WO2021102744A1 - 摄像透镜组、取像模组及电子装置 - Google Patents

摄像透镜组、取像模组及电子装置 Download PDF

Info

Publication number
WO2021102744A1
WO2021102744A1 PCT/CN2019/121296 CN2019121296W WO2021102744A1 WO 2021102744 A1 WO2021102744 A1 WO 2021102744A1 CN 2019121296 W CN2019121296 W CN 2019121296W WO 2021102744 A1 WO2021102744 A1 WO 2021102744A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
imaging
imaging lens
object side
Prior art date
Application number
PCT/CN2019/121296
Other languages
English (en)
French (fr)
Inventor
乐宇明
兰宾利
周芮
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to EP19954137.6A priority Critical patent/EP4040208A1/en
Priority to PCT/CN2019/121296 priority patent/WO2021102744A1/zh
Publication of WO2021102744A1 publication Critical patent/WO2021102744A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application relates to the field of optical imaging technology, and in particular to a camera lens group, an image capturing module and an electronic device.
  • ADAS Advanced Driving Assistant System
  • DMS Driver Monitor System
  • the imaging resolution of the lens of the traditional vehicle-mounted auxiliary system is not high, and it is difficult to recognize the facial features and actions of the driver in a complicated driving environment (such as a tunnel or an underground parking lot) to accurately identify the driver.
  • the status information is fed back to the on-board system, so driving safety cannot be guaranteed.
  • an imaging lens group is provided.
  • a camera lens group is used to include visible light waveband and infrared waveband light imaging, the camera lens group along the optical axis from the object side to the image side sequentially includes:
  • a first lens with negative refractive power, the object side of the first lens is convex
  • the fourth lens with refractive power is the fourth lens with refractive power
  • a fifth lens with refractive power the object side of the fifth lens is convex, and the image side is convex;
  • a sixth lens with negative refractive power the image side surface of the sixth lens is concave;
  • a diaphragm is provided between the object side of the imaging lens group and the sixth lens;
  • the imaging lens group satisfies the following relationship:
  • ns3 represents the s-ray refractive index of the third lens
  • ns1 represents the s-ray refractive index of the first lens
  • An image capturing module includes the imaging lens group described in the above embodiment; and a photosensitive element, the photosensitive element being arranged on the image side of the imaging lens group.
  • An electronic device includes a housing and the imaging module described in the above embodiments, and the imaging module is installed on the housing.
  • FIG. 1 shows a schematic diagram of the structure of the imaging lens group of Embodiment 1 of the present application
  • 2A to 2C are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging lens group of Embodiment 1;
  • FIG. 3 shows a schematic diagram of the structure of the imaging lens group of Embodiment 2 of the present application
  • 4A to 4C are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging lens group of Embodiment 2;
  • FIG. 5 shows a schematic structural diagram of an imaging lens group according to Embodiment 3 of the present application.
  • 6A to 6C are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging lens group of Example 3.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least The paraxial area is concave.
  • the paraxial area here refers to the area near the optical axis. The surface of each lens closest to the object is called the object side, and the surface of each lens closest to the imaging surface is called the image side.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • ADAS Advanced Driving Assistant System
  • DMS Driver Monitor System
  • Embodiments of the present application provide a camera lens assembly that not only meets the application requirements of miniaturization and light weight, but is also suitable for visible light and infrared light imaging and has high pixel imaging capabilities.
  • the imaging lens group includes six lenses with refractive power, namely, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and an imaging surface on the image side of the sixth lens.
  • the six lenses are arranged in order from the object side to the image side along the optical axis.
  • the first lens has a negative refractive power, thereby facilitating the focusing of incident light to the imaging surface of the imaging lens group to achieve stable imaging.
  • the object side surface of the first lens is convex, which facilitates adjustment of the shape and refractive power of the first lens, thereby balancing the curvature configuration of the two surfaces of the first lens.
  • the second lens has a positive refractive power, which is beneficial to correct part of the aberrations generated by the first lens, so that the system has a higher resolution.
  • the third lens has a negative refractive power, which is beneficial to prevent the second lens from over-correcting, and can further focus the incident light to the imaging surface of the imaging lens group.
  • the fourth lens has refractive power, and the object side surface of the fourth lens is convex, which helps reduce the distortion of the off-axis field of view, avoids imaging distortion, and also helps correct aberrations.
  • the fifth lens has refractive power, and both the object side and the image side of the fifth lens are convex, which is beneficial to further correct aberrations. At the same time, it can also cooperate with the sixth lens to reduce the angle of incidence of the chief ray of the off-axis field of view and improve the sensitivity.
  • the photosensitive ability of the component is provided.
  • the sixth lens has negative refractive power, and the image side surface of the sixth lens is concave, so that the back focal length of the imaging lens group can be effectively shortened, and the miniaturization of the imaging lens group can be realized.
  • a diaphragm is also provided in the imaging lens group.
  • the diaphragm includes an aperture diaphragm and a field diaphragm, and may be provided between the object side of the imaging lens group and the first lens, or between the first lens and the sixth lens.
  • the diaphragm is an aperture diaphragm and is arranged between the second lens and the third lens to effectively suppress the excessive increase of the chief ray incident angle of the off-axis field of view, so that the imaging lens group is better than the traditional specifications.
  • the photosensitive element is matched.
  • the imaging lens group satisfies the following relationship: 0 ⁇
  • the wavelength is 852.11nm.
  • can be 0.05, 0.10, 0.15, 0.20, 0.25, 0.28, or 0.29.
  • the camera lens group can shoot clear images in the visible light waveband (that is, during the day), and can also increase the camera lens group in the infrared waveband (that is, night). ) The imaging quality within.
  • the light emitted or reflected by the subject enters the imaging lens group from the object side direction, and passes through the first lens, the second lens, the third lens, the fourth lens, and the fifth lens in sequence And the sixth lens, finally converge on the imaging surface.
  • the above-mentioned imaging lens group by reasonably distributing the refractive power, surface shape and effective focal length of each lens, can enhance the imaging resolution capability and low-light shooting capability of the imaging lens group while ensuring the miniaturization of the imaging lens group.
  • the camera lens set of the present application can maintain good imaging quality in a wide range of wavelengths, and can be applied to light imaging including visible light and infrared wavelengths, so as to meet the requirements of vehicle monitoring equipment during the day and night. Work demands.
  • the object side and/or the image side of at least one lens are set to be non-
  • the spherical surface can improve the flexibility of lens design, effectively correct aberrations, and improve the imaging resolution of the camera lens group.
  • the object side surface and the image side surface of each lens of the imaging lens group may also be spherical surfaces. It should be noted that the above-mentioned embodiments are only examples of some embodiments of the present application.
  • the surface of each lens in the imaging lens group may be an aspheric surface or any combination of spherical surfaces.
  • the object side or the image side of one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens is provided with a filter film; or, the sixth lens A filter is arranged between the lens and the imaging surface of the imaging lens group.
  • a filter film is arranged on one surface of the lens of the imaging lens group or setting a filter in the imaging lens group, the spectral range of the light incident on the image plane of the imaging lens can be selected to cut off the visible light band and the near-infrared. The band outside the band, so as to ensure that the camera lens group can shoot clear and vivid images during the day and night.
  • the imaging lens group satisfies the following relationship: -5 ⁇ f1/f ⁇ 0; where f1 is the effective focal length of the first lens, and f is the effective focal length of the imaging lens group.
  • f1/f can be -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, or -4.5.
  • the first lens can be set as a negative lens, so as to provide negative refractive power for the imaging lens group, which is conducive to focusing the incident light on the imaging surface of the imaging lens group to achieve stable imaging;
  • the effective focal length of the first lens can also be prevented from being too small, which is beneficial to reduce the sensitivity of the imaging lens group, and the effective focal length of the imaging lens group can also be prevented from being too large, which is conducive to the realization of the imaging lens. Miniaturization of the group.
  • the imaging lens group satisfies the following relationship: 0 ⁇ f4/f ⁇ 4; where f4 is the effective focal length of the fourth lens, and f is the effective focal length of the imaging lens group.
  • f4/f can be 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, or 3.0.
  • the fourth lens can be set as a positive lens, so as to provide positive refractive power for the imaging lens group, which is beneficial to correct the aberration of the imaging lens group and improve the imaging quality of the imaging lens group.
