WO2021168662A1 - 光学系统、镜头模组及终端设备 - Google Patents

光学系统、镜头模组及终端设备 Download PDF

Info

Publication number
WO2021168662A1
WO2021168662A1 PCT/CN2020/076657 CN2020076657W WO2021168662A1 WO 2021168662 A1 WO2021168662 A1 WO 2021168662A1 CN 2020076657 W CN2020076657 W CN 2020076657W WO 2021168662 A1 WO2021168662 A1 WO 2021168662A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
refractive power
focal length
image
Prior art date
Application number
PCT/CN2020/076657
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
周芮
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to PCT/CN2020/076657 priority Critical patent/WO2021168662A1/zh
Publication of WO2021168662A1 publication Critical patent/WO2021168662A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application belongs to the field of optical imaging technology, and in particular relates to an optical system, a lens module and a terminal device.
  • the embodiments of the present application provide an optical system, a lens module, and a terminal device.
  • the optical system solves the problem of poor pixels and field of view of a traditional camera.
  • the optical system has high pixels, can capture imaging information more clearly, has better picture quality, and the picture has more details.
  • it expands the imaging field of view. Specifically, it not only increases the field of view, but also deepens The imaging depth range.
  • the embodiments of the present application provide an optical system, which includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens in order from the object side to the image side.
  • the eighth lens wherein the first lens has negative refractive power; the second lens has negative refractive power, the object side of the second lens is concave, the image side of the second lens is convex; the third lens has positive Refractive power, the object side of the third lens is convex; the fourth lens has positive refractive power; the fifth lens has negative refractive power; the sixth lens has positive refractive power; the seventh lens has negative refractive power, and the seventh lens has negative refractive power.
  • the object side of the lens is concave; the eighth lens has positive refractive power.
  • This application restricts the refractive power of the first lens to the eighth lens and the surface shape of the second lens, the third lens and the seventh lens in the optical system, so that the optical system has high pixels and can capture imaging information more clearly.
  • the quality is better, the picture has more details, and at the same time, the imaging field of view is broadened. Specifically, it not only increases the field of view, but also deepens the imaging depth range, so that the imaging information that the camera system can capture is clear.
  • Presented at the position of the imaging element Used in the automotive industry, it can accurately capture the road surface information in real time and transmit it to the system for image analysis to provide guarantee for safe driving.
  • At least two of the lens have an aspherical object side surface and/or an image side surface, which is beneficial to correct system aberrations and improve the imaging quality of the system.
  • the image side surface of the fourth lens is cemented with the object side surface of the fifth lens. Cementing the fourth lens and the fifth lens to form a cemented lens is beneficial to reduce the eccentric sensitivity of the optical imaging system, improve the assembly yield, and reduce the production cost.
  • the cemented lens refers to the combination of two or more pieces by photosensitive glue. The lens is bonded together.
  • the optical system satisfies the conditional formula: -3 ⁇ f1/f ⁇ -1.5; f1 is the focal length of the first lens, and f is the effective focal length of the optical system.
  • f1 is the focal length of the first lens
  • f is the effective focal length of the optical system.
  • the sensitivity of the imaging surface will increase due to the change of the first lens, resulting in larger aberrations. ; If f1/f ⁇ -3, the refractive power of the first lens is small, which is not conducive to the large-angle light entering the optical system, which is not conducive to the wide-angle of the optical system.
  • the optical system satisfies the conditional formula: -16 ⁇ f2/f ⁇ -5; f2 is the focal length of the second lens, and f is the effective focal length of the optical system.
  • Setting the second lens as a lens with negative refractive power and limiting the ratio of the focal length of the second lens to the effective focal length of the optical system is conducive to expanding the beam width and broadening the beam of light entering after a large angle of light is refracted by the first lens , And full of pupil, fully transmitted to the high-pixel imaging surface, so as to obtain a wider field of view, which is conducive to the realization of the high-pixel characteristics of the optical system. If f2/f ⁇ -5 or f2/f ⁇ -16, it is not conducive to correcting the aberration of the optical system, thereby reducing the image quality.
  • the optical system satisfies the conditional formula: 0.1 ⁇ (1/
  • R2r is the curvature of the image side surface of the second lens at the optical axis
  • the radius, R3f is the radius of curvature of the object side surface of the third lens at the optical axis, and
  • D23 is the distance between the image side surface of the second lens and the object side surface of the third lens on the optical axis.
  • the optical system satisfies the conditional formula: 1 ⁇ f3/f ⁇ 3; f3 is the focal length of the third lens, and f is the effective focal length of the optical system. Since the light is emitted from the first lens and the second lens with strong refractive power, it is easy to produce a larger field area when the edge light enters the imaging surface. Therefore, the third lens with positive refractive power is set and the third lens is limited. The ratio of the focal length to the effective focal length of the optical system is conducive to correcting edge aberrations and improving imaging resolution. If f3/f ⁇ 3 or f3/f ⁇ 1, it is not conducive to correcting the aberration of the optical system, thereby reducing the image quality.
  • the optical system satisfies the conditional formula: 1 ⁇ (D12+CT2)/(CT3+D34) ⁇ 2; D12 is the image side surface of the first lens and the object side surface of the second lens The distance between the optical axis, CT2 is the thickness of the second lens on the optical axis, CT3 is the thickness of the third lens on the optical axis, and D34 is the distance between the image side surface of the third lens and the fourth lens. The distance between the object side and the optical axis.
  • CT2 is the thickness of the second lens on the optical axis
  • CT3 is the thickness of the third lens on the optical axis
  • D34 is the distance between the image side surface of the third lens and the fourth lens.
  • the distance between the object side and the optical axis By limiting the range of (D12+CT2)/(CT3+D34), it is helpful to correct system aberrations, improve imaging resolution, and ensure that the system is compact and meets the characteristics of miniaturization.
  • the optical system satisfies the conditional formula: -9 ⁇ f45/f ⁇ 0; f45 is the combined focal length of the fourth lens and the fifth lens, and f is the effective focal length of the optical system.
  • the cemented lens formed by the combination of the fourth lens and the fifth lens has negative refractive power.
  • the optical system satisfies the conditional formula: 2 ⁇ f6/f ⁇ 5; f6 is the focal length of the sixth lens, and f is the effective focal length of the optical system.
  • f6 is the focal length of the sixth lens
  • f is the effective focal length of the optical system.
  • the optical system satisfies the conditional formula: -9 ⁇ f7/f ⁇ -2; f7 is the focal length of the seventh lens, and f is the effective focal length of the optical system.
  • f7 is the focal length of the seventh lens
  • f is the effective focal length of the optical system.
  • the optical system satisfies the conditional formula: 2 ⁇ CT8/CT7 ⁇ 4; CT7 is the thickness of the seventh lens on the optical axis, and CT8 is the thickness of the eighth lens on the optical axis.
  • the refractive power of each lens is related to the thickness of the lens.
  • the optical system satisfies the conditional formula: 3 ⁇ (Nd5-Nd4)*100 ⁇ 50; Nd4 is the refractive index of the fourth lens, and Nd5 is the refractive index of the fifth lens.
  • the refractive index of the fourth lens and the fifth lens in this embodiment refers to the refractive index of light with a wavelength of 587.56 nm, and the limitation of (Nd5-Nd4)*100 is beneficial to optimize the image. Poor, improve imaging resolution capabilities. If (Nd5-Nd4)*100 ⁇ 50 or (Nd5-Nd4)*100 ⁇ 3, it is not conducive to correcting the aberration of the optical system, thereby reducing the image quality.
  • the optical system satisfies the conditional formula: 2 ⁇ Imgh/Tan(1/2FOV) ⁇ 3; FOV is the diagonal field angle of the optical system, and Imgh is the effective optical system. Half of the diagonal of the pixel area.
  • the field of view of the optical system determines the amount of information in the space range that the optical system can obtain. Therefore, by limiting the range of Imgh/Tan (1/2FOV), the optical system can have a sufficient field of view to meet the requirements of mobile phones, Cameras, vehicles, surveillance, medical and other electronic products require high field of view, while reducing the angle of light entering the photosensitive element and improving the photosensitive performance.
  • Imgh/Tan(1/2FOV) ⁇ 3 the angle of view is insufficient, and sufficient object space information cannot be obtained. If Imgh/Tan(1/2FOV) ⁇ 2, it will cause insufficient brightness and cannot meet the needs of high-definition shooting .
  • the optical system further includes a diaphragm, and the optical system satisfies the conditional formula: 0.4 ⁇ EPL/TTL ⁇ 0.7;
  • EPL is the distance from the diaphragm of the optical system to the imaging surface on the optical axis
  • TTL It is the distance from the object side of the first lens of the optical system to the imaging surface of the optical system on the optical axis.
  • EPL/TTL the pupil is far away from the imaging surface, and the light will be incident on the photosensitive element in a manner close to vertical incidence, so that the optical system has telecentric characteristics, and the telecentric characteristics will improve the sensitivity of the electronic photosensitive element. It can increase the sensitivity of the electronic photosensitive element and reduce the possibility of vignetting in the system.
  • EPL/TTL ⁇ 0.7 it is beneficial to limit the total length of the optical system and make the system have the characteristics of miniaturization.
  • the optical system satisfies the conditional formula: f/EPD ⁇ 1.7; f is the effective focal length of the optical system, and EPD is the entrance pupil diameter of the optical system.
  • f/EPD the effective focal length of the optical system
  • EPD the entrance pupil diameter of the optical system.
  • the present application provides a lens module including a photosensitive element and the optical system described in any one of the foregoing embodiments, and the photosensitive element is located on the image side of the optical system.
  • the present application provides a terminal device including the aforementioned lens module.
  • This application reasonably configures the refractive power of the first lens to the eighth lens and the surface shape of the second lens, the third lens and the seventh lens, so that the optical system has high pixels, can capture imaging information more clearly, and has better image quality .
  • the picture has more details, and at the same time, it expands the imaging field of view. Specifically, it not only increases the field of view, but also deepens the imaging depth range, so that the imaging information that the camera system can capture is clearly presented in the imaging Meta location, used in the vehicle industry, can accurately capture road information in real time and transmit it to the system for image analysis, providing guarantee for safe driving.
  • Fig. 1 is a schematic diagram of the optical system provided by the present application applied to a terminal device
  • FIG. 2 is a schematic diagram of the structure of the optical system provided by the first embodiment of the present application.
  • Fig. 3 is a spherical aberration curve of the optical system of the first embodiment
  • Fig. 5 is a distortion curve of the optical system of the first embodiment
  • Fig. 6 is a schematic structural diagram of an optical system provided by a second embodiment of the present application.
  • Fig. 7 is a spherical aberration curve of the optical system of the second embodiment
  • Fig. 8 is an astigmatism curve of the optical system of the second embodiment
  • Fig. 9 is a distortion curve of the optical system of the second embodiment.
  • FIG. 10 is a schematic structural diagram of an optical system provided by a third embodiment of the present application.
  • Fig. 11 is a spherical aberration curve of the optical system of the third embodiment.
  • Fig. 12 is an astigmatism curve of the optical system of the third embodiment
  • FIG. 13 is a distortion curve of the optical system of the third embodiment
  • FIG. 14 is a schematic structural diagram of an optical system provided by a fourth embodiment of the present application.
  • FIG. 15 is a spherical aberration curve of the optical system of the fourth embodiment.
  • FIG. 16 is an astigmatism curve of the optical system of the fourth embodiment.
  • FIG. 17 is a distortion curve of the optical system of the fourth embodiment.
  • FIG. 18 is a schematic structural diagram of an optical system provided by a fifth embodiment of the present application.
  • FIG. 19 is a spherical aberration curve of the optical system of the fifth embodiment.
  • Fig. 21 is a distortion curve of the optical system of the fifth embodiment.
  • the optical system 10 involved in the present application is applied to the lens module 20 in the terminal device 30.
  • the terminal device 30 may be a mobile phone, a monitoring device, a vehicle-mounted device, and the like.
  • the photosensitive element 210 of the lens module 20 is located on the image side of the optical system 10, and the lens module 20 is assembled inside the terminal device 30.
  • the present application provides a lens module, including a photosensitive element and the optical system provided in the embodiments of the present application.
  • the photosensitive element is located on the image side of the optical system and is used to pass through the first lens to the eighth lens and be incident on the electronic photosensitive element The light is converted into an electrical signal of the image.
  • the electronic photosensitive element may be a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD).
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the application also provides a terminal device, which includes the lens module provided in the embodiment of the application.
