WO2021100595A1 - Copper powder and method for producing the same - Google Patents

Copper powder and method for producing the same Download PDF

Info

Publication number
WO2021100595A1
WO2021100595A1 PCT/JP2020/042217 JP2020042217W WO2021100595A1 WO 2021100595 A1 WO2021100595 A1 WO 2021100595A1 JP 2020042217 W JP2020042217 W JP 2020042217W WO 2021100595 A1 WO2021100595 A1 WO 2021100595A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper powder
copper
gas
powder
temperature
Prior art date
Application number
PCT/JP2020/042217
Other languages
French (fr)
Japanese (ja)
Inventor
諒太 小林
貢 吉田
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to CN202080073528.5A priority Critical patent/CN114786839B/en
Priority to KR1020227013850A priority patent/KR20220070003A/en
Publication of WO2021100595A1 publication Critical patent/WO2021100595A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • One of the embodiments of the present invention relates to copper powder and a method for producing copper powder.
  • Metal powder which is an aggregate of fine metal particles, and paste containing metal powder are various electrons such as wiring and terminals of low-temperature simultaneous firing ceramics (LTCC) substrate, internal electrodes and external electrodes of multilayer ceramic capacitors (MLCC). It is widely used as a raw material for manufacturing parts.
  • LTCC low-temperature simultaneous firing ceramics
  • MLCC multilayer ceramic capacitors
  • copper powder has been widely used in the past because of the high conductivity of copper, which enables thinning of the internal electrode of MLCC, miniaturization of the external electrode, and significant improvement of frequency characteristics. It is expected as a material to replace nickel powder and silver powder (see Patent Documents 1 to 5).
  • JP-A-2015-36439 International Publication No. 2015/137015 JP-A-2018-076597 Japanese Unexamined Patent Publication No. 2016-108649 Japanese Unexamined Patent Publication No. 2004-211108
  • One of the objects of the embodiment of the present invention is to provide a copper powder and a method for producing the copper powder.
  • one of the embodiments of the present invention is to provide a copper powder having a high sintering start temperature and controlled degassing behavior during sintering, and a method for producing the same.
  • One of the embodiments according to the present invention is copper powder.
  • This copper powder has an average particle size D 50 of 100 nm or more and 500 nm or less, a sintering start temperature of 450 ° C. or more, and a degassing peak temperature of 150 ° C. or more and 300 ° C. or less.
  • One of the embodiments according to the present invention is a method for producing copper powder.
  • copper chloride gas is produced by the reaction of metallic copper and a chlorine-containing gas
  • primary powder containing copper is produced by the reaction of copper chloride gas and a reducing gas
  • the primary powder is produced. Includes treatment with nitrogen-containing heteroaromatic compounds.
  • the copper powder according to one of the embodiments according to the present invention not only exhibits a high firing start temperature, but also has a small amount of gas desorbed during sintering. For this reason, this copper powder can provide a copper film whose structure is clearly defined by sintering, making various functional elements such as MLCCs thinner and smaller, and wiring and terminals for electronic components. It can contribute to miniaturization and the like.
  • a flow for producing copper powder according to one of the embodiments of the present invention is a flow for producing copper powder according to one of the embodiments of the present invention.
  • One of the embodiments of the present invention is a copper powder containing a plurality of copper particles.
  • An example of the method for producing the present copper powder will be described with reference to the flow shown in FIG.
  • a method for producing copper powder using the so-called vapor phase growth method will be described, but the method for producing copper powder is not limited to the vapor phase growth method, and the copper powder is produced by using a wet method, a plasma method, or the like. It may be manufactured.
  • copper chloride gas is produced by reacting metallic copper with chlorine gas. This method is not only cost-effective in that metallic copper, which is cheaper than copper chloride, can be used, but also can stabilize the supply amount of copper chloride gas.
  • copper chloride gas is produced by reacting metallic copper with chlorine gas at a melting point or lower (for example, 800 ° C. or higher and 1000 ° C. or lower).
