WO2021103216A1 - 液晶显示面板及其制造方法 - Google Patents

液晶显示面板及其制造方法 Download PDF

Info

Publication number
WO2021103216A1
WO2021103216A1 PCT/CN2019/126616 CN2019126616W WO2021103216A1 WO 2021103216 A1 WO2021103216 A1 WO 2021103216A1 CN 2019126616 W CN2019126616 W CN 2019126616W WO 2021103216 A1 WO2021103216 A1 WO 2021103216A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
liquid crystal
display panel
crystal display
responsive polymer
Prior art date
Application number
PCT/CN2019/126616
Other languages
English (en)
French (fr)
Inventor
廖东
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/627,817 priority Critical patent/US11256143B2/en
Publication of WO2021103216A1 publication Critical patent/WO2021103216A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • This application relates to the field of display technology, and in particular to a liquid crystal display panel and a manufacturing method thereof.
  • liquid crystal displays LCD
  • thin film transistor (Thin Film Transistor, TFT) array substrates and color filter (CF) substrates are bonded by sealant materials to prevent liquid crystal from overflowing the LCD and preventing water vapor from entering To the LCD display.
  • the frame of the liquid crystal display becomes narrower and narrower, resulting in a lower metal aperture ratio where the sealant is located, and a low metal aperture ratio will cause the coated sealant to cure Insufficient curing exists.
  • Insufficient curing of the sealant will cause the photoinitiator with active free radicals to precipitate into the liquid crystal, which will initiate the polymerization of the liquid crystal monomers.
  • the polymerization of the liquid crystal monomers will cause alignment dark lines or uneven surrounding brightness. (Mura).
  • the purpose of this application is to provide a liquid crystal display panel and a manufacturing method thereof to solve the problem of the precipitation of a photoinitiator with active free radicals into the liquid crystal, which initiates the polymerization reaction of the liquid crystal monomers, resulting in alignment dark lines or uneven peripheral brightness .
  • the present application provides a liquid crystal display panel, the liquid crystal display panel comprising a first substrate, a second substrate disposed opposite to the first substrate, and disposed on the first substrate and the second substrate Between the sealant and the liquid crystal molecules arranged in the cavity enclosed by the first substrate, the second substrate and the sealant, and the sealant is provided with temperature-responsive polymer vesicles,
  • the temperature-responsive polymer vesicle includes a temperature-responsive polymer body and a free radical inhibitor encapsulating the temperature-responsive polymer body, and the temperature-responsive polymer vesicle is released under a preset temperature condition The free radical inhibitor.
  • the liquid crystal display panel further includes a plurality of spacer particles, the plurality of spacer particles are dispersed in the sealant, and the temperature-responsive polymer vesicles are located on the surface of the spacer particles.
  • the size of the spacer particles is 2 ⁇ m-6 ⁇ m.
  • the mass ratio of the spacer particles to the sealant is (0.5-1.5):100.
  • the preset temperature condition is that the temperature is higher than or equal to 55 degrees Celsius.
  • the temperature-responsive polymer vesicles include a first temperature-responsive polymer vesicle and a second temperature-responsive polymer vesicle, and the first temperature-responsive polymer vesicle is at a temperature The free radical inhibitor is released when the temperature is higher than a first threshold temperature, and the second temperature-responsive polymer vesicle releases the free radical inhibitor when the temperature is higher than a second threshold temperature, and the second threshold temperature is higher than The first threshold temperature.
  • the first threshold temperature is 55 degrees Celsius
  • the second threshold temperature is 120 degrees Celsius
  • the size of the temperature-responsive polymer vesicle is 10 nanometers to 500 nanometers.
  • the material for preparing the sealant includes a matrix resin, a photoinitiator, and a crosslinking agent.
  • the temperature-responsive polymer body is made of polyoxyethylene-b-polyN-isopropylacrylamide, and the radical inhibitor is selected from 2,6-di-tert-butyl At least one of -4-methylphenol and tetramethylpiperidine oxynitride.
  • a method for manufacturing a liquid crystal display panel includes the following steps:
  • the spacer particle composite includes spacer particles and temperature-responsive polymer vesicles on the surface of the spacer particles.
  • the temperature-responsive polymer vesicles include a temperature-responsive polymer body and a free radical inhibitor encapsulating the temperature-responsive polymer body, and the temperature-responsive polymer vesicle releases all the materials under a preset temperature condition.
  • the free radical inhibitor, the adhesive includes a matrix resin, a photoinitiator, and a crosslinking agent;
  • the frame glue irradiated by ultraviolet light is heated to 80 degrees Celsius to 130 degrees Celsius.
  • the mass ratio of the spacer particles to the adhesive is (0.5-1.5):100.
  • the accumulated light quantity of the ultraviolet light is 1000 millijoules to 6000 millijoules.
  • the frame glue irradiated by ultraviolet light is heated to 120 degrees Celsius, and the time is 50 minutes to 60 minutes.
  • the preset temperature condition is that the temperature is higher than or equal to 55 degrees Celsius.
  • the temperature-responsive polymer vesicles have a size of 10 nanometers to 500 nanometers.
  • the size of the spacer particles is 2 ⁇ m-6 ⁇ m.
  • the material for preparing the temperature-responsive polymer body is polyoxyethylene-b-polyN-isopropylacrylamide, and the radical inhibitor is selected from 2,6-di At least one of tert-butyl-4-methylphenol and tetramethylpiperidine oxynitride.
  • the present application provides a liquid crystal display panel and a manufacturing method thereof.
  • the temperature-responsive polymer vesicles are arranged in the sealant.
  • the temperature-responsive polymer vesicles include a temperature-responsive polymer body and a temperature-responsive polymer body package. Free radical inhibitors, temperature-responsive polymer vesicles release free radical inhibitors under preset temperature conditions, so that the free radical inhibitors can act on the active free radicals in the sealant and prevent the active free radicals from diffusing into the liquid crystal This causes the liquid crystal to undergo polymerization reaction, thereby avoiding the occurrence of alignment dark lines or uneven surrounding brightness during the display of the liquid crystal display panel.