  • the terminal device can be a mobile phone, a monitoring device, a vehicle-mounted device, and so on.
  • the terminal device By installing the lens module in the terminal device, the terminal device has high pixels, can capture imaging information more clearly, with better picture quality, and the picture has more details. At the same time, it expands the imaging field of view and integrates the camera system. The imaging information that can be captured is clearly presented at the position of the imaging element.
  • An optical system provided by the present application includes eight lenses, and the eight lenses are sequentially distributed from the object side to the image side, respectively, the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens.
  • the seventh lens and the eighth lens are sequentially distributed from the object side to the image side, respectively, the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens.
  • the fourth lens and the fifth lens form a cemented lens.
  • the cemented lens has a negative refractive power.
  • the surface shape and refractive power of the eight lenses are as follows:
  • the first lens has negative refractive power; the second lens has negative refractive power, the object side of the second lens is concave, the image side of the second lens is convex; the third lens has positive refractive power, the object of the third lens The side surface is convex; the fourth lens has positive refractive power; the fifth lens has negative refractive power; the sixth lens has positive refractive power; the seventh lens has negative refractive power, and the object side of the seventh lens is concave; Eight lenses have positive refractive power.
  • the object side and/or image side of at least two lenses are aspherical, which is beneficial for correcting system aberrations and improving the imaging quality of the system.
  • the image side surface of the fourth lens is cemented with the object side surface of the fifth lens. Cementing the fourth lens and the fifth lens to form a cemented lens is beneficial to reduce the eccentric sensitivity of the optical imaging system, improve the assembly yield, and reduce the production cost.
  • the cemented lens refers to the combination of two or more pieces by photosensitive glue. The lens is bonded together.
  • the optical system satisfies the conditional formula: -3 ⁇ f1/f ⁇ -1.5; f1 is the focal length of the first lens, and f is the effective focal length of the optical system.
  • f1 is the focal length of the first lens
  • f is the effective focal length of the optical system.
  • the sensitivity of the imaging surface will increase due to the change of the first lens, resulting in larger aberrations. ; If f1/f ⁇ -3, the refractive power of the first lens is small, which is not conducive to the large-angle light entering the optical system, which is not conducive to the wide-angle of the optical system.
  • the optical system satisfies the conditional formula: -16 ⁇ f2/f ⁇ -5; f2 is the focal length of the second lens, and f is the effective focal length of the optical system.
  • Setting the second lens as a lens with negative refractive power and limiting the ratio of the focal length of the second lens to the effective focal length of the optical system is conducive to expanding the beam width and broadening the beam of light entering after a large angle of light is refracted by the first lens , And full of pupil, fully transmitted to the high-pixel imaging surface, so as to obtain a wider field of view, which is conducive to the realization of the high-pixel characteristics of the optical system. If f2/f ⁇ -5 or f2/f ⁇ -16, it is not conducive to correcting the aberration of the optical system, thereby reducing the image quality.
  • the optical system satisfies the conditional formula: 0.1 ⁇ (1/
  • R2r is the radius of curvature of the image side surface of the second lens at the optical axis, and R3f is The radius of curvature of the object side surface of the third lens on the optical axis,
  • D23 is the distance between the image side surface of the second lens and the object side surface of the third lens on the optical axis.
  • the optical system satisfies the conditional formula: 1 ⁇ f3/f ⁇ 3; f3 is the focal length of the third lens, and f is the effective focal length of the optical system. Since the light is emitted from the first lens and the second lens with strong refractive power, it is easy to produce a larger field area when the edge light enters the imaging surface. Therefore, the third lens with positive refractive power is set and the third lens is limited. The ratio of the focal length to the effective focal length of the optical system is conducive to correcting edge aberrations and improving imaging resolution. If f3/f ⁇ 3 or f3/f ⁇ 1, it is not conducive to correcting the aberration of the optical system, thereby reducing the image quality.
  • the optical system satisfies the conditional formula: 1 ⁇ (D12+CT2)/(CT3+D34) ⁇ 2; D12 is the distance between the image side surface of the first lens and the object side surface of the second lens to the optical axis, CT2 Is the thickness of the second lens on the optical axis, CT3 is the thickness of the third lens on the optical axis, and D34 is the distance between the image side surface of the third lens and the object side surface of the fourth lens on the optical axis.
  • D12 is the distance between the image side surface of the first lens and the object side surface of the second lens to the optical axis
  • CT2 Is the thickness of the second lens on the optical axis
  • CT3 is the thickness of the third lens on the optical axis
  • D34 is the distance between the image side surface of the third lens and the object side surface of the fourth lens on the optical axis.
  • the optical system satisfies the conditional formula: -9 ⁇ f45/f ⁇ 0; f45 is the combined focal length of the fourth lens and the fifth lens, and f is the effective focal length of the optical system.
  • the cemented lens formed by the combination of the fourth lens and the fifth lens has negative refractive power.
  • the optical system satisfies the conditional formula: 2 ⁇ f6/f ⁇ 5; f6 is the focal length of the sixth lens, and f is the effective focal length of the optical system.
  • f6 is the focal length of the sixth lens
  • f is the effective focal length of the optical system.
  • the optical system satisfies the conditional formula: -9 ⁇ f7/f ⁇ -2; f7 is the focal length of the seventh lens, and f is the effective focal length of the optical system.
  • f7 is the focal length of the seventh lens
  • f is the effective focal length of the optical system.
  • the optical system satisfies the conditional formula: 2 ⁇ CT8/CT7 ⁇ 4; CT7 is the thickness of the seventh lens on the optical axis, and CT8 is the thickness of the eighth lens on the optical axis.
  • the refractive power of each lens is related to the thickness of the lens.
  • the optical system satisfies the conditional formula: 3 ⁇ (Nd5-Nd4)*100 ⁇ 50; Nd4 is the refractive index of the fourth lens, and Nd5 is the refractive index of the fifth lens.
  • the refractive index of the fourth lens and the fifth lens in this embodiment refers to the refractive index of light with a wavelength of 587.56nm.
  • the limitation of (Nd5-Nd4)*100 is beneficial to optimize aberrations and improve imaging Analytical ability. If (Nd5-Nd4)*100 ⁇ 50 or (Nd5-Nd4)*100 ⁇ 3, it is not conducive to correcting the aberration of the optical system, thereby reducing the image quality.
  • the optical system satisfies the conditional formula: 2 ⁇ Imgh/Tan(1/2FOV) ⁇ 3; FOV is the angle of view in the diagonal direction of the optical system, and Imgh is the diagonal length of the effective pixel area of the optical system Half of it.
  • the field of view of the optical system determines the amount of information in the space range that the optical system can obtain. Therefore, by limiting the range of Imgh/Tan (1/2FOV), the optical system can have a sufficient field of view to meet the requirements of mobile phones, Cameras, vehicles, surveillance, medical and other electronic products require high field of view, while reducing the angle of light entering the photosensitive element and improving the photosensitive performance.
  • Imgh/Tan(1/2FOV) ⁇ 3 the angle of view is insufficient, and sufficient object space information cannot be obtained. If Imgh/Tan(1/2FOV) ⁇ 2, it will cause insufficient brightness and cannot meet the needs of high-definition shooting .
  • the optical system further includes a diaphragm, and the optical system satisfies the conditional formula: 0.4 ⁇ EPL/TTL ⁇ 0.7;
  • EPL is the distance from the diaphragm of the optical system to the imaging surface on the optical axis, and TTL is the first of the optical system.
  • TTL is the first of the optical system.
  • EPL/TTL the pupil is far away from the imaging surface, and the light will be incident on the photosensitive element in a manner close to vertical incidence, so that the optical system has telecentric characteristics, and the telecentric characteristics will improve the sensitivity of the electronic photosensitive element. It can increase the sensitivity of the electronic photosensitive element and reduce the possibility of vignetting in the system.
  • EPL/TTL ⁇ 0.7 it is beneficial to limit the total length of the optical system and make the system have the characteristics of miniaturization.
  • the optical system satisfies the conditional formula: f/EPD ⁇ 1.7; f is the effective focal length of the optical system, and EPD is the entrance pupil diameter of the optical system.
  • f/EPD the effective focal length of the optical system
  • EPD the entrance pupil diameter of the optical system.
  • the optical system has good imaging quality.
  • the value of f1/f can be -1.79 or -1.65 or -1.68, etc.; the value of f2/f can be -10.64 or -11.19 Or -6.62, etc.; (1/
  • At least two lenses have an aspherical object side surface and/or image side surface, which is beneficial to correct system aberrations and improve system imaging quality.
  • the aspheric curve equations include but are not limited to the following equations:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the apex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric apex
  • k is the conic constant
  • Ai is the aspheric surface formula The coefficient corresponding to the higher-order item of the i-th term.
  • the straight line in the middle represents the optical axis
  • the left side of the optical system is the object side
  • the right side is the image side.
  • the fourth lens L4 and the fifth lens L5 are arranged as cemented lenses, and the cemented lens is beneficial to reduce the eccentric sensitivity of the optical imaging system, improve the assembly yield, and reduce the production cost.
  • the first lens L1 has a negative refractive power and is made of glass. Its object-side surface S1 is convex, and its image-side surface S2 is concave, both of which are spherical.
  • the second lens L2 has a negative refractive power and is made of glass. Its object side surface S3 is concave, and its image side surface S4 is convex, and both are aspherical.
  • the third lens L3 has positive refractive power and is made of glass. Its object-side surface S5 is convex, and its image-side surface S6 is convex, and both are spherical.
  • the fourth lens L4 has positive refractive power and is made of glass. Its object-side surface S7 is convex and aspherical, and its image-side surface S8 is convex and spherical.
  • the fifth lens L5 has negative refractive power and is made of glass. Its object-side surface S9 is concave, and its image-side surface S10 is concave, and both are spherical.
  • the sixth lens L6 has a positive refractive power and is made of glass. Its object-side surface S11 is convex, and its image-side surface S12 is convex, and both are aspherical.
  • the seventh lens L7 has a negative refractive power and is made of glass. Its object-side surface S13 is concave, and its image-side surface S14 is convex, both of which are spherical.
  • the eighth lens L8 has positive refractive power and is made of glass. Its object-side surface S13 is a convex surface, and its image-side surface S14 is a convex surface, and both are spherical surfaces.
  • the stop STO may be located between the object side of the optical system and the fifth lens.
  • the stop STO is located behind the third lens L3 and tends to the middle position of the optical system, which is beneficial to balance the aberration of the optical system.
  • the infrared filter element IRCF is arranged behind the eighth lens L8, including the object side S17 and the image side S18.
  • the infrared filter element IRCF is used to filter infrared light so that the light entering the imaging surface is visible light, and the wavelength of visible light is 380nm- 780nm, the material of the infrared filter element IRCF is glass.
  • the protective glass CG is located behind the infrared filter element IRCF, including the object side S19 and the image side S20.
  • the protective glass CG is used to protect the photosensitive element to prevent the photosensitive element from being exposed to the outside, so that the photosensitive element is not affected by dust, and ensures the image quality.
  • the imaging surface S21 is the effective pixel area of the electronic photosensitive element.
  • Table 1a shows a characteristic table of the optical system of this embodiment.
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the field angle of the optical system in the diagonal direction.
  • S8/S9 refers to the image side surface of the fourth lens and the object side surface of the fifth lens.
  • the image side surface S8 of the fourth lens and the object side surface S9 of the fifth lens are cemented together. Therefore, it is embodied as one surface in the data.
  • Table 1b shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S3, S4, S7, S11, S12 in the first embodiment.
  • FIG. 3 shows the spherical aberration curve of the optical system of the first embodiment, which represents the deviation of the focus points of light rays of different wavelengths after passing through the lenses of the optical system;
  • FIG. 5 shows a distortion curve of the optical system of the first embodiment, which represents the distortion magnitude values corresponding to different field angles
  • FIG. 3 FIG. 4, and FIG. 5, it can be seen that the optical system provided in the first embodiment can achieve good imaging quality.
  • the straight line in the middle represents the optical axis
  • the left side of the optical system is the object side
  • the right side is the image side.
  • the fourth lens L4 and the fifth lens L5 are arranged as cemented lenses, and the cemented lens is beneficial to reduce the eccentric sensitivity of the optical imaging system, improve the assembly yield, and reduce the production cost.
  • the first lens L1 has a negative refractive power and is made of glass. Its object-side surface S1 is convex, and its image-side surface S2 is concave, both of which are spherical.