  • the chlorine gas may be a gas containing substantially only chlorine, or may be a mixed gas of chlorine containing an inert gas for dilution and an inert gas for dilution. By using the mixed gas, it is possible to easily and precisely control the amount of chlorine that reacts with metallic copper.
  • the produced copper chloride gas is reacted with the reducing gas to produce copper powder.
  • the reducing gas for example, hydrogen, hydrazine, ammonia, methane and the like can be used.
  • the reducing gas can be used in a stoichiometric amount or more with respect to the copper chloride gas.
  • the amount of the reducing gas introduced is 50 mol% or more and 10000 mol% or less, 500 mol% with respect to the copper chloride gas. It can be 10000 mol% or more, or 1000 mol% or more and 10000 mol% or less.
  • the chlorine component may be reduced by treating the primary powder obtained by the above production method with an aqueous solution or suspension of a base.
  • a predetermined surface treatment may be applied to the primary powder obtained by the above production method.
  • the surface treatment agent benzotriazole and its derivative, triazole and its derivative, thiazole and its derivative, benzothiazole and its derivative, imidazole and its derivative, and nitrogen-containing heteroaromatic compounds such as benzimidazole and its derivative are used. can do.
  • the copper powder obtained by the above production method may be subjected to treatments such as drying, classification, crushing, and sieving.
  • the classification may be dry classification or wet classification, and in the dry classification, any method such as air flow classification, gravitational field classification, inertial force field classification, and centrifugal force field classification can be adopted. Similarly, in wet classification, methods such as gravitational field classification and centrifugal force field classification can be adopted.
  • Crushing can be performed using, for example, a jet mill.
  • Sieve separation can be performed by vibrating a sieve having a desired mesh size and passing copper powder through the sieve. By performing classification, crushing, and sieving, the particle size distribution of copper powder can be made smaller.
  • the copper powder produced by the steps having a particle size or larger has a small average particle size and a narrow distribution due to the production of the primary powder by the vapor phase growth method.
  • the average particle size of the copper powder means the particle size when the cumulative frequency in the volume-based particle size histogram of the copper powder becomes 50%.
  • the volume-based particle size of the copper powder is a particle size weighted by the volume of each particle contained in the copper powder.
  • the total volume of particles having a particle size di i is a natural number from 1 to k, i ⁇ k) is divided by the total volume of all particles contained in the powder body.
  • the frequency F of the particles having the particle size di is obtained.
  • the particle size when the frequency F is accumulated and reaches 50% is the median diameter D 50 .
  • the average particle size is also expressed as D 50.
  • Vi is the volume of copper particles having a particle size di
  • ni is the number of copper particles having a particle size di.
  • the method of calculating the volume Vi and the particle size di will be described below.
  • copper particles having confirmed contours for example, 100 to 10,000, typically 500
  • the particle size of the copper particles is calculated as the diameter of an assumed circle having the same area as the surface area from the visually observed surface area Si of the copper particles.
  • Vi 4 ⁇ (di / 2) 3/3
  • the average particle size D 50 of the copper powder which is one of the embodiments of the present invention, is specifically 100 nm or more and 500 nm or less, 100 nm or more and 300 nm or less, or 100 nm or more and 200 nm or less.
  • a metal film with a small thickness can be provided, which contributes to, for example, thinning of MLCC electrodes and miniaturization of wiring and terminals of other electronic components. be able to.
  • agglomeration of copper particles can be suppressed, which facilitates the handling of copper powder.
  • the average particle size D 50 of copper powder is the temperature at the time of chloride of metallic copper, the flow rate of chlorine gas, the ratio of chlorine gas and diluted gas, the temperature at the time of reduction of copper chloride, and the flow rate ratio of copper chloride gas and reducing gas. By appropriately setting such conditions, control can be performed within the above-mentioned range.
  • the average crystallite diameter D is large due to the production of the primary powder by the vapor phase growth method. ..
  • the crystallite is an index showing the length of a region that can be regarded as a single crystal.
  • Each copper particle has a single crystallite or multiple crystallites.
  • the average crystallite diameter D includes various parameters (wavelength ⁇ of X-rays used, half-value width ⁇ of spread of diffracted X-rays, Bragg angle ⁇ ) obtained by measuring X-ray diffraction with respect to copper powder. It can be obtained by substituting into the Scherrer's equation (Equation 1) shown.
