WO2020186567A1 - 液晶显示面板的制作方法及液晶显示面板 - Google Patents

液晶显示面板的制作方法及液晶显示面板 Download PDF

Info

Publication number
WO2020186567A1
WO2020186567A1 PCT/CN2019/081592 CN2019081592W WO2020186567A1 WO 2020186567 A1 WO2020186567 A1 WO 2020186567A1 CN 2019081592 W CN2019081592 W CN 2019081592W WO 2020186567 A1 WO2020186567 A1 WO 2020186567A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
display panel
vertical alignment
crystal display
Prior art date
Application number
PCT/CN2019/081592
Other languages
English (en)
French (fr)
Inventor
兰松
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020186567A1 publication Critical patent/WO2020186567A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells

Definitions

  • the present invention relates to the field of display technology, and in particular to a method for manufacturing a liquid crystal display panel and a liquid crystal display panel.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display Device
  • TFT-LCD Thin Film Transistor Liquid Crystal Display Device
  • Most of the TFT-LCDs currently on the market are backlight type liquid crystal display devices, which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules between two parallel glass substrates.
  • the liquid crystal molecules are controlled to change direction by whether the glass substrate is energized or not, and the light from the backlight module is refracted to produce images.
  • a liquid crystal display panel is composed of a color filter (CF) substrate, a thin film transistor (TFT) substrate, a liquid crystal (LC, Liquid Crystal) sandwiched between the color filter substrate and the thin film transistor substrate, and a sealant frame (Sealant).
  • the CF substrate mainly includes a color filter layer with colored light formed by a color resist unit (R/G/B), a black matrix (BM) to prevent light leakage at the edge of the pixel, and a spacer to maintain the cell gap (Cell Gap). Post Spacer (PS).
  • an alignment film is provided on the TFT substrate and the CF substrate.
  • the alignment film After the alignment film contacts the LC, it can make the LC generate a pretilt angle in a certain direction, thereby providing a bearing for the liquid crystal molecules.
  • the pretilt angle has an important influence on the driving voltage, contrast, response time, viewing angle, etc. of TFT-LCD).
  • PI polyimide
  • any PI alignment material has its own shortcomings.
  • the friction matching type PI material is formed by the rubbing alignment method (Rubbing) to form an alignment film, which easily causes problems such as dust particles, static electricity residue, and brush marks during the rubbing alignment, which reduces the process yield.
  • the photo-alignment type PI material is formed by photo-alignment technology to form the alignment film. Due to the limited material properties, the heat resistance and aging resistance are not good, and the ability to anchor the LC is also weak, which reduces The quality of the panel.
  • PI material itself has high polarity and high water absorption, storage and transportation easily cause deterioration and lead to uneven phases, and PI material is expensive, and the process of forming a film on TFT-LCD is also more complicated. This leads to increased panel costs.
  • self-alignment liquid crystal can effectively solve the problems of the above-mentioned traditional PI alignment film, that is, no PI-type alignment film is required, but an alignment polymerizable monomer additive (Additive) is added to the liquid crystal system, through ultraviolet light and other light heat It functions to form a polymer-type alignment layer at the interface of the liquid crystal layer and the glass substrate to replace the PI-type alignment film. Therefore, this type of self-aligning liquid crystal material is also called PI-less liquid crystal material.
  • the additive material in self-aligning liquid crystals is generally composed of two parts: a head group and a tail group.
  • the main function of the head group is to anchor on the substrate by intermolecular force, while the main function of the tail group is to rely on the function similar to the PI molecular branch.
  • the liquid crystal molecules are arranged vertically in the way of steric barriers. Therefore, this type of additive material is also called a vertical alignment agent.
  • the above-mentioned additive materials mainly include alkyl chain-containing silanes, cage semisiloxanes, and alkyl chain-containing alcohols.
  • the application of this material in TFT-LCD panels often has some problems, the main factor being the difference in the topography of the liquid crystal substrate.
  • liquid crystals need to be dropped into the plastic frame of one of the substrates.
  • the current common practice in the industry is to drop a plurality of single liquid crystal drops with the same weight on the substrate and distribute them evenly on the substrate, and then vacuum-laminate the two substrates to spread the liquid crystal in the liquid crystal cell defined by the plastic frame.
  • the arrangement form of the single drop of liquid crystal that is dropped is the liquid crystal pattern (Pattern). Different liquid crystal patterns and the amount of liquid crystal of the single drop of liquid crystal will affect the diffusion effect of the liquid crystal.
  • the single drop of liquid crystal will spread after the seal puncture, and if the single drop of liquid crystal dripped on the edge of the liquid crystal cell and the plastic frame If the distance is too far, a single drop of liquid crystal will have an edge gap after spreading, which will generate bubbles in the liquid crystal display panel. If the distance between adjacent single drops of liquid crystal is too close, it will cause uneven diffusion. , Affect product quality.
  • the vertical alignment agent of this small molecule material is mainly adsorbed on the surface of the substrate by intermolecular interaction, but it is often due to the position of the outermost liquid crystal dropping point, that is, the edge distance of the liquid crystal pattern 100 is located in the non-display area
  • the inner edge of BM200 has a distance of 5-10mm. After the liquid crystal material is diffused in the liquid crystal cell to form a liquid crystal layer, the content of the vertical alignment agent in this distance range is lower, so that the alignment force of the self-aligned liquid crystal in this area is weakened , And the width of the BM itself in the non-display area is relatively narrow, which results in light leakage at the edge of the self-aligned LCD display panel.
  • the object of the present invention is to provide a method for manufacturing a liquid crystal display panel, which can make the vertical alignment agent uniformly distributed in the liquid crystal layer, and can effectively solve the problem of light leakage at the edge of the existing self-aligned liquid crystal display panel.
  • the object of the present invention is also to provide a liquid crystal display panel, which can make the vertical alignment agent uniformly distributed in the liquid crystal layer, thereby effectively solving the problem of light leakage at the edge of the existing self-alignment liquid crystal display panel.
  • the present invention provides a method for manufacturing a liquid crystal display panel, which includes the following steps:
  • Step S1 providing a TFT substrate, a CF substrate, a first liquid crystal material and a second liquid crystal material;
