WO2021103529A1 - 一种摄像机 - Google Patents
一种摄像机 Download PDFInfo
- Publication number
- WO2021103529A1 WO2021103529A1 PCT/CN2020/099730 CN2020099730W WO2021103529A1 WO 2021103529 A1 WO2021103529 A1 WO 2021103529A1 CN 2020099730 W CN2020099730 W CN 2020099730W WO 2021103529 A1 WO2021103529 A1 WO 2021103529A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchange
- heat
- flexible
- interface layer
- casing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/55—Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/56—Accessories
- G03B17/561—Support related camera accessories
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/52—Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
Definitions
- the present invention relates to the temperature control technology of a camera, in particular to a camera with a movable heating element.
- the casing of the camera is often provided with heating elements such as an imaging unit, and these heating elements generate a large amount of heat during operation, and this heat can be dissipated through heat exchange between the casing and the outside.
- heating elements such as an imaging unit
- this heat can be dissipated through heat exchange between the casing and the outside.
- the heat generated by the heating element cannot be efficiently exchanged to the casing, no matter how the external heat exchange efficiency of the casing is improved, the temperature control effect of the heating element cannot be improved.
- the form of cameras becomes more and more diversified, and the heating elements in some cameras can move relative to the casing.
- the heat generated by the heating element can only be exchanged to the cabinet by the random flow of air as the carrier, but the exchange efficiency of this heat exchange method is low, resulting in poor temperature control of the heating element. good.
- a heating element the heating element is movably installed inside the casing through a transmission assembly
- a temperature control component the temperature control component is located inside the casing, and the temperature control component forms a flexible heat exchange circuit based on the circulation of a liquid medium between the heating element and the casing;
- the flexible heat exchange circuit has a deformable margin that bends in response to changes in the relative position between the heating element and the casing.
- An embodiment of the present invention provides another camera, including:
- the housing includes a housing base and a housing cover installed above the housing base;
- the heating element is rotatably supported above the housing by the transmission assembly;
- the temperature control component is located inside the casing and is in thermally conductive contact with the casing, and the temperature control component forms a liquid medium-based communication between the heating element and the casing Flexible heat exchange loop;
- the flexible heat exchange circuit has a deformable margin that bends in response to changes in the relative position between the heating element and the casing.
- An embodiment of the present invention provides another camera, including:
- the case is made of metal
- the heating element is arranged inside the casing
- Temperature control components including:
- a first heat exchange part, the first heat exchange part is in thermally conductive contact with the casing
- a second heat exchange part, the second heat exchange part is in thermally conductive contact with the heating element
- the flexible liquid flow pipeline forms a flexible heat exchange circuit with the first heat exchange part and the second heat exchange part as a series node, and the flexible liquid flow pipeline has The flexible heat exchange loop provides the redundant length of the variability margin;
- a liquid supply driving element the liquid supply driving element is connected in series in the flexible heat exchange circuit;
- the heat of the second heat exchange part is conducted to the first heat exchange part via the liquid flow inside the flexible liquid flow pipe, so that the heat generated by the heating element is conducted to the casing.
- the temperature control component can form a flexible heat exchange circuit based on the flow of a liquid medium between the heating element and the casing, where the flexible heat exchange circuit can be based on liquid
- the medium is circulated to realize the heat exchange from the heating element to the casing, so it has a higher exchange efficiency than the heat exchange with air as the carrier.
- the flexible heat exchange circuit has a response to the heat exchange between the heating element and the casing The relative position changes and the deformable margin is bent, so the flexible heat exchange circuit will not interfere with the relative movement between the heating element and the casing.
- the temperature control component forming the flexible heat exchange circuit can be integrally arranged inside the casing, there is no need to deploy an external liquid supply pipe for the liquid medium outside the casing.
- Fig. 1 is a schematic diagram of an exemplary structure of a camera in an embodiment of the present invention
- Fig. 2 is a schematic diagram of an exemplary internal structure of a camera in a comparative example
- Fig. 3 is a schematic structural diagram of a first example of the camera shown in Fig. 1;
- FIG. 4 is a schematic diagram of an electrical architecture example applicable to the first example structure shown in FIG. 3;
- FIG. 5 is a schematic diagram of a second example structure of the camera shown in FIG.
- Fig. 1 is a schematic diagram of an exemplary structure of a camera in an embodiment of the present invention.
- the camera may include:
- the temperature control component 40 is located inside the casing 10, and the temperature control component 40 forms a flexible heat exchange circuit based on the circulation of a liquid medium between the heating element 20 and the casing 10;
- the flexible heat exchange circuit based on the flow of the liquid medium has a deformable margin that bends in response to changes in the relative position between the heating element 20 and the casing 10.
- the temperature control assembly 40 can form a flexible heat exchange circuit between the heating element 20 and the casing 10.
- the flexible heat exchange circuit can realize the heat exchange from the heating element 20 to the casing 10 based on the circulation of the liquid medium, it has a higher exchange efficiency than the heat exchange using air as a carrier. Moreover, since the flexible heat exchange circuit has a deformable margin that bends in response to changes in the relative position between the heating element 20 and the casing 10, the flexible heat exchange circuit does not interfere with the heating element 20 and the casing 10 The relative movement.
- the temperature control assembly 40 forming the flexible heat exchange circuit can be integrally arranged inside the casing 10, there is no need to deploy an external liquid supply pipe for the liquid medium outside the casing 10.
- the temperature control assembly 40 may include a flexible liquid flow pipeline filled with a liquid medium, and a loop is formed by the flexible liquid flow pipeline filled with a liquid medium to guide the heat of the heating element 20 to the casing 10 Heat dissipation is achieved.
- the flexible liquid flow pipeline can be filled with liquid medium.
- the case 10 may include a housing base 11 and a housing cover 12 installed above the housing base 11 as an example.
- the heating element 20 may be rotated horizontally by the transmission assembly 30 Supported above the shell base 11.
- the transmission assembly 30 may include a base 31 fixedly installed on the housing base 11 and a rotating shaft 32 rotatably installed above the base 31.
- the heating element 20 can be fixedly installed on the top end of the rotating shaft 32, so that as the rotating shaft 32 rotates, the heating element 20 can rotate horizontally above the housing 11.
- the heating element 20 may include an imaging part.
- the temperature control assembly 40 forming the flexible heat exchange circuit may include: a first heat exchange part 41, a second heat exchange part 42, a flexible liquid flow pipe 43, and a liquid supply drive Element 44 (e.g. pump).
- a liquid supply drive Element 44 e.g. pump
- the first heat exchange portion 41 may be in thermally conductive contact with the casing 10, for example, the first heat exchange portion 41 may be attached to the casing 12 to achieve thermally conductive contact with the casing 10.
- the second heat exchange portion 42 may be in thermally conductive contact with the heating element 20, for example, the second heat exchange portion 42 may be in thermal contact with the heating element 20 by being attached to a temperature control surface on the top of the heating element 20.
- the flexible liquid flow pipeline 43 may form the aforementioned flexible heat exchange circuit by using the first heat exchange part 41 and the second heat exchange part 42 as the serial nodes, and the flexible liquid flow pipeline 43 may have a function to provide the flexible heat exchange circuit.