  • K is a Scheller constant.
  • the half width of the diffraction peaks of the (111) plane, (200) plane, and (220) plane of the copper crystal can be obtained using an X-ray diffractometer, and the average crystallite diameter D can be calculated according to the following equation 1. ..
  • the average ratio D / D 50 for the particle diameter D 50 of D which is one of the present invention, It can be 0.10 or more and 0.50 or less. Due to such a large D / D 50 , this copper powder exhibits a high sintering start temperature.
  • a method wet method in which a solution or suspension of a copper salt such as copper chloride, copper hydroxide, copper sulfate, or copper nitrate is treated with a reducing agent. ..
  • a reducing agent such as copper chloride, copper hydroxide, copper sulfate, or copper nitrate.
  • Average circularity Copper particles of copper powder are close to a true sphere in shape. More specifically, the average circularity of the copper powder, that is, the average circularity C of the copper particles is, for example, 0.85 or more and 0.95 or less, or 0.87 or more and 0.95 or less.
  • the average circularity is one of the parameters representing the shape of each particle contained in the powder, and the image obtained by observing the powder under a microscope is analyzed, and the circularity C is obtained for a plurality of (for example, 500) particles. Is calculated and averaged. Circularity C is expressed by the following equation.
  • A is the perimeter of the projection plane of each particle in the microscope image
  • B is the perimeter of a circle having an area equal to the area of the projection plane. Due to the high average circularity, the copper powder exhibits high filling properties. Therefore, by using this copper powder, it is possible to form high-density and low-resistance electrodes and wiring.
  • the copper powder which is one of the embodiments of the present invention, has a highly controlled degassing behavior during sintering, and as a result, the structure is clearly defined by sintering as described later. It is possible to give a copper film.
  • the method for evaluating the degassing behavior is not limited, but a method called a throughput method or a conductance method can be used. In this method, the copper powder is heated in a depressurized chamber at a constant temperature rise rate in a predetermined temperature range, and the amount of desorbed gas is estimated based on the pressure change in the chamber.
  • a stage on which copper powder is placed under reduced pressure is placed at a constant temperature rising rate (for example, 30 ° C./min) in a predetermined temperature range (for example, 60 ° C. to 950 ° C.).
  • a predetermined temperature range for example, 60 ° C. to 950 ° C.
  • the desorbed gas can be analyzed by a mass spectrometer, whereby the desorbed gas can be identified and its composition ratio can be determined.
  • the desorbed gas include water, hydrogen, carbon dioxide, carbon monoxide, nitrogen, hydrogen cyanide and the like. Since nitrogen and carbon monoxide have the same molecular weight, they are evaluated as a mixed gas.
  • Copper powder which is one of the embodiments of the present invention, shows a degassing peak at a relatively low temperature.
  • the degassing peak temperature is a temperature at which a peak is observed in the plot of the amount of degassed gas with respect to the temperature or the heating time when the copper powder is heated at a constant heating rate.
  • the degassing peak of the copper powder when heated from 60 ° C. to 950 ° C. at a heating rate of 30 ° C./min is observed at 150 ° C. or higher and 300 ° C. or lower, or 150 ° C. or higher and 260 ° C. or lower.
  • 1 / W 0 ) is 0.6% by weight or less, preferably 0.4% by weight or less, and more preferably 0.3% by weight or less.
  • W 1 / W 0 may be 0.1% by weight or more.
  • the copper powder which is one of the embodiments of the present invention, is produced by surface-stabilizing the primary powder obtained by the vapor phase growth method. Therefore, the copper particles contain a trace amount of carbon derived from the surface treatment agent on the surface thereof.
  • the carbon concentration in the copper powder is, for example, 0.04% by weight or more and 1.00% by weight or less, 0.04% by weight or more and 0.90% by weight or less, or 0.04% by weight or more and 0.80% by weight or less. is there.
  • the carbon concentration in the copper powder can be measured by using, for example, the combustion / infrared absorption method.
