate 12 and the bonding layer 13 are arranged on the main surface 11s of the silicon nitride ceramic substrate 11.
  • the bonding layer 13 joins the copper plate 12 to the main surface 11s of the silicon nitride ceramic substrate 11.
  • the copper plate 12 is bonded to the silicon nitride ceramic substrate 11 via a bonding layer 13 containing an active metal.
  • the active metal contained in the bonding layer 13 is at least one active metal selected from the group consisting of titanium and zirconium.
  • the bonding layer 13 may contain a metal other than the active metal.
  • the metal other than the active metal contained in the bonding layer 13 is at least one metal selected from the group consisting of silver, copper, indium and tin.
  • the bonding layer 13 may contain nitrogen and / or silicon supplied from the silicon nitride ceramic substrate 11. The supplied nitrogen and / or silicon may form a compound with the active metal.
  • the bonding layer 13 may include copper supplied from the copper plate 12.
  • the bonding substrate 1 may be used in any way, and is used, for example, as an insulated heat-dissipating substrate on which a power semiconductor element is mounted.
  • FIG. 2 is a flowchart illustrating the flow of manufacturing of the bonded substrate of the first embodiment.
  • FIG. 4 and FIG. 5 are cross-sectional views schematically illustrating an intermediate product obtained in the process of manufacturing the bonded substrate of the first embodiment.
  • steps S101 to S105 shown in FIG. 2 are sequentially executed.
  • step S101 the silicon nitride ceramic substrate 11 is prepared.
  • step S102 as shown in FIG. 3, the brazing filler metal layer 13i is formed on the main surface 11s of the silicon nitride ceramic substrate 11.
  • a paste containing an active metal brazing filler metal, a binder and a solvent is prepared.
  • the paste may further contain a dispersant, antifoaming agent and the like.
  • the prepared paste is screen-printed on the main surface 11s of the silicon nitride ceramic substrate 11, and a screen printing film is formed on the main surface 11s of the silicon nitride ceramic substrate 11.
  • the solvent contained in the formed screen printing film is volatilized.
  • the screen printing film changes to the brazing material layer 13i.
  • the brazing filler metal layer 13i contains an active metal brazing filler metal and a binder.
  • the brazing filler metal layer 13i may be formed by a method different from this method.
  • the active metal brazing material includes hydrogenated active metal powder and metal powder.
  • the hydrogenated active metal powder contains a hydride of at least one active metal selected from the group consisting of titanium and zirconium.
  • the metal powder contains silver.
  • the metal powder may contain a metal other than silver.
  • the metal other than silver is at least one metal selected from the group consisting of copper, indium and tin. When at least one metal selected from the group consisting of copper, indium and tin is contained in the active metal brazing material, the melting point of the active metal brazing material is lowered.
  • the active metal brazing material preferably contains 40% by weight or more and 80% by weight or less of silver.
  • the active metal brazing material preferably consists of a powder having an average particle size of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size can be obtained by measuring the particle size distribution with a commercially available laser diffraction type particle size distribution measuring device and calculating D50 (median diameter) from the measured particle size distribution. Since the active metal brazing material is composed of a powder having such a small average particle size, the brazing material layer 13i can be thinned.
  • the brazing filler metal layer 13i preferably has a thickness of 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • step S103 as shown in FIG. 4, the copper plate 12i is arranged on the formed brazing material layer 13i.
  • an intermediate product 1i including the silicon nitride ceramic substrate 11, the copper plate 12i, and the brazing material layer 13i can be obtained.
  • step S104 hot pressing is performed on the obtained intermediate product 1i.
  • the bonding layer 13j is formed.
  • the intermediate product 1j including the silicon nitride ceramic substrate 11, the copper plate 12j, and the bonding layer 13j shown in FIG. 5 can be obtained.
  • the copper plate 12j is bonded to the silicon nitride ceramic substrate 11.
  • the intermediate product 1i When hot pressing is performed on the intermediate product 1i, preferably, the intermediate product 1i is heated in vacuum or in an inert gas according to a temperature profile having a maximum temperature TMAX of 800 ° C. or higher and 900 ° C. or lower. The pressure is applied in the thickness direction of the silicon nitride ceramic substrate 11 according to the surface pressure profile having the maximum surface pressure PMAX of 5 MPa or more and 30 MPa or less.
  • the brazing material layer 13i is thin, such as when the brazing material layer 13i has a thickness of 0.1 ⁇ m or more and 10 ⁇ m or less, the copper plate 12i is bonded to the silicon nitride ceramic substrate 11 without forming voids. be able to.
  • the intermediate product 1i While the intermediate product 1i is hot-pressed, all or part of the metal components such as silver contained in the brazing filler metal layer 13i may be diffused into the silicon nitride ceramic substrate 11 and / or the copper plate 12i. Nitrogen and / or silicon contained in the silicon nitride ceramic substrate 11 may be diffused into the brazing filler metal layer 13i while the intermediate product 1i is hot-pressed. The copper contained in the copper plate 11i may be diffused into the brazing material layer 13i.
  • step S105 the copper plate 12j and the bonding layer 13j are patterned by an etching method or the like. As a result, the copper plate 12j is changed to the patterned copper plate 12 shown in FIG. Further, the bonding layer 13j changes to the patterned bonding layer 13 shown in FIG. The patterning of the copper plate 12j and the bonding layer 13j may be omitted.
  • FIG. 6 is a diagram showing a temperature profile and a surface pressure profile of a reference example.
  • FIG. 7 is a diagram showing a first example of a temperature profile and a surface pressure profile when hot pressing is performed in the process of manufacturing the bonded substrate of the first embodiment.