- the redundant length of the denaturation margin may be used to provide the flexible heat exchange circuit.
- the flexible liquid flow pipeline 43 may include an upward flexible pipe 431 and a downward flexible pipe 432.
- the upward flexible pipe 431 and the downward flexible pipe 432 can be made of a flexible material, and the flexible material can be plastic or rubber. , But not limited to this.
- the upward flexible pipe 431 is used to provide the low-temperature liquid medium from the first heat exchange part 41 to the second heat exchange part 42 and radiate heat through the casing 10 to form a liquid supply branch in the flexible heat exchange circuit;
- the tube 432 is used to drain the high-temperature liquid medium from the second heat exchange part 42 to the first heat exchange part 41 and absorb heat from the heating element 20 to form a liquid drainage branch in the flexible heat exchange circuit.
- the redundant length of the flexible liquid flow pipeline 43 it can be considered that the reserved tube length of the flexible liquid flow pipeline 43 between the first heat exchange part 41 and the second heat exchange part 42 satisfies:
- the path 43 does not bear tensile stress within the moving stroke range of the heating element 20 relative to the casing 10.
- the liquid supply driving element 44 may include a power element capable of driving the flow of a liquid medium, such as a pump.
- the liquid supply driving element 44 can be connected in series in a closed loop circulation circuit, and the liquid supply driving element 44 can be fixedly installed on the housing 11.
- the start-stop state and the working speed of the liquid supply driving element 44 may be electronically controlled, or may be temperature-controlled.
- Fig. 2 is a schematic diagram of an exemplary internal structure of a camera in a comparative example.
- the camera uses a fan 90 rigidly connected to the heating element 20 to achieve temperature control, so that the fan 90 is used to accelerate the air flow speed to improve the heat exchange efficiency.
- the fan 90 rigidly connected to the heating element 20 to achieve temperature control, so that the fan 90 is used to accelerate the air flow speed to improve the heat exchange efficiency.
- the heat dissipation of the fan 90 cannot change the exchange mode using air as a carrier.
- the fan 90 can accelerate the flow of air, due to the excessive thermal resistance of the air, the heat exchange efficiency cannot be substantially improved;
- the heating element 20 includes an imaging part
- the high-frequency rotation of the fan blades of the fan 90 will cause the heating element 20 to vibrate, which will also cause the imaging part to vibrate, resulting in imaging
- the image output by the part produces slight jitter
- the way that the fan 90 uses air as a carrier to dissipate heat will expand the diffusion range of the heat generated by the heating element 20 in the casing 10, which may affect other temperature-sensitive elements in the casing 10, such as sensors.
- the fan 90 cannot adapt to a special-shaped and narrow space, and the fan 90 needs to occupy a large regular installation space in the casing 10. Therefore, the comparative example shown in FIG. 2 is not conducive to the miniaturization of the camera.
- the temperature control assembly 40 in the embodiment shown in FIG. 1 uses a liquid medium to realize heat exchange, and thus has a higher exchange efficiency;
- the temperature control assembly 40 in the embodiment shown in FIG. 1 may not include high-frequency moving parts rigidly connected to the heating element 20, so it is not easy to cause unnecessary vibration to the heating element 20;
- the temperature control assembly 40 in the embodiment shown in FIG. 1 can transfer heat in an orderly manner in a flexible heat exchange loop, and will not cause the heat generated by the heating element 20 to diffuse out of order;
- the various parts of the temperature control assembly 40 in the embodiment shown in FIG. 1 can be installed separately, and the flexible liquid flow pipe 43 is easier to adapt to the special-shaped and narrow space than the fan 90, so the temperature control assembly 40 does not need to occupy more space.
- the large and regular installation space is conducive to the miniaturization of the camera.
- Fig. 3 is a schematic structural diagram of a first example of the camera shown in Fig. 1.
- the first heat exchange part 41 may include a first thermally conductive interface layer 411 attached to the casing 10 and a first heat exchanger 412 thermally assembled with the first thermally conductive interface layer 411.
- the thermally conductive assembly of the first heat exchanger 412 and the first thermally conductive interface layer 411 can be achieved by using complementary tooth-shaped or corrugated thermally conductive surfaces to achieve thermally conductive contact.
- the second heat exchange portion 42 may include a second thermally conductive interface layer 421 attached to the heating element 20 and a second heat exchanger 422 thermally assembled with the second thermally conductive interface layer 421.
- the heat-conducting assembly of the second heat exchanger 422 and the second heat-conducting interface layer 421 may use complementary tooth-shaped or corrugated heat-conducting surfaces to achieve heat-conducting contact.
- thermally conductive assembly of the first heat exchanger 412 and the first thermally conductive interface layer 411, and the thermally conductive assembly of the second heat exchanger 422 and the second thermally conductive interface layer 421 can also be implemented with a flat thermally conductive surface. contact.
- the flexible liquid flow pipeline 43 may be connected to the pipe connections of the first heat exchanger 412 and the second heat exchanger 422.
- the two ends of the flexible liquid flow pipeline 43 may be connected to each other.
- the first tube interface 412a of the first heat exchanger 412 and the second tube interface 422a of the second heat exchanger 422 are connected.
- the liquid inlet end of the upward flexible pipe 431 of the flexible liquid flow pipeline 43 may be connected to the outlet port in the pair of first row pipe interfaces 412a of the first heat exchanger 412, and the upward flexible pipe 43 of the flexible liquid flow pipeline
- the liquid outlet end of the pipe 431 can be connected to the inlet port of the pair of second row pipe connections 422a of the second heat exchanger 422; the liquid inlet end of the downward flexible pipe 432 of the flexible liquid flow pipeline 43 can be connected to the second
- the outlet port of the pair of second row pipe ports 422a of the heat exchanger 422 is connected, and the liquid outlet end of the downward flexible pipe 432 of the flexible liquid flow pipeline 43 can be connected to the first heat exchanger 412 through the liquid supply driving element 44.
- the inlet ports of the pair of first row pipe ports 412a are connected.
- the pipe connection between the flexible liquid flow pipeline 43 and the first heat exchanger 412 and/or the second heat exchanger 422 can be fastened by a rigid clamp, and the flexible liquid flow pipeline 43 can also pass through The limit constraint of the flexible clamp with a preset distance from the rigid clamp, specifically:
- the flexible liquid flow pipeline 43 and the first pipe connection 412a (including the inlet and outlet ports) of the first heat exchanger 412 are fastened by the first rigid clamp fastening 412b
- the flexible liquid flow The pipeline 43 may also be restricted and restricted by a first flexible clamp 412c having a preset distance from the first rigid clamp 412b.
- the first flexible clamp 412c may be fixedly installed on the machine through the first clamp bracket 412d.
- Shell 10 (such as shell cover 12);
- the flexible liquid flow pipeline 43 and the second pipe interface 422a (including the inlet and outlet ports) of the second heat exchanger 422 are fastened by the second rigid clamp 422b
- the flexible liquid flow pipeline 43 can also be used.
- the second flexible clamp 422c having a preset distance from the second rigid clamp 422b is restricted and restricted.