  • the second lens L2 has a negative refractive power and is made of glass. Its object side surface S3 is concave, and its image side surface S4 is convex, and both are aspherical.
  • the third lens L3 has positive refractive power and is made of glass. Its object-side surface S5 is convex, and its image-side surface S6 is convex, and both are spherical.
  • the fourth lens L4 has a positive refractive power and is made of glass. Its object-side surface S7 is convex, and its image-side surface S8 is convex, and both are spherical.
  • the fifth lens L5 has negative refractive power and is made of glass. Its object-side surface S9 is concave, and its image-side surface S10 is concave, and both are spherical.
  • the sixth lens L6 has positive refractive power and is made of glass. Its object-side surface S11 is concave, and its image-side surface S12 is convex, and both are aspherical.
  • the seventh lens L7 has a negative refractive power and is made of glass. Its object-side surface S13 is concave, and its image-side surface S14 is convex, both of which are spherical.
  • the eighth lens L8 has positive refractive power and is made of glass. Its object-side surface S13 is convex, and its image-side surface S14 is concave, and both are aspherical.
  • the stop STO may be located between the object side of the optical system and the fifth lens.
  • the stop STO is located behind the third lens L3 and tends to the middle position of the optical system, which is beneficial to balance the aberration of the optical system.
  • the protective glass CG is located behind the eighth lens L8 and includes the object side S17 and the image side S18.
  • the protective glass CG is used to protect the photosensitive element to prevent the photosensitive element from being exposed to the outside, so that the photosensitive element is not affected by dust, etc., to ensure the image quality.
  • the imaging surface S19 is the effective pixel area of the electronic photosensitive element.
  • Table 2a shows a characteristic table of the optical system of this embodiment.
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the field angle of the optical system in the diagonal direction.
  • S8/S9 refers to the image side surface of the fourth lens and the object side surface of the fifth lens.
  • the image side surface S8 of the fourth lens and the object side surface S9 of the fifth lens are cemented together. Therefore, it is embodied as one surface in the data.
  • Table 2b shows the high-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S3, S4, S11, S12, S15, S16 in the second embodiment.
  • FIG. 7 shows the spherical aberration curve of the optical system of the second embodiment, which represents the deviation of the focus points of light rays of different wavelengths after passing through the lenses of the optical system;
  • FIG. 8 shows the astigmatism curve of the optical system of the second embodiment, which represents meridional field curvature and sagittal field curvature;
  • FIG. 9 shows a distortion curve of the optical system of the second embodiment, which represents the distortion magnitude values corresponding to different field angles
  • the optical system provided in the second embodiment can achieve good imaging quality.
  • the straight line in the middle represents the optical axis
  • the left side of the optical system is the object side
  • the right side is the image side.
  • the fourth lens L4 and the fifth lens L5 are arranged as cemented lenses, and the cemented lens is beneficial to reduce the eccentric sensitivity of the optical imaging system, improve the assembly yield, and reduce the production cost.
  • the first lens L1 has a negative refractive power and is made of glass. Its object-side surface S1 is convex, and its image-side surface S2 is concave, both of which are spherical.
  • the second lens L2 has a negative refractive power and is made of glass. Its object side surface S3 is concave, and its image side surface S4 is convex, and both are aspherical.
  • the third lens L3 has positive refractive power and is made of glass. Its object-side surface S5 is convex, and its image-side surface S6 is convex, and both are spherical.
  • the fourth lens L4 has a positive refractive power and is made of glass. Its object-side surface S7 is convex, and its image-side surface S8 is convex, and both are spherical.
  • the fifth lens L5 has negative refractive power and is made of glass. Its object-side surface S9 is concave, and its image-side surface S10 is concave, and both are spherical.
  • the sixth lens L6 has positive refractive power and is made of glass. Its object-side surface S11 is concave, and its image-side surface S12 is convex, and both are aspherical.
  • the seventh lens L7 has a negative refractive power and is made of glass. Its object-side surface S13 is a concave surface, and its image-side surface S14 is a convex surface, both of which are spherical.
  • the eighth lens L8 has positive refractive power and is made of glass. Its object-side surface S13 is convex, and its image-side surface S14 is convex, and both are aspherical.
  • the stop STO may be located between the object side of the optical system and the fifth lens.
  • the stop STO is located behind the third lens L3 and tends to the middle position of the optical system, which is beneficial to balance the aberration of the optical system.
  • the protective glass CG is located behind the eighth lens L8 and includes the object side S17 and the image side S18.
  • the protective glass CG is used to protect the photosensitive element to prevent the photosensitive element from being exposed to the outside, so that the photosensitive element is not affected by dust, etc., to ensure the image quality.
  • the imaging surface S19 is the effective pixel area of the electronic photosensitive element.
  • Table 3a shows a characteristic table of the optical system of this embodiment.
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the field angle of the optical system in the diagonal direction.
  • S8/S9 refers to the image side surface of the fourth lens and the object side surface of the fifth lens.
  • the image side surface S8 of the fourth lens and the object side surface S9 of the fifth lens are cemented together. Therefore, it is embodied as one surface in the data.
  • Table 3b shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S3, S4, S11, S12, S15, S16 in the third embodiment.
  • FIG. 11 shows the spherical aberration curve of the optical system of the third embodiment, which represents the deviation of the focus points of light rays of different wavelengths after passing through the lenses of the optical system;
  • FIG. 12 shows the astigmatism curve of the optical system of the third embodiment, which represents meridional field curvature and sagittal field curvature;
  • FIG. 13 shows a distortion curve of the optical system of the third embodiment, which represents the distortion magnitude values corresponding to different field angles
  • FIG. 11 FIG. 12, and FIG. 13, it can be seen that the optical system provided in the third embodiment can achieve good imaging quality.
  • the straight line in the middle represents the optical axis
  • the left side of the optical system is the object side
  • the right side is the image side.
  • the fourth lens L4 and the fifth lens L5 are arranged as cemented lenses, and the cemented lens is beneficial to reduce the eccentric sensitivity of the optical imaging system, improve the assembly yield, and reduce the production cost.
  • the first lens L1 has a negative refractive power and is made of glass. Its object-side surface S1 is convex, and its image-side surface S2 is concave, both of which are spherical.
  • the second lens L2 has a negative refractive power and is made of glass. Its object side surface S3 is concave, and its image side surface S4 is convex, and both are aspherical.
  • the third lens L3 has positive refractive power and is made of glass. Its object-side surface S5 is convex, and its image-side surface S6 is convex, and both are spherical.
  • the fourth lens L4 has a positive refractive power and is made of glass. Its object-side surface S7 is convex, and its image-side surface S8 is convex, and both are spherical.
  • the fifth lens L5 has negative refractive power and is made of glass. Its object-side surface S9 is concave, and its image-side surface S10 is concave, and both are spherical.
  • the sixth lens L6 has positive refractive power and is made of glass. Its object-side surface S11 is concave, and its image-side surface S12 is convex, and both are aspherical.
  • the seventh lens L7 has a negative refractive power and is made of glass. Its object-side surface S13 is a concave surface, and its image-side surface S14 is a concave surface, and both are spherical surfaces.
  • the eighth lens L8 has positive refractive power and is made of glass. Its object-side surface S13 is convex, and its image-side surface S14 is convex, and both are aspherical.
  • the stop STO may be located between the object side of the optical system and the fifth lens.
  • the stop STO is located behind the third lens L3 and tends to the middle position of the optical system, which is beneficial to balance the aberration of the optical system.
  • the protective glass CG is located behind the eighth lens L8 and includes the object side S17 and the image side S18.
  • the protective glass CG is used to protect the photosensitive element to prevent the photosensitive element from being exposed to the outside, so that the photosensitive element is not affected by dust, etc., to ensure the image quality.
  • the imaging surface S19 is the effective pixel area of the electronic photosensitive element.
  • Table 4a shows a characteristic table of the optical system of this embodiment.
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the field angle of the optical system in the diagonal direction.
  • S8/S9 refers to the image side surface of the fourth lens and the object side surface of the fifth lens.
  • the image side surface S8 of the fourth lens and the object side surface S9 of the fifth lens are cemented together. Therefore, it is embodied as one surface in the data.
  • Table 4b shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S3, S4, S11, S12, S15, S16 in the fourth embodiment.
  • FIG. 15 shows the spherical aberration curve of the optical system of the fourth embodiment, which represents the deviation of the focus points of light rays of different wavelengths after passing through the lenses of the optical system;
  • FIG. 16 shows the astigmatism curve of the optical system of the fourth embodiment, which represents meridional field curvature and sagittal field curvature;
  • FIG. 17 shows a distortion curve of the optical system of the fourth embodiment, which represents the distortion magnitude values corresponding to different field angles
  • FIG. 15 FIG. 16, and FIG. 17, it can be seen that the optical system provided in the fourth embodiment can achieve good imaging quality.
  • the straight line in the middle represents the optical axis
  • the left side of the optical system is the object side
  • the right side is the image side.
  • the fourth lens L4 and the fifth lens L5 are arranged as cemented lenses, and the cemented lens is beneficial to reduce the eccentric sensitivity of the optical imaging system, improve the assembly yield, and reduce the production cost.
  • the first lens L1 has a negative refractive power and is made of glass. Its object-side surface S1 is convex, and its image-side surface S2 is concave, both of which are spherical.
  • the second lens L2 has a negative refractive power and is made of glass. Its object side surface S3 is concave, and its image side surface S4 is convex, and both are aspherical.
  • the third lens L3 has positive refractive power and is made of glass. Its object-side surface S5 is convex, and its image-side surface S6 is convex, and both are spherical.
  • the fourth lens L4 has a positive refractive power and is made of glass. Its object-side surface S7 is convex, and its image-side surface S8 is convex, and both are spherical.
  • the fifth lens L5 has negative refractive power and is made of glass. Its object-side surface S9 is concave, and its image-side surface S10 is concave, and both are spherical.
  • the sixth lens L6 has a positive refractive power and is made of glass. Its object-side surface S11 is convex, and its image-side surface S12 is convex, and both are aspherical.
  • the seventh lens L7 has a negative refractive power and is made of glass. Its object-side surface S13 is concave, and its image-side surface S14 is convex, both of which are spherical.
  • the eighth lens L8 has positive refractive power and is made of glass. Its object-side surface S13 is convex, and its image-side surface S14 is convex, and both are aspherical.
  • the stop STO may be located between the object side of the optical system and the fifth lens.
  • the stop STO is located behind the third lens L3 and tends to the middle position of the optical system, which is beneficial to balance the aberration of the optical system.
  • the protective glass CG is located behind the eighth lens L8 and includes the object side S17 and the image side S18.
  • the protective glass CG is used to protect the photosensitive element to prevent the photosensitive element from being exposed to the outside, so that the photosensitive element is not affected by dust, etc., to ensure the image quality.
  • the imaging surface S19 is the effective pixel area of the electronic photosensitive element.
  • Table 5a shows a characteristic table of the optical system of this embodiment.
  • f is the effective focal length of the optical system
  • FNO is the aperture number of the optical system
  • FOV is the field angle of the optical system in the diagonal direction.
  • S8/S9 refers to the image side surface of the fourth lens and the object side surface of the fifth lens.
  • the image side surface S8 of the fourth lens and the object side surface S9 of the fifth lens are cemented together. Therefore, it is embodied as one surface in the data.
  • Table 5b shows the high-order coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for each aspheric mirror surface S3, S4, S11, S12, S15, S16 in the fifth embodiment.
  • FIG. 19 shows the spherical aberration curve of the optical system of the fifth embodiment, which represents the deviation of the focus points of light rays of different wavelengths after passing through the lenses of the optical system;
  • FIG. 20 shows the astigmatism curve of the optical system of the fifth embodiment, which represents meridional field curvature and sagittal field curvature;
  • FIG. 21 shows a distortion curve of the optical system of the fifth embodiment, which represents the distortion magnitude values corresponding to different field angles
  • FIG. 19 FIG. 20, and FIG. 21, it can be seen that the optical system provided in the fifth embodiment can achieve good imaging quality.
  • Table 6 shows the f1/f, f2/f, (1/
  • the third embodiment Fourth embodiment Fifth embodiment f1/f -1.79 -1.75 -1.89 -1.68 -1.65 f2/f -10.64 -11.19 -6.62 -5.64 -6.88 (1/
  • each embodiment can satisfy: -3 ⁇ f1/f ⁇ -1.5, -16 ⁇ f2/f ⁇ -5, 0.1 ⁇ (1/