  • the first liquid crystal material and the second liquid crystal material are both self-aligning liquid crystal materials, the self-aligning liquid crystal material includes liquid crystal molecules and a vertical alignment agent, wherein the mass percentage concentration of the vertical alignment agent in the second liquid crystal material is greater than The mass percentage concentration of the vertical alignment agent in the first liquid crystal material;
  • Step S2 Set a liquid crystal dropping pattern on the TFT substrate or the CF substrate, and divide the liquid crystal dropping pattern into a main liquid crystal dropping area located in the middle and an edge liquid crystal dropping around the main liquid crystal dropping area. Zone, a circle of inorganic diffusion-assisted film is provided on one side surface of the CF substrate corresponding to the periphery of the liquid crystal dropping pattern;
  • Step S3 using a liquid crystal dropping method to inject the first liquid crystal material and the second liquid crystal material on the main liquid crystal dropping area and the edge liquid crystal dropping area respectively, and the TFT substrate and the CF substrate are assembled and bonded ,
  • the inorganic diffusion-assisted film is located on the side of the CF substrate close to the TFT substrate, so that the first liquid crystal material and the second liquid crystal material are enclosed between the TFT substrate and the CF substrate and diffuse to form a liquid crystal layer to obtain liquid crystal
  • the inorganic diffusion-assisting film is in contact with the vertical alignment agent in the liquid crystal layer to improve the diffusibility of the vertical alignment agent at the edge of the liquid crystal cell.
  • the mass percentage concentration of the vertical alignment agent in the first liquid crystal material is 0.3-1.2%; the mass percentage concentration of the vertical alignment agent in the second liquid crystal material is 1.2-3.0%.
  • the width of the edge liquid crystal dropping area on the side of the main liquid crystal dropping area is 5-15 mm.
  • the material of the inorganic diffusion-assisted film is a silicon oxide film.
  • the film thickness of the inorganic diffusion-assisted film is 30-100 nm.
  • a mask is used to prepare the inorganic diffusion-assisted film by a chemical vapor deposition method.
  • the CF substrate includes a base substrate and a circle of peripheral black matrix arranged on the peripheral area of the base substrate;
  • the inorganic diffusion-assisted film correspondingly extends from the inner edge of the peripheral black matrix to the inner side of the peripheral black matrix on the CF substrate.
  • the self-aligned liquid crystal material also includes a reactive monomer
  • the step S3 further includes, before assembling and bonding the TFT substrate and the CF substrate, coating a frame sealant on the peripheral area of one side surface of the TFT substrate or the CF substrate, and then applying the sealant in a vacuum environment.
  • the TFT substrate and the CF substrate are assembled and bonded, and the frame sealant is cured;
  • the manufacturing method of the liquid crystal panel also includes:
  • Step S4 applying voltage to both sides of the liquid crystal layer through the TFT substrate and the CF substrate to deflect the liquid crystal molecules therein, and irradiate the liquid crystal layer with ultraviolet light, so that the vertical alignment agent and the reactive monomer therein are in the The surface of the CF substrate is polymerized to form a self-alignment layer.
  • the present invention also provides a liquid crystal display panel, which includes a TFT substrate and a CF substrate arranged oppositely, and a liquid crystal layer arranged between the TFT substrate and the CF substrate;
  • the liquid crystal layer is made of a self-aligned liquid crystal material, and the self-aligned liquid crystal material includes liquid crystal molecules and a vertical alignment agent;
  • the peripheral area of the surface of the CF substrate facing the TFT substrate is provided with a circle of inorganic diffusion-assisting film corresponding to the edge of the liquid crystal layer to improve the diffusibility of the vertical alignment agent in the liquid crystal layer at the edge.
  • the material of the inorganic diffusion-assisted film is a silicon oxide film; the film thickness of the inorganic diffusion-assisted film is 30-100 nm.
  • the method for manufacturing the liquid crystal display panel of the present invention divides the liquid crystal dropping pattern into a main liquid crystal dropping area located in the middle and an edge liquid crystal dropping area surrounding the main liquid crystal dropping area.
  • the self-aligning liquid crystal materials with high and low agent content are respectively dripped on the edge liquid crystal dripping area and the main liquid crystal dripping area.
  • the vertical alignment agent is The liquid crystal layer is evenly distributed, and a circle of inorganic diffusion-assisted film is provided on one side surface of the CF substrate corresponding to the periphery of the liquid crystal dropping pattern to improve the diffusibility of the vertical alignment agent in the liquid crystal cell layer at the edge, and further make the vertical
  • the alignment agent is uniformly distributed in the liquid crystal layer, and can effectively solve the problem of light leakage at the edge of the existing self-alignment liquid crystal display panel.
  • a circle of inorganic diffusion assisting film is provided on the peripheral area of the side surface of the CF substrate facing the TFT substrate corresponding to the edge of the liquid crystal layer to improve the diffusion of the vertical alignment agent in the liquid crystal layer at the edge. It can make the vertical alignment agent uniformly distributed in the liquid crystal layer, and can effectively solve the problem of light leakage at the edge of the existing self-aligned liquid crystal display panel.
  • FIG. 1 is a schematic diagram of a liquid crystal dropping pattern on a display substrate in a conventional liquid crystal display panel forming process
  • FIG. 2 is a schematic flow chart of the manufacturing method of the liquid crystal display panel of the present invention.
  • step S2 is a schematic diagram of step S2 of the manufacturing method of the liquid crystal display panel of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the liquid crystal display panel of the present invention.
  • the present invention first provides a method for manufacturing a liquid crystal display panel, which specifically includes the following steps:
  • step S1 provide TFT Substrate 10 , CF Substrate 20 , The first liquid crystal material and the second liquid crystal material.
  • the first liquid crystal material and the second liquid crystal material are both self-aligning liquid crystal materials, and the self-aligning liquid crystal material includes liquid crystal molecules, vertical alignment agents, and reactive monomers, wherein the second liquid crystal material is vertically aligned
  • the mass percentage concentration of the agent is greater than the mass percentage concentration of the vertical alignment agent in the first liquid crystal material.
  • the mass percentage concentration of the vertical alignment agent in the first liquid crystal material is 0.3-1.2% ;
  • the mass percentage concentration of the vertical alignment agent in the second liquid crystal material is 1.2-3.0% .
  • the TFT Substrate 10 Surface has PI Alignment film
  • the CF Substrate 20 Surface does not have PI Alignment film.
  • the CF Substrate 20 Including base plate twenty one And set on the base substrate twenty one A circle of peripheral black matrix on the peripheral area twenty two .