  • FIG. 8 is a diagram showing a second example of a temperature profile and a surface pressure profile when hot pressing is performed in the process of manufacturing the bonded substrate of the first embodiment.
  • the temperature of the intermediate product 1i is raised from room temperature to the binder temperature TB. Further, the temperature of the intermediate product 1i is maintained at the binder removal temperature TB for a set time. As a result, the binder contained in the brazing material layer 13i is removed from the binder. Subsequently, the temperature of the intermediate product 1i is raised from the binder removal temperature TB to the maximum temperature TMAX. Further, the temperature of the intermediate product 1i is maintained at the maximum temperature TMAX for a set time. Subsequently, the temperature of the intermediate product 1i is lowered from the maximum temperature TMAX to room temperature.
  • pressurization for joining is started on the intermediate product 1i before the temperature of the intermediate product 1i reaches the binder temperature TB, and the intermediate product 1i is started to be pressurized.
  • the surface pressure applied to is increased to the maximum surface pressure PMAX. Therefore, when the intermediate product 1i is hot-pressed according to the surface pressure profile shown in FIG. 6, the copper plate 12i is joined before the temperature of the copper plate 12i rises and the copper plate 12i is easily plastically deformed.
  • Pressurization is started on the copper plate 12i, and the surface pressure applied to the copper plate 12i is raised to the maximum surface pressure PMAX. Therefore, the copper plate 12i to be thermally expanded is restrained, and stress remains inside the copper plate 12 after the bonding substrate 1 is manufactured.
  • the bonding substrate 1 is deformed or damaged due to the stress remaining inside the copper plate 12. For example, undulations, cracks, etc. of the bonding substrate 1 occur.
  • the binder contained in the brazing material layer 13i is pressurized before the binder is removed. Is started for the intermediate product 1i. Therefore, the binder removal becomes insufficient, and the bonding strength between the silicon nitride ceramic substrate 11 and the copper plate 12 decreases.
  • the temperature of the intermediate product 1i is raised to the binder temperature TB without pressurizing the intermediate product 1i. Further, while the temperature of the intermediate product 1i is being raised from the binder temperature TB to the maximum temperature TMAX, pressurization for joining is started on the copper plate 12i, and the surface pressure applied to the intermediate product 1i is the maximum.
  • the surface pressure can be raised to PMAX. Therefore, when the intermediate product 1i is hot-pressed according to the surface pressure profile shown in FIGS. 7 and 8, the temperature of the copper plate 12i rises and the copper plate 12i is easily plastically deformed.
  • Pressurization for joining is started on the copper plate 12i, and the surface pressure applied to the copper plate 12i is raised to the maximum surface pressure PMAX. Therefore, it is possible to suppress the restraint of the copper plate 12i to be thermally expanded, and it is possible to prevent the stress from remaining inside the copper plate 12 after the bonding substrate 1 is manufactured. As a result, it is possible to prevent deformation, breakage, etc. of the bonding substrate 1 due to the stress remaining inside the copper plate 12. For example, it is possible to suppress the occurrence of waviness, cracks, etc. of the bonding substrate 1. Further, when the intermediate product 1i is hot-pressed according to the surface pressure profile shown in FIGS. 7 and 8, the intermediate product is pressurized for joining while the binder is removed.
  • Pressurization for stopping the movement is performed on the intermediate product 1i without being performed on the 1i.
  • the surface pressure applied to the intermediate product 1i while the pressure for stopping the movement is applied to the intermediate product 1i is intermediate while the pressure for joining is applied to the intermediate product 1i. It is maintained at a low surface pressure that is lower than the surface pressure applied to the product 1i but can suppress the movement of the intermediate product 1i, for example, a low surface pressure of about 0.1 to 0.3 MPa. Therefore, it is possible to suppress the inhibition of the binder removal due to the pressurization for joining the intermediate product 1i, and the residual coal on the bonding layer 13 provided in the manufactured bonding substrate 1 can be prevented. It can be suppressed.
  • the surface pressure applied to the intermediate product 1i is increased to the maximum surface pressure PMAX in one step.
  • the surface pressure profile shown in FIG. 7 after the temperature of the intermediate product 1i is raised and the brazing material layer 13i starts melting, pressure for joining is started on the intermediate product 1i. , The surface pressure applied to the intermediate product 1i is increased to the maximum surface pressure PMAX.
  • the surface pressure applied to the intermediate product 1i is increased to the maximum surface pressure PMAX in two steps.
  • the pressure for joining is not applied to the intermediate product 1i, and the temperature of the intermediate product 1i is raised to the binder temperature TB. Further, after the temperature of the intermediate product 1i is raised to the binder removal temperature TB, pressurization for joining is started on the intermediate product 1i. Further, after the pressurization for joining is started on the intermediate product 1i, the surface pressure applied to the intermediate product 1i is first raised to the first surface pressure P1 at a set time. It is maintained at the first surface pressure P1 throughout.
  • the surface pressure applied to the intermediate product 1i is increased from the first surface pressure P1 to the second surface pressure (maximum surface pressure) PMAX, and is maintained at the second surface pressure PMAX for a set time. Will be done.
  • the second surface pressure PMAX is higher than the first surface pressure P1.
  • the surface pressure applied to the intermediate product 1i is increased to the second surface pressure (maximum surface pressure) PMAX while the temperature of the intermediate product 1i is being raised from the binder temperature TB to the maximum temperature TMAX.