  • FIG. 1 is a schematic diagram of the structure of a liquid crystal display panel according to an embodiment of the application
  • FIG. 2 is a schematic diagram of the structure of temperature-responsive polymer vesicles in the liquid crystal display panel shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a liquid crystal display panel according to another embodiment of the application.
  • FIG. 4 is a flowchart of manufacturing a liquid crystal display panel according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a liquid crystal display panel according to an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a temperature-responsive polymer vesicle in the liquid crystal display panel shown in FIG.
  • the liquid crystal display panel 10 may be one of a vertical alignment liquid crystal display panel, a plane conversion liquid crystal display panel, and a fringe field liquid crystal display panel.
  • the liquid crystal display panel 10 includes a first substrate 101, a second substrate 102, a sealant 103, a temperature-responsive polymer vesicle 104, a plurality of spacer particles 105 and liquid crystal molecules 106.
  • One of the first substrate 101 and the second substrate 102 is a thin film transistor array substrate, and the other is a color filter substrate.
  • the second substrate 102 is disposed opposite to the first substrate 101.
  • An alignment layer is provided on the surface of the first substrate 101 opposite to the second substrate 102, and an alignment layer is also provided on the surface of the second substrate 102 opposite to the first substrate 101.
  • the alignment layer is used to make the liquid crystal molecules have a uniform and stable initial alignment state, so as to prevent the liquid crystal molecules from generating domain faults under the action of voltage. It is understandable that protrusions for generating a pretilt angle of liquid crystal molecules may also be provided on both the first substrate 101 and the second substrate 102.
  • the sealant 103 is used to bond the first substrate 101 and the second substrate 102 to form an airtight cavity to avoid leakage of liquid crystal disposed in the cavity, or to prevent water vapor from penetrating into the liquid crystal display panel.
  • the sealant 103 is disposed between the first substrate 101 and the second substrate 102.
  • the material for preparing the sealant 103 includes a matrix resin, a photoinitiator, and a crosslinking agent.
  • the preparation material of the sealant needs to undergo UV curing and thermal curing in order to obtain the sealant. In the UV curing process, the photoinitiator is decomposed into compounds with active free radicals under the irradiation of ultraviolet light.
  • the compound initiates a radical polymerization reaction of the matrix resin, and then is heated to a preset temperature to cause the crosslinking agent and the polymer to undergo a crosslinking reaction to form a network crosslinked polymer.
  • the base resin is acrylate and its derivatives.
  • the crosslinking agent is epoxy resin.
  • the photoinitiator is azobisisobutyronitrile.
  • the liquid crystal molecules 106 are arranged in a cavity enclosed by the first substrate 101, the second substrate 102 and the sealant 103.
  • the liquid crystal molecules 106 may be thermotropic liquid crystal or lyotropic liquid crystal.
  • the liquid crystal molecules 106 are deflected under the action of a voltage greater than or equal to the threshold voltage, and the light emitted by the backlight module (not shown) sequentially passes through the polarizer on the light incident side of the liquid crystal display panel, the deflected liquid crystal molecules, and the light emitting side of the liquid crystal display panel. The role of the polarizer to display the picture.
  • the spacer particles 105 are used to support the edge of the liquid crystal display panel.
  • a plurality of spacer particles 105 are dispersed in the sealant 103.
  • the spacer particles 105 have a spherical shape or an elliptical shape.
  • the size of the spacer particles is 2 ⁇ m-6 ⁇ m.
  • the size of the spacer particles 105 is less than 2 ⁇ m, which will lead to poor supporting effect.
  • the size of the spacer particles 105 is greater than 6 ⁇ m, which will cause the sealant to have a problem of poor curing.
  • the size of the spacer particles can also be 3.6 micrometers to 6 micrometers. Specifically, the size of the spacer particles 105 may be 4 micrometers and 5 micrometers.
  • the mass ratio of the spacer particles 105 to the sealant 103 is (0.5-1.5): 100, so that the sealant 103 and the spacer particles 105 have an appropriate ratio to ensure that the sealant 103 is cured well to play the role of sealing and adhesive.
  • the spacer particles 105 play a good supporting role. Specifically, the mass ratio of the spacer particles 105 to the sealant 103 is 1:100.
  • the spacer particles 105 are made of polysiloxane, so that the spacer particles have good flexibility while playing a supporting role.
  • the temperature-responsive polymer vesicle 104 is arranged in the sealant 103.
  • the temperature-responsive polymer vesicle 104 includes a temperature-responsive polymer body 1041 and a free radical inhibitor 1042 wrapped in the temperature-responsive polymer body 1041.
  • the temperature-responsive polymer vesicle 104 releases a free radical inhibitor 1042 under a preset temperature condition.
  • the temperature-responsive polymer body 1041 and the radical inhibitor 1042 are used as raw materials, and the temperature-responsive polymer vesicle 104 is formed by self-assembly in a solvent.
  • the temperature-responsive polymer vesicle 104 has a size of 10 nanometers to 500 nanometers.
  • the size of the temperature-responsive polymer vesicle 104 may also be 20 nm to 200 nm, for example, the size of the temperature-responsive polymer vesicle 104 is 50 nm or 100 nm.
  • the size of the temperature-responsive polymer vesicles 104 is less than 10 nanometers, which is not conducive to the uniform dispersion of the temperature-responsive polymer vesicles 104 in the sealant 103, avoiding the aggregation phenomenon of the temperature-responsive polymer vesicles 104, and temperature-responsive polymerization
  • the size of the material vesicle 104 is greater than 500 nanometers, so as to prevent the temperature-responsive polymer vesicle 104 from being too large to cause insufficient curing of the sealant.