  • step S2 As shown 3 Shown in the CF Substrate 20 Set the LCD drip pattern on 90 , The liquid crystal dripping pattern 90 Divided into the main liquid crystal drip area in the middle 91 And surrounding the main liquid crystal drip area 91 Edge liquid crystal drip area 92 , In the CF Substrate 20 One side surface corresponds to the liquid crystal dripping pattern 90 A circle of inorganic diffusion-assisted membrane is set on the periphery 25 .
  • the edge liquid crystal dropping area 92 In the main liquid crystal drip area 91 The width on one side is 5-15mm .
  • the inorganic diffusion-assisted membrane 25 The material is silicon oxide film.
  • the technical personnel of the present invention have tested the contact angle of the vertical alignment agent on different film surfaces, and the test result is that the vertical alignment agent is in the polyimide ( PI ) Substrate, indium tin oxide ( ITO ) Substrate and silicon oxide ( SiOx )
  • the contact angles on the substrate are 16.1 °, 8.8 °and 7.3 °, which proves that the vertical alignment agent is SiOx
  • the surface of the substrate has the best diffusibility, so the silicon oxide film can be used to increase the content of the vertical alignment agent at the edge of the display panel.
  • the inorganic diffusion-assisted membrane 25 The film thickness is 30-100nm .
  • steps S2 In the use of masks through chemical vapor deposition (CVD ) Preparation and formation of the inorganic diffusion-assisted film 25 .
  • CVD chemical vapor deposition
  • the steps S2 In, also in TFT Substrate 10 Set the liquid crystal drip pattern on 90 ,
  • the CF Substrate 20 One side surface corresponds to the liquid crystal dripping pattern 90 Peripheral inorganic diffusion-assisted membrane 25 ,in CF Substrate 20 versus TFT Substrate 10 After fitting the pair, with TFT Substrate 10 Liquid crystal drip pattern 90 Corresponding to the periphery.
  • step S3 Using liquid crystal drop-in injection method ( One Drop Falling , ODF ) In the main liquid crystal drip area 91 And edge liquid crystal drip area 92 Respectively drip the first liquid crystal material and the second liquid crystal material on the TFT Substrate 10 or CF Substrate 20 Coat the frame sealant on the peripheral area of one side surface 40 , In a vacuum environment TFT Substrate 10 versus CF Substrate 20 Assemble and attach, so that the inorganic diffusion-assisting film 25 lie in CF Substrate 20 near TFT Substrate 10 On the side so that the first liquid crystal material and the second liquid crystal material are enclosed in the TFT Substrate 10 versus CF Substrate 20 And through diffusion to form a liquid crystal layer 30 , To obtain a liquid crystal cell, at this time, the inorganic diffusion-assisted film 25 Contact with the vertical alignment agent in the liquid crystal layer to improve the vertical alignment agent in the liquid crystal cell 32 Diffusion at the edge, the sealant 40 Carry out
  • step S4 Apply to the liquid crystal cell 13-25V Voltage, that is through the TFT Substrate 10 versus CF Substrate 20
  • Voltage is applied on both sides to deflect the liquid crystal molecules in the liquid crystal layer.
  • the irradiation energy is 85-100mW/cm 2 UV light ( UV )
  • the irradiation time is 40-100s , So that the vertical alignment agent and reactive monomer in the CF Substrate 20 Surface polymerization to form self-alignment layer 35 ;
  • remove the voltage in order to make the remaining reactive monomer in the panel react with the vertical alignment agent, and then use UV Light exposure 90-180min , And finally get a liquid crystal display panel.
  • the manufacturing method of the liquid crystal display panel of the present invention the liquid crystal dripping pattern 90 Divided into the main liquid crystal drip area in the middle 91 And surrounding the main liquid crystal drip area 91 Edge liquid crystal drip area 92 ,
  • the self-aligning liquid crystal materials with high and low vertical alignment agent content are respectively dripped in the edge liquid crystal drip area 92 And the main liquid crystal drip area 91
  • the dripped self-aligning liquid crystal material diffuses in the liquid crystal cell to form a liquid crystal layer 30
  • a circle of inorganic diffusion-assisted membrane is set on the periphery 25 ,
  • the medium distribution is uniform, which can effectively solve the problem of light leakage at the edge of the existing self-aligned liquid crystal display panel.
  • the present invention also provides a liquid crystal display panel, including relatively disposed TFT Substrate 10 with CF Substrate 20 , Located in the TFT Substrate 10 with CF Substrate 20 Liquid crystal layer 30 ;
  • the liquid crystal layer 30 The manufacturing material of is a self-aligning liquid crystal material, and the self-aligning liquid crystal material includes liquid crystal molecules and a vertical alignment agent;
  • the inorganic diffusion-assisted membrane 25 The material is a silicon oxide film; the inorganic diffusion-assisted film 25 The film thickness is 30-100nm .
  • the CF Substrate 20 Including base plate twenty one And set on the base substrate twenty one Close to the TFT Substrate 10 A circle of peripheral black matrix on the peripheral area on one side twenty two .
  • the inorganic diffusion-assisted membrane 25 in CF Substrate 20 On the corresponding black matrix from the periphery twenty two Black matrix twenty two The inner side of the extension.
  • the liquid crystal display panel of the present invention CF Substrate 20 Facing TFT Substrate 10
  • the peripheral area on one side surface corresponds to the liquid crystal layer 30
  • the diffusibility of the inner vertical alignment agent at the edge can make the vertical alignment agent in the liquid crystal layer 30
  • the medium distribution is uniform, which can effectively solve the problem of light leakage at the edge of the existing self-aligned liquid crystal display panel.
  • the liquid crystal display panel manufacturing method of the present invention divides the liquid crystal dropping pattern into a main liquid crystal dropping area located in the middle and an edge liquid crystal dropping area surrounding the main liquid crystal dropping area, and the vertical alignment agent
  • the high and low content self-aligning liquid crystal materials are respectively dripped on the edge liquid crystal dripping area and the main liquid crystal dripping area.
  • the vertical alignment agent is Evenly distributed in the layer, and through the CF A circle of inorganic diffusion-assisted film is provided on one side surface of the substrate corresponding to the periphery of the liquid crystal dropping pattern to improve the diffusibility of the vertical alignment agent in the liquid crystal cell layer at the edge, and further make the vertical alignment agent uniformly distributed in the liquid crystal layer. It can effectively solve the problem of light leakage at the edge of the existing self-aligned liquid crystal display panel.
  • the liquid crystal display panel of the present invention CF Substrate facing the TFT
  • a circle of inorganic diffusion-assisted film is provided on the peripheral area of one side surface of the substrate corresponding to the edge of the liquid crystal layer to improve the diffusibility of the vertical alignment agent in the liquid crystal layer at the edge, so that the vertical alignment agent is uniformly distributed in the liquid crystal layer, and then It can effectively solve the problem of light leakage at the edge of the existing self-aligned liquid crystal display panel.