  • FIG. 9A illustrates a cross section of the intermediate product before the intermediate product is started to be pressurized for bonding to the intermediate product while the bonding substrate of the first embodiment is being manufactured. It is a cross-sectional view which is illustrated.
  • FIG. 9B schematically illustrates a cross section of the intermediate product after the intermediate product has been started to be pressurized for bonding while the bonding substrate of the first embodiment is being manufactured. It is a cross-sectional view.
  • the copper plate main surface 12is of the copper plate 12i faces the side on which the brazing material layer 13i is arranged.
  • the copper plate main surface 12is of the copper plate 12i comes into contact with the brazing filler metal layer 13i as shown in FIG. 9A before the pressurization for joining is started on the intermediate product 1i. It has a contact region R1 and a non-contact region R2 that does not come into contact with the brazing filler metal layer 13i.
  • the non-contact region R2 of the copper plate main surface 12is of the copper plate 12i mainly occurs in the peripheral portion of the copper plate main surface 12is of the copper plate 12i when the copper plate 12i is warped, and the copper plate main surface 12is of the copper plate 12i has a rectangular shape. When it has a planar shape, it occurs at the four corners of the rectangular planar shape.
  • the copper plate 12i is flattened and the copper plate 12i is flattened as shown in FIG. 9B after the pressurization for joining is started on the intermediate product 1i.
  • the non-contact region R2 of the copper plate main surface 12is is the surface pressure at which the brazing material layer 13i is in contact, preferably 1.0 MPa or more.
  • the entire region of the copper plate main surface 12is of the copper plate 12j can be bonded to the silicon nitride ceramic substrate 11 by the bonding layer 13j.
  • This effect is remarkable when the active metal brazing material contains silver and does not contain copper.
  • the active metal brazing material contains silver and does not contain copper, but the non-contact region R2 of the copper plate main surface 12is of the copper plate 12i comes into contact with the brazing material layer 13i, when hot pressing is performed on the intermediate product 1i,
  • copper diffuses from the copper plate 12i to the titanium particles contained in the brazing filler metal layer 13i a compound of titanium and copper is formed in the brazing filler metal layer 13i, and a compound of silver and titanium that inhibits bonding is formed. This is because it is suppressed.
  • Pressurization for joining is preferably started while the temperature of the intermediate product 1i is 500 ° C. or higher and 700 ° C. or lower. This is because the binder removal temperature TB is about 500 ° C., and the temperature at which the compound of titanium and copper starts to be formed is about 700 ° C.
  • the first surface pressure P1 is preferably 5 MPa or less. When the first surface pressure P1 is higher than 5 MPa, the copper plate 12i is strongly pressed against the silicon nitride ceramic substrate 11, and the silicon nitride ceramic substrate 11 tends to be easily cracked.
  • the second surface pressure P2 is preferably 5 MPa or more and 30 MPa or less. When the second surface pressure P2 is lower than 5 MPa, the bondability of the copper plate 12i to the silicon nitride ceramic substrate 11 tends to decrease. When the second surface pressure P2 is higher than 30 MPa, the copper plate 12i is strongly pressed against the silicon nitride ceramic substrate 11, and the silicon nitride ceramic substrate 11 tends to be easily cracked.
  • the surface pressure profile illustrated in FIG. 8 preferably, while the temperature of the intermediate product 1i is 500 ° C. or higher and 700 ° C. or lower, pressurization for joining is started on the intermediate product 1i. , The surface pressure applied to the intermediate product 1i is increased to the first surface pressure P1. Further, after the temperature of the intermediate product 1i is further raised and the brazing material layer 13i starts melting, the surface pressure applied to the intermediate product 1i is increased from the first surface pressure P1 to the second surface pressure PMAX.
  • the bonding substrate 1 was manufactured according to the manufacturing method of the bonding substrate 1 described above. Titanium was used as the active metal contained in the active metal brazing material. As the metal other than the active metal contained in the active metal brazing material, silver was used.
  • the hot press was performed according to the temperature profile and surface pressure profile shown in FIGS. 6, 7 and 8.
  • the binder temperature TB was set to 550 ° C.
  • the maximum temperature TMAX was 820 ° C.
  • the first surface pressure P1 was 2.5 MPa.
  • the second surface pressure (maximum surface pressure) PMAX was 22 MPa.
  • the temperature of the bonding substrate 1 hot-pressed according to the temperature profile and surface pressure profile shown in FIGS. 6, 7 and 8 was raised from room temperature to 300 ° C. and then returned to room temperature to produce the bonding substrate. After the temperature of No. 1 was returned to room temperature, the presence or absence of waviness generated in the bonding substrate 1 was confirmed.
  • the bonded substrate 1 which was hot-pressed according to the temperature profile and the surface pressure profile shown in FIG. 6 had a large undulation of about 20 ⁇ m in height per 20 mm in length.
  • the bonded substrate 1 which was hot-pressed according to the temperature profile and the surface pressure profile shown in FIGS. 7 and 8 had only a slight undulation of about 1 ⁇ m in height per 20 mm in length.
  • the intermediate product 1j which was hot-pressed according to the temperature profile and the surface pressure profile shown in FIGS. 7 and 8, was observed by an ultrasonic flaw detector (SAT) to obtain a SAT image.
  • SAT images of the intermediate product 1j that has been hot pressed according to the temperature profile and surface pressure profile shown in FIGS. 7 and 8 are shown in FIGS. 10 and 11, respectively. From the SAT image shown in FIG. 10, it can be understood that the bonding is insufficient at the four corners of the copper plate 12j, and from the SAT image shown in FIG. 11, the bonding is sufficient in the entire copper plate 12j. I can understand that there is.