- the second flexible clamp 422c can be fixedly installed on the heating element 20 through the second clamp bracket 422d.
- the structure restricted by the flexible clamp can reduce the wear of the flexible liquid flow pipeline 43 and the pipe interface of the first heat exchanger 412 and/or the second heat exchanger 422.
- first tube interface 412a of the first heat exchanger 412, the second tube interface 422a of the second heat exchanger 422, and the first rigid clamp 412b and the second rigid clamp 422b can all be made of, for example, metal.
- the flexible liquid flow line 43 can be made of a relatively low-hardness soft material such as plastic or rubber.
- the flexible liquid flow line 43 responds to changes in the relative position between the heating element 20 and the casing 10
- the bending deformation will be transmitted to the butt ends of the flexible liquid flow pipeline 43 and the first row of pipe interfaces 412a and the second row of pipe interfaces 422a, and cause friction of the hard material at the butt ends of the flexible liquid flow pipeline 43
- the flexible liquid flow line 43 with relatively low hardness is worn at the butt end.
- the start-stop state and the working speed of the liquid supply driving element 44 may be electronically controlled, or may be temperature-controlled.
- the start-stop state and working speed of the liquid supply driving element 44 can be controlled by the processor in the camera.
- the processor can control the liquid supply driving element 44 according to the logical conditions shown in Table 1. Start-stop status and working speed:
- the first temperature T1 may be less than the second temperature T2.
- the first temperature T1 may be set to 5°C
- the second temperature T2 may be set to 50°C.
- the first rotation speed W1 may be less than the second rotation speed W2.
- the first rotation speed W1 may be set to 60% of the rated rotation speed of the liquid supply driving element 44
- the second rotation speed W2 may be set as the liquid supply driving element 44 100% of the rated speed.
- FIG. 4 is a schematic diagram of an example of an electrical architecture suitable for the structure of the first example shown in FIG. 3.
- a thermal switch element 51 such as a temperature trip switch
- a thermal current limiting element 52 such as a temperature-sensitive resistor
- the thermal switch element 51 can automatically turn on or cut off the path between the liquid supply driving element 44 and the power supply of the camera in response to the temperature in the casing 10 reaching a predetermined threshold, and the thermal current limiting element 52 can respond to The temperature in the casing 10 changes the resistance value to form a variable resistor for changing the magnitude of the current in the path between the liquid supply driving element 44 and the power source of the camera.
- the temperature control method shown in FIG. 4 can save the software programs and peripheral circuits provided for realizing the control logic of the processor, and can reduce the processing burden of the processor. As a result, the control reliability of the liquid supply driving element 44 can be improved.
- Fig. 5 is a schematic structural diagram of a second example of the camera shown in Fig. 1. See Figure 5.
- the second example :
- the first heat exchange part 41 may include a first thermally conductive interface layer 411 attached to the casing 10 and a first heat exchanger 412 thermally assembled with the first thermally conductive interface layer 411.
- the thermally conductive assembly of the first heat exchanger 412 and the first thermally conductive interface layer 411 can be achieved by means of a Peltier element 413.
- the Peltier element 413 can be energized to form a first temperature control surface based on the Peltier effect.
- the components of the second temperature control surface such as TEC, (Thermo Electric Cooler, semiconductor cooler).
- the Peltier element 413 may be located between the first heat exchanger 412 and the first thermally conductive interface layer 411, wherein the first temperature control surface of the Peltier element 413 may be in thermally conductive contact with the first heat exchanger 412, and The second temperature control surface of the Peltier element 413 can be in thermally conductive contact with the first thermally conductive interface layer 411.
- the cooling and heating modes of the first temperature control surface and the second temperature control surface of the Peltier element 413 can be switched.
- the switching can be realized by changing the positive and negative poles of the input voltage of the Peltier element 413. Therefore, the Peltier element 413 enables the temperature control assembly 40 to simultaneously support two temperature control modes of high temperature heat dissipation and low temperature heating, so that it can be applied to application scenarios where there is a large environmental temperature difference span (for example, -40°C-70°C)
- the liquid medium of the flexible heat exchange circuit can be further added with an antifreeze such as ethylene glycol.
- the second heat exchange portion 42 may include a second heat conduction interface layer 421 attached to the heating element 20, and a second heat exchanger 422 thermally assembled with the second heat conduction interface layer 421, wherein the second heat exchanger 422 is connected to the second heat exchanger 422.
- the thermally conductive assembly of the thermally conductive interface layer 421 may use complementary tooth-shaped or corrugated thermally conductive surfaces to achieve thermally conductive contact.
- the heat conduction contact achieved by complementary tooth-shaped or corrugated heat-conducting surfaces is to further enhance the heat exchange effect by increasing the effective contact heat exchange area, that is, for the same heat exchanger size, tooth-shaped or corrugated
- the heat-conducting surface can increase the effective contact heat exchange area by about 40%.
- the thermally conductive assembly of the second heat exchanger 422 and the second thermally conductive interface layer 421 may also be in thermally conductive contact with a flat thermally conductive surface.
- the flexible liquid flow pipeline 43 may be connected to the pipe connections of the first heat exchanger 412 and the second heat exchanger 422.
- the two ends of the flexible liquid flow pipeline 43 may be connected to each other.
- the first tube interface 412a of the first heat exchanger 412 and the second tube interface 422a of the second heat exchanger 422 are connected.
- the liquid inlet end of the upward flexible pipe 431 of the flexible liquid flow pipeline 43 may be connected to the outlet port in the pair of first row pipe interfaces 412a of the first heat exchanger 412, and the upward flexible pipe 43 of the flexible liquid flow pipeline
- the liquid outlet end of the pipe 431 can be connected to the inlet port of the pair of second row pipe connections 422a of the second heat exchanger 422; the liquid inlet end of the downward flexible pipe 432 of the flexible liquid flow pipeline 43 can be connected to the second
- the outlet port of the pair of second row pipe ports 422a of the heat exchanger 422 is connected, and the liquid outlet end of the downward flexible pipe 432 of the flexible liquid flow pipeline 43 can be connected to the first heat exchanger 412 through the liquid supply driving element 44.
- the inlet ports of the pair of first row pipe ports 412a are connected.
- the flexible liquid flow pipeline 43 and the first heat exchanger 412 and/or the pipe connection of the second heat exchanger 422 can be fastened by a rigid clamp, and the flexible liquid flow pipeline 43 is also It can be restricted by a flexible clamp with a preset distance from the rigid clamp.
- the flexible liquid flow pipeline 43 uses a rigid clamp to fasten the butt connection with the pipe interface, and uses the flexible clamp to restrict the position, which may be the same as the first example shown in FIG. 3, and will not be repeated here.
- the start-stop state and the working speed of the liquid supply driving element 44 can be electronically controlled or temperature-controlled.
- the start-stop state and working mode of the Peltier element 413 can be electronically controlled, that is, the start-stop state and working mode of the Peltier element 413 can be controlled by the camera. In the processor.
- the processor can be as shown in Table 2.
- the third temperature T3 may be less than the first temperature T1, the first temperature T1 may be less than the second temperature T2, for example, the third temperature T3 may be set to -15°C, the first temperature T1 may be set to 5°C, The second temperature T2 can be set to 50°C.