  • the carbon concentration may be measured by a method compliant with JIS H1617, JIS Z2615, and ASTM E1941.
  • carbon dioxide is generated from carbon in the copper powder by burning the copper powder in a combustion furnace under an oxygen stream.
  • the generated carbon dioxide is introduced into an infrared analyzer using oxygen gas, and its absorption is measured with a detector to determine the concentration of carbon dioxide.
  • the carbon concentration in the copper powder is quantified from this carbon dioxide concentration.
  • the copper powder of the present embodiment contains a small amount of carbon on the surface of the copper particles, so that the sintering start temperature of the copper powder can be significantly improved. Further, by controlling the residual carbon concentration, it is possible to control the sintering start temperature. Specifically, it is possible to provide a copper powder having a sintering start temperature of 450 ° C. or higher or 740 ° C. or higher.
  • the method for evaluating the sintering start temperature is not limited, but for example, the shrinkage rate of pellets containing copper powder is measured by thermomechanical analysis, and the temperature at which the shrinkage rate reaches a constant value (for example, 5%) is determined. Can be adopted.
  • the method for producing copper powder which is one of the embodiments of the present invention, includes a surface stabilization treatment of primary particles, and further includes a treatment for reducing chlorine components and oxygen components. it can.
  • This manufacturing method does not need to include a step that causes contamination of transition metals such as aluminum, titanium, zirconium, and cerium, or impurities such as silicon. Therefore, the copper powder is substantially free of these impurities that can adversely affect the electrical properties of the copper film formed by sintering.
  • the concentration of the above-mentioned element is preferably less than the detection limit value in the elemental analysis measurement using, for example, inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • the term "less than the detection limit" in the present invention means that aluminum is less than 1 ppm, silicon is less than 1 ppm, titanium is less than 10 ppm, and zirconium is less than 1 ppm.
  • the high sintering start temperature of the copper powder according to the present embodiment improves the reliability and yield of the electronic components when the copper powder is used as a material for electrodes, other wirings, and terminals of electronic components such as MLCCs. Contributes greatly to. Such characteristics are particularly remarkable when used as an electrode material for MLCCs. The reason for this is as follows. As the MLCC becomes smaller, the electrodes are required to be thinner, and for this purpose, reducing the average particle size of the copper powder is one of the effective methods. However, as the average particle size of the copper powder decreases, the specific surface area increases, so that the sintering start temperature decreases.
  • MLCC is produced by alternately applying a dispersion containing a dielectric and a dispersion containing a copper powder and then heating the mixture to sinter the copper powder and the dielectric.
  • the sintering start temperature of the copper powder The decrease causes an increase in the difference in the sintering start temperature between the copper powder and the dielectric, and as a result, a large difference occurs in the sintering start time between the copper powder and the dielectric. Therefore, the copper powder shrinks due to sintering before the dielectric starts sintering, and a gap is generated between the electrode formed by sintering the copper powder and the dielectric, which is caused by this gap. Peeling occurs between the electrode and the dielectric film.
  • the copper powder which is one of the embodiments of the present invention, has a high sintering start temperature even though it has a small average particle diameter D 50 , so that the difference between the sintering start temperature and the dielectric is small. As a result, peeling of the electrode during sintering can be suppressed. Therefore, by using this copper powder, it is possible to provide a highly reliable MLCC with a high yield.
  • the copper powder according to the present embodiment gives a degassing peak at a relatively low temperature, and the amount of gas degassed at 600 ° C. or higher and 950 ° C. or lower is relatively small. Therefore, the degassing peak of the present copper powder is observed at a temperature lower than the sintering start temperature. This means that most of the gas is desorbed before the start of sintering and the process of forming the copper film, and almost no degassing occurs near the sintering start temperature or after sintering. .. Therefore, the generation and deformation of voids due to degassing are prevented, and the shape change before and after sintering is small. Therefore, it is possible to provide a copper film having a controlled structure, that is, a copper film having a well-defined structure.
  • a method for improving the sintering start temperature of copper powder for example, a method of pulverizing molten copper containing silicon or carbon by an atomizing method, aluminum, titanium, zirconium, cerium, tin, or silicon is applied to the surface of copper particles.