  • the temperature-responsive polymer body 1041 is made of polyoxyethylene-b-polyN-isopropylacrylamide (PEO-b-PNIPAM), so that the temperature-responsive polymer body 1041 encapsulates free radicals when the temperature is lower than 60 degrees Celsius
  • the inhibitor when the temperature is higher than or equal to 60 degrees Celsius, the temperature-responsive polymer body 1041 is thermally expanded to release the free radical inhibitor.
  • the radical inhibitor is selected from at least one of 2,6-di-tert-butyl-4-methylphenol and tetramethylpiperidine oxynitride.
  • the free radical inhibitor 1042 reacts with the active free radicals to remove the active free radicals in the sealant, and prevents the residual active free radicals in the sealant from diffusing into the liquid crystal molecules to cause polymerization of the liquid crystal molecules.
  • the preset temperature condition is higher than or equal to 55 degrees Celsius.
  • the sealant is obtained by irradiating the adhesive with ultraviolet light.
  • the adhesive will generate heat when it undergoes a chemical reaction under the action of ultraviolet light.
  • the temperature of the adhesive is lower than 50 degrees Celsius when the adhesive is cured by ultraviolet light.
  • the preset temperature is higher than or equal to 55 degrees Celsius, which can prevent the free radical inhibitor from reacting with the active free radicals generated by the decomposition of the photoinitiator during the UV curing of the adhesive, so as to prevent the free radical inhibitor from affecting the adhesive in the UV curing process. Curing under irradiation conditions.
  • the temperature-responsive polymer vesicle 104 includes a first temperature-responsive polymer vesicle and a second temperature-responsive polymer vesicle.
  • the first temperature-responsive polymer vesicle has a temperature higher than a first threshold temperature.
  • the free radical inhibitor is released by the second temperature-responsive polymer vesicle, and the second threshold temperature is higher than the first threshold temperature.
  • the first temperature-responsive polymer vesicles are used to release free radical inhibitors when the adhesive is thermally cured, so as to react with the residual active free radicals of the adhesive after UV curing, so as to avoid the recovery of the sealant after curing.
  • the first threshold temperature is 55 degrees Celsius.
  • the second temperature-responsive polymer vesicles are used to react with the active free radicals generated in the sealant 103 during the test (such as reliability test) and use of the liquid crystal display panel, so as to avoid the deterioration of the performance of the sealant 103, and Avoid diffusion of active free radicals in the sealant 103.
  • the second threshold temperature is 120 degrees Celsius.
  • FIG. 3 is a schematic structural diagram of a liquid crystal display panel according to another embodiment of the application.
  • the liquid crystal display panel 10 shown in FIG. 3 is basically similar to the liquid crystal display panel 10 shown in FIG. 1, except that the temperature-responsive polymer vesicles 104 are located on the surface of the spacer particles 105, and the temperature-responsive polymer vesicles 104 can pass through
  • the chemical bond is connected to the surface of the spacer particle 105.
  • the chemical bond can be an ester bond or an amide bond formed by a condensation reaction.
  • the temperature-responsive polymer vesicle 104 can also be connected to the surface of the spacer particle 104 by intermolecular force, for example, by making A hydrogen bond force is formed between the spacer particle 105 and the temperature-responsive polymer vesicle 104.
  • the mass ratio of the mass of each spacer particle 105 to the mass of the free radical inhibitor wrapped by the temperature-responsive polymer vesicle 104 on the surface of each spacer particle 105 is 100: (0.01-1).
  • the liquid crystal display panel 10 shown in FIG. 2 has temperature-responsive polymer vesicles 104 arranged on the surface of spacer particles 105, which can be uniformly dispersed in the sealant 103 through the spacer particles 105, thereby The temperature-responsive polymer vesicles 104 are uniformly dispersed in the sealant 103, and the uneven dispersion of the temperature-responsive polymer vesicles 104 can only inhibit the local free radical inhibitor in the sealant 103.
  • the temperature-responsive polymer vesicles 104 are located on the surface of the spacer particles 103, which can prevent the temperature-responsive polymer vesicles 104 from migrating into the liquid crystal molecules 106 and prevent the temperature-responsive polymer vesicles 104 from contaminating the liquid crystal molecules 106.
  • FIG. 4 is a flowchart of manufacturing the liquid crystal display panel according to the embodiment of the present application.
  • the manufacturing method of the liquid crystal display panel includes the following steps:
  • S101 Coating a mixture of adhesive and spacer particle compound on the first substrate to form a frame glue.
  • the adhesive and the spacer particle compound are mixed uniformly to obtain a mixture of the adhesive and the spacer particle compound, and then the mixture of the adhesive and the spacer particle compound is coated on the first substrate to form a frame glue.
  • the first substrate is one of a thin film transistor array substrate or a color filter substrate.
  • the spacer particle composite includes spacer particles and temperature-responsive polymer vesicles on the surface of the spacer particle composite.
  • the temperature-responsive polymer vesicles include a temperature-responsive polymer body and free radicals encapsulated by the temperature-responsive polymer vesicles. Inhibitors, temperature-responsive polymer vesicles release free radical inhibitors under preset temperature conditions.
  • the adhesive includes matrix resin, photoinitiator and crosslinking agent.
  • the mass ratio of the spacer particles 105 to the adhesive is (0.5-1.5):100. Specifically, the mass ratio of the spacer particles to the adhesive is about 1:100.
  • the mass ratio of the mass of each spacer particle to the mass of the free radical inhibitor encapsulated by the temperature-responsive polymer vesicles on the surface of each spacer particle is 100: (0.01-1).
  • the second substrate is arranged on the frame glue, so that the first substrate and the second substrate are arranged oppositely.
  • liquid crystal molecules are coated on the first substrate on which the frame glue is formed, and then the second substrate is placed on the first substrate and pressed and packaged to make
  • the first substrate and the second substrate are arranged opposite to each other.
  • the second substrate is the other of the thin film transistor array substrate and the color filter substrate.
  • the distance between the first substrate and the second substrate is 3.2 micrometers to 3.5 micrometers.