- the first rotation speed W1 may be less than the second rotation speed W2.
- the first rotation speed W1 may be set to 60% of the rated rotation speed of the liquid supply driving element 44
- the second rotation speed W2 may be set as the liquid supply driving element 44 100% of the rated speed.
- the processor can also control the start-stop state and working speed of the liquid supply driving element 44, and the start-stop state and working mode of the Peltier element 413 according to the logical conditions shown in Table 3:
- the fourth temperature T4 may be less than the fifth temperature T5.
- the fourth temperature T4 may be set to 43°C
- the fifth temperature T5 may be set to 47°C.
- the first rotation speed W1 may be less than the second rotation speed W2.
- the first rotation speed W1 may be set to 60% of the rated rotation speed of the liquid supply driving element 44
- the second rotation speed W2 may be set as the liquid supply driving element 44 100% of the rated speed.
- the logical conditions shown in Table 3 can realize constant temperature control.
- the electrical architecture shown in FIG. 4 can also be applied to the second example.
- the processor executes the control based on the logical conditions, It may not be limited to the logical conditions for the liquid supply driving element 44 as shown in Table 2 and Table 3.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
- Cameras Adapted For Combination With Other Photographic Or Optical Apparatuses (AREA)
Abstract
一种摄像机,包括:发热元件(20),可以相对于机壳(10)运动;和温控组件(40),可以在发热元件(20)与机壳(10)之间形成基于液态介质流通的柔性热交换回路,其中基于液态介质流通实现从发热元件(20)到机壳(10)的热交换,相比于以空气为载体的热交换具有更高的交换效率。
Description
本发明要求于2019年11月27日提交中国专利局、申请号为201911179763.6发明名称为“摄像机”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
本发明涉及摄像机的温控技术,特别涉及具有可移动发热元件的一种摄像机。
摄像机的机壳内往往设置有例如成像部等发热元件,这些发热元件在运行时会产生大量的热量,这些热量可以通过机壳与外部的热交换而散出。然而,若发热元件所产生的热量不能高效地被交换至机壳,则,无论机壳的对外热交换效率如何提升,都不能改善发热元件的温控效果。
随着各种智能化应用的需求增加,摄像机的形态越来越多样化,某些摄像机中的发热元件可以相对于机壳运动。对于此类摄像机,发热元件所产生的热量只能选择以空气为载体的乱序流动而被交换至机壳,但这样的热交换方式的交换效率较低,导致对发热元件的温控效果不佳。
发明内容
本发明的一个实施例提供了一种摄像机,包括:
机壳;
发热元件,所述发热元件通过传动组件可移动地装设在所述机壳的内部;
温控组件,所述温控组件位于所述机壳的内部,并且,所述温控组件在所述发热元件与所述机壳之间形成基于液态介质流通的柔性热交换回路;
其中,所述柔性热交换回路具有响应于所述发热元件与所述机壳之间的相对位置变化而弯曲的可变形余量。
本发明的一个实施例提供了另一种摄像机,包括:
机壳,包括壳座以及装设在所述壳座的上方的壳罩;
发热元件,被所述传动组件可平转地支撑在所述壳座的上方;
温控组件,所述温控组件位于所述机壳的内部且与所述壳罩导热接触, 并且,所述温控组件在所述发热元件与所述机壳之间形成基于液态介质流通的柔性热交换回路;
其中,所述柔性热交换回路具有响应于所述发热元件与所述机壳之间的相对位置变化而弯曲的可变形余量。
本发明的一个实施例提供了另一种摄像机,包括:
机壳,具有金属材质;
发热元件,被设置在所述机壳内部;
温控组件,包括:
第一热交换部,所述第一热交换部与所述机壳导热接触;
第二热交换部,所述第二热交换部与所述发热元件导热接触;
柔性液流管路,所述柔性液流管路以所述第一热交换部和所述第二热交换部为串联节点形成柔性热交换回路,并且,所述柔性液流管路具有为所述柔性热交换回路提供所述可变性余量的冗余长度;
供液驱动元件,所述供液驱动元件串联在所述柔性热交换回路中;
其中,所述第二热交换部的热量经由所述柔性液流管路内部的液流传导至第一热交换部,以使将所述发热元件产生的热量传导至所述机壳。
基于上述实施例,对于发热元件能够相对于机壳运动的摄像机,温控组件可以在发热元件与机壳之间形成基于液态介质流通的柔性热交换回路,其中,该柔性热交换回路可以基于液态介质流通来实现从发热元件到机壳的热交换,因而相比于以空气为载体的热交换具有更高的交换效率,而且,由于该柔性热交换回路具有响应于发热元件与机壳之间的相对位置变化而弯曲的可变形余量,因而该柔性热交换回路不会干涉发热元件与机壳之间的相对运动。而且,由于形成柔性热交换回路的温控组件可以整体布置在机壳的内部,因而也不需要在机壳的外部布署液态介质的供液外接管路。
为了更清楚地说明本发明实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一个实施例中的摄像机的示例性结构示意图;
图2为一个比较例中的摄像机的示例性内部结构示意图;
图3为如图1所示摄像机的第一实例结构示意图;
图4为适用于如图3所示第一实例结构的电气架构实例的示意图;图5为如图1所示摄像机的第二实例结构示意图。
附图标记说明
10 机壳
11 壳座
12 壳罩
20 发热元件
30 传动组件
31 基座
32 转轴
40 温控组件
41 第一热交换部
411 第一导热界面层
412 第一换热器
412a 第一排管接口
412b 第一刚性卡箍
412c 第一柔性卡箍
412d 第一卡箍托架
413 珀尔帖元件
42 第二热交换部
421 第二导热界面层
422 第二换热器
422a 第二排管接口
422b 第二刚性卡箍
422c 第二柔性卡箍
422d 第二卡箍托架
43 柔性液流管路
431 上行柔性管
432 下行柔性管
44 供液驱动元件
51 热敏开关元件
52 热敏限流元件
90 风扇