  • the imaging lens group satisfies the following relationship: -3 ⁇ f6/f ⁇ 0; where f6 is the effective focal length of the sixth lens, and f is the effective focal length of the imaging lens group.
  • f6/f can be -0.5, -0.6, -0.7, -0.8, -0.9, -1.0, -1.5, -2.0, or -2.5.
  • the sixth lens can be set as a negative lens, so as to provide negative refractive power for the imaging lens group, which is beneficial to correct the aberration of the imaging lens group and improve the imaging quality of the imaging lens group.
  • the imaging lens group satisfies the following relationship: 0.1 ⁇ ImgH*2/TTL ⁇ 0.8; where ImgH is half the diagonal length of the effective pixel area on the imaging surface of the imaging lens group, and TTL is the first The distance from the object side of the lens to the imaging surface of the imaging lens group on the optical axis.
  • the resolution of the imaging lens group can be improved, and the imaging quality of the imaging lens group can be guaranteed, and the total length of the imaging lens group can be effectively shortened to achieve miniaturization.
  • the imaging lens group satisfies the following relationship: 0.5 ⁇ CT/TTL ⁇ 0.85; where ⁇ CT is the sum of the thicknesses of the first lens to the sixth lens on the optical axis, and TTL is the first The distance from the object side of the lens to the imaging surface of the imaging lens group on the optical axis.
  • ⁇ CT/TTL can be 0.52, 0.54, 0.56, 0.58, 0.60, 0.65, 0.70, 0.75, or 0.80. Under the condition that the above relationship is satisfied, it is beneficial to further control the total length of the imaging lens group, so as to realize the miniaturization of the imaging lens group.
  • the imaging lens group satisfies the following relationship: Ed45/d45 ⁇ 20; where Ed45 is the maximum effective aperture from the image side surface of the fourth lens to the maximum effective aperture from the object side surface of the fifth lens parallel to the light The distance in the axial direction; d45 is the distance from the image side surface of the fourth lens to the object side surface of the fifth lens on the optical axis.
  • Ed45/d45 can be 4, 5, 6, 7, 9, 10, 12, 14, 16, or 18.
  • the gap between the maximum effective aperture of the fourth lens and the fifth lens can be prevented from being too large, and the collision of the fourth lens and the fifth lens during the production and assembly process can be avoided, thereby improving the stability of production and assembly.
  • Improve production yield For example, when the image side surface of the fourth lens and the object side surface of the fifth lens are both convex, the two convex surfaces face each other. The larger the radius of curvature of the two lens surfaces, the larger Ed45. At this time, if d45 is smaller, the fourth lens and the The five lenses are prone to collision during the assembly process, thereby reducing the production yield.
  • the imaging lens group satisfies the following relationship:
  • 3 can be 1E-6, 2E-6, 3E-6, 4E-6, 5E-6, 6E-6, 7E-6, 8E-6, 9E-6, or 10E-6. Under the condition of satisfying the above relationship, it is beneficial to reduce the sensitivity of the imaging lens group to temperature, so as to ensure that the imaging lens group can still maintain good imaging quality in a wide temperature range.
  • At least one lens in the imaging lens group satisfies the following relationship:
  • the change in temperature will cause the refractive index of the lens material to change.
  • the temperature coefficient of refractive index is positive, if the temperature rises, the refractive index becomes larger and the focal length of the lens becomes shorter; when the temperature coefficient of refractive index is negative, if the temperature As it increases, the refractive index becomes smaller and the focal length of the lens becomes longer.
  • the movement direction of the focal point of the imaging lens group is also related to the positive and negative refractive power of each lens. Therefore, the temperature coefficient of refractive index of at least one lens in the imaging lens group in the temperature range of -40 to 100°C corresponds to the lens.
  • the product of the effective focal length is less than zero, which can correct the lens focus movement caused by temperature changes, thereby reducing the sensitivity of the imaging lens group to temperature, and ensuring that the imaging lens group can still maintain good imaging quality in a wide temperature range.
  • the imaging lens group satisfies the following relational expressions: nd3>1.9, nd6>1.9; vd3 ⁇ 30, vd6 ⁇ 30; where nd3 and vd3 are the d-light refractive index and d-light of the third lens, respectively.
  • Bay number, nd6 and vd6 are the refractive index of d light and Abbe number of d light of the sixth lens respectively, and the wavelength of d light is 587.56 nm.
  • the d-light refractive index and d-light Abbe number of the third lens, and the d-light refractive index and d-light Abbe number of the sixth lens are beneficial to correct the off-axis chromatic aberration and magnification chromatic aberration of the imaging lens group. Improve the imaging quality when the camera lens group is applied to the visible light waveband.
  • the imaging lens group satisfies the following relationship: f/EPD ⁇ 2.0; where f is the effective focal length of the imaging lens group, and EPD is the entrance pupil diameter of the imaging lens group.
  • f/EPD can be 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, or 1.95.
  • it is beneficial to increase the amount of light entering the camera lens group, and improve the brightness and clarity of the image; at the same time, it can also enhance the dark light adaptability of the camera lens group to meet the needs of vehicles, tunnels and underground parking lots. This kind of low-light scene shooting needs.
  • the imaging lens group satisfies the following relationship: 1 ⁇ FOV/CRA ⁇ 10; where FOV is the angle of view of the imaging lens group, and CRA is the chief ray incident angle of the imaging lens group.
  • FOV the angle of view of the imaging lens group
  • CRA the chief ray incident angle of the imaging lens group.
  • the material of each lens in the imaging lens group may be glass or plastic.
  • the plastic lens can reduce the weight of the imaging lens group and reduce the production cost, and the glass lens can make the imaging lens group. It has good temperature tolerance and excellent optical performance. It should be noted that the material of each lens in the imaging lens group can also be any combination of glass and plastic, and it does not have to be all glass or all plastic.
  • the diaphragm may be an aperture diaphragm.
  • the aperture stop can be located on the surface of any one of the first lens to the sixth lens (for example, the object side and the image side), and form an functional relationship with the lens, for example, by coating a light-blocking coating on the surface of the lens to An aperture stop is formed on the surface; or the surface of the lens is fixed and clamped by a clamp, and the clamp structure on the surface can limit the width of the imaging beam of the object point on the axis, thereby forming an aperture stop on the surface.
  • the imaging lens group further includes a protective glass for protecting the photosensitive element, wherein the photosensitive element is located on the imaging surface of the imaging lens group.
  • the imaging surface may be the photosensitive surface of the photosensitive element.
  • the imaging lens group of the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned six lenses.
  • By reasonably distributing the focal length, refractive power, surface shape, thickness of each lens, and the on-axis distance between each lens it is possible to ensure that the total length of the above-mentioned camera lens group is small and the imaging resolution is high, and it also has a large aperture. (FNO can be 1.65), so as to better meet the application needs of lightweight electronic devices such as lenses for vehicle-mounted auxiliary systems, mobile phones, and tablets.
  • FNO can be 1.65
  • the imaging lens group is not limited to including six lenses. If necessary, the imaging lens group may also include other numbers of lenses.
  • FIG. 1 shows a schematic diagram of the structure of the imaging lens group of Embodiment 1.
  • the imaging lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both aspherical surfaces, wherein the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a convex surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the object side surface S3 and the image side surface S4 of the second lens L2 are beneficial to solve the problem of distortion of the field of view, and also enables the lens to achieve an excellent optical imaging effect under the condition of being small, thin and flat. Furthermore, the imaging lens group has the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all glass, and the use of glass lenses can make the imaging lens group have better temperature tolerance characteristics and excellent optical performance.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to further improve the imaging quality of the imaging lens group.
  • the imaging lens group further includes a filter L7 having an object side surface S13 and an image side surface S14, and a cover glass L8 having an object side surface S15 and an image side surface S16.
  • the filter L7 and the protective glass L8 are arranged between the sixth lens L6 and the imaging surface S17 in order from the object side to the image side along the optical axis.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter L7 is used to filter out light in the mid- and far-infrared wavelength band among the external light incident to the imaging lens group, so as to avoid imaging distortion.
  • the material of the filter L7 is glass.
  • the filter L7 and the photosensitive glass L8 may belong to a part of the imaging lens group and be assembled together with each lens, or may also be installed together when the imaging lens group and the photosensitive element are assembled.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and effective focal length of each lens of the imaging lens group of Example 1, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the direction from the image side to the image side of the lens.
  • the reference wavelength in Table 1 is 656 nm.
  • the aspheric surface type in each lens is defined by the following formula:
  • the half of the diagonal length ImgH of the effective pixel area on the imaging surface S17 of the imaging lens group of this embodiment is 3.31 mm. Therefore, combining the data in Table 1 and Table 2 shows that the imaging lens group in Embodiment 1 satisfies:
  • *100 20.5, where ns3 represents the s-ray refractive index of the third lens L3, and ns1 represents the s-ray refractive index of the first lens L1;
  • f1/f -2.56, where f1 is the effective focal length of the first lens L1, and f is the effective focal length of the imaging lens group;
  • f4/f 0.82, where f4 is the effective focal length of the fourth lens L4, and f is the effective focal length of the imaging lens group;
  • f6/f -0.96, where f6 is the effective focal length of the sixth lens L6, and f is the effective focal length of the imaging lens group;
  • ImgH*2/TTL 0.31
  • ImgH is half the diagonal length of the effective pixel area on the imaging surface S17 of the imaging lens group
  • TTL is the distance between the object side S1 of the first lens L1 and the imaging surface S17 of the imaging lens group. The distance on the axis;
  • ⁇ CT/TTL 0.56, where ⁇ CT is the sum of the thicknesses of the first lens L1 to the sixth lens L6 on the optical axis, and TTL is between the object side surface S1 of the first lens L1 and the imaging surface S17 of the imaging lens group. The distance on the optical axis;
  • Ed45/d45 18.75, where Ed45 is the distance from the maximum effective aperture of the fourth lens L4 on the image side surface S8 to the maximum effective aperture of the fifth lens L5 on the object side surface S9 in the direction parallel to the optical axis; d45 is the fourth lens The distance from the image side surface S8 of L4 to the object side surface S9 of the fifth lens L5 on the optical axis;
  • f/EPD 1.65, where f is the effective focal length of the imaging lens group, and EPD is the entrance pupil diameter of the imaging lens group;
  • FOV/CRA 3.6, where FOV is the angle of view of the imaging lens group, and CRA is the chief ray incident angle on the image plane S17 composed of the imaging lens.
  • 2A shows the longitudinal spherical aberration curve of the imaging lens group of Example 1, which respectively indicate the deviation of the focus point of light with wavelengths of 500 nm, 546.07 nm, 587.56 nm, 656.27 nm, 750 nm, 850 nm, and 950 nm after passing through the imaging lens group.
  • 2B shows the astigmatism curve of the imaging lens group of Example 1, which represents meridional curvature of field and sagittal field curvature;
  • FIG. 2C shows the distortion curve of the imaging lens group of Example 1, which represents different Distortion rate in the case of image height. According to FIGS. 2A to 2C, it can be seen that the imaging lens group given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic diagram of the structure of the imaging lens group of Embodiment 2 of the present application.
  • the imaging lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a convex surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the object side surface S7 and the image side surface S8 of the fourth lens L4 are beneficial to solve the problem of distortion of the field of view, and also enables the lens to achieve excellent optical imaging effects under the condition of being smaller, thinner and flat. Furthermore, the imaging lens group has the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all glass, and the use of glass lenses can make the imaging lens group have better temperature tolerance characteristics and excellent optical performance.
  • the image side surface S4 of the second lens L2 is coated with a band-pass filter film to select the spectral range of the light incident on the imaging lens to form the image surface S15 to cut off the wavelength bands other than the visible light band and the near-infrared band, thereby ensuring imaging
  • the lens group can shoot clear and vivid images in both day and night.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to further improve the imaging quality of the imaging lens group.
  • the imaging lens group further includes a protective glass L7 having an object side surface S13 and an image side surface S14.
  • the cover glass L7 is provided between the sixth lens L6 and the imaging surface S17.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the photosensitive glass L7 can be part of the imaging lens group and assembled with each lens, or can also be installed when the imaging lens group and the photosensitive element are assembled.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient), and effective focal length of each lens of the imaging lens group of Example 2, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • the reference wavelength in Table 3 is 750nm.
  • Table 4 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S7-S8 in Example 2, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 5 shows Example 2 The relevant parameter values of the camera lens group given in.
  • FIG. 4A shows the longitudinal spherical aberration curve of the imaging lens group of Embodiment 2, which respectively indicate the deviation of the focal point of light rays of different wavelengths after passing through the imaging lens group;
  • FIG. 4B shows the astigmatism of the imaging lens group of Embodiment 2.
  • the curve represents the meridional field curvature and the sagittal field curvature;
  • FIG. 4C shows the distortion curve of the imaging lens group of Example 2, which represents the distortion rate under different image heights. According to FIGS. 4A to 4C, it can be seen that the imaging lens group given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic diagram of the structure of the imaging lens group of Embodiment 3 of the present application.
  • the imaging lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • L6 and imaging surface S15 are shown in FIG. 5, the imaging lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • L6 and imaging surface S15 L6 and imaging surface S15.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a convex surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the object side surface S7 and the image side surface S8 of the fourth lens L4 are beneficial to solve the problem of distortion of the field of view, and also enables the lens to achieve excellent optical imaging effects under the condition of being smaller, thinner and flat. Furthermore, the imaging lens group has the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all glass, and the use of glass lenses can make the imaging lens group have better temperature tolerance characteristics and excellent optical performance.
  • the image side surface S4 of the second lens L2 is coated with a band-pass filter film to select the spectral range of the light incident on the imaging lens to form the image surface S15 to cut off the wavelength bands other than the visible light band and the near-infrared band, thereby ensuring imaging
  • the lens group can shoot clear and vivid images in both day and night.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to further improve the imaging quality of the imaging lens group.
  • the imaging lens group further includes a protective glass L7 having an object side surface S13 and an image side surface S14.
  • the cover glass L7 is provided between the sixth lens L6 and the imaging surface S17.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the photosensitive glass L7 can be part of the imaging lens group and assembled with each lens, or can also be installed when the imaging lens group and the photosensitive element are assembled.
  • Table 6 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient), and effective focal length of each lens of the imaging lens group of Example 3.
  • the radius of curvature, thickness The unit of effective focal length of each lens is millimeter (mm).
  • the reference wavelength in Table 6 is 750 nm.
  • Table 7 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S7-S8 in Example 3, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 8 shows Example 3 The relevant parameter values of the camera lens group given in.
  • FIGS. 6A to 6C show the longitudinal spherical aberration curve of the imaging lens group of Example 3, which respectively indicate the deviation of the focal point of light rays of different wavelengths after passing through the imaging lens group;
  • FIG. 6B shows the astigmatism of the imaging lens group of Example 3 The curve represents the meridional field curvature and the sagittal field curvature;
  • FIG. 6C shows the distortion curve of the imaging lens group of Example 3, which represents the distortion rate under different image heights. It can be seen from FIGS. 6A to 6C that the imaging lens group given in Embodiment 3 can achieve good imaging quality.
  • the present application also provides an imaging module, including the imaging lens group as described above; and a photosensitive element, which is arranged on the image side of the imaging lens group to receive the light carrying image information formed by the optical system.
  • the photosensitive element may use a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the above-mentioned image capturing module can use the aforementioned camera lens group to capture clear images even in low light conditions. At the same time, it also has the characteristics of miniaturization and light weight, which can be easily adapted to sizes such as mobile phones, tablets and car lenses. Restricted device.
  • the present application also provides an electronic device, including a housing and the image capturing module as described above, the image capturing module is installed on the housing for capturing images.
  • the image capturing device is arranged in the casing and exposed from the casing to capture images.
  • the casing can provide protection against dust, water, and drop of the image capturing device.
  • the casing is provided with a hole corresponding to the image capturing device. Make light penetrate into or out of the shell from the hole.
  • the above-mentioned electronic devices can also take clear images under low light conditions, so that the status information of the driver, passengers and the situation in the car can be accurately fed back to the on-board auxiliary system in time, so that the system can make accurate analysis and judgments. , To ensure the safety of the vehicle.
  • the "electronic device” used may also include, but is not limited to, a device configured to be connected via a wired line and/or receive or send a communication signal via a wireless interface.
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, memo pad, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system