  • UV light is irradiated from the side of the first substrate or the side of the second substrate, and the accumulated light of the UV light is 1000 mJ-6000 mJ.
  • the photoinitiator is decomposed to generate activity Free radicals, living free radicals initiate the polymerization reaction of the matrix resin to form a linear polymer.
  • S104 Heating the sealant irradiated by ultraviolet light to 80 degrees Celsius-130 degrees Celsius.
  • the sealant is heated to 120 degrees Celsius for 50 minutes to 60 minutes, and the crosslinking agent reacts with the active functional groups on the linear polymer to form a network-type crosslinked polymer.
  • the temperature-responsive polymer vesicles release free radicals to inhibit, and the free radical inhibitors react with the active free radicals remaining in the UV curing process to prevent the sealant from diffusing into the liquid crystal molecules after curing and contaminating the liquid crystal molecules.
  • the temperature condition is a condition where the temperature is higher than or equal to 55 degrees Celsius.
  • the manufacturing method of the liquid crystal display panel of the embodiment of the present application is by mixing a spacer particle composite in an adhesive.
  • the spacer particle composite includes spacer particles and temperature-responsive polymer vesicles on the surface of the spacer particles, and temperature-responsive polymer vesicles Including a temperature-responsive polymer body and a free radical inhibitor wrapped in the temperature-responsive polymer body.
  • the temperature-responsive polymer vesicle releases the free radical inhibitor when the temperature is higher than 55 degrees Celsius.
  • the adhesive is cured by ultraviolet light.
  • the remaining active free radicals will react with the free radical inhibitor when the adhesive is thermally cured (the temperature is 80 degrees Celsius-130 degrees Celsius), so that the number of residual active free radicals is reduced, so as to prevent the residual active free radicals from diffusing to In the liquid crystal, the liquid crystal monomers are polymerized to avoid the occurrence of alignment dark lines or uneven brightness around the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板及其制造方法,通过在框胶(103)中设置温度响应型聚合物囊泡(104),温度响应型聚合物囊泡(104)包括温度响应型聚合物本体(1041)以及为温度响应型聚合物本体(1041)包裹的自由基抑制剂(1042),温度响应型聚合物囊泡(104)在预设温度条件下释放出自由基抑制剂(1042),从而避免液晶显示面板(10)显示时出现配向暗纹或周边明暗不均的现象。

Description

液晶显示面板及其制造方法 技术领域
本申请涉及显示技术领域,尤其涉及一种液晶显示面板及其制造方法。
背景技术
对于液晶显示器(Liquid Crystal Display,LCD),薄膜晶体管(Thin Film Transistor,TFT)阵列基板和彩膜(Color Filter,CF)基板通过框胶材料进行粘合,以防止液晶溢出液晶显示器且防止水汽进入至液晶显示器。然而,随着液晶显示器的解析度越来越高,液晶显示器的边框越来越窄,导致框胶所在的位置的金属开口率变低,而金属开口率低会使得涂布的框胶在固化时存在固化不足的问题,框胶固化不足会导致具有活性自由基的光引发剂析出至液晶中,引发液晶单体发生聚合反应,液晶单体聚合会导致配向暗纹或周边明暗不均的现象(Mura)。
技术问题
本申请的目的在于提供一种液晶显示面板及其制造方法,以解决具有活性自由基的光引发剂析出至液晶中,引发液晶单体发生聚合反应而出现配向暗纹或周边明暗不均的问题。