Abstract

一种液晶显示面板的制作方法及液晶显示面板。液晶显示面板的制作方法,将液晶滴注图形(90)划分为位于中部的主液晶滴注区(91)及围绕主液晶滴注区(91)的边缘液晶滴注区(92),将垂直取向剂含量高和低的自配向液晶材料分别滴注在边缘液晶滴注区(92)和主液晶滴注区(91)上,所滴注的自配向液晶材料在液晶盒内扩散形成液晶层(30)后,使得垂直取向剂在液晶层(30)中分布均匀,并通过在CF基板(20)的一侧表面对应液晶滴注图形(90)外围设置一圈无机助扩散膜(25),以提高液晶盒层内垂直取向剂在边缘处的扩散性,进一步使得垂直取向剂在液晶层(30)中分布均匀,进而可有效解决现有自配向型液晶显示面板边缘易产生漏光的问题。

Description

液晶显示面板的制作方法及液晶显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种液晶显示面板的制作方法及液晶显示面板。
背景技术
薄膜晶体管液晶显示装置(TFT-LCD,Thin Film Transistor Liquid Crystal Display)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有市场上的TFT-LCD大部分为背光型液晶显示装置,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,通过玻璃基板通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
通常液晶显示面板由彩膜(CF,Color Filter)基板、薄膜晶体管(TFT)基板、夹于彩膜基板与薄膜晶体管基板之间的液晶(LC,Liquid Crystal)及密封胶框(Sealant)组成。其中,CF基板主要包括通过色阻单元(R/G/B)形成有色光的彩色滤光层、防止像素边缘漏光的黑色矩阵(Black Matrix,BM)、以及维持盒厚(Cell Gap)的隔垫物(Post Spacer,PS),此外, TFT基板及CF基板上还分别设有一层配向膜,该配向膜与LC接触后,能够使得LC产生一定方向的预倾角,从而给液晶分子提供一个承载的角度(预倾角的大小对TFT-LCD的驱动电压、对比度、响应时间、视角等具有重要影响)。
目前,配向膜的材料通常选用聚酰亚胺(Polyimide,PI)材料,主要分为摩擦配相型PI材料和光配相型PI材料,但是,无论哪种PI配向材料都有各自的缺点。其中,摩擦配相型PI材料通过摩擦配向法(Rubbing)形成配向膜,在摩擦配向时容易造成粉尘颗粒、静电残留、刷痕等问题降低工艺良率。而光配相型PI材料通过光配向法(photo-alignment technology)形成配向膜,由于材料特性受限,耐热性和耐老化性不佳,同时锚定LC的能力也较弱,从而降低了面板的品质。除此之外,PI材料本身就具有高极性和高吸水性,存储和运送容易造成变质而导致配相不均,并且PI材料价格昂贵,在TFT-LCD上成膜的工艺也较为复杂,导致面板成本提高。
随着显示行业日新月异的发展,各种显示器显示技术充盈市场,而行业内各大高科技材料商也提出越来越多新的待开发以及开发中的技术,例如自配向液晶(self–alignment LC,SA-LC)技术,从而为显示面板的发展提供了更多可能。self–alignment液晶可有效解决上述传统PI配向膜所存在的问题,即无需PI型配向膜,而是在液晶体系中增加具有配向作用的聚合性单体添加剂(Additive),通过紫外光照等光热作用,在液晶层和玻璃基板界面处形成聚合物型配向层,达到取代PI型配向膜的目的,因此该类自配向液晶材料也叫做PI-less液晶材料。
自配向液晶中的添加剂材料一般由头基和尾基两部分组成,头基的主要作用是利用分子间作用力锚定在基板上,而尾基的主要作用是依靠类似于PI分子支链的作用以立体障碍的方式使得液晶分子垂直排,因此,该类添加剂材料也叫做垂直取向剂。目前,上述添加剂材料主要包括含有烷基链的硅烷类、笼型半硅氧烷类、含烷基链的醇类等。将这种材料应用在TFT-LCD面板中,往往存在一些问题,主要因素是液晶基板地形表面差异所导致的。
液晶显示面板在其成盒制程中,需要将液晶滴在其中一块基板的胶框内。当前业界的普遍做法是在基板上滴下多个重量一致的液晶单滴,并使其均匀分布在基板上,后续真空贴合两块基板,使得液晶扩散在胶框限定的液晶盒内。被滴下的液晶单滴的排列形式即为液晶图形(Pattern),不同的液晶图形以及单滴液晶的液晶量会影响液晶的扩散效果。如果滴注于液晶盒边缘的单滴液晶与胶框之间的距离太近,则单滴液晶扩散后会产生seal穿刺,而如果滴注于液晶盒边缘的单滴液晶与胶框之间的距离太远,则单滴液晶扩散后会产生边缘间隙(edge gap),从而在液晶显示面板内产生气泡(bubble),而相邻单滴液晶之间的距离较近,则会导致扩散不均匀,影响产品品质。