Abstract

接合基板が製造される際に中間品に対してホットプレスが行われる場合に、製造される接合基板の変形を抑制する。窒化ケイ素セラミックス基板が準備される。活性金属ろう材及びバインダを含むろう材層が窒化ケイ素セラミックス基板の主面上に形成される。ろう材層上に銅板が配置される。これにより、窒化ケイ素セラミックス基板、ろう材層及び銅板を含む中間品が得られる。中間品に対してホットプレスが行われる。これより、銅板を窒化ケイ素セラミックス基板に接合する接合層が生成する。中間品に対してホットプレスが行われる際には、接合のための加圧が中間品に対して行われずに中間品の温度が脱バインダ温度まで上げられる。これにより、バインダの脱バインダが行われる。中間品の温度が脱バインダ温度から最高温度まで上げられる。その途上で、中間品に加えられる面圧が最高面圧まで上げられる。

Description

接合基板の製造方法
 本発明は、接合基板の製造方法に関する。
 窒化ケイ素セラミックスは、高い熱伝導性及び高い絶縁性を有する。このため、銅板が接合層を介して窒化ケイ素セラミックス基板に接合された接合基板は、パワー半導体素子が実装される絶縁放熱基板として好適に用いられる。
 当該接合基板は、多くの場合は、ろう材層を銅板と窒化ケイ素セラミックス基板との間に有する中間品を作製し、作製した中間品に対して熱処理を行って銅板と窒化ケイ素セラミックス板との間に接合層を生成させることにより製造される。
 また、中間品に対して熱処理を行う際に、中間品に対してホットプレスを行うことも提案されている。
 例えば、特許文献1に記載された技術においては、窒化珪素基板の一方主面上にろう材が塗布され、塗布されたろう材の塗布面に銅板が重ね合わされ、加熱加圧接合によって接合基板が得られる(段落0024及び0025)。
特許第6482144号公報
 しかし、接合基板が製造される際に中間品に対してホットプレスが行われる場合は、製造される接合基板にうねり等の変形が生じることがある。
 本発明は、この問題に鑑みてなされた。本発明が解決しようとする課題は、接合基板が製造される際に中間品に対してホットプレスが行われる場合に、製造される接合基板の変形を抑制することである。
 窒化ケイ素セラミックス基板が準備される。活性金属ろう材及びバインダを含むろう材層が窒化ケイ素セラミックス基板の主面上に形成される。ろう材層上に銅板が配置される。これにより、窒化ケイ素セラミックス基板、ろう材層及び銅板を含む中間品が得られる。中間品に対してホットプレスが行われる。これより、銅板を窒化ケイ素セラミックス基板に接合する接合層が生成する。中間品に対してホットプレスが行われる際には、接合のための加圧が中間品に対して行われずに中間品の温度が脱バインダ温度まで上げられる。これにより、バインダの脱バインダが行われる。また、中間品の温度が脱バインダ温度から最高温度まで上げられる。その途上で、中間品に加えられる面圧が最高面圧まで上げられる。
 本発明によれば、銅板の温度が上がって銅板が塑性変形しやすくなった後に銅板に加えられる面圧が最高面圧まで上げられる。このため、接合基板が製造された後に銅板の内部に応力が残留することを抑制することができる。これにより、銅板の内部に残留する応力に起因する接合基板の変形が生じることを抑制することができる。
 この発明の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1実施形態の接合基板の例を模式的に図示する断面図である。 第1実施形態の接合基板の製造の流れを図示するフローチャートである。 第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。 第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。 第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。 参考例の温度プロファイル及び面圧プロファイルを示す図である。 第1実施形態の接合基板の製造の途上でホットプレスが行われる際の温度プロファイル及び面圧プロファイルの第1の例を示す図である。 第1実施形態の接合基板の製造の途上でホットプレスが行われる際の温度プロファイル及び面圧プロファイルの第2の例を示す図である。 第1実施形態の接合基板が製造される途上で接合のための加圧を中間品に対して行うことが開始される前後の中間品の断面を模式的に図示する断面図である。 図7に図示される温度プロファイル及び面圧プロファイルにしたがってホットプレスが行われた第1実施形態の接合基板の中間品の超音波探傷装置(SAT)像を図示する図である。 図8に図示される温度プロファイル及び面圧プロファイルにしたがってホットプレスが行われた第1実施形態の接合基板の中間品のSAT像を図示する図である。
 1 接合基板
 図1は、第1実施形態の接合基板の例を模式的に図示する断面図である。
 図1に図示される第1実施形態の接合基板1は、窒化ケイ素セラミックス基板11、銅板12及び接合層13を備える。接合基板1がこれらの要素以外の要素を備えてもよい。
 銅板12及び接合層13は、窒化ケイ素セラミックス基板11の主面11s上に配置される。接合層13は、銅板12を窒化ケイ素セラミックス基板11の主面11sに接合する。
 銅板12は、活性金属を含む接合層13を介して窒化ケイ素セラミックス基板11に接合される。接合層13に含まれる活性金属は、チタン及びジルコニウムからなる群より選択される少なくとも1種の活性金属である。接合層13が活性金属以外の金属を含んでもよい。接合層13に含まれる活性金属以外の金属は、銀、銅、インジウム及びスズからなる群より選択される少なくとも1種の金属である。接合層13が、窒化ケイ素セラミックス基板11から供給された窒素及び/又はケイ素を含んでもよい。供給された窒素及び/又はケイ素が活性金属と化合物を形成していてもよい。接合層13が、銅板12から供給された銅を含んでもよい。
 接合基板1は、どのように用いられてもよいが、例えばパワー半導体素子が実装される絶縁放熱基板として用いられる。
 2 接合基板の製造方法
 図2は、第1実施形態の接合基板の製造の流れを図示するフローチャートである。図3、図4及び図5は、第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。
 第1実施形態の接合基板1の製造においては、図2に示される工程S101からS105までが順次に実行される。
 工程S101においては、窒化ケイ素セラミックス基板11が準備される。
 工程S102においては、図3に図示されるように、窒化ケイ素セラミックス基板11の主面11s上に、ろう材層13iが形成される。
 ろう材層13iが形成される際には、活性金属ろう材、バインダ及び溶剤を含むペーストが調製される。ペーストが分散剤、消泡剤等をさらに含んでもよい。続いて、調製されたペーストが窒化ケイ素セラミックス基板11の主面11s上にスクリーン印刷され、窒化ケイ素セラミックス基板11の主面11s上にスクリーン印刷膜が形成される。続いて、形成されたスクリーン印刷膜に含まれる溶剤が揮発させられる。これにより、スクリーン印刷膜が、ろう材層13iに変化する。ろう材層13iは、活性金属ろう材及びバインダを含む。ろう材層13iがこの方法とは異なる方法により形成されてもよい。