技术解决方案
为实现上述目的,本申请提供一种液晶显示面板,所述液晶显示面板包括第一基板、与所述第一基板相对设置的第二基板、设置于所述第一基板和所述第二基板之间的框胶以及设置于由所述第一基板、所述第二基板以及所述框胶围合的腔体中的液晶分子,所述框胶中设置有温度响应型聚合物囊泡,所述温度响应型聚合物囊泡包括温度响应型聚合物本体以及为所述温度响应型聚合物本体包裹的自由基抑制剂,所述温度响应型聚合物囊泡在预设温度条件下释放出所述自由基抑制剂。
在上述液晶显示面板中,所述液晶显示面板还包括多个间隔粒子,多个所述间隔粒子分散于所述框胶中,所述温度响应型聚合物囊泡位于所述间隔粒子的表面。
在上述液晶显示面板中,所述间隔粒子的尺寸为2微米-6微米。
在上述液晶显示面板中,所述间隔粒子与所述框胶的质量比为(0.5-1.5):100。
在上述液晶显示面板中,所述预设温度条件为温度高于或等于55摄氏度。
在上述液晶显示面板中,所述温度响应型聚合物囊泡包括第一温度响应型聚合物囊泡和第二温度响应型聚合物囊泡,所述第一温度响应型聚合物囊泡在温度高于第一阈值温度时释放所述自由基抑制剂,所述第二温度响应型聚合物囊泡在温度高于第二阈值温度时释放所述自由基抑制,所述第二阈值温度高于所述第一阈值温度。
在上述液晶显示面板中,所述第一阈值温度为55摄氏度,所述第二阈值温度为120摄氏度。
在上述液晶显示面板中,所述温度响应型聚合物囊泡的尺寸为10纳米-500纳米。
在上述液晶显示面板中,所述框胶的制备材料包括基体树脂、光引发剂以及交联剂。
在上述液晶显示面板中,所述温度响应型聚合物本体的制备材料为聚氧乙烯-b-聚N-异丙基丙烯酰胺,所述自由基抑制剂选自2,6-二叔丁基-4-甲基苯酚以及四甲基哌啶氮氧化物中的至少一种。
一种液晶显示面板的制造方法,所述方法包括如下步骤:
在第一基板上涂布胶黏剂和间隔粒子复合物的混合物,以形成框型胶,所述间隔粒子复合物包括间隔粒子以及位于所述间隔粒子表面的温度响应型聚合物囊泡,所述温度响应型聚合物囊泡包括温度响应型聚合物本体以及为所述温度响应型聚合物本体包裹的自由基抑制剂,所述温度响应型聚合物囊泡在预设温度条件下释放出所述自由基抑制剂,所述胶黏剂包括基体树脂、光引发剂以及交联剂;
将第二基板设置于所述框型胶上,以使所述第一基板和所述第二基板相对设置;
采用紫外光对所述框型胶进行照射;
加热紫外光照射后的所述框型胶至80摄氏度-130摄氏度。
在上述液晶显示面板的制造方法中,所述间隔粒子与所述胶黏剂的质量比为(0.5-1.5):100。
在上述液晶显示面板的制造方法中,所述紫外光的积光量为1000毫焦耳-6000毫焦耳。
在上述液晶显示面板的制造方法中,加热紫外光照射后的所述框型胶至120摄氏度,时间为50分钟-60分钟。
在上述液晶显示面板的制造方法中,所述预设温度条件为温度高于或等于55摄氏度。
在上述液晶显示面板的制造方法中,所述温度响应型聚合物囊泡的尺寸为10纳米-500纳米。
在上述液晶显示面板的制造方法中,所述间隔粒子的尺寸为2微米-6微米。
在上述液晶显示面板的制造方法中,所述温度响应型聚合物本体的制备材料为聚氧乙烯-b-聚N-异丙基丙烯酰胺,所述自由基抑制剂选自2,6-二叔丁基-4-甲基苯酚以及四甲基哌啶氮氧化物中的至少一种。
有益效果
本申请提供一种液晶显示面板及其制造方法,通过在框胶中设置温度响应型聚合物囊泡,温度响应型聚合物囊泡包括温度响应型聚合物本体以及为温度响应型聚合物本体包裹的自由基抑制剂,温度响应型聚合物囊泡在预设温度条件下释放出自由基抑制剂,以使得自由基抑制剂作用于框胶中的活性自由基,避免活性自由基扩散至液晶中而导致液晶发生聚合反应,从而避免液晶显示面板显示时出现配向暗纹或周边明暗不均的现象。
附图说明
图1为本申请一实施例液晶显示面板的结构示意图;
图2为图1所示液晶显示面板中温度响应型聚合物囊泡的结构示意图;
图3为本申请另一实施例液晶显示面板的结构示意图;
图4为制造本申请实施例液晶显示面板的流程图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1及图2,图1为本申请一实施例液晶显示面板的结构示意图,图2为图1所示液晶显示面板中温度响应型聚合物囊泡的结构示意图。液晶显示面板10可以为垂直配向型液晶显示面板、平面转化型液晶显示面板以及边缘场型液晶显示面板中的一种。液晶显示面板10包括第一基板101、第二基板102、框胶103、温度响应型聚合物囊泡104、多个间隔粒子105以及液晶分子106。
第一基板101和第二基板102中的一者为薄膜晶体管阵列基板,另一者为彩膜基板。第二基板102与第一基板101相对设置。第一基板101与第二基板102相对的表面上设置有配向层,第二基板102与第一基板101相对的表面上也设置有配向层。配向层用于使液晶分子具有均匀且稳定的初始取向状态,以防止液晶分子在电压作用下产生畴错。可以理解的是,也可以在第一基板101和第二基板102上均设置用于使液晶分子产生预倾角的突出物。
框胶103用于粘接第一基板101和第二基板102,以形成密闭空腔,避免设置于空腔中的液晶泄露,或者避免水蒸气等渗入至液晶显示面板中。框胶103设置于第一基板101和第二基板102之间。框胶103的制备材料包括基体树脂、光引发剂以及交联剂。框胶的制备材料需要依次经过紫外光固化以及热固化以得到框胶,其中,在紫外光固化过程中,光引发剂在紫外光照射下分解为具有活性自由基的化合物,具有活性自由基的化合物引发基体树脂发生自由基聚合反应,再加热至预设温度以使交联剂与聚合物发生交联反应,以形成网络交联聚合物。基体树脂为丙烯酸酯及其衍生物。交联剂为环氧树脂。光引发剂为偶氮二异丁腈。
液晶分子106设置于由第一基板101、第二基板102以及框胶103围合的腔体中。液晶分子106可以为热致液晶或溶致液晶。液晶分子106在大于或等于阈值电压的电压作用下发生偏转,背光模组(未示出)发出的光依次经过液晶显示面板入光侧的偏光片、发生偏转的液晶分子以及液晶显示面板出光侧的偏光片的作用,以进行画面显示。
间隔粒子105用于起到支撑液晶显示面板边缘的作用。多个间隔粒子105分散于框胶103中。间隔粒子105为球状或者椭圆形状。间隔粒子的尺寸为2微米-6微米,间隔粒子105的尺寸小于2微米会导致其支撑作用变差,间隔粒子105的尺寸大于6微米,会导致框胶出现固化不良的问题。间隔粒子的尺寸也可以为3.6微米-6微米。具体地,间隔粒子105的尺寸可以为4微米以及5微米。间隔粒子105与框胶103的质量比为(0.5-1.5):100,以使得框胶103与间隔粒子105具有合适的配比,保证框胶103固化良好以起到密封以及粘剂作用的同时,间隔粒子105起到良好的支撑作用。具体地,间隔粒子105与框胶103的质量比为1:100。间隔粒子105的制备材料为聚硅氧烷,以使得间隔粒子起到支撑作用的同时,具有良好的柔性。