  • a method of forming a film containing the mixture, a method of forming a film of silicon oxide on the surface of copper particles, and the like are known.
  • these elements are insulating or have higher electrical resistance than copper, they adversely affect the electrical properties of the copper film obtained by sintering copper powder.
  • the copper powder is formed so that a relatively large amount of these elements are contained inside or on the surface of the copper particles, a large amount of gas is desorbed at the time of sintering, so that voids are generated due to degassing and the copper film is formed. It is difficult to prevent deformation.
  • the copper powder which is one of the embodiments of the present invention, contains a trace amount of carbon derived from the surface treatment agent, but the above-mentioned contents of the transition metal and silicon are negligible. Therefore, the copper film obtained by sintering exhibits high conductivity. This means that this copper powder can be used as an effective material for thinning and miniaturizing various functional elements such as MLCCs, and for wiring and terminal miniaturization of electronic components.
  • Example 1 Spherical copper was installed in the chlorination furnace, and the chlorination furnace was heated to 900 ° C. At this temperature, a mixed gas of chlorine gas and nitrogen gas was supplied from chlorine introduction pipes (hereinafter referred to as upper introduction pipe and lower introduction pipe, respectively) connected to the upper part and the lower part of the chloride furnace.
  • the volume ratio of the chlorine gas and nitrogen gas in the mixed gas introduced through the upper inlet (V Cl2: V N2) is 29:61
  • the chlorine gas and nitrogen gas in the mixed gas introduced through the lower inlet pipe volume ratio (V Cl2: V N2) was 2:98.
  • the volume ratio (V u : V l ) of the mixed gas introduced through the upper introduction pipe and the mixed gas introduced through the lower introduction pipe was 1: 0.17.
  • Copper chloride gas generated by the reaction of metallic copper and chlorine is led to a reduction furnace heated to 1150 ° C., and hydrogen is added so that hydrogen gas and nitrogen gas are 4600 mol% and 24600 mol%, respectively, with respect to the copper chloride gas. Gas and nitrogen gas were introduced into the reduction furnace. The copper powder obtained by the reaction of copper chloride gas and hydrogen gas was cooled with nitrogen gas to obtain a primary copper powder.
  • the obtained primary powder was treated to reduce chlorine and oxygen components.
  • the oxygen component was reduced by using a 40% by weight sodium hydroxide aqueous solution and a 10% by weight ascorbic acid aqueous solution with respect to the primary powder.
  • Reference example 1 The copper powder was prepared under the same conditions as in Example 1 except that the concentration of the aqueous solution of benzotriazole when the copper powder was surface-treated was 0.33% by weight.
  • Comparative Example 1 The copper powder of Comparative Example 1 was prepared by using the wet reduction method disclosed in Patent Document 3.
  • Evaluation Example 1 Reference Examples 1 and 2, and Comparative Example 1 copper powder average particle size D 50 , average crystallite diameter D, average circularity, sintering start temperature, carbon concentration, and aluminum, silicon, titanium , And the concentration of zirconium was measured. Furthermore, the throughput method was applied to evaluate the degassing behavior.
  • the average particle size D 50 was measured as follows. Using a scanning electron microscope (SEM: Hitachi High-Technologies Co., Ltd., SU5000, the same applies hereinafter), image analysis of 500 copper particles existing in one field of view of the SEM image of copper powder at a magnification of 15,000 times. The analysis was performed using software (Macview 4.0 manufactured by Mountech Co., Ltd.). The average particle size D 50 was calculated from the particle size of each copper particle obtained by this analysis.
  • the average crystallite diameter D is the (111) plane of the copper crystal obtained by CuK ⁇ rays generated under the conditions of an acceleration voltage of 45 kV and a discharge current of 40 mA using an X-ray diffractometer (X'PertPro manufactured by Spectris Co., Ltd.). , (200) plane, (220) plane, half-value width of the diffraction peak and Scherrer's formula.