Abstract

一种摄像透镜组、取像模组和电子装置。摄像透镜组用于包括可见光波段和红外波段的光线成像,摄像透镜组沿着光轴由物侧至像侧依序包括具有负屈折力的第一透镜(L1),其物侧面为凸面;具有正屈折力的第二透镜(L2);具有负屈折力的第三透镜(L3);具有屈折力的第四透镜(L4);具有屈折力的第五透镜(L5),其物侧面为凸面,像侧面为凸面;具有负屈折力的第六透镜(L6),其像侧面为凹面;摄像透镜组的物侧与第六透镜(L6)之间设置有光阑(ST0);摄像透镜组满足下列关系式:0<|ns3-ns1|×100<30;其中,ns3表示第三透镜(L3)的s光折射率,ns1表示第一透镜(L1)的s光折射率。摄像透镜组在暗光条件下也能获得高分辨率的图像,满足车载辅助系统的多场景拍摄需求。

Description

摄像透镜组、取像模组及电子装置 技术领域
[根据细则91更正 07.01.2020] 
本申请涉及光学成像技术领域,特别是涉及一种摄像透镜组、取像模组及电子装置。
背景技术
随着科学技术的发展,高级驾驶辅助系统(Advanced Driving Assistant System,ADAS)和驾驶员监控系统(Driver Monitor System,DMS)的车载驾驶功能逐渐成熟,需要对驾驶员的状态进行实时监测,例如根据驾驶员的眼睛状态、闭眼次数、闭眼幅度以及打哈欠等相关信息进行推测,从而判断出驾驶员是否疲劳驾驶,以在驾驶员处于疲劳驾驶时发出预警,提高驾驶安全性。
然而,传统车载辅助系统的镜头的成像分辨率并不高,较难在错综复杂的行驶环境(例如隧道或是地下停车场)中对驾驶员的面部特征以及动作进行识别,以准确地将驾驶员的状态信息反馈给车载系统,从而无法保证行驶安全。
发明内容
根据本申请的各种实施例,提供一种摄像透镜组。
一种摄像透镜组,所述摄像透镜组用于包括可见光波段和红外波段的光线成像,所述摄像透镜组沿着光轴由物侧至像侧依序包括:
具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面;
具有正屈折力的第二透镜;
具有负屈折力的第三透镜;
具有屈折力的第四透镜;
具有屈折力的第五透镜,所述第五透镜的物侧面为凸面,像侧面为凸面;
具有负屈折力的第六透镜,所述第六透镜的像侧面为凹面;
所述摄像透镜组的物侧与所述第六透镜之间设置有光阑;
所述摄像透镜组满足下列关系式:
0<|ns3-ns1|×100<30;
其中,ns3表示所述第三透镜的s光折射率,ns1表示所述第一透镜的 s光折射率。
一种取像模组,包括上述实施例所述的摄像透镜组;以及感光元件,所述感光元件设于所述摄像透镜组的像侧。
一种电子装置,包括壳体以及上述实施例所述的取像模组,所述取像模组安装在所述壳体上。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本申请实施例1的摄像透镜组的结构示意图;
图2A至图2C分别为实施例1的摄像透镜组的纵向球差曲线图、像散曲线图以及畸变曲线图;
图3示出了本申请实施例2的摄像透镜组的结构示意图;
图4A至图4C分别为实施例2的摄像透镜组的纵向球差曲线图、像散曲线图以及畸变曲线图;
图5示出了本申请实施例3的摄像透镜组的结构示意图;
图6A至图6C分别为实施例3的摄像透镜组的纵向球差曲线图、像散曲线图以及畸变曲线图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在本文中,若透镜表面为凸面且未界定该凸面位置时,则表示该透镜 表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。此处近轴区域是指光轴附近的区域。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
传统的高级驾驶辅助系统(Advanced Driving Assistant System,ADAS)和驾驶员监控系统(Driver Monitor System,DMS)中,需要利用车载辅助系统的镜头拍摄驾驶员、乘客以及车内状况的图像以便系统根据图像做出准确的分析与判断,从而确保驾驶安全,减少交通事故的发生。然而,传统车载辅助系统的镜头虽然可以实现小型化、轻量化,但是其成像分辨率并不高,从而难以准确地将驾驶员、乘客以及车内的状况反馈至系统,无法满足日趋成熟的ADAS和DMS的应用需求。
针对以上方案所存在的缺陷,均是发明人在经过实践并仔细研究后得到的结果,因此,上述问题的发现过程以及下文中本申请实施例针对上述问题所提出的解决方案,都应是发明人在本申请过程中对本申请做出的贡献。
以下将对本申请的特征、原理和其他方面进行详细描述。
请一并参阅图1、图3和图5,本申请实施例提供一种既满足小型化、轻量化的应用需求,又适用于可见光和红外光成像且具备高像素成像能力的摄像透镜组。该摄像透镜组包括六片具有屈折力的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及位于第六透镜像侧的成像面。该六片透镜沿着光轴从物侧至像侧依序排列。
第一透镜具有负屈折力,从而有利于使入射光线聚焦至摄像透镜组的成像面,实现稳定成像。第一透镜的物侧面为凸面,有利于调整第一透镜的形状以及屈折力大小,从而平衡第一透镜两表面的曲率配置。
第二透镜具有正屈折力,从而有利于修正部分第一透镜产生的像差,使系统具有较高的分辨率。
第三透镜具有负屈折力,从而有利于防止第二透镜过度矫正,并可进一步使入射光线聚焦至摄像透镜组的成像面。
第四透镜具有屈折力,且第四透镜的物侧面为凸面,从而有利于减小离轴视场的畸变,避免成像失真,同时也有利于修正像差。
第五透镜具有屈折力,且第五透镜的物侧面和像侧面均为凸面,从而 有利于进一步修正像差,同时也可以配合第六透镜减小离轴视场的主光线入射角,提升感光元件的感光能力。
第六透镜具有负屈折力,且第六透镜的像侧面为凹面,从而能够有效缩短摄像透镜组的后焦距,实现摄像透镜组的小型化。
摄像透镜组中还设置有光阑。光阑包括孔径光阑和视场光阑,且可以设于摄像透镜组的物侧与第一透镜之间,或第一透镜与第六透镜之间。优选的,光阑为孔径光阑,且设于第二透镜和第三透镜之间,以有效抑制离轴视场的主光线入射角过度增大,使得摄像透镜组更好地与传统规格的感光元件匹配。
具体的,摄像透镜组满足下列关系式:0<|ns3-ns1|×100<30;其中,ns3表示第三透镜的s光折射率,ns1表示第一透镜的s光折射率,s光的波长为852.11nm。|ns3-ns1|可以是0.05、0.10、0.15、0.20、0.25、0.28或0.29。在满足上述关系的条件下,有利于进一步减少像差,同时既可以保证摄像透镜组在可见光波段范围(即白天)内拍摄得到清晰的图像,也可以提高摄像透镜组在红外波段范围(即夜晚)内的成像质量。
当上述摄像透镜组用于成像时,被摄物体发出或者反射的光线从物侧方向进入摄像透镜组,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,最终汇聚到成像面上。
上述摄像透镜组,通过合理分配各透镜的屈折力、面型以及各透镜的有效焦距,可以在保证摄像透镜组小型化的同时,增强所述摄像透镜组的成像解析能力以及暗光拍摄能力。除此之外,本申请的摄像透镜组可以在一个较宽的波段范围内均能保持良好的成像质量,可适用于包括可见光波段和红外波段的光线成像,从而满足车载监控设备白天和夜晚的工作需求。
在示例性实施方式中,第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜中,至少一个透镜的物侧面和/或像侧面设置为非球面,从而可以提高透镜设计的灵活性,并有效地校正像差,提升摄像透镜组的成像解析度。在另一些实施方式中,摄像透镜组的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施方式仅是对本申请的一些实施方式的举例,在一些实施方式中,摄像透镜组中各透镜的表面可以是非球面或球面的任意组合。
在示例性实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的一个透镜的物侧面或像侧面设置有滤光膜;或者,第六透镜和摄像透镜组的成像面之间设置有滤光片。通过在摄像透镜组的透镜的一个表面设置滤光膜或在摄像透镜组中设置滤光片可以对入射至所述摄像透镜组成像面的光线的光谱范围进行选择,以截止可见光波段和近红外波段以外的波段,从而保证摄像透镜组在白天和夜晚均能拍摄得到清晰、色彩鲜明的图像。
在示例性实施方式中,摄像透镜组满足下列关系式:-5<f1/f<0;其 中,f1为第一透镜的有效焦距,f为摄像透镜组的有效焦距。f1/f可以是-1.0、-1.5、-2.0、-2.5、-3.0、-3.5、-4.0或-4.5。在满足上述关系的条件下,可以将第一透镜设置为负透镜,从而为摄像透镜组提供负屈折力,有利于使入射光线聚焦至摄像透镜组的成像面,实现稳定成像;同时,在满足上述关系的条件下,还可以使第一透镜的有效焦距不会过小,从而有利于降低摄像透镜组的敏感度,也可以使摄像透镜组的有效焦距不会过大,有利于实现摄像透镜组的小型化。
在示例性实施方式中,摄像透镜组满足下列关系式:0<f4/f<4;其中,f4为第四透镜的有效焦距,f为摄像透镜组的有效焦距。f4/f可以是0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、2.0或3.0。在满足上述关系的条件下,可以将第四透镜设置为正透镜,从而为摄像透镜组提供正屈折力,有利于校正摄像透镜组的像差,提高摄像透镜组的成像质量。