如图1及图2所示,温度响应型聚合物囊泡104设置于框胶103中。温度响应型聚合物囊泡104包括温度响应型聚合物本体1041以及为温度响应型聚合物本体1041包裹的自由基抑制剂1042。温度响应型聚合物囊泡104在预设温度条件下释放出自由基抑制剂1042。温度响应型聚合物本体1041与自由基抑制剂1042作为原料,通过在溶剂中自组装以形成温度响应型聚合物囊泡104。
温度响应型聚合物囊泡104的尺寸为10纳米-500纳米。温度响应型聚合物囊泡104的尺寸也可以为20纳米-200纳米,例如温度响应型聚合物囊泡104的尺寸为50纳米、100纳米。温度响应型聚合物囊泡104的尺寸小于10纳米,不利于温度响应型聚合物囊泡104均匀地分散于框胶103中,避免温度响应型聚合物囊泡104出现聚集现象,温度响应型聚合物囊泡104的尺寸大于500纳米,避免温度响应型聚合物囊泡104尺寸过大导致框胶固化不充分。温度响应型聚合物本体1041的制备材料为聚氧乙烯-b-聚N-异丙基丙烯酰胺(PEO-b-PNIPAM),使得温度响应型聚合物本体1041在低于60摄氏度时包裹自由基抑制剂,在温度高于或等于60摄氏度时温度响应型聚合物本体1041受热膨胀以释放出自由基抑制剂。自由基抑制剂选自2,6-二叔丁基-4-甲基苯酚以及四甲基哌啶氮氧化物中的至少一种。自由基抑制剂1042通过与活性自由基发生反应以去除框胶中的活性自由基,避免框胶中残留的活性自由基扩散至液晶分子中而导致液晶分子发生聚合反应。
在本实施例中,预设温度条件为高于或等于55摄氏度。一般而言,框胶是通过紫外光照射胶黏剂得到,胶黏剂在紫外光照射作用下发生化学反应会放热,发明人经过大量的实验发现胶黏剂紫外固化时温度低于50摄氏度。预设温度高于或等于55摄氏度,可以避免自由基抑制剂在胶黏剂紫外固化过程中与光引发剂分解产生的活性自由基等反应,以避免自由基抑制剂影响胶黏剂在紫外光照射条件下的固化。
进一步地,温度响应型聚合物型囊泡104包括第一温度响应型聚合物囊泡和第二温度响应型聚合物囊泡,第一温度响应型聚合物囊泡在温度高于第一阈值温度时释放出自由基抑制剂,第二温度响应型聚合物囊泡在温度高于第二阈值温度时释放出自由基抑制剂,第二阈值温度高于第一阈值温度。
具体地,第一温度响应型聚合物囊泡用于胶黏剂热固化时释放出自由基抑制剂,以与胶黏剂在紫外固化后残余的活性自由基发生反应,避免框胶固化后还有残余的活性自由基,防止残留的活性自由基扩散至液晶中而污染液晶,避免液晶分子聚合而影响液晶显示面板的显示效果,即直接在光引发剂分解的活性自由基引发胶黏剂发生紫外固化后发生去除残留活性自由基,避免残留活性自由基扩散。第一阈值温度为55摄氏度。第二温度响应型聚合物囊泡用于在液晶显示面板在测试(例如信赖性测试)以及使用过程中与框胶103中产生的活性自由基反应,以避免框胶103的性能变差,且避免框胶103中的活性自由基扩散。第二阈值温度为120摄氏度。
请参阅图3,图3为本申请另一实施例液晶显示面板的结构示意图。图3所示液晶显示面板10与图1所示液晶显示面板10基本相似,不同之处在于,温度响应型聚合物囊泡104位于间隔粒子105的表面,温度响应型聚合物囊泡104可以通过化学键连接于间隔粒子105的表面,化学键可以为通过缩合反应形成的酯键以及酰胺键等,温度响应型聚合物囊泡104也可以通过分子间作用力连接于间隔粒子104的表面,例如通过使间隔粒子105和温度响应型聚合物囊泡104之间形成氢键作用力。每个间隔粒子105的质量与每个间隔粒子105表面的温度响应型聚合物囊泡104包裹的自由基抑制剂的质量比为100:(0.01-1)。
相对于图1所示液晶显示面板10,图2所示液晶显示面板10将温度响应型聚合物囊泡104设置于间隔粒子105表面,可以通过间隔粒子105均匀地分散于框胶103中,从而使得温度响应型聚合物囊泡104均匀地分散于框胶103中,避免温度响应型聚合物囊泡104分散不均匀而只能抑制框胶103中局部的自由基抑制剂。另外,温度响应型聚合物囊泡104位于间隔粒子103表面,可以避免温度响应型聚合物囊泡104迁移至液晶分子106中,避免温度响应型聚合物囊泡104对液晶分子106造成污染。
请参阅图4,其为制造本申请实施例液晶显示面板的流程图。液晶显示面板的制造方法包括如下步骤:
S101:在第一基板上涂布胶黏剂和间隔粒子复合物的混合物,以形成框型胶。
将胶黏剂以及间隔粒子复合物混合均匀,得胶黏剂和间隔粒子复合物的混合物,再在第一基板上涂布胶黏剂以及间隔粒子复合物的混合物,以形成框型胶。第一基板为薄膜晶体管阵列基板或彩膜基板中的一者。间隔粒子复合物包括间隔粒子以及位于间隔粒子复合物表面的温度响应型聚合物囊泡,温度响应型聚合物囊泡包括温度响应型聚合物本体以及为温度响应型聚合物囊泡包裹的自由基抑制剂,温度响应型聚合物囊泡在预设温度条件下释放出自由基抑制剂。胶黏剂包括基体树脂、光引发剂以及交联剂。间隔粒子105与胶黏剂的质量比为(0.5-1.5):100。具体地,间隔粒子与胶黏剂的质量比约为1:100。每个间隔粒子的质量与每个间隔粒子表面的温度响应型聚合物囊泡包裹的自由基抑制剂的质量比为100:(0.01-1)。
S102: 将第二基板设置于框型胶上,以使第一基板和第二基板相对设置。
具体地,在将第二基板设置于框型胶上之前,在形成有框胶的第一基板上涂布液晶分子,再将第二基板设置于第一基板上并进行压合封装,以使第一基板和第二基板相对设置。第二基板为薄膜晶体管阵列基板和彩膜基板中的另一者。第一基板以及第二基板之间的间距为3.2微米-3.5微米。
S103:采用紫外光对框型胶进行照射。
具体地,框胶紫外固化过程中,从第一基板侧或第二基板侧照射紫外光,紫外光的积光量为1000毫焦耳-6000毫焦耳,在紫外光照射下,光引发剂分解产生活性自由基,活性自由基引发基体树脂进行聚合反应,以形成线性聚合物。
S104:加热紫外光照射后的框胶至80摄氏度-130摄氏度。
具体地,框胶热固化过程中,将框胶加热至120摄氏度,时间为50分钟-60分钟,交联剂与线性聚合物上的活性官能团发生反应,以形成网络型交联聚合物的同时,温度响应型聚合物囊泡释放出自由基抑制,自由基抑制剂与紫外固化过程中残留的活性自由基进行反应,避免框胶固化后扩散至液晶分子中而污染液晶分子,此时预设温度条件为温度高于或等于55摄氏度的条件下。