 活性金属ろう材は、水素化活性金属粉末及び金属粉末を含む。水素化活性金属粉末は、チタン及びジルコニウムからなる群より選択される少なくとも1種の活性金属の水素化物を含む。金属粉末は、銀を含む。金属粉末が、銀以外の金属を含んでもよい。銀以外の金属は、銅、インジウム及びスズからなる群より選択される少なくとも1種の金属である。銅、インジウム及びスズからなる群より選択される少なくとも1種の金属が活性金属ろう材に含まれる場合は、活性金属ろう材の融点が低下する。
 活性金属ろう材は、望ましくは40重量%以上80重量%以下の銀を含む。
 活性金属ろう材は、望ましくは0.1μm以上10μm以下の平均粒子径を有する粉末からなる。平均粒子径は、市販のレーザー回折式の粒度分布測定装置により粒度分布を測定し、測定した粒度分布からD50(メジアン径)を算出することにより得ることができる。活性金属ろう材がこのように小さい平均粒子径を有する粉末からなることにより、ろう材層13iを薄くすることができる。
 ろう材層13iは、望ましくは0.1μm以上10μm以下の厚さを有し、さらに望ましくは0.1μm以上5μm以下の厚さを有する。
 工程S103においては、図4に図示されるように、形成されたろう材層13i上に銅板12iが配置される。これにより、窒化ケイ素セラミックス基板11、銅板12i及びろう材層13iを備える中間品1iが得られる。
 工程S104においては、得られた中間品1iに対してホットプレスが行われる。これにより、図5に図示されるように、接合層13jが生成する。これらにより、図5に図示される、窒化ケイ素セラミックス基板11、銅板12j及び接合層13jを備える中間品1jが得られる。接合層13jは、銅板12jを窒化ケイ素セラミックス基板11に接合している。
 中間品1iに対してホットプレスが行われる場合は、望ましくは、中間品1iが、真空中又は不活性ガス中で、800℃以上900℃以下の最高温度TMAXを有する温度プロファイルにしたがって加熱されながら、5MPa以上30MPa以下の最高面圧PMAXを有する面圧プロファイルにしたがって窒化ケイ素セラミックス基板11の厚さ方向に加圧される。これにより、ろう材層13iが0.1μm以上10μm以下の厚さを有する場合のようなろう材層13iが薄い場合においても、ボイドを形成することなく銅板12iを窒化ケイ素セラミックス基板11に接合することができる。
 中間品1iに対してホットプレスが行われる間に、ろう材層13iに含まれる銀等の金属成分の全部又は一部が窒化ケイ素セラミックス基板11及び/又は銅板12iに拡散させられてもよい。中間品1iに対してホットプレスが行われる間に、窒化ケイ素セラミックス基板11に含まれる窒素及び/又はケイ素がろう材層13iに拡散させられてもよい。銅板11iに含まれる銅がろう材層13iに拡散させられてもよい。
 工程S105においては、銅板12j及び接合層13jがエッチング法等によってパターニングされる。これにより、銅板12jが、図1に図示されるパターニングされた銅板12に変化する。また、接合層13jが、図1に図示されるパターニングされた接合層13に変化する。銅板12j及び接合層13jのパターニングが省略されてもよい。
 3 温度プロファイル及び面圧プロファイル
 図6は、参考例の温度プロファイル及び面圧プロファイルを示す図である。図7は、第1実施形態の接合基板の製造の途上でホットプレスが行われる際の温度プロファイル及び面圧プロファイルの第1の例を示す図である。図8は、第1実施形態の接合基板の製造の途上でホットプレスが行われる際の温度プロファイル及び面圧プロファイルの第2の例を示す図である。
 図6、図7及び図8に図示される温度プロファイルにおいては、まず、中間品1iの温度が、室温から脱バインダ温度TBまで上げられる。また、中間品1iの温度が、設定された時間に渡って脱バインダ温度TBで維持される。これにより、ろう材層13iに含まれるバインダの脱バインダが行われる。続いて、中間品1iの温度が、脱バインダ温度TBから最高温度TMAXまで上げられる。また、中間品1iの温度が、設定された時間に渡って最高温度TMAXで維持される。続いて、中間品1iの温度が、最高温度TMAXから室温まで下げられる。
 図6に図示される面圧プロファイルにおいては、中間品1iの温度が脱バインダ温度TBに到達する前に、接合のための加圧を中間品1iに対して行うことが開始され、中間品1iに加えられる面圧が最高面圧PMAXまで上げられる。このため、図6に図示される面圧プロファイルにしたがって中間品1iに対してホットプレスが行われた場合は、銅板12iの温度が上がって銅板12iが塑性変形しやすくなる前に、接合のための加圧を銅板12iに対して行うことが開始され、銅板12iに加えられる面圧が最高面圧PMAXまで上げられる。このため、熱膨張しようとする銅板12iが拘束され、接合基板1が製造された後に銅板12の内部に応力が残留する。これにより、銅板12の内部に残留する応力に起因する接合基板1の変形、破損等が生じる。例えば、接合基板1のうねり、クラック等が生じる。また、図6に図示される面圧プロファイルにしたがって中間品1iに対してホットプレスが行われた場合は、ろう材層13iに含まれるバインダの脱バインダが行われる前に接合のための加圧を中間品1iに対して行うことが開始される。このため、脱バインダが不十分になり、窒化ケイ素セラミックス基板11と銅板12との間の接合強度が低下する。
 これに対して、図7及び図8に図示される面圧プロファイルにおいては、接合のための加圧が中間品1iに対して行われずに中間品1iの温度が脱バインダ温度TBまで上げられる。また、中間品1iの温度が脱バインダ温度TBから最高温度TMAXまで上げられる途上で、接合のための加圧を銅板12iに対して行うことが開始され、中間品1iに加えられる面圧が最高面圧PMAXまで上げられる。このため、図7及び図8に図示される面圧プロファイルにしたがって中間品1iに対してホットプレスが行われた場合は、銅板12iの温度が上がって銅板12iが塑性変形しやすくなった後に、接合のための加圧を銅板12iに対して行うことが開始され、銅板12iに加えられる面圧が最高面圧PMAXまで上げられる。このため、熱膨張しようとする銅板12iが拘束されることを抑制することができ、接合基板1が製造された後に銅板12の内部に応力が残留することを抑制することができる。これにより、銅板12の内部に残留する応力に起因する接合基板1の変形、破損等が生じることを抑制することができる。例えば、接合基板1のうねり、クラック等が生じることを抑制することができる。また、図7及び図8に図示される面圧プロファイルにしたがって中間品1iに対してホットプレスが行われた場合は、脱バインダが行われている間は、接合のための加圧が中間品1iに対して行われず動き止めのための加圧が中間品1iに対して行われる。動き止めのための加圧が中間品1iに対して行われている間に中間品1iに加えられる面圧は、接合のための加圧が中間品1iに対して行われている間に中間品1iに加えられる面圧より低いが中間品1iが動くことを抑制することができる低い面圧、例えば0.1~0.3MPa程度の低い面圧に維持される。このため、接合のための加圧が中間品1iに対して行われるにより脱バインダが阻害されることを抑制することができ、製造された接合基板1に備えられる接合層13への残炭を抑制することができる。