如图1所示,这种小分子材料的垂直取向剂主要依靠分子间作用的吸附在基板表面,但是往往由于最外侧的液晶滴注的点位即液晶图形100的边缘距离位于非显示区域的BM200的内侧边缘有5-10mm的距离,在液晶材料在液晶盒内扩散形成液晶层后,导致该距离范围内的垂直取向剂的含量较低,使得自配向液晶在该区域内的配向力减弱,且在非显示区域的BM自身的宽度较窄,从而就导致自配向型LCD显示面板边缘出现漏光的现象。
技术问题
本发明的目的在于提供一种液晶显示面板的制作方法,可使得垂直取向剂在液晶层中分布均匀,进而可有效解决现有自配向型液晶显示面板边缘易产生漏光的问题。
本发明的目的还在于提供一种液晶显示面板,可使得垂直取向剂在液晶层中分布均匀,进而可有效解决现有自配向型液晶显示面板边缘易产生漏光的问题。
技术解决方案
为实现上述目的,本发明提供一种液晶显示面板的制作方法,包括如下步骤:
步骤S1、提供TFT基板、CF基板、第一液晶材料及第二液晶材料;
所述第一液晶材料和第二液晶材料均为自配向液晶材料,所述自配向液晶材料包括液晶分子及垂直取向剂,其中,所述第二液晶材料中垂直取向剂的质量百分浓度大于第一液晶材料中垂直取向剂的质量百分浓度;
步骤S2、在所述TFT基板或CF基板上设定液晶滴注图形,将所述液晶滴注图形划分为位于中部的主液晶滴注区及围绕所述主液晶滴注区的边缘液晶滴注区,在所述CF基板的一侧表面对应所述液晶滴注图形外围设置一圈无机助扩散膜;
步骤S3、采用液晶滴下式注入的方法在所述主液晶滴注区和边缘液晶滴注区上分别滴注第一液晶材料和第二液晶材料,将所述TFT基板与CF基板组立贴合,使所述无机助扩散膜位于CF基板靠近TFT基板的一侧,使第一液晶材料和第二液晶材料被封闭在所述TFT基板与CF基板之间并通过扩散而形成液晶层,得到液晶盒,此时,所述无机助扩散膜与液晶层中的垂直取向剂接触,用于提高液晶盒内垂直取向剂在边缘处的扩散性。
所述第一液晶材料中垂直取向剂的质量百分浓度为0.3-1.2%;所述第二液晶材料中垂直取向剂的质量百分浓度为1.2-3.0%。
所述边缘液晶滴注区在主液晶滴注区一侧的宽度为5-15mm。
所述无机助扩散膜的材料为氧化硅膜。
所述无机助扩散膜的膜厚为30-100nm。
所述步骤S2中利用掩膜板通过化学气相沉积法制备形成所述无机助扩散膜。
所述CF基板包括衬底基板及设置于所述衬底基板周边区域上的一圈外围黑色矩阵;
所述无机助扩散膜在CF基板上对应从所述外围黑色矩阵的内侧边缘向外围黑色矩阵的内侧延伸。
所述自配向液晶材料还包括反应性单体;
所述步骤S3还包括,在将所述TFT基板与CF基板组立贴合之前,在所述TFT基板或CF基板一侧表面的周边区域上涂布封框胶,然后在真空环境下将所述TFT基板与CF基板组立贴合,对所述封框胶进行固化;
该液晶面板的制作方法还包括:
步骤S4、通过所述TFT基板与CF基板对液晶层两侧施加电压,使其中的液晶分子发生偏转,对所述液晶层照射紫外光,使得其中的垂直取向剂与反应性单体在所述CF基板表面聚合,以形成自配向层。
本发明还提供一种液晶显示面板,包括相对设置的TFT基板和CF基板、设于所述TFT基板和CF基板之间的液晶层;
所述液晶层的制作材料为自配向液晶材料,所述自配向液晶材料包括液晶分子及垂直取向剂;
所述CF基板面向所述TFT基板一侧表面的周边区域上对应所述液晶层的边缘设有一圈无机助扩散膜,用于提高液晶层内垂直取向剂在边缘处的扩散性。
所述无机助扩散膜的材料为氧化硅膜;所述无机助扩散膜的膜厚为30-100nm。
有益效果
本发明的有益效果:本发明的液晶显示面板的制作方法,将液晶滴注图形划分为位于中部的主液晶滴注区及围绕所述主液晶滴注区的边缘液晶滴注区,将垂直取向剂含量高和低的自配向液晶材料分别滴注在边缘液晶滴注区和主液晶滴注区上,所滴注的自配向液晶材料在液晶盒内扩散形成液晶层后,使得垂直取向剂在液晶层中分布均匀,并通过在CF基板的一侧表面对应所述液晶滴注图形外围设置一圈无机助扩散膜,以提高液晶盒层内垂直取向剂在边缘处的扩散性,进一步使得垂直取向剂在液晶层中分布均匀,进而可有效解决现有自配向型液晶显示面板边缘易产生漏光的问题。本发明的液晶显示面板,通过在CF基板面向所述TFT基板一侧表面的周边区域上对应所述液晶层的边缘设有一圈无机助扩散膜,提高液晶层内垂直取向剂在边缘处的扩散性,可使得垂直取向剂在液晶层中分布均匀,进而可有效解决现有自配向型液晶显示面板边缘易产生漏光的问题。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有液晶显示面板成盒制程中显示基板上液晶滴注图形的示意图;
图2为本发明的液晶显示面板的制作方法的流程示意图;
图3为本发明的液晶显示面板的制作方法的步骤S2的示意图;
图4为本发明的液晶显示面板的结构示意图。
本发明的实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图 2 并结合图 4 ,本发明首先提供一种液晶显示面板的制作方法,具体包括如下步骤:
步骤 S1 、提供 TFT 基板 10 CF 基板 20 、第一液晶材料及第二液晶材料。
其中,所述第一液晶材料和第二液晶材料均为自配向液晶材料,所述自配向液晶材料包括液晶分子、垂直取向剂及反应性单体,其中,所述第二液晶材料中垂直取向剂的质量百分浓度大于第一液晶材料中垂直取向剂的质量百分浓度。