本申请实施例液晶显示面板的制造方法通过在胶黏剂中混合间隔粒子复合物,间隔粒子复合物包括间隔粒子以及位于间隔粒子表面的温度响应型聚合物囊泡,温度响应型聚合物囊泡包括温度响应型聚合物本体以及为温度响应型聚合物本体包裹的自由基抑制剂,温度响应型聚合物囊泡在温度高于55摄氏度时释放出自由基抑制剂,胶黏剂经过紫外光固化后残留的活性自由基会在胶黏剂进行热固化(温度为80摄氏度-130摄氏度)时与自由基抑制剂反应,使得残留活性自由基的数目变少,从而避免残留的活性自由基扩散至液晶中而导致液晶单体聚合,避免液晶显示面板出现配向暗纹或周边明暗不均的现象。
以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (18)

  1. 一种液晶显示面板,其中,所述液晶显示面板包括第一基板、与所述第一基板相对设置的第二基板、设置于所述第一基板和所述第二基板之间的框胶以及设置于由所述第一基板、所述第二基板以及所述框胶围合的腔体中的液晶分子,所述框胶中设置有温度响应型聚合物囊泡,所述温度响应型聚合物囊泡包括温度响应型聚合物本体以及为所述温度响应型聚合物本体包裹的自由基抑制剂,所述温度响应型聚合物囊泡在预设温度条件下释放出所述自由基抑制剂。
  2. 根据权利要求1所述的液晶显示面板,其中,所述液晶显示面板还包括多个间隔粒子,多个所述间隔粒子分散于所述框胶中,所述温度响应型聚合物囊泡位于所述间隔粒子的表面。
  3. 根据权利要求2所述的液晶显示面板,其中,所述间隔粒子的尺寸为2微米-6微米。
  4. 根据权利要求2所述的液晶显示面板,其中,所述间隔粒子与所述框胶的质量比为(0.5-1.5):100。
  5. 根据权利要求1所述的液晶显示面板,其中,所述预设温度条件为温度高于或等于55摄氏度。
  6. 根据权利要求1所述的液晶显示面板,其中,所述温度响应型聚合物囊泡包括第一温度响应型聚合物囊泡和第二温度响应型聚合物囊泡,所述第一温度响应型聚合物囊泡在温度高于第一阈值温度时释放所述自由基抑制剂,所述第二温度响应型聚合物囊泡在温度高于第二阈值温度时释放所述自由基抑制,所述第二阈值温度高于所述第一阈值温度。
  7. 根据权利要求6所述的液晶显示面板,其中,所述第一阈值温度为55摄氏度,所述第二阈值温度为120摄氏度。
  8. 根据权利要求1所述的液晶显示面板,其中,所述温度响应型聚合物囊泡的尺寸为10纳米-500纳米。
  9. 根据权利要求1所述的液晶显示面板,其中,所述框胶的制备材料包括基体树脂、光引发剂以及交联剂。
  10. 根据权利要求1所述的液晶显示面板,其中,所述温度响应型聚合物本体的制备材料为聚氧乙烯-b-聚N-异丙基丙烯酰胺,所述自由基抑制剂选自2,6-二叔丁基-4-甲基苯酚以及四甲基哌啶氮氧化物中的至少一种。
  11. 一种液晶显示面板的制造方法,其中,所述方法包括如下步骤:
    在第一基板上涂布胶黏剂和间隔粒子复合物的混合物,以形成框型胶,所述间隔粒子复合物包括间隔粒子以及位于所述间隔粒子表面的温度响应型聚合物囊泡,所述温度响应型聚合物囊泡包括温度响应型聚合物本体以及为所述温度响应型聚合物本体包裹的自由基抑制剂,所述温度响应型聚合物囊泡在预设温度条件下释放出所述自由基抑制剂,所述胶黏剂包括基体树脂、光引发剂以及交联剂;
    将第二基板设置于所述框型胶上,以使所述第一基板和所述第二基板相对设置;
    采用紫外光对所述框型胶进行照射;
    加热紫外光照射后的所述框型胶至80摄氏度-130摄氏度。
  12. 根据权利要求11所述的液晶显示面板的制造方法,其中,所述间隔粒子与所述胶黏剂的质量比为(0.5-1.5):100。
  13. 根据权利要求11所述的液晶显示面板的制造方法,其中,所述紫外光的积光量为1000毫焦耳-6000毫焦耳。
  14. 根据权利要求11所述的液晶显示面板的制造方法,其中,加热紫外光照射后的所述框型胶至120摄氏度,时间为50分钟-60分钟。
  15. 根据权利要求11所述的液晶显示面板的制造方法,其中,所述预设温度条件为温度高于或等于55摄氏度。
  16. 根据权利要求11所述的液晶显示面板的制造方法,其中,所述温度响应型聚合物囊泡的尺寸为10纳米-500纳米。
  17. 根据权利要求11所述的液晶显示面板的制造方法,其中,所述间隔粒子的尺寸为2微米-6微米。
  18. 根据权利要求11所述的液晶显示面板的制造方法,其中,所述温度响应型聚合物本体的制备材料为聚氧乙烯-b-聚N-异丙基丙烯酰胺,所述自由基抑制剂选自2,6-二叔丁基-4-甲基苯酚以及四甲基哌啶氮氧化物中的至少一种。
PCT/CN2019/126616 2019-11-27 2019-12-19 液晶显示面板及其制造方法 WO2021103216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,817 US11256143B2 (en) 2019-11-27 2019-12-19 Liquid crystal display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911181371.3 2019-11-27
CN201911181371.3A CN110850644B (zh) 2019-11-27 2019-11-27 液晶显示面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021103216A1 true WO2021103216A1 (zh) 2021-06-03

Family

ID=69605230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126616 WO2021103216A1 (zh) 2019-11-27 2019-12-19 液晶显示面板及其制造方法

Country Status (3)

Country Link
US (1) US11256143B2 (zh)
CN (1) CN110850644B (zh)
WO (1) WO2021103216A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927607A (zh) * 2022-03-31 2022-08-19 Tcl华星光电技术有限公司 背光模组及其制备方法
CN115340784B (zh) * 2022-08-15 2023-08-01 广州华星光电半导体显示技术有限公司 具有反射性能的阻焊油墨、电路板与显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785667A (zh) * 2016-05-18 2016-07-20 深圳市华星光电技术有限公司 曲面液晶显示面板的制作方法及曲面液晶显示面板