在示例性实施方式中,摄像透镜组满足下列关系式:-3<f6/f<0;其中,f6为第六透镜的有效焦距,f为摄像透镜组的有效焦距。f6/f可以是-0.5、-0.6、-0.7、-0.8、-0.9、-1.0、-1.5、-2.0或-2.5。在满足上述关系的条件下,以将第六透镜设置为负透镜,从而为摄像透镜组提供负屈折力,有利于校正摄像透镜组的像差,提高摄像透镜组的成像质量。
在示例性实施方式中,摄像透镜组满足下列关系式:0.1<ImgH*2/TTL<0.8;其中,ImgH为摄像透镜组的成像面上有效像素区域对角线长的一半,TTL为第一透镜的物侧面至摄像透镜组的成像面在光轴上的距离。在满足上述关系的条件下,既可以提高摄像透镜组的分辨率,保证摄像透镜组的成像质量,也可以有效缩短摄像透镜组的总长,实现小型化。
在示例性实施方式中,摄像透镜组满足下列关系式:0.5<∑CT/TTL<0.85;其中,∑CT为第一透镜至第六透镜分别在光轴上的厚度的总和,TTL为第一透镜的物侧面至摄像透镜组的成像面在光轴上的距离。∑CT/TTL可以是0.52、0.54、0.56、0.58、0.60、0.65、0.70、0.75或0.80。在满足上述关系的条件下,有利于进一步对摄像透镜组的总长进行调控,从而实现摄像透镜组的小型化。
在示例性实施方式中,摄像透镜组满足下列关系式:Ed45/d45<20;其中,Ed45为第四透镜像侧面的最大有效口径处至第五透镜物侧面的最大有效口径处在平行于光轴方向上的距离;d45为第四透镜的像侧面至第五透镜的物侧面在光轴上的距离。Ed45/d45可以是4、5、6、7、9、10、12、14、16或18。
在满足上述关系的条件下,可以防止第四透镜和第五透镜最大有效口径处的间隔过大,避免在生产组装过程中第四透镜和第五透镜发生碰撞,从而提高生产组装的稳定性,提升生产良率。例如第四透镜的像侧面和第五透镜的物侧面均为凸面时,两凸面相对,两透镜表面的曲率半径越大,Ed45便越大,此时若d45越小,则第四透镜和第五透镜在组装过程中便很容易发生碰撞,从而降低生产良率。
在示例性实施方式中,摄像透镜组满足下列关系式:|dn/dt| 3<10.3×10 -6/℃,其中,|dn/dt| 3为第三透镜在-40~100℃的温度范围内的折射率温度系数的大小。其反映了透镜材质的折射率受温度影响的变化情况。|dn/dt| 3可以是1E-6、2E-6、3E-6、4E-6、5E-6、6E-6、7E-6、8E-6、9E-6或10E-6。在满足上述关系的条件下,有利于减小摄像透镜组对温度的敏感度,从而保证摄像透镜组在较宽的温度范围内仍能保持良好的成像质量。
在示例性实施方式中,摄像透镜组中,至少一个透镜满足下列关系式:|dn/dt| i×f i<0;其中,i为摄像透镜组中的透镜序号,|dn/dt| i为摄像透镜组中第i透镜在-40~100℃的温度范围内的折射率温度系数的大小,f i为摄像透镜组中第i透镜的有效焦距。
温度的变化会引起透镜材质的折射率变化,当折射率温度系数为正时,若温度升高,则折射率变大,透镜的焦距会变短;当折射率温度系数为负时,若温度升高,则折射率变小,透镜的焦距会变长。而摄像透镜组的焦点的移动方向还与各透镜的屈折力的正负有关,因此通过使摄像透镜组中至少一个透镜在-40~100℃的温度范围内的折射率温度系数与该透镜对应的有效焦距的乘积小于零,可以修正由于温度变化引起的透镜焦点移动,从而降低摄像透镜组对温度的敏感度,保证摄像透镜组在较宽的温度范围内仍能保持良好的成像质量。
在示例性实施方式中,摄像透镜组满足下列关系式:nd3>1.9,nd6>1.9;vd3<30,vd6<30;其中,nd3和vd3分别为第三透镜的d光折射率和d光阿贝数,nd6和vd6分别为第六透镜的d光折射率和d光阿贝数,d光的波长为587.56nm。通过控制第三透镜的d光折射率和d光阿贝数,以及第六透镜的d光折射率和d光阿贝数满足上述关系,有利于校正摄像透镜组的轴外色差和倍率色差,提升摄像透镜组应用于可见光波段时的成像质量。
在示例性实施方式中,摄像透镜组满足下列关系式:f/EPD≤2.0;其中,f为摄像透镜组的有效焦距,EPD为摄像透镜组的入瞳直径。f/EPD可以1.55、1.60、1.65、1.70、1.75、1.80、1.85、1.90或1.95。在满足上述关系的条件下,有利于增加摄像透镜组的进光量,提升图像的亮度和清晰度;同时还能增强摄像透镜组的暗光适应能力,满足车内、隧道以及地下停车场等多种暗光场景的拍摄需求。
在示例性实施方式中,摄像透镜组满足下列关系式:1<FOV/CRA<10;其中,FOV为摄像透镜组的视场角,CRA为摄像透镜组的主光线入射角。在满足上述关系的条件下,可以为摄像透镜组提供充足的成像视角,从而满足如手机、相机以及车载、监控、医疗等设备镜头的拍摄需求,同时还可以有效抑制轴外视场的主光线入射角增大,以更精准地匹配超高像素的感光元件,提升感光元件的感光性能。
在示例性实施方式中,摄像透镜组中各透镜的材质可以均为玻璃或均为塑料,塑料材质的透镜能够减少摄像透镜组的重量并降低生产成本,而玻璃材质的透镜可使摄像透镜组具备较好的温度耐受特性以及优良的光学性能。需要注意的是,摄像透镜组中各透镜的材质也可以玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
在示例性实施方式中,光阑可以是孔径光阑。孔径光阑可位于第一透镜至第六透镜中任一透镜的表面上(例如物侧面和像侧面),与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。
在示例性实施方式中,摄像透镜组还包括用于保护感光元件的保护玻璃,其中感光元件位于摄像透镜组的成像面上。进一步的,该成像面可以为感光元件的感光表面。
本申请的上述实施方式的摄像透镜组可采用多片镜片,例如上文所述的六片。通过合理分配各透镜焦距、屈折力、面型、厚度以及各透镜之间的轴上间距等,可以保证上述摄像透镜组的总长较小且具备较高的成像分辨率,同时还具备较大光圈(FNO可以为1.65),从而更好地满足如车载辅助系统的镜头、手机、平板等轻量化电子设备的应用需求。可以理解的是,虽然在实施方式中以六个透镜为例进行了描述,但是该摄像透镜组不限于包括六个透镜,如果需要,该摄像透镜组还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄像透镜组的具体实施例。
实施例1
以下参照图1至图2C描述本申请实施例1的摄像透镜组。
图1示出了实施例1的摄像透镜组的结构示意图。如图1所示,摄像透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3为凸面,像侧面S4为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凸面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凹面。
将第二透镜L2的物侧面S3及像侧面S4均设置为非球面,有利于解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使摄像透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为玻璃,使用玻璃材质的透镜可使摄像透镜组具备较好的温度耐受特性以及优良的光学性能。
第二透镜L2与第三透镜L3之间还设置有光阑STO,以进一步提升摄像透镜组的成像质量。
摄像透镜组还包括具有物侧面S13和像侧面S14的滤光片L7,以及具有物侧面S15和像侧面S16的保护玻璃L8。滤光片L7和保护玻璃L8沿着光轴由物侧至像侧依序设于第六透镜L6和成像面S17之间。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片L7用于滤除入射至摄像透镜组的外界光线中的中远红外波段的光线,避免成像失真。具体的,滤光片L7的材质为玻璃。滤光片L7和感光玻璃L8可以属于摄像透镜组的一部分,与各透镜一同装配,或者也可在摄像透镜组与感光元件装配时一同安装。
表1示出了实施例1的摄像透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。另外,以第一透镜L1为例,第一透镜L1的“厚度”参数列中的第一个数值为该透镜在光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面在光轴上的距离。表1的参考波长为656nm。
表1
Figure PCTCN2019121296-appb-000001
Figure PCTCN2019121296-appb-000002
各透镜中的非球面面型由以下公式限定:
Figure PCTCN2019121296-appb-000003
其中,为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了可用于实施例1中透镜非球面S3-S4的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2019121296-appb-000004