 図7に図示される面圧プロファイルにおいては、中間品1iに加えられる面圧が、1段階で最高面圧PMAXまで上げられる。図7に図示される面圧プロファイルにおいては、中間品1iの温度が上げられてろう材層13iが溶融を開始した後に、接合のための加圧を中間品1iに対して行うことが開始され、中間品1iに加えられる面圧が最高面圧PMAXまで上げられる。
 図8に図示される面圧プロファイルにおいては、中間品1iに加えられる面圧が、2段階で最高面圧PMAXまで上げられる。図8に図示される面圧プロファイルにおいては、接合のための加圧が中間品1iに対して行われずに中間品1iの温度が脱バインダ温度TBまで上げられる。また、中間品1iの温度が脱バインダ温度TBまで上げられた後に、接合のための加圧を中間品1iに対して行うことが開始される。また、接合のための加圧を中間品1iに対して行うことが開始された後に、まず、中間品1iに加えられる面圧が、第1の面圧P1まで上げられ、設定された時間に渡って第1の面圧P1で維持される。続いて、中間品1iに加えられる面圧が、第1の面圧P1から第2の面圧(最高面圧)PMAXまで上げられ、設定された時間に渡って第2の面圧PMAXで維持される。第2の面圧PMAXは、第1の面圧P1より高い。中間品1iに加えられる面圧は、中間品1iの温度が脱バインダ温度TBから最高温度TMAXに上げられる途上で第2の面圧(最高面圧)PMAXまで上げられる。これにより、銅板12iの温度が上がって銅板12iが塑性変形しやすくなる前は、比較的に弱い第1の面圧P1で銅板12iが窒化ケイ素セラミックス基板11に向かって押し付けられる。このため、窒化ケイ素セラミックス基板11が割れることを抑制することができる。
 図9(a)は、第1実施形態の接合基板が製造される途上で中間品への接合のための加圧を中間品に対して行うことが開始される前の中間品の断面を模式的に図示する断面図である。図9(b)は、第1実施形態の接合基板が製造される途上で接合のための加圧を中間品に対して行うことが開始された後の中間品の断面を模式的に図示する断面図である。
 銅板12iの銅板主面12isは、ろう材層13iが配置される側を向く。銅板12iの銅板主面12isは、接合のための加圧を中間品1iに対して行うことが開始される前に、図9(a)に図示されるように、ろう材層13iに接触する接触領域R1、及びろう材層13iに接触しない非接触領域R2を有する。銅板12iの銅板主面12isの非接触領域R2は、主に、銅板12iが反っている場合に、銅板12iの銅板主面12isの周辺部に生じ、銅板12iの銅板主面12isが矩形状の平面形状を有する場合は矩形状の平面形状の四隅に生じる。
 第1の面圧P1は、接合のための加圧を中間品1iに対して行うことが開始された後に、図9(b)に図示されるように、銅板12iが平坦化されて銅板12iの銅板主面12isの非接触領域R2がろう材層13iに接触する面圧であり、望ましくは、1.0MPa以上である。これにより、中間品1iに加えられる面圧が第1の面圧P1まで上げられた際に、銅板12iの銅板主面12isの非接触領域R2がろう材層13iに接触する。これにより、銅板12jの銅板主面12isの全領域を接合層13jにより窒化ケイ素セラミックス基板11に接合することができる。この効果は、活性金属ろう材が銀を含み銅を含まない場合に顕著に現れる。活性金属ろう材が銀を含み銅を含まないが銅板12iの銅板主面12isの非接触領域R2がろう材層13iに接触する場合は、中間品1iに対してホットプレスが行われる際に、銅板12iからろう材層13iに含まれるチタンの粒子に銅が拡散することにより、ろう材層13i中にチタンと銅との化合物が生成し、接合を阻害する銀とチタンとの化合物が生成することが抑制されるためである。
 接合のための加圧を中間品1iに対して行うことは、望ましくは、中間品1iの温度が500℃以上700℃以下である間に開始される。脱バインダ温度TBは、500℃程度であり、チタンと銅との化合物が形成され始める温度は、700℃程度であるためである。
 また、第1の面圧P1は、望ましくは、5MPa以下である。第1の面圧P1が5MPaより高い場合は、銅板12iが窒化ケイ素セラミックス基板11に向かって強く押し付けられて窒化ケイ素セラミックス基板11が割れやすくなる傾向が現れる。第2の面圧P2は、望ましくは、5MPa以上30MPa以下である。第2の面圧P2が5MPaより低い場合は、銅板12iの窒化ケイ素セラミックス基板11への接合性が低下する傾向が現れる。第2の面圧P2が30MPaより高い場合は、銅板12iが窒化ケイ素セラミックス基板11に向かって強く押し付けられて窒化ケイ素セラミックス基板11が割れやすくなる傾向が現れる。
 図8に図示される面圧プロファイルにおいては、望ましくは、中間品1iの温度が500℃以上700℃以下である間に、接合のための加圧を中間品1iに対して行うことが開始され、中間品1iに加えられる面圧が第1の面圧P1まで上げられる。また、中間品1iの温度がさらに上げられてろう材層13iが溶融を開始した後に、中間品1iに加えられる面圧が第1の面圧P1から第2の面圧PMAXまで上げられる。
 4 実施例
 上述した接合基板1の製造方法にしたがって接合基板1を製造した。活性金属ろう材に含まれる活性金属としては、チタンを用いた。活性金属ろう材に含まれる活性金属以外の金属としては、銀を用いた。ホットプレスは、図6、図7及び図8に図示される温度プロファイル及び面圧プロファイルにしたがって行った。脱バインダ温度TBは、550℃とした。最高温度TMAXは、820℃とした。第1の面圧P1は、2.5MPaとした。第2の面圧(最高面圧)PMAXは、22MPaとした。
 図6、図7及び図8に図示される温度プロファイル及び面圧プロファイルにしたがってホットプレスが行われた接合基板1の温度を室温から300℃まで上げてから再び室温まで戻し、製造された接合基板1の温度を室温まで戻した後に接合基板1に生じたうねりの有無を確認した。その結果、図6に図示される温度プロファイル及び面圧プロファイルにしたがってホットプレスが行われた接合基板1には、長さ20mm当たり高さ20μm程度の大きなうねりが生じた。しかし、図7及び図8に図示される温度プロファイル及び面圧プロファイルにしたがってホットプレスが行われた接合基板1には、長さ20mm当たり高さ1μm程度のわずかなうねりしか生じなかった。
 また、図7及び図8に図示される温度プロファイル及び面圧プロファイルにしたがってホットプレスが行われた中間品1jを超音波探傷装置(SAT)により観察し、SAT像を得た。図7及び図8に図示される温度プロファイル及び面圧プロファイルにしたがってホットプレスが行われた中間品1jのSAT像をそれぞれ図10及び図11に示す。図10に図示されるSAT像からは、銅板12jの四隅において接合が不十分であることを理解することができ、図11に図示されるSAT像からは、銅板12jの全体において接合が十分であることを理解することができる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 接合基板
 11 窒化ケイ素セラミックス基板
 12,12i 銅板
 13 接合層
 13i ろう材層