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(10)、镜头模组(20)及终端设备(30),光学系统(10)包括从物侧至像侧依次排布的多个透镜,多个透镜包括:第一透镜L1具有负屈折力;第二透镜L2具有负屈折力,第二透镜L2的物侧面S3为凹面,第二透镜L2的像侧面S4为凸面;第三透镜L3具有正屈折力,第三透镜L3的物侧面S5为凸面;第四透镜L4具有正屈折力;第五透镜L5具有负屈折力;第六透镜L6具有正屈折力;第七透镜L7具有负屈折力,第七透镜L7的物侧面S13为凹面;第八透镜L8具有正屈折力。通过在光学系统(10)中限制第一透镜L1至第八透镜L8的屈折力及第二透镜L2、第三透镜L3和第七透镜L7的面型,使得光学系统(10)具有高像素,能够更加清晰的捕捉成像信息,画质更好,同时,扩宽了成像视野范围。

Description

光学系统、镜头模组及终端设备 技术领域
本申请属于光学成像技术领域,尤其涉及一种光学系统、镜头模组及终端设备。
背景技术
随着车载行业的发展,行车记录仪、倒车影像等车载用摄像头的技术要求越来越高。不仅要求小型化,轻量化,像素像质的要求也越来越高。
目前,由于终端设备趋于轻薄化,在这种终端设备中设置高性能的摄像头存在很多限制,其中,传统摄像头的光学系统在像素及视野范围等方面不能满足需求,导致成像画质较差,且光学系统能够获取的空间范围的信息量有限。
因此,如何提升镜头的像素而满足镜头高画质的要求,同时扩宽成像视野范围,以获得足够的物空间信息应为业界研发的方向。
发明内容
本申请实施例提供一种光学系统、镜头模组及终端设备,该光学系统解决了传统摄像头像素及视野范围不佳的问题。该光学系统具有高像素,能够更加清晰的捕捉成像信息,画质更好,画面具有更多的细节,同时,扩宽了成像视野范围,具体而言,不仅增加了视场角范围,还加深了成像深度范围。
第一方面,本申请实施例提供了一种光学系统,从物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其中,第一透镜具有负屈折力;第二透镜具有负屈折力,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凸面;第三透镜具有正屈折力,所述第三透镜的物侧面为凸面;第四透镜具有正屈折力;第五透镜具有负屈折力;第六透镜具有正屈折力;第七透镜具有负屈折力,所述第七透镜的物侧面为凹面;第八透镜具有正屈折力。
本申请通过在光学系统中限制第一透镜至第八透镜的屈折力及第二透镜、第三透镜和第七透镜的面型,使得光学系统具有高像素,能够更加清晰的捕捉成像信息,画质更好,画面具有更多的细节,同时,扩宽了成像视野范围,具体而言,不仅增加了视场角范围,还加深了成像深度范围,将摄像系统所能捕捉的成像信息清晰的呈现在成像元件位置。用在车载行业,可以实时准确的捕捉路面信息并传输到系统进行影像分析,为安全驾驶提供保障。
一种实施方式中,所述光学系统所有的透镜中,至少两个所述透镜的物侧面和/或像侧面为非球面,有利于校正系统像差,提高系统成像质量。
一种实施方式中,所述第四透镜的像侧面与所述第五透镜的物侧面胶合。通过设置第四透镜与第五透镜胶合形成胶合透镜有利于降低光学成像系统的偏心敏感度,提高组装良率,降低生产成本,其中,胶合透镜是指通过光敏胶等将两片或两片以上的透镜粘接而成。
一种实施方式中,所述光学系统满足条件式:-3<f1/f<-1.5;f1为所述第一透镜的焦距,f为所述光学系统的有效焦距。将靠近物侧的第一透镜设为具有负屈折力的透镜并限定第一 透镜的焦距与光学系统的有效焦距的比值,可以使大角度光线射入光学系统,扩大光学系统的视场角范围并使光学系统具有低敏感度以及小型化的特征。如果f1/f≥-1.5,会导致第一透镜的焦距太短,屈折力太大,则在成像时,成像面的敏感度会因第一透镜的变化而增加,从而产生较大的像差;如果f1/f≤-3,则第一透镜屈折力较小,不利于大角度光线进入光学系统,从而不利于光学系统的广角化。
一种实施方式中,所述光学系统满足条件式:-16<f2/f<-5;f2为所述第二透镜的焦距,f为所述光学系统的有效焦距。将第二透镜设置为具有负屈折力的透镜并限定第二透镜的焦距与光学系统的有效焦距的比值,有利于扩大光束宽度,使大角度光线经第一透镜折射后射入的光束扩宽,并充满光瞳,充分传递至高像素成像面上,从而获得更宽的视场范围,有利于实现光学系统高像素的特征。如果f2/f≥-5或f2/f≤-16,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,所述光学系统满足条件式:0.1≤(1/|R2r|+1/|R3f|)/D23<0.5;R2r为所述第二透镜的像侧面于光轴处的曲率半径,R3f为所述第三透镜的物侧面于光轴处的曲率半径,D23为所述第二透镜的像侧面与所述第三透镜的物侧面于光轴上的距离。通过限定(1/|R2r|+1/|R3f|)/D23≥0.1,有利于减小周边视角的主光线入射至成像面的角度,同时降低鬼影产生的机率;(1/|R2r|+1/|R3f|)/D23<0.5,有利于抑制像散的产生。
一种实施方式中,所述光学系统满足条件式:1<f3/f<3;f3为所述第三透镜的焦距,f为所述光学系统的有效焦距。由于光线由具有较强屈折力的第一透镜与第二透镜射出,边缘光线射入成像面容易产生较大的场区,因此,通过设置具有正屈折力的第三透镜并限定第三透镜的焦距与光学系统的有效焦距的比值,有利于校正边缘像差,提升成像解析度。如果f3/f≥3或f3/f≤1,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,所述光学系统满足条件式:1<(D12+CT2)/(CT3+D34)<2;D12为所述第一透镜的像侧面与所述第二透镜的物侧面于光轴的距离,CT2为所述第二透镜于光轴上的厚度,CT3为所述第三透镜于光轴上的厚度,D34为所述第三透镜的像侧面与所述第四透镜的物侧面于光轴上的距离。通过限制(D12+CT2)/(CT3+D34)的范围,有利于校正系统像差,提升成像解析度,同时保证系统结构紧凑,满足小型化的特征。如果(D12+CT2)/(CT3+D34)≥2或(D12+CT2)/(CT3+D34)≤1,则不利于校正光学系统的像差,从而降低成像品质,同时过大的空气间隔与透镜厚度会增加光学系统的系统总长,不利于光学系统的小型化。
一种实施方式中,所述光学系统满足条件式:-9<f45/f<0;f45为所述第四透镜与所述第五透镜的组合焦距,f为所述光学系统的有效焦距。第四透镜和第五透镜组合而成的胶合透镜具有负屈折力,通过设置胶合透镜,并合理配置f45/f的比值范围,可以将第四透镜和第五透镜的累加公差转换为一个胶合透镜的公差,有利于校正光学系统的像差,减小偏心敏感度,降低系统组装敏感度,解决透镜工艺制作及镜头组装问题,提高良率,同时,通过校正系统像差,有利于提升成像解析度。如果f45/f≥0或f45/f≤-9,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,所述光学系统满足条件式:2<f6/f<5;f6为所述第六透镜的焦距,f为所述光学系统的有效焦距。通过限定第六透镜的焦距与光学系统的有效焦距的比值,有 利于校正色差,减小偏心敏感度,修正系统像差,提升成像解析度。如果f6/f≥5或f6/f≤2,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,所述光学系统满足条件式:-9<f7/f<-2;f7为所述第七透镜的焦距,f为所述光学系统的有效焦距。通过限定第七透镜的焦距与光学系统的有效焦距的比值,有利于校正色差,减小偏心敏感度,修正系统像差,提升成像解析度。如果f6/f≥-2或f6/f≤-9,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,所述光学系统满足条件式:2<CT8/CT7<4;CT7为所述第七透镜于光轴上的厚度,CT8为所述第八透镜于光轴上的厚度。各个透镜的屈折力与透镜的厚度相关,通过合理设置第七透镜与第八透镜于光轴上的厚度,可以有效的调节第七透镜与第八透镜之间的屈折力关系,有利于光学系统的广角化和小型化,并提高系统的光学性能,同时有利于减小光线射出光学系统的出射角度,光线将以接近垂直入射的方式入射至感光元件上,使光学系统具有远心特性,可以提高感光元件的敏感度,减少系统产生暗角的机率。如果CT8/CT7≥4或CT8/CT7≤2,则会导致第七透镜和第八透镜的屈折力分配不合理,不利于校正光学系统的像差。
一种实施方式中,所述光学系统满足条件式:3≤(Nd5-Nd4)*100<50;Nd4为所述第四透镜的折射率,Nd5为所述第五透镜的折射率。具体而言,本实施方式中所述第四透镜和所述第五透镜的折射率是指对波长为587.56nm的光的折射率,通过对(Nd5-Nd4)*100的限定有利于优化像差,提高成像解析能力。如果(Nd5-Nd4)*100≥50或(Nd5-Nd4)*100<3,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,所述光学系统满足条件式:2<Imgh/Tan(1/2FOV)<3;FOV为所述光学系统的对角线方向的视场角,Imgh为所述光学系统有效像素区域对角线长的一半。光学系统的视场角范围决定了光学系统能够获取的空间范围的信息量,因此,通过限定Imgh/Tan(1/2FOV)的范围,可使光学系统具有充足的视场角,以满足手机、相机、车载、监控、医疗等电子产品高视场角的要求,同时减小光线射入感光元件的角度,提高感光性能。如果Imgh/Tan(1/2FOV)≥3,则视场角不足,无法获得足够的物空间信息,如果Imgh/Tan(1/2FOV)≤2,则造成光亮不足,无法满足高清晰拍摄的需求。
一种实施方式中,所述光学系统还包括光阑,所述光学系统满足条件式:0.4<EPL/TTL<0.7;EPL为所述光学系统的光阑至成像面于光轴的距离,TTL为所述光学系统的第一透镜的物侧面至所述光学系统的成像面于光轴的距离。通过限定EPL/TTL>0.4,使得光瞳远离成像面,光线将以接近垂直入射的方式入射至在感光元件上,使光学系统具有远心特性,远心特性将提高电子感光元件的感光能力,可使得电子感光元件的感光敏感度提高,减少系统产生暗角的可能性。通过限定EPL/TTL<0.7,有利于限制光学系统总长,使系统具有小型化的特征。
一种实施方式中,所述光学系统满足条件式:f/EPD≤1.7;f为所述光学系统的有效焦距,EPD为所述光学系统的入瞳直径。通过对f/EPD的限定,有利于控制系统的进光量和光圈数,使成像面的视野更明亮,使系统具有大光圈的效果以及更远的景深范围,即更宽的成像深度,有利于用户或用户系统准确识别和判断由远及近的成像画面。如果f/EPD>7,则光学系统的光圈数过大,光圈数越大,像面越暗,光学系统的景深范围越小,从而降低 成像品质。
第二方面,本申请提供一种镜头模组,包括感光元件和前述任意一种实施方式所述的光学系统,所述感光元件位于所述光学系统的像侧。
第三方面,本申请提供一种终端设备,包括所述的镜头模组。
本申请通过合理配置第一透镜至第八透镜的屈折力及第二透镜、第三透镜和第七透镜的面型,使得光学系统具有高像素,能够更加清晰的捕捉成像信息,画质更好,画面具有更多的细节,同时,扩宽了成像视野范围,具体而言,不仅增加了视场角范围,还加深了成像深度范围,将摄像系统所能捕捉的成像信息清晰的呈现在成像元位置,用在车载行业,可以实时准确的抓取路面的信息并传输到系统进行影像分析,为安全驾驶提供保障。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请提供的光学系统应用在终端设备中的示意图;
图2是本申请第一实施例提供的光学系统的结构示意图;
图3是第一实施例的光学系统的球差曲线;
图4是第一实施例的光学系统的像散曲线;
图5是第一实施例的光学系统的畸变曲线;
图6是本申请第二实施例提供的光学系统的结构示意图;
图7是第二实施例的光学系统的球差曲线;
图8是第二实施例的光学系统的像散曲线;
图9是第二实施例的光学系统的畸变曲线;
图10是本申请第三实施例提供的光学系统的结构示意图;
图11是第三实施例的光学系统的球差曲线;
图12是第三实施例的光学系统的像散曲线;
图13是第三实施例的光学系统的畸变曲线;
图14是本申请第四实施例提供的光学系统的结构示意图;
图15是第四实施例的光学系统的球差曲线;
图16是第四实施例的光学系统的像散曲线;
图17是第四实施例的光学系统的畸变曲线;
图18是本申请第五实施例提供的光学系统的结构示意图;
图19是第五实施例的光学系统的球差曲线;
图20是第五实施例的光学系统的像散曲线;
图21是第五实施例的光学系统的畸变曲线。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
参阅图1,本申请涉及的光学系统10应用在终端设备30中的镜头模组20。终端设备 30可以为手机、监控、车载等设备。镜头模组20的感光元件210位于光学系统10的像侧,镜头模组20组装在终端设备30内部。
本申请提供一种镜头模组,包括感光元件和本申请实施例提供的光学系统,感光元件位于光学系统的像侧,用于将穿过第一透镜至第八透镜且入射到电子感光元件上的光线转换成图像的电信号。电子感光元件可以为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合器件(Charge-coupled Device,CCD)。通过在镜头模组内安装该光学系统,使镜头模组具有高像素,能够更加清晰的捕捉成像信息,画质更好,画面具有更多的细节,同时,扩宽了成像视野范围,将摄像系统所能捕捉的成像信息清晰的呈现在成像元件位置。
本申请还提供一种终端设备,该终端设备包括本申请实施例提供的镜头模组。该终端设备可以为手机、监控、车载等。通过在终端设备内安装该镜头模组,使终端设备具有高像素,能够更加清晰的捕捉成像信息,画质更好,画面具有更多的细节,同时,扩宽了成像视野范围,将摄像系统所能捕捉的成像信息清晰的呈现在成像元件位置。
本申请提供的一种光学系统包括八个透镜,八个透镜从物侧至像侧依序分布分别为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第四透镜和第五透镜组成胶合透镜,胶合透镜具有负屈折力,通过设置第四透镜与第五透镜胶合形成胶合透镜有利于降低光学成像系统的偏心敏感度,提高组装良率,降低生产成本。
具体的,八片透镜的面型及屈折力如下:
第一透镜,具有负屈折力;第二透镜,具有负屈折力,第二透镜的物侧面为凹面,第二透镜的像侧面为凸面;第三透镜,具有正屈折力,第三透镜的物侧面为凸面;第四透镜,具有正屈折力;第五透镜,具有负屈折力;第六透镜,具有正屈折力;第七透镜,具有负屈折力,第七透镜的物侧面为凹面;第八透镜,具有正屈折力。
合理配置第一透镜至第八透镜的屈折力及第二透镜、第三透镜和第七透镜的面型,使得光学系统具有高像素,能够更加清晰的捕捉成像信息,画质更好,画面具有更多的细节,同时,扩宽了成像视野范围,具体而言,不仅增加了视场角范围,还加深了成像深度范围,将摄像系统所能捕捉的成像信息清晰的呈现在成像元件位置。用在车载行业,可以实时准确的捕捉路面信息并传输到系统进行影像分析,为安全驾驶提供保障。
一种实施方式中,光学系统所有的透镜中,至少两个透镜的物侧面和/或像侧面为非球面,有利于校正系统像差,提高系统成像质量。