本实施例摄像透镜组的成像面S17上有效像素区域对角线长的一半ImgH为3.31mm,因此结合表1和表2中的数据可知,实施例1中的摄像透镜组满足:
|ns3-ns1|*100=20.5,其中,ns3表示第三透镜L3的s光折射率,ns1表示第一透镜L1的s光折射率;
f1/f=-2.56,其中,f1为第一透镜L1的有效焦距,f为摄像透镜组的有效焦距;
f4/f=0.82,其中,f4为第四透镜L4的有效焦距,f为摄像透镜组的有效焦距;
f6/f=-0.96,其中,f6为第六透镜L6的有效焦距,f为摄像透镜组的有效焦距;
ImgH*2/TTL=0.31,其中,ImgH为摄像透镜组的成像面S17上有效像素区域对角线长的一半,TTL为第一透镜L1的物侧面S1至摄像透镜组的成像面S17在光轴上的距离;
∑CT/TTL=0.56,其中,∑CT为第一透镜L1至第六透镜L6分别在光轴上的厚度的总和,TTL为第一透镜L1的物侧面S1至摄像透镜组的成像面S17在光轴上的距离;
Ed45/d45=18.75,其中,Ed45为第四透镜L4像侧面S8的最大有效口径处至第五透镜L5物侧面S9的最大有效口径处在平行于光轴方向上的距离;d45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9在光轴上的距离;
|dn/dt| 3=7.2×10 -6/℃,其中,|dn/dt| 3为第三透镜L3在-40~100℃的温度范围内的折射率温度系数的大小;
|dn/dt| i×f i<0,其中,i为摄像透镜组中的透镜序号,|dn/dt| i为摄像透镜组中第i透镜在-40~100℃的温度范围内的折射率温度系数的大小,f i为摄像透镜组中第i透镜的有效焦距,具体的,
|dn/dt| 1×f 1=-131.5×10 -6mm/℃,|dn/dt| 2×f 2=68.44×10 -6mm/℃,
|dn/dt| 3×f 3=-34.53×10 -6mm/℃,|dn/dt| 4×f 4=36.147×10 -6mm/℃,
|dn/dt| 5×f 5=39.785×10 -6mm/℃,|dn/dt| 6×f 6=-18.129×10 -6mm/℃;
nd3=2.003,vd3=19.3,nd6=1.923,vd6=20.9,其中,nd3和vd3分别为第三透镜L3的d光折射率和d光阿贝数,nd6和vd6分别为第六透镜L6的d光折射率和d光阿贝数;
f/EPD=1.65,其中,f为摄像透镜组的有效焦距,EPD为摄像透镜组的入瞳直径;
FOV/CRA=3.6,其中,FOV为摄像透镜组的视场角,CRA为摄像透镜组成像面S17上的的主光线入射角。
图2A示出了实施例1的摄像透镜组的纵向球差曲线,其分别表示波长为500nm、546.07nm、587.56nm、656.27nm、750nm、850nm以及950nm的光线经由摄像透镜组后的会聚焦点偏离;图2B示出了实施例1的摄像透镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图2C示出了实施例1的摄像透镜组的畸变曲线,其表示不同像高情况下的畸变率。根据图2A至图2C可知,实施例1给出的摄像透镜组能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述本申请实施例2的摄像透镜组。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了本申请实施例2的摄像透镜组的结构示意图。
如图3所示,摄像透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S15。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凸面,像侧面S4为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凸面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凹面。
将第四透镜L4的物侧面S7及像侧面S8均设置为非球面,有利于解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使摄像透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为玻璃,使用玻璃材质的透镜可使摄像透镜组具备较好的温度耐受特性以及优良的光学性能。
第二透镜L2的像侧面S4镀有带通滤光膜,用以对入射至摄像透镜组成像面S15的光线的光谱范围进行选择,以截止可见光波段和近红外波段以外的波段,从而保证摄像透镜组在白天和夜晚均能拍摄得到清晰、色彩鲜明的图像。第二透镜L2与第三透镜L3之间还设置有光阑STO,以进一步提升摄像透镜组的成像质量。
摄像透镜组还包括具有物侧面S13和像侧面S14的保护玻璃L7。保护玻璃L7设于第六透镜L6和成像面S17之间。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。感光玻璃L7可以属于摄像透镜组的一部分,与各透镜一同装配,或者也可在摄像透镜组与感光元件装配时一同安装。
表3示出了实施例2的摄像透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表3的参考波长为750nm。表4示出了可用于实施例2中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表5示出了实施例2中给出的摄像透镜组的相关参数数值。
表3
Figure PCTCN2019121296-appb-000005
Figure PCTCN2019121296-appb-000006
表4
Figure PCTCN2019121296-appb-000007
表5
f(mm) 10.36 |dn/dt| 3 7.2
FOV(度) 36 |dn/dt| 1×f 1 -49.218
ImgH(mm) 3.31 |dn/dt| 2×f 2 29.132
TTL(mm) 21.5 |dn/dt| 3×f 3 -35.074
f/EPD 1.65 |dn/dt| 4×f 4 75.855
|ns3-ns1|×100 7.2 |dn/dt| 5×f 5 27.261
f1/f -1.98 |dn/dt| 6×f 6 -45.446
f4/f 0.71 nd3 2.003
f6/f -0.61 nd6 2.003
ImgH*2/TTL 0.31 vd3 19.3
∑CT/TTL 0.60 vd6 19.3
Ed45/d45 14.5 FOV/CRA 3.27
图4A示出了实施例2的摄像透镜组的纵向球差曲线,其分别表示不同波长的光线经由摄像透镜组后的会聚焦点偏离;图4B示出了实施例2的摄像透镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图4C示出了实施例2的摄像透镜组的畸变曲线,其表示不同像高情况下的畸变率。根 据图4A至图4C可知,实施例2给出的摄像透镜组能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述本申请实施例3的摄像透镜组。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图5示出了本申请实施例3的摄像透镜组的结构示意图。
如图5所示,摄像透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S15。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凸面,像侧面S4为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凸面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凹面。
将第四透镜L4的物侧面S7及像侧面S8均设置为非球面,有利于解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使摄像透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为玻璃,使用玻璃材质的透镜可使摄像透镜组具备较好的温度耐受特性以及优良的光学性能。
第二透镜L2的像侧面S4镀有带通滤光膜,用以对入射至摄像透镜组成像面S15的光线的光谱范围进行选择,以截止可见光波段和近红外波段以外的波段,从而保证摄像透镜组在白天和夜晚均能拍摄得到清晰、色彩鲜明的图像。第二透镜L2与第三透镜L3之间还设置有光阑STO,以进一步提升摄像透镜组的成像质量。
摄像透镜组还包括具有物侧面S13和像侧面S14的保护玻璃L7。保护玻璃L7设于第六透镜L6和成像面S17之间。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。感光玻璃L7可以属于摄像透镜组的一部分,与各透镜一同装配,或者也可在摄像透镜组与感光元件装配时一同安装。
表6示出了实施例3的摄像透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表6的参考 波长为750nm。表7示出了可用于实施例3中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表8示出了实施例3中给出的摄像透镜组的相关参数数值。