具体地,所述第一液晶材料中垂直取向剂的质量百分浓度为 0.3-1.2% ;所述第二液晶材料中垂直取向剂的质量百分浓度为 1.2-3.0%
具体地,所述 TFT 基板 10 表面具有 PI 配向膜,所述 CF 基板 20 表面不具有 PI 配向膜。
具体地,所述 CF 基板 20 包括衬底基板 21 及设置于所述衬底基板 21 周边区域上的一圈外围黑色矩阵 22
步骤 S2 、如图 3 所示,在所述 CF 基板 20 上设定液晶滴注图形 90 ,将所述液晶滴注图形 90 划分为位于中部的主液晶滴注区 91 及围绕所述主液晶滴注区 91 的边缘液晶滴注区 92 ,在所述 CF 基板 20 的一侧表面对应所述液晶滴注图形 90 外围设置一圈无机助扩散膜 25
具体地,所述边缘液晶滴注区 92 在主液晶滴注区 91 一侧的宽度为 5-15mm
具体地,所述无机助扩散膜 25 的材料为氧化硅膜。
需要说明的是,本发明技术人员将垂直取向剂在不同的膜面上进行了接触角测试,其测试结果为,垂直取向剂在聚酰亚胺( PI )基板、氧化铟锡( ITO )基板及氧化硅( SiOx )基板上的接触角分别为 16.1 °、 8.8 °及 7.3 °,由此证明,垂直取向剂在 SiOx 基板表面的扩散性最好,因此可利用氧化硅膜增加垂直取向剂在显示面板边缘的含量。
具体地,所述无机助扩散膜 25 的膜厚为 30-100nm
具体地,所述步骤 S2 中利用掩膜板通过化学气相沉积法( CVD )制备形成所述无机助扩散膜 25
具体地,所述无机助扩散膜 25 CF 基板 20 上对应从所述外围黑色矩阵 22 的内侧边缘向外围黑色矩阵 22 的内侧延伸至所述液晶滴注图形 90 的边界。
具体地,所述步骤 S2 中,也可在 TFT 基板 10 上设定所述液晶滴注图形 90 ,此时,所述 CF 基板 20 的一侧表面对应所述液晶滴注图形 90 外围设置的无机助扩散膜 25 ,在 CF 基板 20 TFT 基板 10 对组贴合后,与 TFT 基板 10 的液晶滴注图形 90 外围对应。
步骤 S3 、采用液晶滴下式注入的方法( One Drop Falling ODF )在所述主液晶滴注区 91 和边缘液晶滴注区 92 上分别滴注第一液晶材料和第二液晶材料,在所述 TFT 基板 10 CF 基板 20 一侧表面的周边区域上涂布封框胶 40 ,在真空环境下将所述 TFT 基板 10 CF 基板 20 组立贴合,使所述无机助扩散膜 25 位于 CF 基板 20 靠近 TFT 基板 10 的一侧,使第一液晶材料和第二液晶材料被封闭在所述 TFT 基板 10 CF 基板 20 之间并通过扩散而形成液晶层 30 ,得到液晶盒,此时,所述无机助扩散膜 25 与液晶层中的垂直取向剂接触,用于提高液晶盒内垂直取向剂 32 在边缘处的扩散性,对所述封框胶 40 进行固化。
步骤 S4 、对液晶盒施加 13-25V 的电压,即通过所述 TFT 基板 10 CF 基板 20 对液晶层 30 两侧施加电压,使其中的液晶分子发生偏转,对所述液晶层 30 照射能量为 85-100mW/cm 2 的紫外光( UV ),照射时间为 40-100s ,使得其中的垂直取向剂与反应性单体在所述 CF 基板 20 表面聚合,以形成自配向层 35 ;然后撤去电压,为使面板中的残留的反应性单体与垂直取向剂全部反应,再用 UV 光照射 90-180min ,最后得到液晶显示面板。
本发明的液晶显示面板的制作方法,将液晶滴注图形 90 划分为位于中部的主液晶滴注区 91 及围绕所述主液晶滴注区 91 的边缘液晶滴注区 92 ,将垂直取向剂含量高和低的自配向液晶材料分别滴注在边缘液晶滴注区 92 和主液晶滴注区 91 上,所滴注的自配向液晶材料在液晶盒内扩散形成液晶层 30 后,使得垂直取向剂在液晶层 30 中分布均匀,并通过在 CF 基板 20 的一侧表面对应所述液晶滴注图形 90 外围设置一圈无机助扩散膜 25 ,以提高液晶盒层内垂直取向剂在边缘处的扩散性,进一步使得垂直取向剂在液晶层 30 中分布均匀,进而可有效解决现有自配向型液晶显示面板边缘易产生漏光的问题。
请参阅图 4 ,本发明还提供一种液晶显示面板,包括相对设置的 TFT 基板 10 CF 基板 20 、设于所述 TFT 基板 10 CF 基板 20 之间的液晶层 30
所述液晶层 30 的制作材料为自配向液晶材料,所述自配向液晶材料包括液晶分子及垂直取向剂;
所述 CF 基板 20 面向所述 TFT 基板 10 一侧表面的周边区域上对应所述液晶层 30 的边缘设有一圈无机助扩散膜 25 ,用于提高液晶层 30 内垂直取向剂在边缘处的扩散性。
具体地,所述无机助扩散膜 25 的材料为氧化硅膜;所述无机助扩散膜 25 的膜厚为 30-100nm
具体地,所述 CF 基板 20 包括衬底基板 21 及设置于所述衬底基板 21 靠近所述 TFT 基板 10 一侧周边区域上的一圈外围黑色矩阵 22
具体地,所述无机助扩散膜 25 CF 基板 20 上对应从所述外围黑色矩阵 22 的内侧边缘向外围黑色矩阵 22 的内侧延伸。