一种实施方式中,第四透镜的像侧面与第五透镜的物侧面胶合。通过设置第四透镜与第五透镜胶合形成胶合透镜有利于降低光学成像系统的偏心敏感度,提高组装良率,降低生产成本,其中,胶合透镜是指通过光敏胶等将两片或两片以上的透镜粘接而成。
一种实施方式中,光学系统满足条件式:-3<f1/f<-1.5;f1为第一透镜的焦距,f为光学系统的有效焦距。将靠近物侧的第一透镜设为具有负屈折力的透镜并限定第一透镜的焦距与光学系统的有效焦距的比值,可以使大角度光线射入光学系统,扩大光学系统的视场角范围并使光学系统具有低敏感度以及小型化的特征。如果f1/f≥-1.5,会导致第一透镜的焦距太短,屈折力太大,则在成像时,成像面的敏感度会因第一透镜的变化而增加,从而产 生较大的像差;如果f1/f≤-3,则第一透镜屈折力较小,不利于大角度光线进入光学系统,从而不利于光学系统的广角化。
一种实施方式中,光学系统满足条件式:-16<f2/f<-5;f2为第二透镜的焦距,f为光学系统的有效焦距。将第二透镜设置为具有负屈折力的透镜并限定第二透镜的焦距与光学系统的有效焦距的比值,有利于扩大光束宽度,使大角度光线经第一透镜折射后射入的光束扩宽,并充满光瞳,充分传递至高像素成像面上,从而获得更宽的视场范围,有利于实现光学系统高像素的特征。如果f2/f≥-5或f2/f≤-16,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,光学系统满足条件式:0.1≤(1/|R2r|+1/|R3f|)/D23<0.5;R2r为第二透镜的像侧面于光轴处的曲率半径,R3f为第三透镜的物侧面于光轴处的曲率半径,D23为第二透镜的像侧面与第三透镜的物侧面于光轴上的距离。通过限定(1/|R2r|+1/|R3f|)/D23≥0.1,有利于减小周边视角的主光线入射至成像面的角度,同时降低鬼影产生的机率。(1/|R2r|+1/|R3f|)/D23<0.5,有利于抑制像散的产生。
一种实施方式中,光学系统满足条件式:1<f3/f<3;f3为第三透镜的焦距,f为光学系统的有效焦距。由于光线由具有较强屈折力的第一透镜与第二透镜射出,边缘光线射入成像面容易产生较大的场区,因此,通过设置具有正屈折力的第三透镜并限定第三透镜的焦距与光学系统的有效焦距的比值,有利于校正边缘像差,提升成像解析度。如果f3/f≥3或f3/f≤1,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,光学系统满足条件式:1<(D12+CT2)/(CT3+D34)<2;D12为第一透镜的像侧面与第二透镜的物侧面于光轴的距离,CT2为第二透镜于光轴上的厚度,CT3为第三透镜于光轴上的厚度,D34为第三透镜的像侧面与第四透镜的物侧面于光轴上的距离。通过限制(D12+CT2)/(CT3+D34)的范围,有利于校正系统像差,提升成像解析度,同时保证系统结构紧凑,满足小型化的特征。如果(D12+CT2)/(CT3+D34)≥2或(D12+CT2)/(CT3+D34)≤1,则不利于校正光学系统的像差,从而降低成像品质,同时过大的空气间隔与透镜厚度会增加光学系统的系统总长,不利于光学系统的小型化。
一种实施方式中,光学系统满足条件式:-9<f45/f<0;f45为第四透镜与第五透镜的组合焦距,f为光学系统的有效焦距。第四透镜和第五透镜组合而成的胶合透镜具有负屈折力,通过设置胶合透镜,并合理配置f45/f的比值范围,可以将第四透镜和第五透镜的累加公差转换为一个胶合透镜的公差,有利于校正光学系统的像差,减小偏心敏感度,降低系统组装敏感度,解决透镜工艺制作及镜头组装问题,提高良率,同时,通过校正系统像差,有利于提升成像解析度。如果f45/f≥0或f45/f≤-9,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,光学系统满足条件式:2<f6/f<5;f6为第六透镜的焦距,f为光学系统的有效焦距。通过限定第六透镜的焦距与光学系统的有效焦距的比值,有利于校正色差,减小偏心敏感度,修正系统像差,提升成像解析度。如果f6/f≥5或f6/f≤2,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,光学系统满足条件式:-9<f7/f<-2;f7为第七透镜的焦距,f为光学系统的有效焦距。通过限定第七透镜的焦距与光学系统的有效焦距的比值,有利于校正色 差,减小偏心敏感度,修正系统像差,提升成像解析度。如果f6/f≥-2或f6/f≤-9,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,光学系统满足条件式:2<CT8/CT7<4;CT7为第七透镜于光轴上的厚度,CT8为第八透镜于光轴上的厚度。各个透镜的屈折力与透镜的厚度相关,通过合理设置第七透镜与第八透镜于光轴上的厚度,可以有效的调节第七透镜与第八透镜之间的屈折力关系,有利于光学系统的广角化和小型化,并提高系统的光学性能,同时有利于减小光线射出光学系统的出射角度,光线将以接近垂直入射的方式入射至感光元件上,使光学系统具有远心特性,可以提高感光元件的敏感度,减少系统产生暗角的机率。如果CT8/CT7≥4或CT8/CT7≤2,则会导致第七透镜和第八透镜的屈折力分配不合理,不利于校正光学系统的像差。
一种实施方式中,光学系统满足条件式:3≤(Nd5-Nd4)*100<50;Nd4为第四透镜的折射率,Nd5为第五透镜的折射率。具体而言,本实施方式中第四透镜和第五透镜的折射率是指对波长为587.56nm的光的折射率,通过对(Nd5-Nd4)*100的限定有利于优化像差,提高成像解析能力。如果(Nd5-Nd4)*100≥50或(Nd5-Nd4)*100<3,则不利于校正光学系统的像差,从而降低成像品质。
一种实施方式中,光学系统满足条件式:2<Imgh/Tan(1/2FOV)<3;FOV为光学系统的对角线方向的视场角,Imgh为光学系统有效像素区域对角线长的一半。光学系统的视场角范围决定了光学系统能够获取的空间范围的信息量,因此,通过限定Imgh/Tan(1/2FOV)的范围,可使光学系统具有充足的视场角,以满足手机、相机、车载、监控、医疗等电子产品高视场角的要求,同时减小光线射入感光元件的角度,提高感光性能。如果Imgh/Tan(1/2FOV)≥3,则视场角不足,无法获得足够的物空间信息,如果Imgh/Tan(1/2FOV)≤2,则造成光亮不足,无法满足高清晰拍摄的需求。
一种实施方式中,光学系统还包括光阑,光学系统满足条件式:0.4<EPL/TTL<0.7;EPL为光学系统的光阑至成像面于光轴的距离,TTL为光学系统的第一透镜的物侧面至光学系统的成像面于光轴的距离。通过限定EPL/TTL>0.4,使得光瞳远离成像面,光线将以接近垂直入射的方式入射至在感光元件上,使光学系统具有远心特性,远心特性将提高电子感光元件的感光能力,可使得电子感光元件的感光敏感度提高,减少系统产生暗角的可能性。通过限定EPL/TTL<0.7,有利于限制光学系统总长,使系统具有小型化的特征。
一种实施方式中,光学系统满足条件式:f/EPD≤1.7;f为光学系统的有效焦距,EPD为光学系统的入瞳直径。通过对f/EPD的限定,有利于控制系统的进光量和光圈数,使成像面的视野更明亮,使系统具有大光圈的效果以及更远的景深范围,即更宽的成像深度,有利于用户或用户系统准确识别和判断由远及近的成像画面。如果f/EPD>7,则光学系统的光圈数过大,光圈数越大,像面越暗,光学系统的景深范围越小,从而降低成像品质。
通过上述各个参数的限定,使得光学系统具有良好的成像品质,例如,优选的:f1/f的值可以为-1.79或-1.65或-1.68等;f2/f的值可以为-10.64或-11.19或-6.62等;(1/|R2r|+1/|R3f|)/D23的值可以为0.15或0.27或等0.23;f3/f的值可以为1.92或1.95或1.97等;(D12+CT2)/(CT3+D34)的值可以为1.63或1.82或1.85等。
光学系统所有的透镜中,至少两个透镜的物侧面和/或像侧面为非球面,有利于校正系 统像差,提高系统成像质量。非球面曲线方程式包括但不限于如下方程式:
Figure PCTCN2020076657-appb-000001
其中,Z是非球面上相应点到与表面顶点相切的平面的距离,r是非球面上相应点到光轴的距离,c是非球面顶点的曲率,k是圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
以下通过五个具体的实施例对本申请进行详细的说明。
实施例一
如图2所示,中间的直线表示光轴,光学系统的左侧为物侧,右侧为像侧。本实施例提供的光学系统中,从物侧到像侧依次为第一个透镜L1、第二透镜L2、第三透镜L3、光阑STO、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、红外滤光元件IRCF、保护玻璃CG。其中,第四透镜L4和第五透镜L5设置为胶合透镜,胶合透镜有利于降低光学成像系统的偏心敏感度,提高组装良率,降低生产成本。
第一透镜L1具有负屈折力,且为玻璃材质,其物侧表面S1为凸面,其像侧表面S2为凹面,并皆为球面。
第二透镜L2具有负屈折力,且为玻璃材质,其物侧表面S3为凹面,其像侧表面S4为凸面,并皆为非球面。
第三透镜L3具有正屈折力,且为玻璃材质,其物侧表面S5为凸面,其像侧表面S6为凸面,并皆为球面。
第四透镜L4具有正屈折力,且为玻璃材质,其物侧表面S7为凸面且为非球面,其像侧表面S8为凸面且为球面。
第五透镜L5具有负屈折力,且为玻璃材质,其物侧表面S9为凹面,其像侧表面S10为凹面,并皆为球面。
第六透镜L6具有正屈折力,且为玻璃材质,其物侧表面S11为凸面,其像侧表面S12为凸面,并皆为非球面。
第七透镜L7具有负屈折力,且为玻璃材质,其物侧表面S13为凹面,其像侧表面S14为凸面,并皆为球面。
第八透镜L8具有正屈折力,且为玻璃材质,其物侧表面S13为凸面,其像侧表面S14为凸面,并皆为球面。
光阑STO可以位于光学系统物侧与第五透镜之间,本实施例中的光阑STO位于第三透镜L3之后,趋于光学系统的中间位置,有利于平衡光学系统的像差。
红外滤光元件IRCF设置在第八透镜L8之后,包括物侧面S17和像侧面S18,红外滤光元件IRCF用于过滤掉红外光线,使得射入成像面的光线为可见光,可见光的波长为380nm-780nm,红外滤光元件IRCF的材质为玻璃。
保护玻璃CG位于红外滤光元件IRCF之后,包括物侧面S19和像侧面S20,保护玻璃CG用于保护感光元件,避免感光元件裸露在外面,使感光元件不受灰尘等的影响,保证成像质量。成像面S21为电子感光元件的有效像素区域。
表1a示出了本实施例的光学系统的特性表格。
表1a
Figure PCTCN2020076657-appb-000002
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统的对角线方向的视场角。
S8/S9是指第四透镜的像侧面和第五透镜的物侧面,第四透镜的像侧面S8和第五透镜的物侧面S9胶合在一起,因此,在数据上体现为一个面。
表1b给出了可用于第一实施例中各非球面镜面S3、S4、S7、S11、S12的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表1b
面序号 S3 S4 S7 S11 S12
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 4.54E-04 1.65E-04 -6.08E-04 6.87E-05 2.15E-04
A6 8.74E-06 -8.67E-07 -2.42E-05 2.09E-05 -9.55E-06
A8 2.15E-07 2.37E-07 -4.49E-07 -7.08E-07 7.57E-07
A10 4.89E-09 -5.30E-09 -2.85E-08 -1.65E-08 -5.55E-08
A12 1.53E-21 -3.56E-22 -2.79E-22 -1.57E-22 4.73E-22
A14 -4.54E-25 -3.15E-25 -4.14E-25 -3.74E-25 -4.12E-25
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图3示出了第一实施例的光学系统的球差曲线,其表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;
图4示出了第一实施例的光学系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;
图5示出了第一实施例的光学系统的畸变曲线,其表示不同视场角对应的畸变大小值;
根据图3、图4和图5可知,第一实施例所给出的光学系统能够实现良好的成像品质。
实施例二
如图6所示,中间的直线表示光轴,光学系统的左侧为物侧,右侧为像侧。本实施例提供的光学系统中,从物侧到像侧依次为第一个透镜L1、第二透镜L2、第三透镜L3、光阑STO、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、保护玻璃CG。其中,第四透镜L4和第五透镜L5设置为胶合透镜,胶合透镜有利于降低光学成像系统的偏心敏感度,提高组装良率,降低生产成本。
第一透镜L1具有负屈折力,且为玻璃材质,其物侧表面S1为凸面,其像侧表面S2为凹面,并皆为球面。
第二透镜L2具有负屈折力,且为玻璃材质,其物侧表面S3为凹面,其像侧表面S4为凸面,并皆为非球面。
第三透镜L3具有正屈折力,且为玻璃材质,其物侧表面S5为凸面,其像侧表面S6为凸面,并皆为球面。
第四透镜L4具有正屈折力,且为玻璃材质,其物侧表面S7为凸面,其像侧表面S8为凸面,并皆为球面。
第五透镜L5具有负屈折力,且为玻璃材质,其物侧表面S9为凹面,其像侧表面S10为凹面,并皆为球面。
第六透镜L6具有正屈折力,且为玻璃材质,其物侧表面S11为凹面,其像侧表面S12为凸面,并皆为非球面。
第七透镜L7具有负屈折力,且为玻璃材质,其物侧表面S13为凹面,其像侧表面S14为凸面,并皆为球面。
第八透镜L8具有正屈折力,且为玻璃材质,其物侧表面S13为凸面,其像侧表面S14为凹面,并皆为非球面。
光阑STO可以位于光学系统物侧与第五透镜之间,本实施例中的光阑STO位于第三透镜L3之后,趋于光学系统的中间位置,有利于平衡光学系统的像差。
保护玻璃CG位于第八透镜L8之后,包括物侧面S17和像侧面S18,保护玻璃CG用于保护感光元件,避免感光元件裸露在外面,使感光元件不受灰尘等的影响,保证成像质量。成像面S19为电子感光元件的有效像素区域。
表2a示出了本实施例的光学系统的特性表格。
表2a
Figure PCTCN2020076657-appb-000003
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统的对角线方向的视场角。
S8/S9是指第四透镜的像侧面和第五透镜的物侧面,第四透镜的像侧面S8和第五透镜的物侧面S9胶合在一起,因此,在数据上体现为一个面。
表2b给出了可用于第二实施例中各非球面镜面S3、S4、S11、S12、S15、S16的高次 项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2b
面序号 S3 S4 S11 S12 S15 S16