Claims (9)

  1.  a) 主面を有する窒化ケイ素セラミックス基板を準備する工程と、
     b) 前記主面上に活性金属ろう材及びバインダを含むろう材層を形成する工程と、
     c) 前記ろう材層上に銅板を配置して前記窒化ケイ素セラミックス基板、前記ろう材層及び前記銅板を備える中間品を得る工程と、
     d) 前記中間品に対してホットプレスを行って、前記銅板を前記窒化ケイ素セラミックス基板に接合する接合層を生成させる工程と、
    を備え、
     前記工程d)は、
     d-1) 接合のための加圧を前記中間品に対して行わずに前記中間品の温度を脱バインダ温度まで上げて前記バインダの脱バインダを行う工程と、
     d-2) 前記中間品の温度を前記脱バインダ温度から最高温度まで上げ、前記中間品の温度を前記脱バインダ温度から前記最高温度まで上げる途上で前記中間品に加える面圧を最高面圧まで上げる工程と、
    を備える
    接合基板の製造方法。
  2.  前記工程d-2)は、前記ろう材層が溶融を開始した後に前記中間品に加える面圧を前記最高面圧まで上げる
    請求項1の接合基板の製造方法。
  3.  前記工程d-2)は、
     d-2-1) 接合のための加圧を前記中間品に対して行うことを開始した後に、前記中間品に加える面圧を第1の面圧まで上げ前記第1の面圧で維持する工程と、
     d-2-2) 前記中間品に加える面圧を前記第1の面圧から前記第1の面圧より高い第2の面圧まで上げる工程と、
    を備える
    請求項1又は2の接合基板の製造方法。
  4.  前記工程d-2-1)は、前記中間品の温度が500℃以上700℃以下である間に前記中間品に加える面圧を前記第1の面圧まで上げる
    請求項3の接合基板の製造方法。
  5.  前記第1の面圧は、1MPa以上5MPa以下である
    請求項3又は4の接合基板の製造方法。
  6.  前記銅板は、前記ろう材層が配置される側を向く銅板主面を有し、
     前記銅板主面は、接合のための加圧を前記中間品に対して行うことが開始される前に、前記ろう材層に接触する接触領域と前記ろう材層に接触しない非接触領域とを有し、
     前記工程d-2-1)は、前記非接触領域を前記ろう材層に接触させる
    請求項3から5までのいずれかの接合基板の製造方法。
  7.  前記活性金属ろう材は、銀を含み、銅を含まず、
     前記工程d)は、前記銅板から前記ろう材層に銅を拡散させ、前記ろう材層中にチタンと銅との化合物を生成させる
    請求項6の接合基板の製造方法。
  8.  前記工程d-2-2)は、前記ろう材層が溶融を開始した後に前記中間品に加える面圧を前記第2の面圧まで上げる
    請求項3から7までのいずれかの接合基板の製造方法。
  9.  前記第2の面圧は、5MPa以上30MPa以下である
    請求項3から8までのいずれかの接合基板の製造方法。
PCT/JP2019/046299 2019-11-27 2019-11-27 接合基板の製造方法 WO2021106097A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021560819A JP7460656B2 (ja) 2019-11-27 2019-11-27 接合基板の製造方法
PCT/JP2019/046299 WO2021106097A1 (ja) 2019-11-27 2019-11-27 接合基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046299 WO2021106097A1 (ja) 2019-11-27 2019-11-27 接合基板の製造方法