本发明的液晶显示面板, CF 基板 20 面向 TFT 基板 10 一侧表面的周边区域上对应所述液晶层 30 的边缘设有一圈无机助扩散膜 25 ,用于提高液晶层 30 内垂直取向剂在边缘处的扩散性,可使得垂直取向剂在液晶层 30 中分布均匀,进而可有效解决现有自配向型液晶显示面板边缘易产生漏光的问题。
综上所述,本发明的液晶显示面板的制作方法,将液晶滴注图形划分为位于中部的主液晶滴注区及围绕所述主液晶滴注区的边缘液晶滴注区,将垂直取向剂含量高和低的自配向液晶材料分别滴注在边缘液晶滴注区和主液晶滴注区上,所滴注的自配向液晶材料在液晶盒内扩散形成液晶层后,使得垂直取向剂在液晶层中分布均匀,并通过在 CF 基板的一侧表面对应所述液晶滴注图形外围设置一圈无机助扩散膜,以提高液晶盒层内垂直取向剂在边缘处的扩散性,进一步使得垂直取向剂在液晶层中分布均匀,进而可有效解决现有自配向型液晶显示面板边缘易产生漏光的问题。本发明的液晶显示面板,通过在 CF 基板面向所述 TFT 基板一侧表面的周边区域上对应所述液晶层的边缘设有一圈无机助扩散膜,提高液晶层内垂直取向剂在边缘处的扩散性,可使得垂直取向剂在液晶层中分布均匀,进而可有效解决现有自配向型液晶显示面板边缘易产生漏光的问题。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种液晶显示面板的制作方法,包括如下步骤:
    步骤S1、提供TFT基板、CF基板、第一液晶材料及第二液晶材料;
    所述第一液晶材料和第二液晶材料均为自配向液晶材料,所述自配向液晶材料包括液晶分子及垂直取向剂,其中,所述第二液晶材料中垂直取向剂的质量百分浓度大于第一液晶材料中垂直取向剂的质量百分浓度;
    步骤S2、在所述TFT基板或CF基板上设定液晶滴注图形,将所述液晶滴注图形划分为位于中部的主液晶滴注区及围绕所述主液晶滴注区的边缘液晶滴注区,在所述CF基板的一侧表面对应所述液晶滴注图形外围设置一圈无机助扩散膜;
    步骤S3、采用液晶滴下式注入的方法在所述主液晶滴注区和边缘液晶滴注区上分别滴注第一液晶材料和第二液晶材料,将所述TFT基板与CF基板组立贴合,使所述无机助扩散膜位于CF基板靠近TFT基板的一侧,使第一液晶材料和第二液晶材料被封闭在所述TFT基板与CF基板之间并通过扩散而形成液晶层,得到液晶盒,此时,所述无机助扩散膜与液晶层中的垂直取向剂接触,用于提高液晶盒内垂直取向剂在边缘处的扩散性。
  2. 如权利要求1所述的液晶显示面板的制作方法,其中,所述第一液晶材料中垂直取向剂的质量百分浓度为0.3-1.2%;所述第二液晶材料中垂直取向剂的质量百分浓度为1.2-3.0%。
  3. 如权利要求1所述的液晶显示面板的制作方法,其中,所述边缘液晶滴注区在主液晶滴注区一侧的宽度为5-15mm。
  4. 如权利要求1所述的液晶显示面板的制作方法,其中,所述无机助扩散膜的材料为氧化硅膜。
  5. 如权利要求1所述的液晶显示面板的制作方法,其中,所述无机助扩散膜的膜厚为30-100nm。
  6. 如权利要求1所述的液晶显示面板的制作方法,其中,所述步骤S2中利用掩膜板通过化学气相沉积法制备形成所述无机助扩散膜。
  7. 如权利要求1所述的液晶显示面板的制作方法,其中,所述CF基板包括衬底基板及设置于所述衬底基板周边区域上的一圈外围黑色矩阵;
    所述无机助扩散膜在CF基板上对应从所述外围黑色矩阵的内侧边缘向外围黑色矩阵的内侧延伸。
  8. 如权利要求1所述的液晶显示面板的制作方法,其中,所述自配向液晶材料还包括反应性单体;
    所述步骤S3还包括,在将所述TFT基板与CF基板组立贴合之前,在所述TFT基板或CF基板一侧表面的周边区域上涂布封框胶,然后在真空环境下将所述TFT基板与CF基板组立贴合,对所述封框胶进行固化;
    该液晶显示面板的制作方法还包括:
    步骤S4、通过所述TFT基板与CF基板对液晶层两侧施加电压,使其中的液晶分子发生偏转,对所述液晶层照射紫外光,使得其中的垂直取向剂与反应性单体在所述CF基板表面聚合,以形成自配向层。
  9. 一种液晶显示面板,包括相对设置的TFT基板和CF基板、设于所述TFT基板和CF基板之间的液晶层;
    所述液晶层的制作材料为自配向液晶材料,所述自配向液晶材料包括液晶分子及垂直取向剂;
    所述CF基板面向所述TFT基板一侧表面的周边区域上对应所述液晶层的边缘设有一圈无机助扩散膜,用于提高液晶层内垂直取向剂在边缘处的扩散性。
  10. 如权利要求9所述的液晶显示面板,其中,所述无机助扩散膜的材料为氧化硅膜;所述无机助扩散膜的膜厚为30-100nm。
PCT/CN2019/081592 2019-03-21 2019-04-04 液晶显示面板的制作方法及液晶显示面板 WO2020186567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910219071.3A CN109917590B (zh) 2019-03-21 2019-03-21 液晶显示面板的制作方法及液晶显示面板
CN201910219071.3 2019-03-21