为使本发明的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明的一个实施例中的摄像机的示例性结构示意图。请参见图1,在该实施例中,摄像机可以包括:
机壳10;
发热元件20,该发热元件20通过传动组件30可移动(平动和/或转动)地装设在机壳10的内部;
温控组件40,该温控组件40位于机壳10的内部,并且,温控组件40在发热元件20与机壳10之间形成基于液态介质流通的柔性热交换回路;
其中,基于液态介质流通的该柔性热交换回路具有响应于发热元件20与机壳10之间的相对位置变化而弯曲的可变形余量。
基于上述结构,对于发热元件20能够相对于机壳10运动的摄像机,温控组件40可以在发热元件20与机壳10之间形成柔性热交换回路。
由于该柔性热交换回路可以基于液态介质流通实现从发热元件20到机壳10的热交换,因而相比于以空气为载体的热交换具有更高的交换效率。并且,由于该柔性热交换回路具有响应于发热元件20与机壳10之间的相对位置变化而弯曲的可变形余量,因而该柔性热交换回路不会干涉发热元件20与机壳10之间的相对运动。
而且,由于形成柔性热交换回路的温控组件40可以整体布置在机壳10的内部,因而也不需要在机壳10的外部布署液态介质的供液外接管路。
在一个实施例中,该温控组件40可以包括填充有液态介质的柔性液流管路,通过填充有液态介质的柔性液流管路形成回路,将发热元件20的热量引导至机壳10进行散热实现。一种实现方式中,可以在柔性液流管路中填充满液态介质。
在一个实施例中,如图1所示,是以机壳10可以包括壳座11以及装设在壳座11的上方的壳罩12为例,发热元件20可以被传动组件30可平转地支撑在壳座11的上方。
在一个实施例中,传动组件30可以包括固定装设于壳座11的基座31,以及转动装设于基座31上方的转轴32。相应的,发热元件20可以固定装设于转轴32的顶端,从而,随着转轴32的旋转,发热元件20可以在壳座11的上方平转。
在一个实施例中,发热元件20可以包括成像部。
在一个实施例中,如图1所示,形成柔性热交换回路的温控组件40可以包括:第一热交换部41、第二热交换部42、柔性液流管路43、以及供液驱动元件44(例如泵)。
第一热交换部41可以与机壳10导热接触,例如,该第一热交换部41可以通过附着于壳罩12,实现与机壳10导热接触。
第二热交换部42可以与发热元件20导热接触,例如,该第二热交换部42可以通过附着于发热元件20顶部的温控面,实现与发热元件20导热接触。
柔性液流管路43可以以第一热交换部41和第二热交换部42为串联节点形成前述的柔性热交换回路,并且,柔性液流管路43可以具有为该柔性热交换回路提供可变性余量的冗余长度。
例如,参见图1,柔性液流管路43可以包括上行柔性管431和下行柔性管432,上行柔性管431和下行柔性管432可以由柔性材质制成,柔性材质可以为塑料,也可以为橡胶,但并不限于此。
其中,上行柔性管431用于从第一热交换部41向第二热交换部42提供,经机壳10散热后的低温液态介质,以形成柔性热交换回路中的供液支路;下 行柔性管432用于从第二热交换部42向第一热交换部41下排,从发热元件20吸收热量后的高温液态介质,以形成柔性热交换回路中的排液支路。
对于柔性液流管路43所具有的冗余长度,可以认为是柔性液流管路43在第一热交换部41和第二热交换部42之间的预留管长满足:柔性液流管路43在发热元件20相对于机壳10的移动行程范围内不承受拉伸应力。
供液驱动元件44可以包括例如泵等能够驱动液态介质流动的动力元件。供液驱动元件44可以串联在闭环流通回路中,并且,供液驱动元件44可以固定装设于壳座11。另外,供液驱动元件44的启停状态和工作转速可以采用电控的方式,也可以采用温控的方式。
图2为一个比较例中的摄像机的示例性内部结构示意图。请参见图2,在一个比较例中,摄像机利用以刚性连接装设于发热元件20的风扇90实现温度控制,以实现利用风扇90加速空气的流动速度来提高热交换效率。然而会存在以下问题:
首先,风扇90的散热不能改变以空气作为载体的交换方式,虽然风扇90可以加速空气的流动,但受限于空气热阻过大的原因,热交换效率不能得到实质性提升;
其次,若发热元件20包含成像部,由于风扇90与发热元件20之间的刚性连接,风扇90的扇叶的高频转动会导致发热元件20的震动,也就会导致成像部震动,使得成像部输出的图像产生轻微抖动;
再者,风扇90以空气作为载体进行散热的方式,会扩大发热元件20产生的热量在机壳10内的扩散范围,由此可能会影响机壳10内例如传感器等其他对温度相对敏感的元器件;
另外,风扇90无法适应异形狭窄空间,风扇90在机壳10内需要占用较大的规整安装空间,因而,图2所示的比较例,不利于摄像机的小型化设计。
将如图1所示的实施例与如图2所示的比较例相比:
首先,如图1所示实施例中的温控组件40使用液态介质实现热交换,因而具有更高的交换效率;
其次,如图1所示实施例中的温控组件40可以不包含与发热元件20刚性连接的高频运动的部件,因而不易对发热元件20产生不必要的震动;
再者,如图1所示实施例中的温控组件40可以柔性热交换回路有序传递热量,并且不会引发发热元件20产生的热量乱序扩散;
另外,如图1所示实施例中的温控组件40中的各部分可以分散安装,并且其中的柔性液流管路43比风扇90更容易适应异形狭窄空间,因而温控组件40无需占用较大的规整安装空间,有利于摄像机的小型化设计。
为了更好地理解温控组件40在摄像机中的布署方式以及工作原理,下面结合实例进行详细说明。
图3为如图1所示摄像机的第一实例结构示意图。请参见图3,在第一实例中:第一热交换部41可以包括附着于机壳10的第一导热界面层411、以及与第一导热界面层411导热装配的第一换热器412。
在一个实施例中,第一换热器412与第一导热界面层411的导热装配,可以采用以互补的齿状或波纹状的导热面实现导热接触。
第二热交换部42可以包括附着于发热元件20的第二导热界面层421、以及与第二导热界面层421导热装配的第二换热器422。
在一个实施例中,第二换热器422与第二导热界面层421的导热装配,可以采用以互补的齿状或波纹状的导热面实现导热接触。
上述以互补的齿状或波纹状的导热面实现导热接触,是为了通过增大有效接触换热面积而进一步增强换热效果,即,对于同等的换热器尺寸,齿状或波纹状的导热面可以增加约40%的有效接触换热面积。
可以理解的是,第一换热器412与第一导热界面层411的导热装配、以及第二换热器422与第二导热界面层421的导热装配,也可以以平坦状的导热面实现导热接触。
在一个实施例中,柔性液流管路43可以与第一换热器412和第二换热器422的排管接口对接,例如,参见图3,柔性液流管路43的两端可以分别连接第一换热器412的第一排管接口412a、以及第二换热器422的第二排管接口422a。
例如,柔性液流管路43的上行柔性管431的入液端,可以与第一换热器412的一对第一排管接口412a中的出接口连通,柔性液流管路43的上行柔性管431的出液端,可以与第二换热器422的一对第二排管接口422a中的入接 口连通;柔性液流管路43的下行柔性管432的入液端,可以与第二换热器422的一对第二排管接口422a中的出接口连通,柔性液流管路43的下行柔性管432的出液端可以通过供液驱动元件44,与第一换热器412的一对第一排管接口412a中的入接口连通。
在一个实施例中,柔性液流管路43与第一换热器412和/或第二换热器422的排管接口,可以通过刚性卡箍紧固,柔性液流管路43还可以通过与刚性卡箍具有预设距离的柔性卡箍限位约束,具体地:
参见图3,当柔性液流管路43与第一换热器412的第一排管接口412a(包括入接口和出接口),通过第一刚性卡箍紧固412b紧固时,柔性液流管路43还可以,通过与第一刚性卡箍412b具有预设距离的第一柔性卡箍412c限位约束,例如,第一柔性卡箍412c可以通过第一卡箍支架412d固定装设在机壳10(比如壳罩12);
当柔性液流管路43与第二换热器422的第二排管接口422a(包括入接口和出接口),通过第二刚性卡箍422b紧固时,柔性液流管路43还可以,通过与第二刚性卡箍422b具有预设距离的第二柔性卡箍422c限位约束,例如,第二柔性卡箍422c可以通过第二卡箍支架422d固定装设于发热元件20。