表6
Figure PCTCN2019121296-appb-000008
表7
Figure PCTCN2019121296-appb-000009
表8
f(mm) 10.30 |dn/dt| 3 7.2
FOV(度) 36 |dn/dt| 1×f 1 -49.903
ImgH(mm) 3.31 |dn/dt| 2×f 2 30.411
TTL(mm) 21.5 |dn/dt| 3×f 3 -35.316
f/EPD 1.65 |dn/dt| 4×f 4 62.783
|ns3-ns1|×100 7.2 |dn/dt| 5×f 5 26.325
f1/f -2.02 |dn/dt| 6×f 6 -11.404
f4/f 0.72 nd3 2.003
f6/f -0.62 nd6 1.923
ImgH*2/TTL 0.31 vd3 19.3
∑CT/TTL 0.60 vd6 20.9
Ed45/d45 4.98 FOV/CRA 3.27
图6A示出了实施例3的摄像透镜组的纵向球差曲线,其分别表示不同波长的光线经由摄像透镜组后的会聚焦点偏离;图6B示出了实施例3的摄像透镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图6C示出了实施例3的摄像透镜组的畸变曲线,其表示不同像高情况下的畸变率。根据图6A至图6C可知,实施例3给出的摄像透镜组能够实现良好的成像品质。
本申请还提供一种取像模组,包括如前文所述的摄像透镜组;以及感光元件,感光元件设于摄像透镜组的像侧,以接收由光学系统形成的携带图像信息的光。具体的,感光元件可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器。
上述取像模组,利用前述摄像透镜组即使在暗光条件下也能拍摄得到清晰的图像,同时还具有小型化、轻量化的结构特点,方便适配至如手机、平板以及车载镜头等尺寸受限的装置。
本申请还提供一种电子装置,包括壳体以及如前文所述的取像模组,所述取像模组安装在所述壳体上,用以获取图像。
具体的,取像装置设置在壳体内并从壳体暴露以获取图像,壳体可以给取像装置提供防尘、防水防摔等保护,壳体上开设有与取像装置对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置,在暗光条件下也能拍摄得到清晰的图像,从而可以及时地将驾驶员的状态信息、乘客以及车内状况准确地反馈至车载辅助系统,以便系统做出准确的分析和判断,保证车辆的行驶安全。
另一些实施方式中,所使用到的“电子装置”还可包括,但不限于被设置成经由有线线路连接和/或经由无线接口接收或发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂 窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种摄像透镜组,其特征在于,所述摄像透镜组用于包括可见光波段和红外波段的光线成像,所述摄像透镜组沿着光轴由物侧至像侧依序包括:
    具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面;
    具有正屈折力的第二透镜;
    具有负屈折力的第三透镜;
    具有屈折力的第四透镜;
    具有屈折力的第五透镜,所述第五透镜的物侧面为凸面,像侧面为凸面;
    具有负屈折力的第六透镜,所述第六透镜的像侧面为凹面;
    所述摄像透镜组的物侧与所述第六透镜之间设置有光阑;
    所述摄像透镜组满足下列关系式:
    0<|ns3-ns1|×100<30;
    其中,ns3表示所述第三透镜的s光折射率,ns1表示所述第一透镜的s光折射率。
  2. 根据权利要求1所述的摄像透镜组,其特征在于,在所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜中,至少一个透镜的物侧面和/或像侧面为非球面。
  3. 根据权利要求1所述的摄像透镜组,其特征在于,
    所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜中的一个透镜的物侧面或像侧面设置有滤光膜;或者,
    所述第六透镜和所述摄像透镜组的成像面之间设置有滤光片。
  4. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    -5<f1/f<0;
    其中,f1为所述第一透镜的有效焦距,f为所述摄像透镜组的有效焦距。
  5. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    0<f4/f<4;
    其中,f4为所述第四透镜的有效焦距,f为所述摄像透镜组的有效焦距。
  6. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    -3<f6/f<0;
    其中,f6为所述第六透镜的有效焦距,f为所述摄像透镜组的有效焦 距。
  7. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    0.1<ImgH*2/TTL<0.8;
    其中,ImgH为所述摄像透镜组的成像面上有效像素区域对角线长的一半,TTL为所述第一透镜的物侧面至所述摄像透镜组的成像面在光轴上的距离。
  8. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    0.5<∑CT/TTL<0.85;
    其中,∑CT为所述第一透镜至所述第六透镜分别在光轴上的厚度的总和,TTL为所述第一透镜的物侧面至所述摄像透镜组的成像面在光轴上的距离。
  9. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    Ed45/d45<20;
    其中,Ed45为所述第四透镜像侧面的最大有效口径处至所述第五透镜物侧面的最大有效口径处在平行于光轴方向上的距离;d45为所述第四透镜的像侧面至所述第五透镜的物侧面在光轴上的距离。
  10. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    |dn/dt| 3<10.3×10 -6/℃;
    其中,|dn/dt| 3为所述第三透镜在-40~100℃的温度范围内的折射率温度系数的大小。
  11. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组中,至少一个透镜满足下列关系式:
    |dn/dt| i×f i<0;
    其中,i为所述摄像透镜组中的透镜序号,|dn/dt| i为所述摄像透镜组中第i透镜在-40~100℃的温度范围内的折射率温度系数的大小,f i为所述摄像透镜组中第i透镜的有效焦距。
  12. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    nd3>1.9,nd6>1.9;
    vd3<30,vd6<30;
    其中,nd3和vd3分别为所述第三透镜的d光折射率和d光阿贝数,nd6和vd6分别为所述第六透镜的d光折射率和d光阿贝数。
  13. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    f/EPD≤2.0;
    其中,f为所述摄像透镜组的有效焦距,EPD为所述摄像透镜组的入瞳直径。
  14. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组满足下列关系式:
    1<FOV/CRA<10;
    其中,FOV为所述摄像透镜组的视场角,CRA为所述摄像透镜组的主光线入射角。
  15. 一种取像模组,其特征在于,包括:如权利要求1-14任一项所述的摄像透镜组;以及感光元件,所述感光元件设于所述摄像透镜组的像侧。
  16. 一种电子装置,其特征在于,包括:壳体;以及如权利要求15所述的取像模组,所述取像模组安装在所述壳体上。
PCT/CN2019/121296 2019-11-27 2019-11-27 摄像透镜组、取像模组及电子装置 WO2021102744A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19954137.6A EP4040208A1 (en) 2019-11-27 2019-11-27 Camera lens assembly, image capture module, and electronic device
PCT/CN2019/121296 WO2021102744A1 (zh) 2019-11-27 2019-11-27 摄像透镜组、取像模组及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121296 WO2021102744A1 (zh) 2019-11-27 2019-11-27 摄像透镜组、取像模组及电子装置