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 6.40E-05 4.80E-05 -7.61E-04 1.85E-05 -2.33E-04 -4.32E-04
A6 4.18E-06 6.36E-08 -1.62E-05 -2.37E-06 4.29E-06 1.76E-06
A8 -5.60E-08 8.56E-08 -7.13E-07 -1.41E-07 -2.93E-08 0.00E+00
A10 6.10E-09 -1.22E-09 2.39E-08 1.88E-08 0.00E+00 0.00E+00
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图7示出了第二实施例的光学系统的球差曲线,其表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;
图8示出了第二实施例的光学系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;
图9示出了第二实施例的光学系统的畸变曲线,其表示不同视场角对应的畸变大小值;
根据图7、图8和图9可知,第二实施例所给出的光学系统能够实现良好的成像品质。
实施例三
如图10所示,中间的直线表示光轴,光学系统的左侧为物侧,右侧为像侧。本实施例提供的光学系统中,从物侧到像侧依次为第一个透镜L1、第二透镜L2、第三透镜L3、光阑STO、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、保护玻璃CG。其中,第四透镜L4和第五透镜L5设置为胶合透镜,胶合透镜有利于降低光学成像系统的偏心敏感度,提高组装良率,降低生产成本。
第一透镜L1具有负屈折力,且为玻璃材质,其物侧表面S1为凸面,其像侧表面S2为凹面,并皆为球面。
第二透镜L2具有负屈折力,且为玻璃材质,其物侧表面S3为凹面,其像侧表面S4为凸面,并皆为非球面。
第三透镜L3具有正屈折力,且为玻璃材质,其物侧表面S5为凸面,其像侧表面S6为凸面,并皆为球面。
第四透镜L4具有正屈折力,且为玻璃材质,其物侧表面S7为凸面,其像侧表面S8为凸面,并皆为球面。
第五透镜L5具有负屈折力,且为玻璃材质,其物侧表面S9为凹面,其像侧表面S10为凹面,并皆为球面。
第六透镜L6具有正屈折力,且为玻璃材质,其物侧表面S11为凹面,其像侧表面S12为凸面,并皆为非球面。
第七透镜L7具有负屈折力,且为玻璃材质,其物侧表面S13为凹面,其像侧表面S14为 凸面,并皆为球面。
第八透镜L8具有正屈折力,且为玻璃材质,其物侧表面S13为凸面,其像侧表面S14为凸面,并皆为非球面。
光阑STO可以位于光学系统物侧与第五透镜之间,本实施例中的光阑STO位于第三透镜L3之后,趋于光学系统的中间位置,有利于平衡光学系统的像差。
保护玻璃CG位于第八透镜L8之后,包括物侧面S17和像侧面S18,保护玻璃CG用于保护感光元件,避免感光元件裸露在外面,使感光元件不受灰尘等的影响,保证成像质量。成像面S19为电子感光元件的有效像素区域。
表3a示出了本实施例的光学系统的特性表格。
表3a
Figure PCTCN2020076657-appb-000004
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统的对角线方向的视场角。
S8/S9是指第四透镜的像侧面和第五透镜的物侧面,第四透镜的像侧面S8和第五透镜的物侧面S9胶合在一起,因此,在数据上体现为一个面。
表3b给出了可用于第三实施例中各非球面镜面S3、S4、S11、S12、S15、S16的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表3b
面序号 S3 S4 S11 S12 S15 S16
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -3.24E+19
A4 1.15E-04 7.68E-05 -1.26E-03 5.66E-07 4.96E-05 -7.60E-04
A6 1.05E-05 2.44E-06 4.68E-06 7.94E-06 -3.29E-06 0.00E+00
A8 -1.79E-07 6.02E-08 -6.29E-06 -2.90E-06 3.90E-08 0.00E+00
A10 2.79E-08 1.71E-09 3.46E-07 1.69E-07 0.00E+00 0.00E+00
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图11示出了第三实施例的光学系统的球差曲线,其表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;
图12示出了第三实施例的光学系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;
图13示出了第三实施例的光学系统的畸变曲线,其表示不同视场角对应的畸变大小值;
根据图11、图12和图13可知,第三实施例所给出的光学系统能够实现良好的成像品质。
实施例四
如图14所示,中间的直线表示光轴,光学系统的左侧为物侧,右侧为像侧。本实施例提供的光学系统中,从物侧到像侧依次为第一个透镜L1、第二透镜L2、第三透镜L3、光阑STO、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、保护玻璃CG。其中,第四透镜L4和第五透镜L5设置为胶合透镜,胶合透镜有利于降低光学成像系统的偏心敏感度,提高组装良率,降低生产成本。
第一透镜L1具有负屈折力,且为玻璃材质,其物侧表面S1为凸面,其像侧表面S2为凹面,并皆为球面。
第二透镜L2具有负屈折力,且为玻璃材质,其物侧表面S3为凹面,其像侧表面S4为凸面,并皆为非球面。
第三透镜L3具有正屈折力,且为玻璃材质,其物侧表面S5为凸面,其像侧表面S6为凸面,并皆为球面。
第四透镜L4具有正屈折力,且为玻璃材质,其物侧表面S7为凸面,其像侧表面S8为凸面,并皆为球面。
第五透镜L5具有负屈折力,且为玻璃材质,其物侧表面S9为凹面,其像侧表面S10为 凹面,并皆为球面。
第六透镜L6具有正屈折力,且为玻璃材质,其物侧表面S11为凹面,其像侧表面S12为凸面,并皆为非球面。
第七透镜L7具有负屈折力,且为玻璃材质,其物侧表面S13为凹面,其像侧表面S14为凹面,并皆为球面。
第八透镜L8具有正屈折力,且为玻璃材质,其物侧表面S13为凸面,其像侧表面S14为凸面,并皆为非球面。
光阑STO可以位于光学系统物侧与第五透镜之间,本实施例中的光阑STO位于第三透镜L3之后,趋于光学系统的中间位置,有利于平衡光学系统的像差。
保护玻璃CG位于第八透镜L8之后,包括物侧面S17和像侧面S18,保护玻璃CG用于保护感光元件,避免感光元件裸露在外面,使感光元件不受灰尘等的影响,保证成像质量。成像面S19为电子感光元件的有效像素区域。
表4a示出了本实施例的光学系统的特性表格。
表4a
Figure PCTCN2020076657-appb-000005
Figure PCTCN2020076657-appb-000006
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统的对角线方向的视场角。
S8/S9是指第四透镜的像侧面和第五透镜的物侧面,第四透镜的像侧面S8和第五透镜的物侧面S9胶合在一起,因此,在数据上体现为一个面。
表4b给出了可用于第四实施例中各非球面镜面S3、S4、S11、S12、S15、S16的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表4b
面序号 S3 S4 S11 S12 S15 S16
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -3.24E+19
A4 5.09E-04 2.00E-04 1.30E-03 2.12E-03 1.07E-04 -8.57E-04
A6 2.49E-05 2.86E-06 -3.18E-05 -3.35E-05 -3.06E-05 2.98E-06
A8 -4.95E-07 1.15E-07 -9.28E-08 2.29E-07 8.50E-07 -9.98E-08
A10 7.14E-08 2.00E-09 4.06E-08 3.65E-08 -9.33E-09 0.00E+00
A12 -7.75E-20 0.00E+00 -7.78E-20 -7.74E-20 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图15示出了第四实施例的光学系统的球差曲线,其表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;
图16示出了第四实施例的光学系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;
图17示出了第四实施例的光学系统的畸变曲线,其表示不同视场角对应的畸变大小值;
根据图15、图16和图17可知,第四实施例所给出的光学系统能够实现良好的成像品质。
实施例五
如图18所示,中间的直线表示光轴,光学系统的左侧为物侧,右侧为像侧。本实施例提供的光学系统中,从物侧到像侧依次为第一个透镜L1、第二透镜L2、第三透镜L3、光阑STO、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、保护玻璃CG。其中,第四透镜L4和第五透镜L5设置为胶合透镜,胶合透镜有利于降低光学成像系统的偏心敏感度,提高组装良率,降低生产成本。
第一透镜L1具有负屈折力,且为玻璃材质,其物侧表面S1为凸面,其像侧表面S2为凹面,并皆为球面。
第二透镜L2具有负屈折力,且为玻璃材质,其物侧表面S3为凹面,其像侧表面S4为凸面,并皆为非球面。
第三透镜L3具有正屈折力,且为玻璃材质,其物侧表面S5为凸面,其像侧表面S6为凸 面,并皆为球面。
第四透镜L4具有正屈折力,且为玻璃材质,其物侧表面S7为凸面,其像侧表面S8为凸面,并皆为球面。
第五透镜L5具有负屈折力,且为玻璃材质,其物侧表面S9为凹面,其像侧表面S10为凹面,并皆为球面。
第六透镜L6具有正屈折力,且为玻璃材质,其物侧表面S11为凸面,其像侧表面S12为凸面,并皆为非球面。
第七透镜L7具有负屈折力,且为玻璃材质,其物侧表面S13为凹面,其像侧表面S14为凸面,并皆为球面。
第八透镜L8具有正屈折力,且为玻璃材质,其物侧表面S13为凸面,其像侧表面S14为凸面,并皆为非球面。
光阑STO可以位于光学系统物侧与第五透镜之间,本实施例中的光阑STO位于第三透镜L3之后,趋于光学系统的中间位置,有利于平衡光学系统的像差。
保护玻璃CG位于第八透镜L8之后,包括物侧面S17和像侧面S18,保护玻璃CG用于保护感光元件,避免感光元件裸露在外面,使感光元件不受灰尘等的影响,保证成像质量。成像面S19为电子感光元件的有效像素区域。
表5a示出了本实施例的光学系统的特性表格。
表5a
Figure PCTCN2020076657-appb-000007
Figure PCTCN2020076657-appb-000008
其中,f为光学系统的有效焦距,FNO为光学系统的光圈数,FOV为光学系统的对角线方向的视场角。
S8/S9是指第四透镜的像侧面和第五透镜的物侧面,第四透镜的像侧面S8和第五透镜的物侧面S9胶合在一起,因此,在数据上体现为一个面。
表5b给出了可用于第五实施例中各非球面镜面S3、S4、S11、S12、S15、S16的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表5b
面序号 S3 S4 S11 S12 S15 S16
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -3.24E+06
A4 1.85E-04 5.32E-05 2.49E-04 1.22E-03 2.85E-04 -6.45E-04
A6 9.67E-06 -1.01E-06 2.06E-05 4.63E-06 -2.81E-05 1.08E-05
A8 -4.11E-07 1.44E-07 -5.68E-06 -5.00E-06 3.80E-07 -6.03E-07
A10 1.06E-08 -3.28E-09 2.31E-07 1.97E-07 -1.13E-08 0.00E+00
A12 -1.25E-19 0.00E+00 0.00E+00 -1.13E-19 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图19示出了第五实施例的光学系统的球差曲线,其表示不同波长的光线经由光学系统的各透镜后的会聚焦点偏离;
图20示出了第五实施例的光学系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;
图21示出了第五实施例的光学系统的畸变曲线,其表示不同视场角对应的畸变大小值;
根据图19、图20和图21可知,第五实施例所给出的光学系统能够实现良好的成像品质。
表6为第一实施例至第五实施例的光学系统的f1/f、f2/f、(1/|R2r|+1/|R3f|)/D23、f3/f、(D12+CT2)/(CT3+D34)、f45/f、f6/f、f7/f、CT8/CT7、(Nd5-Nd4)*100、Imgh/Tan(1/2FOV)、EPL/TTL、f/EPD的值。
表6
  第一实施例 第二实施例 第三实施例 第四实施例 第五实施例
f1/f -1.79 -1.75 -1.89 -1.68 -1.65
f2/f -10.64 -11.19 -6.62 -5.64 -6.88
(1/|R2r|+1/|R3f|)/D23 0.15 0.27 0.23 0.16 0.10
f3/f 1.92 1.95 1.97 1.99 2.04
(D12+CT2)/(CT3+D34) 1.63 1.82 1.85 1.26 1.36
f45/f -8.93 -3.59 -3.91 -7.07 -7.10
f6/f 2.29 3.52 3.13 4.02 3.96
f7/f -2.81 -6.53 -7.89 -8.29 -7.40
CT8/CT7 3.71 2.53 2.50 2.90 2.86
(Nd5-Nd4)*100 3.00 25.32 25.32 25.32 25.32
Imgh/Tan(1/2FOV) 2.81 2.85 2.56 2.87 2.81
EPL/TTL 0.52 0.57 0.58 0.64 0.63
f/EPD 1.60 1.65 1.65 1.60 1.60
由表6可见,各实施例均能满足:-3<f1/f<-1.5、-16<f2/f<-5、0.1≤(1/|R2r|+1/|R3f|)/D23<0.5、1<f3/f<3、1<(D12+CT2)/(CT3+D34)<2、-9<f45/f<0、2<f6/f<5、-9<f7/f<-2、2<CT8/CT7<4、3≤(Nd5-Nd4)*100<50、2<Imgh/Tan(1/2FOV)<3、0.4<EPL/TTL<0.7、f/EPD≤1.7。
以上所述是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (18)