以柔性卡箍限位约束的结构可以减少柔性液流管路43,与第一换热器412和/或第二换热器422的排管接口的对接磨损。
即,第一换热器412的第一排管接口412a、第二换热器422的第二排管接口422a,以及第一刚性卡箍412b和第二刚性卡箍422b都可以采用例如金属等硬质材质,而柔性液流管路43则可以采用例如塑料、橡胶等硬度相对小的软性材质,因此,柔性液流管路43响应于发热元件20与机壳10之间的相对位置变化的弯曲变形,会传递至柔性液流管路43与第一排管接口412a和第二排管接口422a的对接端部,并且导致柔性液流管路43的对接端部产生硬质材质的摩擦,从而,导致硬度相对小的柔性液流管路43在对接端部磨损。
而若增设柔性卡箍对柔性液流管路43实施限位约束,则柔性液流管路43由于弯曲变形而产生的摩擦会更多地集中发生在第一柔性卡箍412c和/或第二柔性卡箍422c处,并且以此削弱柔性液流管路43,与第一排管接口412a和第二排管接口422a的对接端部的变形摩擦程度,从而可以提高柔性液流管 路43的使用寿命。
在第一实例中,供液驱动元件44的启停状态和工作转速可以采用电控的方式,也可以采用温控的方式。
对于电控的方式,供液驱动元件44的启停状态和工作转速可以受控于摄像机中的处理器,例如,该处理器可以按照如表1所示的逻辑条件,控制供液驱动元件44的启停状态和工作转速:
表1
其中,第一温度T1可以小于第二温度T2,例如,第一温度T1可以设定为5℃,第二温度T2可以设定为50℃。并且,第一转速W1可以小于第二转速W2,例如,第一转速W1可以设定为供液驱动元件44的额定转速的60%,而第二转速W2则可以设定为供液驱动元件44的额定转速的100%。
图4为适用于如图3所示第一实例结构的电气架构实例的示意图。对于温控的方式,可以参见图4,供液驱动元件44与摄像机的电源之间可以串联有热敏开关元件51(例如温跳开关)和热敏限流元件52(例如温敏电阻)。
其中,热敏开关元件51可以响应于机壳10内的温度到达预定阈值,而自动导通或切断供液驱动元件44与摄像机的电源之间的通路,热敏限流元件52则可以响应于机壳10内的温度变化而改变阻值,以在供液驱动元件44与摄像机的电源之间的通路中形成用于改变电流大小的可变电阻。
相比于电控的方式,如图4所示的温控的方式可以省去为实现处理器的控制逻辑而设置的软件程序和外围电路、并可以减轻处理器的处理负担。由此可以提高对供液驱动元件44的控制可靠性。
图5为如图1所示摄像机的第二实例结构示意图。请参见图5,在第二实例中:
第一热交换部41可以包括附着于机壳10的第一导热界面层411、以及与第一导热界面层411导热装配的第一换热器412。
在一个实施例中,第一换热器412与第一导热界面层411的导热装配可以借助珀尔帖元件413,珀尔帖元件413是能够基于珀尔帖效应,通电形成第一温控面和第二温控面的元器件,例如TEC,(Thermo Electric Cooler,半导体制冷器)。
该珀尔帖元件413可以位于第一换热器412与第一导热界面层411之间,其中,该珀尔帖元件413的第一温控面可以与第一换热器412导热接触,并且,该珀尔帖元件413的第二温控面可以与第一导热界面层411导热接触。
其中,可以切换珀尔帖元件413的第一温控面和第二温控面的冷热模式,例如,可以通过改变珀尔帖元件413的输入电压的正负极来实现该切换。因此,珀尔帖元件413使得温控组件40能够同时支持高温散热和低温加热这两种温控的模式,从而,可以适用于应用场景存在较大环境温差跨度(例如-40℃-70℃)的摄像机,并且此时,柔性热交换回路的液态介质中可以进一步添加例如乙二醇等防冻剂。
第二热交换部42可以包括附着于发热元件20的第二导热界面层421、以及与第二导热界面层421导热装配的第二换热器422,其中,第二换热器422与第二导热界面层421的导热装配,可以采用以互补的齿状或波纹状的导热面实现导热接触。
以互补的齿状或波纹状的导热面实现的该导热接触,是为了通过增大有效接触换热面积而进一步增强换热效果,即,对于同等的换热器尺寸,齿状或波纹状的导热面可以增加约40%的有效接触换热面积。但可以理解的是,第二换热器422与第二导热界面层421的导热装配,也可以以平坦状的导热面实现导热接触。
在一个实施例中,柔性液流管路43可以与第一换热器412和第二换热器422的排管接口对接,例如,参见图5,柔性液流管路43的两端可以分别连接第一换热器412的第一排管接口412a、以及第二换热器422的第二排管接口422a。
例如,柔性液流管路43的上行柔性管431的入液端,可以与第一换热器412的一对第一排管接口412a中的出接口连通,柔性液流管路43的上行柔性管431的出液端,可以与第二换热器422的一对第二排管接口422a中的入接 口连通;柔性液流管路43的下行柔性管432的入液端,可以与第二换热器422的一对第二排管接口422a中的出接口连通,柔性液流管路43的下行柔性管432的出液端可以通过供液驱动元件44,与第一换热器412的一对第一排管接口412a中的入接口连通。
在一个实施例中,柔性液流管路43与第一换热器412和/或第二换热器422的排管接口,可以通过刚性卡箍紧固,并且,柔性液流管路43还可以通过与刚性卡箍具有预设距离的柔性卡箍限位约束。其中,柔性液流管路43利用刚性卡箍与排管接口的紧固对接、以及利用柔性卡箍的限位约束,可以与如图3所示的第一实例相同,此处不再赘述。
与第一实例相似,在第二实例中,供液驱动元件44的启停状态和工作转速可以采用电控的方式,也可以采用温控的方式。而对于相比于第一实例进一步包括的珀尔帖元件413,其启停状态和工作模式可以采用电控的方式,即,珀尔帖元件413的启停状态和工作模式可以受控于摄像机中的处理器。
若供液驱动元件44的启停状态和工作转速、以及珀尔帖元件413的启停状态和工作模式同时受控于摄像机中的处理器,则,该处理器可以按照如表2所示的逻辑条件,控制供液驱动元件44的启停状态和工作转速、以及珀尔帖元件413的启停状态和工作模式:
表2
其中,第三温度T3可以小于第一温度T1,第一温度T1可以小于第二温 度T2,例如,第三温度T3可以设定为-15℃,第一温度T1可以设定为5℃,第二温度T2可以设定为50℃。并且,第一转速W1可以小于第二转速W2,例如,第一转速W1可以设定为供液驱动元件44的额定转速的60%,而第二转速W2则可以设定为供液驱动元件44的额定转速的100%。
作为一种替代方案,该处理器也可以按照如表3所示的逻辑条件,控制供液驱动元件44的启停状态和工作转速、以及珀尔帖元件413的启停状态和工作模式:
表3
其中,第四温度T4可以小于第五温度T5,例如,第四温度T4可以设定为43℃,第五温度T5可以设定为47℃。并且,第一转速W1可以小于第二转速W2,例如,第一转速W1可以设定为供液驱动元件44的额定转速的60%,而第二转速W2则可以设定为供液驱动元件44的额定转速的100%。
相比于如表2所示的逻辑条件,在表3中示出的逻辑条件可以实现恒温控制。
若供液驱动元件44的启停状态和工作转速采用温控的方式,则如图4所示的电气架构同样可以应用在第二实例中,此时,处理器执行控制所依据的逻辑条件,可以不限于如表2和表3示出的对供液驱动原件44的逻辑条件。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。
Claims (16)
- 一种摄像机,包括:机壳(10);发热元件(20),所述发热元件(20)通过传动组件(30)可移动地装设在所述机壳(10)的内部;温控组件(40),所述温控组件(40)位于所述机壳(10)的内部,并且,所述温控组件(40)在所述发热元件(20)与所述机壳(10)之间形成基于液态介质流通的柔性热交换回路;其中,所述柔性热交换回路具有响应于所述发热元件(20)与所述机壳(10)之间的相对位置变化而弯曲的可变形余量。