Publications (1)

Publication Number Publication Date
WO2021102744A1 true WO2021102744A1 (zh) 2021-06-03

Family

ID=76128967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121296 WO2021102744A1 (zh) 2019-11-27 2019-11-27 摄像透镜组、取像模组及电子装置

Country Status (2)

Country Link
EP (1) EP4040208A1 (zh)
WO (1) WO2021102744A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201302618Y (zh) * 2008-08-21 2009-09-02 富士能株式会社 摄像透镜及摄像装置
CN201444211U (zh) * 2008-10-28 2010-04-28 富士能株式会社 摄像透镜及使用该摄像透镜的摄像装置
US20150177493A1 (en) * 2013-12-25 2015-06-25 Fujifilm Corporation Imaging lens and imaging apparatus
CN109324397A (zh) * 2017-07-31 2019-02-12 宁波舜宇车载光学技术有限公司 光学镜头
CN109752821A (zh) * 2017-11-08 2019-05-14 广东弘景光电科技股份有限公司 车载监控摄像模组
CN110501799A (zh) * 2018-05-16 2019-11-26 宁波舜宇车载光学技术有限公司 光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201302618Y (zh) * 2008-08-21 2009-09-02 富士能株式会社 摄像透镜及摄像装置
CN201444211U (zh) * 2008-10-28 2010-04-28 富士能株式会社 摄像透镜及使用该摄像透镜的摄像装置
US20150177493A1 (en) * 2013-12-25 2015-06-25 Fujifilm Corporation Imaging lens and imaging apparatus
CN109324397A (zh) * 2017-07-31 2019-02-12 宁波舜宇车载光学技术有限公司 光学镜头
CN109752821A (zh) * 2017-11-08 2019-05-14 广东弘景光电科技股份有限公司 车载监控摄像模组
CN110501799A (zh) * 2018-05-16 2019-11-26 宁波舜宇车载光学技术有限公司 光学镜头

Also Published As

Publication number Publication date
EP4040208A1 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
US7848032B1 (en) Imaging lens assembly
KR101671451B1 (ko) 촬영 렌즈 광학계
WO2022032573A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN111338058A (zh) 光学镜头、取像模组及电子装置
WO2022016316A1 (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN114114634B (zh) 光学系统、摄像模组和汽车
CN113835201B (zh) 光学系统、摄像模组和电子设备
CN211123450U (zh) 摄像透镜组、取像模组及电子装置
WO2021189463A1 (zh) 光学成像系统、成像模组、电子装置及驾驶装置
WO2021223137A1 (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
CN210775999U (zh) 光学系统、镜头模组和电子设备
WO2021184214A1 (zh) 广角镜头、成像模组、电子装置及驾驶装置
WO2021087661A1 (zh) 光学透镜组、取像装置及电子装置
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
CN115079380B (zh) 光学系统、摄像模组和终端
CN113376797A (zh) 光学系统、镜头模组及终端设备
WO2023015511A1 (zh) 光学系统、取像模组、电子设备及载具
CN113866940B (zh) 光学系统、摄像模组及电子设备
CN113625430B (zh) 光学系统、取像模组、电子设备及载具
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
CN112198628B (zh) 光学成像系统和具有其的取像模组、电子装置
WO2022160119A1 (zh) 光学系统、摄像模组及电子设备
WO2021168662A1 (zh) 光学系统、镜头模组及终端设备
WO2022011498A1 (zh) 光学系统、取像模组及电子装置
WO2021184212A1 (zh) 光学镜头、成像模组、电子装置及驾驶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019954137

Country of ref document: EP

Effective date: 20220503

NENP Non-entry into the national phase

Ref country code: DE