Publications (1)

Publication Number Publication Date
WO2021106097A1 true WO2021106097A1 (ja) 2021-06-03

Family

ID=76129259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046299 WO2021106097A1 (ja) 2019-11-27 2019-11-27 接合基板の製造方法

Country Status (2)

Country Link
JP (1) JP7460656B2 (ja)
WO (1) WO2021106097A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148420A1 (ja) * 2013-03-18 2014-09-25 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
WO2018155014A1 (ja) * 2017-02-23 2018-08-30 日本碍子株式会社 絶縁放熱基板
WO2018180965A1 (ja) * 2017-03-30 2018-10-04 株式会社 東芝 セラミックス銅回路基板およびそれを用いた半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071260A (ja) 2009-09-25 2011-04-07 Showa Denko Kk 積層材およびその製造方法、絶縁積層材およびその製造方法
JP5987418B2 (ja) 2012-03-30 2016-09-07 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板の製造方法
JP6799479B2 (ja) 2017-03-03 2020-12-16 Dowaメタルテック株式会社 金属−セラミックス回路基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148420A1 (ja) * 2013-03-18 2014-09-25 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
WO2018155014A1 (ja) * 2017-02-23 2018-08-30 日本碍子株式会社 絶縁放熱基板
WO2018180965A1 (ja) * 2017-03-30 2018-10-04 株式会社 東芝 セラミックス銅回路基板およびそれを用いた半導体装置

Also Published As

Publication number Publication date
JPWO2021106097A1 (ja) 2021-06-03
JP7460656B2 (ja) 2024-04-02

Similar Documents

Publication Publication Date Title
JP5549958B2 (ja) アルミニウム部材と銅部材との接合構造
JP6100605B2 (ja) 多層クラッド材の製造方法
WO2018155633A1 (ja) 接合材、接合材の製造方法および接合構造体の作製方法
JP4978221B2 (ja) 回路基板の製造装置及び製造方法、その製造方法に用いられるクッションシート
JP6455056B2 (ja) ヒートシンク付パワーモジュール用基板の製造方法及び加圧装置
JP2022166010A (ja) 接合基板の製造方法
JP7060084B2 (ja) 絶縁回路基板用接合体の製造方法および絶縁回路基板用接合体
JP5947090B2 (ja) 絶縁基板の製造方法
WO2021106097A1 (ja) 接合基板の製造方法
JP2013533617A (ja) ピエゾアクチュエーターの製造方法及びピエゾアクチュエーター
JP7311625B2 (ja) 接合基板及び接合基板の製造方法
TW558727B (en) Manufacturing method of ceramic electronic components and its manufacturing equipment
JP7431857B2 (ja) 接合基板の製造方法
JP2016058417A (ja) 半導体パワーモジュールの製造方法
WO2020184510A1 (ja) 接合基板及び接合基板の製造方法
JP6008544B2 (ja) 絶縁基板の製造方法
JP2018113300A (ja) 積層電子部品の製造方法
JP2014073919A (ja) 窒化物系セラミックス基板の製造方法
JP2986531B2 (ja) 銅を接合した窒化アルミニウム基板の製造法
JP6769169B2 (ja) セラミックス基板とアルミニウム含浸炭化珪素多孔質体との接合体の製造方法
JP2005072036A (ja) パワーモジュール、回路基板の製造方法および製造装置
JP2018041867A (ja) 放熱基板、及び放熱基板の製造方法
JP7230602B2 (ja) 絶縁回路基板及びその製造方法
JP6853443B2 (ja) パワーモジュール用基板の製造方法
JP2006179715A (ja) セラミック積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954409

Country of ref document: EP

Kind code of ref document: A1