CN106200085A (zh) * 2016-08-11 2016-12-07 京东方科技集团股份有限公司 光波导显示基板及其制备方法和显示装置
WO2018030201A1 (ja) * 2016-08-08 2018-02-15 シャープ株式会社 液晶表示装置の製造方法及び配向膜材料
CN109116637A (zh) * 2018-09-20 2019-01-01 武汉华星光电技术有限公司 液晶显示面板的制作方法、液晶显示面板及电子设备
CN109375430A (zh) * 2018-12-18 2019-02-22 深圳市华星光电半导体显示技术有限公司 一种柔性液晶显示面板及其制作方法
CN109946883A (zh) * 2019-04-24 2019-06-28 深圳市华星光电技术有限公司 聚合物稳定垂直配向液晶显示面板及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140166203A1 (en) * 2012-12-14 2014-06-19 Shenzhen China Star Optoelectronics Technology Co., Ltd Blocking device, sealant curing device, and sealant curing method
EP3572442B1 (en) * 2013-12-23 2021-04-07 BASF South East Asia Pte. Ltd. Novel anti-agglomerants for polyisobutylene production
CN104155796A (zh) * 2014-09-02 2014-11-19 深圳市华星光电技术有限公司 液晶显示面板结构及其制作方法
GB201513020D0 (en) 2015-07-23 2015-09-09 Fujifilm Mfg Europe Bv Radiation-curable compositions, membranes and the manufacture and use of such membranes
CN105954907B (zh) * 2016-06-02 2019-05-28 武汉华星光电技术有限公司 液晶面板、液晶显示器及液晶面板的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785667A (zh) * 2016-05-18 2016-07-20 深圳市华星光电技术有限公司 曲面液晶显示面板的制作方法及曲面液晶显示面板
WO2018030201A1 (ja) * 2016-08-08 2018-02-15 シャープ株式会社 液晶表示装置の製造方法及び配向膜材料
CN106200085A (zh) * 2016-08-11 2016-12-07 京东方科技集团股份有限公司 光波导显示基板及其制备方法和显示装置
CN109116637A (zh) * 2018-09-20 2019-01-01 武汉华星光电技术有限公司 液晶显示面板的制作方法、液晶显示面板及电子设备
CN109375430A (zh) * 2018-12-18 2019-02-22 深圳市华星光电半导体显示技术有限公司 一种柔性液晶显示面板及其制作方法
CN109946883A (zh) * 2019-04-24 2019-06-28 深圳市华星光电技术有限公司 聚合物稳定垂直配向液晶显示面板及其制造方法

Also Published As

Publication number Publication date
CN110850644A (zh) 2020-02-28
US20210333589A1 (en) 2021-10-28
US11256143B2 (en) 2022-02-22
CN110850644B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
CN107418598B (zh) 液晶材料、液晶显示面板及其制造方法
JPH0973075A (ja) 液晶表示素子の製造方法および液晶表示素子の製造装置
US11391994B2 (en) Adhesive, display panel and manufacturing method thereof, display device
CN105676491B (zh) 显示面板及其制作方法、显示装置
WO2021103216A1 (zh) 液晶显示面板及其制造方法
TW200919043A (en) Method for manufacturing liquid crystal display
WO2015010426A1 (zh) 显示面板的对盒方法
WO2020215498A1 (zh) 聚合物稳定垂直配向液晶显示面板及其制造方法
JP3105747B2 (ja) 液晶表示素子及びその製造方法
JP2009300844A (ja) 液晶表示パネルの製造方法
WO2020186567A1 (zh) 液晶显示面板的制作方法及液晶显示面板
WO2019196152A1 (zh) 一种液晶显示面板的制作方法以及液晶介质组合物
CN109633992A (zh) 显示面板及其制作方法
TW201001028A (en) Manufacturing method of alignment film and manufacturing method of liquid crystal display panel
JP3197992B2 (ja) 液晶装置作製方法
TWI355546B (en) Thermocuring sealant
WO2019200646A1 (zh) 液晶介质混合物、液晶显示面板及液晶显示面板的制备方法
JP3236586B2 (ja) 液晶配向膜付き基板の製造方法
JPH10148836A (ja) 液晶パネル及びその製造方法
CN112904624B (zh) 液晶显示面板及其制备方法
JP2001264778A (ja) 液晶表示装置
JPH09236822A (ja) 液晶表示素子及びその製造方法
JPH0351817A (ja) 貼り合わせ構造
JP3077740B2 (ja) 液晶パネルとその製造方法及びその製造装置
JPH0527210A (ja) 液晶表示器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953944

Country of ref document: EP

Kind code of ref document: A1