- 根据权利要求1所述的摄像机,其中所述温控组件(40)包括:第一热交换部(41),所述第一热交换部(41)与所述机壳(10)导热接触;第二热交换部(42),所述第二热交换部(42)与所述发热元件(20)导热接触;柔性液流管路(43),所述柔性液流管路(43)以所述第一热交换部(41)和所述第二热交换部(42)为串联节点形成所述柔性热交换回路,并且,所述柔性液流管路(43)具有为所述柔性热交换回路提供所述可变性余量的冗余长度;供液驱动元件(44),所述供液驱动元件(44)串联在所述柔性热交换回路中。
- 根据权利要求2所述的摄像机,其中所述供液驱动元件(44)与所述摄像机的电源之间串联有热敏开关元件(51)和热敏限流元件(52)。
- 根据权利要求2所述的摄像机,其中所述第一热交换部(41)包括与所述机壳(10)导热接触的第一导热界面层(411)、以及与所述第一导热界面层(411)导热装配的第一换热器(412);所述第二热交换部(42)包括与所述发热元件(20)导热接触的第二导热界面层(421)、以及与所述第二导热界面层(421)导热装配的第二换热器(422);所述柔性液流管路(43)与所述第一换热器(412)和所述第二换热器(422)的排管接口对接。
- 根据权利要求4所述的摄像机,其中所述第一换热器(412)与所述第一导热界面层(411)以互补的齿状或波纹状的导热面实现导热接触;所述第二换热器(422)与所述第二导热界面层(421)以互补的齿状或波纹状的导热面实现导热接触。
- 根据权利要求5所述的摄像机,其中所述第一热交换部(41)进一步包括珀尔帖元件(413),所述珀尔帖元件(413)位于所述第一换热器(412)与所述第一导热界面层(411)之间,其中,所述珀尔帖元件(413)的第一温控面与所述第一换热器(412)导热接触,并且,所述珀尔帖元件(413)的第二温控面与所述第一导热界面层(411)导热接触,优选地,所述珀尔帖元件(413)包括半导体制冷器TEC;所述第二换热器(422)与所述第二导热界面层(421)以互补的齿状或波纹状导热接触。
- 一种摄像机,包括:机壳(10),包括壳座(11)以及装设在所述壳座(11)的上方的壳罩(12);发热元件(20),被所述传动组件(30)可平转地支撑在所述壳座(11)的上方;温控组件(40),所述温控组件(40)位于所述机壳(10)的内部且与所述壳罩(12)导热接触,并且,所述温控组件(40)在所述发热元件(20)与所述机壳(10)之间形成基于液态介质流通的柔性热交换回路;其中,所述柔性热交换回路具有响应于所述发热元件(20)与所述机壳(10)之间的相对位置变化而弯曲的可变形余量。
- 根据权利要求7所述的摄像机,其中所述温控组件(40)包括:第一热交换部(41),所述第一热交换部(41)与所述机壳(10)导热接触;第二热交换部(42),所述第二热交换部(42)与所述发热元件(20)导热接触;柔性液流管路(43),所述柔性液流管路(43)以所述第一热交换部(41)和所述第二热交换部(42)为串联节点形成所述柔性热交换回路,并且,所述柔性液流管路(43)具有为所述柔性热交换回路提供所述可变性余量的冗余长度;供液驱动元件(44),所述供液驱动元件(44)串联在所述柔性热交换回路中。
- 根据权利要求8所述的摄像机,其中所述第一热交换部(41)包括与所述机壳(10)导热接触的第一导热界面层(411)、以及与所述第一导热界面层(411)导热装配的第一换热器(412),优选地,所述第一换热器(412)与所述第一导热界面层(411)以互补的齿状或波纹状的导热面实现导热装配;所述第二热交换部(42)包括与所述发热元件(20)导热接触的第二导热界面层(421)、以及与所述第二导热界面层(421)导热装配的第二换热器(422),优选地,所述第二换热器(422)与所述第二导热界面层(421)以互补的齿状或波纹状的导热面实现导热接触;其中,所述第一换热器(412)和所述第二换热器(422)的排管接口与所述柔性液流管路(43)对接。
- 根据权利要求9所述的摄像机,其中所述第一换热器(412)和所述第二换热器(422)的排管接口与所述柔性液流管路(43)通过刚性卡箍紧固,并且,所述柔性液流管路(43)还通过与所述刚性卡箍具有预设距离的柔性卡箍限位约束。
- 根据权利要求9所述的摄像机,其中所述第一热交换部(41)进一步包括珀尔帖元件(413),所述珀尔帖元件(413)位于所述第一换热器(412)与所述第一导热界面层(411)之间,其中,所述珀尔帖元件(413)的第一温控面与所述第一换热器(412)导热接触,并且,所述珀尔帖元件(413)的第二温控面与所述第一导热界面层(411)导热接触,优选地,所述珀尔帖元件(413)包括半导体制冷器TEC。
- 一种摄像机,包括:机壳(10),具有金属材质;发热元件(20),被设置在所述机壳(10)内部;温控组件(40),包括:第一热交换部(41),所述第一热交换部(41)与所述机壳(10)导热接触;第二热交换部(42),所述第二热交换部(42)与所述发热元件(20)导热接触;柔性液流管路(43),所述柔性液流管路(43)以所述第一热交换部(41)和所述第二热交换部(42)为串联节点形成柔性热交换回路,并且,所述柔性液流管路(43)具有为所述柔性热交换回路提供所述可变性余量的冗余长度;供液驱动元件(44),所述供液驱动元件(44)串联在所述柔性热交换回路中;其中,所述第二热交换部(42)的热量经由所述柔性液流管路(43)内部的液流传导至第一热交换部(41),以使将所述发热元件(20)产生的热量传导至所述机壳(10)。
- 根据权利要求12所述的摄像机,其中所述第一热交换部(41)包括与所述机壳(10)导热接触的第一导热界面层(411)、以及与所述第一导热界面层(411)导热装配的第一换热器(412),优选地,所述第一换热器(412)与所述第一导热界面层(411)以互补的齿状或波纹状的导热面实现导热装配;所述第二热交换部(42)包括与所述发热元件(20)导热接触的第二导热界面层(421)、以及与所述第二导热界面层(421)导热装配的第二换热器(422),优选地,所述第二换热器(422)与所述第二导热界面层(421)以互补的齿状或波纹状的导热面实现导热接触。
- 根据权利要求13所述的摄像机,其中所述第一换热器(412)的排管接口、所述第二换热器(422)的排管接口与所述柔性液流管路(43)通过刚性卡箍紧固,并且,所述柔性液流管路(43)还通过与所述刚性卡箍具有预设距离的柔性卡箍限位约束。
- 根据权利要求14所述的摄像机,还包括温敏电阻,以使所述温敏电 阻根据所述发热元件(20)产生的热量改变电阻值,以控制所述供液驱动元件(44)的转速。
- 根据权利要求14所述的摄像机,其中所述第一热交换部(41)进一步包括珀尔帖元件(413),所述珀尔帖元件(413)位于所述第一换热器(412)与所述第一导热界面层(411)之间,其中,所述珀尔帖元件(413)的第一温控面与所述第一换热器(412)导热接触,并且,所述珀尔帖元件(413)的第二温控面与所述第一导热界面层(411)导热接触。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20894144.3A EP4067992B1 (en) | 2019-11-27 | 2020-07-01 | Camera |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911179763.6A CN112965325B (zh) | 2019-11-27 | 2019-11-27 | 摄像机 |
CN201911179763.6 | 2019-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021103529A1 true WO2021103529A1 (zh) | 2021-06-03 |
Family
ID=76129127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/099730 WO2021103529A1 (zh) | 2019-11-27 | 2020-07-01 | 一种摄像机 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4067992B1 (zh) |
CN (1) | CN112965325B (zh) |