Publications (1)

Publication Number Publication Date
WO2020186567A1 true WO2020186567A1 (zh) 2020-09-24

Family

ID=66966274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081592 WO2020186567A1 (zh) 2019-03-21 2019-04-04 液晶显示面板的制作方法及液晶显示面板

Country Status (2)

Country Link
CN (1) CN109917590B (zh)
WO (1) WO2020186567A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035449A1 (ja) * 2017-08-14 2019-02-21 富士フイルム株式会社 構造体および反射層の形成方法
CN110568645B (zh) * 2019-08-07 2021-07-06 Tcl华星光电技术有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171028A (ja) * 1995-12-22 2004-06-17 Samsung Electronics Co Ltd Lcd装置
KR20080096186A (ko) * 2007-04-27 2008-10-30 엘지디스플레이 주식회사 박막 트랜지스터 및 그의 제조 방법과, 이를 이용한액정표시장치 및 그의 제조 방법
CN105954920A (zh) * 2016-07-11 2016-09-21 深圳市华星光电技术有限公司 柔性液晶显示面板的制作方法
CN107132699A (zh) * 2017-07-14 2017-09-05 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制备方法
CN109407390A (zh) * 2018-11-28 2019-03-01 武汉华星光电技术有限公司 液晶显示面板的制作方法及液晶显示面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238213B (zh) * 2014-06-17 2017-03-15 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
KR102338476B1 (ko) * 2015-06-01 2021-12-14 삼성디스플레이 주식회사 액정 표시 장치
CN105892168B (zh) * 2016-06-16 2018-05-11 武汉华星光电技术有限公司 液晶层的形成方法及液晶显示面板、液晶滴注装置
CN107418598B (zh) * 2017-05-26 2019-06-11 深圳市华星光电技术有限公司 液晶材料、液晶显示面板及其制造方法
CN109239963B (zh) * 2018-09-12 2021-04-02 重庆惠科金渝光电科技有限公司 一种显示面板及其制程方法和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171028A (ja) * 1995-12-22 2004-06-17 Samsung Electronics Co Ltd Lcd装置
KR20080096186A (ko) * 2007-04-27 2008-10-30 엘지디스플레이 주식회사 박막 트랜지스터 및 그의 제조 방법과, 이를 이용한액정표시장치 및 그의 제조 방법
CN105954920A (zh) * 2016-07-11 2016-09-21 深圳市华星光电技术有限公司 柔性液晶显示面板的制作方法
CN107132699A (zh) * 2017-07-14 2017-09-05 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制备方法
CN109407390A (zh) * 2018-11-28 2019-03-01 武汉华星光电技术有限公司 液晶显示面板的制作方法及液晶显示面板

Also Published As

Publication number Publication date
CN109917590A (zh) 2019-06-21
CN109917590B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
JP4472263B2 (ja) 液晶表示装置の製造方法
JP3874895B2 (ja) 液晶表示パネルの製造方法
JP3978241B2 (ja) 液晶表示パネル及びその製造方法
US8273422B2 (en) Liquid crystal display
WO2018214251A1 (zh) 液晶材料、液晶显示面板及其制造方法
TWI425281B (zh) 聚合物穩定配向型液晶顯示面板的製造方法
WO2021072868A1 (zh) 液晶显示装置
US20120177847A1 (en) Liquid crystal display device and method of producing the same
JP2001117105A (ja) 液晶表示装置の製造方法
JP2001209052A (ja) 液晶表示装置及びその製造方法
US20230375871A1 (en) Manufacturing method of liquid crystal display panel and liquid crystal display panel
JPH0743689A (ja) 情報表示装置およびその製造方法
US20190187498A1 (en) Liquid crystal panel structure and manufacture method
KR20080097794A (ko) 액정 표시 장치 및 그 제조 방법
JPH10319371A (ja) アクティブマトリクス型液晶表示装置とその配向膜形成方法および配向膜の配向検証方法
WO2020186567A1 (zh) 液晶显示面板的制作方法及液晶显示面板
JPH1195221A (ja) 液晶表示素子及びこの液晶表示素子の製造方法
JP2001083529A (ja) 液晶表示装置及びその製造方法
CN107402477B (zh) 一种显示面板及其制备方法、显示装置
WO2015027642A1 (zh) 液晶面板及其制作方法、显示器
KR20050000572A (ko) 위상차 필름의 제조방법 및 이를 이용한 액정표시장치의제조방법
KR20080095119A (ko) 광경화성 수직배향 모드의 액정 제조방법과 그 방법에 의한액정 및 액정표시장치
Park et al. Liquid crystal cell process
JPH09146096A (ja) 液晶表示装置及びその製造方法
WO2021093049A1 (zh) 薄膜晶体管液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919982

Country of ref document: EP

Kind code of ref document: A1