  1. 一种光学系统,其特征在于,包括从物侧至像侧依次排布的多个透镜,所述多个透镜包括:
    第一透镜,具有负屈折力;
    第二透镜,具有负屈折力,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凸面;
    第三透镜,具有正屈折力,所述第三透镜的物侧面为凸面;
    第四透镜,具有正屈折力;
    第五透镜,具有负屈折力;
    第六透镜,具有正屈折力;
    第七透镜,具有负屈折力,所述第七透镜的物侧面为凹面;
    第八透镜,具有正屈折力。
  2. 根据权利要求1所述的光学系统,其特征在于,所述光学系统所有的所述透镜中,至少两个所述透镜的物侧面和/或像侧面为非球面。
  3. 根据权利要求1所述的光学系统,其特征在于,所述第四透镜的像侧面与所述第五透镜的物侧面胶合。
  4. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    -3<f1/f<-1.5;
    f1为所述第一透镜的焦距,f为所述光学系统的有效焦距。
  5. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    -16<f2/f<-5;
    f2为所述第二透镜的焦距,f为所述光学系统的有效焦距。
  6. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    0.1≤(1/|R2r|+1/|R3f|)/D23<0.5;
    R2r为所述第二透镜的像侧面于光轴处的曲率半径,R3f为所述第三透镜的物侧面于光轴处的曲率半径,D23为所述第二透镜的像侧面与所述第三透镜的物侧面于光轴上的距离。
  7. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    1<f3/f<3;
    f3为所述第三透镜的焦距,f为所述光学系统的有效焦距。
  8. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    1<(D12+CT2)/(CT3+D34)<2;
    D12为所述第一透镜的像侧面与所述第二透镜的物侧面于光轴的距离,CT2为所述第 二透镜于光轴上的厚度,CT3为所述第三透镜于光轴上的厚度,D34为所述第三透镜的像侧面与所述第四透镜的物侧面于光轴上的距离。
  9. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    -9<f45/f<0;
    f45为所述第四透镜与所述第五透镜的组合焦距,f为所述光学系统的有效焦距。
  10. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    2<f6/f<5;
    f6为所述第六透镜的焦距,f为所述光学系统的有效焦距。
  11. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    -9<f7/f<-2;
    f7为所述第七透镜的焦距,f为所述光学系统的有效焦距。
  12. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    2<CT8/CT7<4;
    CT7为所述第七透镜于光轴上的厚度,CT8为所述第八透镜于光轴上的厚度。
  13. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    3≤(Nd5-Nd4)*100<50;
    Nd4为所述第四透镜的折射率,Nd5为所述第五透镜的折射率。
  14. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    2<Imgh/Tan(1/2FOV)<3;
    FOV为所述光学系统的对角线方向的视场角,Imgh为所述光学系统有效像素区域对角线长的一半。
  15. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统还包括光阑,所述光学系统满足条件式:
    0.4<EPL/TTL<0.7;
    EPL为所述光学系统的光阑至成像面于光轴的距离,TTL为所述光学系统的第一透镜的物侧面至所述光学系统的成像面于光轴的距离。
  16. 根据权利要求1至3任一项所述的光学系统,其特征在于,所述光学系统满足条件式:
    f/EPD≤1.7;
    f为所述光学系统的有效焦距,EPD为所述光学系统的入瞳直径。
  17. 一种镜头模组,其特征在于,包括感光元件和如权利要求1至16任一项所述的光学系统,所述感光元件位于所述光学系统的像侧。
  18. 一种终端设备,其特征在于,包括如权利要求17所述的镜头模组。
PCT/CN2020/076657 2020-02-25 2020-02-25 光学系统、镜头模组及终端设备 WO2021168662A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076657 WO2021168662A1 (zh) 2020-02-25 2020-02-25 光学系统、镜头模组及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076657 WO2021168662A1 (zh) 2020-02-25 2020-02-25 光学系统、镜头模组及终端设备