WO (1) | WO2021103529A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000082347A (ja) * | 1998-09-04 | 2000-03-21 | Toshimasa Nakayama | 超伝導ケーブルの冷却方法 |
CN2769980Y (zh) * | 2005-01-06 | 2006-04-05 | 富准精密工业(深圳)有限公司 | 液冷式散热装置 |
CN102647885A (zh) * | 2011-02-18 | 2012-08-22 | 青岛海信电器股份有限公司 | 散热装置、电子设备及电子设备的散热方法 |
CN102854714A (zh) * | 2012-08-16 | 2013-01-02 | 浙江宇视科技有限公司 | 一种变焦摄像机散热装置 |
CN204374837U (zh) * | 2015-01-08 | 2015-06-03 | 联想(北京)有限公司 | 电子设备 |
CN109817106A (zh) * | 2019-03-19 | 2019-05-28 | 京东方科技集团股份有限公司 | 显示装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4958257A (en) * | 1989-03-29 | 1990-09-18 | Hughes Aircraft Company | Heat conducting interface for electronic module |
US7508672B2 (en) * | 2003-09-10 | 2009-03-24 | Qnx Cooling Systems Inc. | Cooling system |
CN204202237U (zh) * | 2014-10-27 | 2015-03-11 | 深圳华大基因研究院 | 温控装置 |
JP6573166B2 (ja) * | 2015-10-27 | 2019-09-11 | パナソニック株式会社 | 撮像装置 |
US10375327B2 (en) * | 2016-10-21 | 2019-08-06 | Rebellion Photonics, Inc. | Mobile gas and chemical imaging camera |
CN208015860U (zh) * | 2018-04-10 | 2018-10-26 | 罗秀贞 | 一种带散热装置的摄像头 |
JP6756357B2 (ja) * | 2018-11-29 | 2020-09-16 | 株式会社ニコン | 撮像装置 |
-
2019
- 2019-11-27 CN CN201911179763.6A patent/CN112965325B/zh active Active
-
2020
- 2020-07-01 EP EP20894144.3A patent/EP4067992B1/en active Active
- 2020-07-01 WO PCT/CN2020/099730 patent/WO2021103529A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000082347A (ja) * | 1998-09-04 | 2000-03-21 | Toshimasa Nakayama | 超伝導ケーブルの冷却方法 |
CN2769980Y (zh) * | 2005-01-06 | 2006-04-05 | 富准精密工业(深圳)有限公司 | 液冷式散热装置 |
CN102647885A (zh) * | 2011-02-18 | 2012-08-22 | 青岛海信电器股份有限公司 | 散热装置、电子设备及电子设备的散热方法 |
CN102854714A (zh) * | 2012-08-16 | 2013-01-02 | 浙江宇视科技有限公司 | 一种变焦摄像机散热装置 |
CN204374837U (zh) * | 2015-01-08 | 2015-06-03 | 联想(北京)有限公司 | 电子设备 |
CN109817106A (zh) * | 2019-03-19 | 2019-05-28 | 京东方科技集团股份有限公司 | 显示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4067992A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4067992A4 (en) | 2023-01-11 |
CN112965325B (zh) | 2022-03-11 |
CN112965325A (zh) | 2021-06-15 |
EP4067992B1 (en) | 2024-03-20 |
EP4067992A1 (en) | 2022-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4625851B2 (ja) | 冷却システム及びそれを備えた電子機器 | |
US7474527B2 (en) | Desktop personal computer and thermal module thereof | |
US20080099193A1 (en) | Self-regulated cooling mechanism | |
US20060277923A1 (en) | Heat-dissipation device | |
WO2018166301A1 (zh) | 散热系统和电子设备 | |
US20120275115A1 (en) | Electronic device | |
US10785893B1 (en) | Heat dissipation module and electronic device | |
JP2004282804A (ja) | インバータ装置 | |
CN210720996U (zh) | 散热模块与投影装置 | |
US20020114136A1 (en) | External attached heat sink fold out | |
WO2021103529A1 (zh) | 一种摄像机 | |
US10593611B2 (en) | Liquid cooling system | |
JP2005260237A (ja) | 半導体素子冷却用モジュール | |
CN113852736A (zh) | 摄像模组及电子设备 | |
TWI664525B (zh) | 具可翻轉風扇的散熱裝置及具散熱裝置之主機板 | |
TW200924624A (en) | Heat dissipation module | |
JP4922903B2 (ja) | 電子機器用の冷却装置 | |
WO2020052030A1 (zh) | 柔性电子装置 | |
TW200909989A (en) | Projection device and heat dissipation method | |
CN210072297U (zh) | 一种主动制冷式全密闭单片lcd投影光机 | |
JP2009081270A (ja) | 圧電ファン付冷却装置 | |
TWM617372U (zh) | 電腦系統及其電子組件 | |
KR200364071Y1 (ko) | 컴퓨터용 수냉식 냉각 장치 | |
JP2021024324A (ja) | シャッター装置 | |
JP2012160533A (ja) | 冷却機構及び電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20894144 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020894144 Country of ref document: EP Effective date: 20220627 |