Publications (1)

Publication Number Publication Date
WO2021168662A1 true WO2021168662A1 (zh) 2021-09-02

Family

ID=77489810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076657 WO2021168662A1 (zh) 2020-02-25 2020-02-25 光学系统、镜头模组及终端设备

Country Status (1)

Country Link
WO (1) WO2021168662A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115469439A (zh) * 2022-11-15 2022-12-13 江西联创电子有限公司 光学镜头
CN118091905A (zh) * 2024-04-29 2024-05-28 协益电子(苏州)有限公司 一种光学镜头、摄像装置及具有其的驾驶工具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818082A (en) * 1988-05-27 1989-04-04 Eastman Kodak Company Compact wide-angle close-focus SLR zoom lens
CN107367828A (zh) * 2017-09-15 2017-11-21 东莞市宇瞳光学科技股份有限公司 一种大光圈4k定焦镜头
CN208126004U (zh) * 2018-03-22 2018-11-20 浙江大华技术股份有限公司 一种定焦镜头

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818082A (en) * 1988-05-27 1989-04-04 Eastman Kodak Company Compact wide-angle close-focus SLR zoom lens
CN107367828A (zh) * 2017-09-15 2017-11-21 东莞市宇瞳光学科技股份有限公司 一种大光圈4k定焦镜头
CN208126004U (zh) * 2018-03-22 2018-11-20 浙江大华技术股份有限公司 一种定焦镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115469439A (zh) * 2022-11-15 2022-12-13 江西联创电子有限公司 光学镜头
CN118091905A (zh) * 2024-04-29 2024-05-28 协益电子(苏州)有限公司 一种光学镜头、摄像装置及具有其的驾驶工具

Similar Documents

Publication Publication Date Title
US11340430B2 (en) Optical lens system, image capturing unit and electronic device comprising nine lenses of various refractive powers, or ten lenses of -+--+-+-+- or ++--+-+-+- refractive powers
US11774714B2 (en) Photographing lens assembly, image capturing unit and electronic device including eight lenses of +−++−−+−, +−−++−+−, +−−+−−+−, +−−−+−+− or +−−+−++− refractive powers
CN109425968B (zh) 影像撷取系统镜片组、取像装置及电子装置
EP3961281B1 (en) Optical image lens assembly, image capturing unit and electronic device
CN211627920U (zh) 光学系统、镜头模组及终端设备
US11774721B2 (en) Image capturing optical system, image capturing unit and electronic device
US9823449B1 (en) Optical telephoto imaging lens
CN210720853U (zh) 光学成像系统、取像装置及电子装置
US11391928B2 (en) Optical image lens assembly, image capturing unit and electronic device
WO2022033326A1 (zh) 光学系统、镜头模组和电子设备
US20220099944A1 (en) Image lens assembly, imaging apparatus and electronic device
CN211786334U (zh) 光学系统、摄像模组及电子设备
US11668907B2 (en) Photographing optical lens assembly and electronic device
CN210775999U (zh) 光学系统、镜头模组和电子设备
WO2021168662A1 (zh) 光学系统、镜头模组及终端设备
CN111367055A (zh) 光学系统、摄像模组及电子设备
CN113741005B (zh) 光学系统、取像模组及电子设备
CN113376797A (zh) 光学系统、镜头模组及终端设备
CN112198628B (zh) 光学成像系统和具有其的取像模组、电子装置
WO2021179309A1 (zh) 光学系统、镜头模组及终端设备
CN110554486B (zh) 光学成像镜头
CN211786320U (zh) 用于近红外光波段成像的光学系统、镜头模组和电子设备
CN114019659A (zh) 光学系统、取像模组及电子设备
CN112684575A (zh) 光学成像系统、取像装置及电子装置
CN112835185B (zh) 光学系统、摄像模组、电子设备及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921263

Country of ref document: EP

Kind code of ref document: A1