  • the average circularity was measured as follows. Using SEM, about 500 copper particles existing in one field of view of an SEM image at a magnification of 15,000 were analyzed using image analysis software (Macview 4.0 manufactured by Mountech Co., Ltd.), and about 500 copper particles were analyzed. The circularity C was obtained, and the average value, that is, the average circularity was calculated.
  • the degassing behavior was evaluated using a heated degassing gas analyzer (manufactured by Electronic Science Co., Ltd., TDS-1200). Specifically, copper powder (0.6 mg) was placed on quartz glass installed in the chamber of the temperature-temperature desorption gas analyzer. The inside of the chamber was depressurized to 2 ⁇ 10 -7 Pa using a turbo molecular pump, and then heated from room temperature to 950 ° C. The temperature rise during heating was 30 ° C./min. While monitoring the pressure in the chamber during heating with a vacuum gauge, the discharged gas was analyzed using a mass spectrometer. The amount of gas desorbed was estimated from the pressure change in the chamber.
  • the amount of gas desorbed from the copper powder was quantified by heating the chamber under the same conditions in the absence of the copper powder and subtracting the amount of gas desorbed as a blank. ..
  • the composition of the desorbed gas was calculated using a mass spectrometer.
  • the sintering start temperature was determined by the following method. Copper powder was filled into a cylindrical cylinder having a diameter of 5 mm and a height of about 40 mm. The punch was pushed in from the upper part of the housing and pressed at 0.87 ton / cm 2 for 10 seconds to form a copper powder into a columnar shape having a height of about 5 mm. This molded product was arranged so that the long axis was in the vertical direction, and was heated in a heating furnace while applying a load of 98.0 mN in the long axis direction. Heating was carried out from room temperature to 1000 ° C.
  • thermomechanical analysis curve Based on this thermomechanical analysis curve, the temperature at which the height change (shrinkage) of the molded product started and the shrinkage rate reached 5% was adopted as the sintering start temperature.
  • the carbon concentration was measured by a combustion / infrared absorption method using a carbon / sulfur analyzer (EMIA-920V2 manufactured by HORIBA, Ltd.).
  • the concentrations of aluminum, silicon, titanium, and zirconium were measured using an ICP emission spectrophotometer (SPS3100) manufactured by SII Nanotechnology Co., Ltd. Specifically, about 1.0 g of copper powder was added to a mixed solution of ultrapure water (30 mL), nitric acid (10 mL), and hydrochloric acid (10 mL), and dissolved while heating using a hot plate. After cooling the obtained solution to room temperature, pure water was added to make the total volume 100 mL, and ICP emission spectroscopic analysis was performed using this. The concentrations of aluminum, silicon, titanium, and zirconium were evaluated using emission wavelengths of 396.15 nm, 251.61 nm, 334.94 nm, and 339.20 nm, respectively.
  • SPS3100 ICP emission spectrophotometer
  • the evaluation results are summarized in Table 1.
  • the copper powder of Example 1 is produced by the vapor phase growth method, and therefore, the average particle diameter D 50 is small and the average crystallite diameter D is large. The result is a large D / D 50 . This result is in contrast to the result of the copper powder of Comparative Example 1 produced by the wet method. Further, as compared with Comparative Example 1, the copper powder of Example 1 has a higher average circularity.
  • Example 1 As shown in Table 1, it was confirmed that the copper powders of Examples 1 and Reference Examples 1 and 2 contained carbon at a concentration of 0.04% by weight or more and 1.00% by weight or less. Comparing Example 1, Reference Example 1, and Reference Example 2, it can be seen that the carbon concentration increases as the concentration of the aqueous solution containing the surface treatment agent increases. This indicates that the carbon concentration can be controlled by the concentration of the solution or suspension containing the surface treatment agent.
  • Example 1 and Reference Examples 1 and 2 From the results of Example 1 and Reference Examples 1 and 2, it was found that the sintering start temperature increases as the carbon concentration increases. In particular, it is noteworthy that even the copper powder of Reference Example 1 having a carbon concentration of only 0.04% by weight shows a high starting temperature of 450 ° C. or higher. On the other hand, it was found that the copper powder of Comparative Example 1 having a carbon concentration of 0.19% by weight had a lower sintering start temperature than Reference Example 1 and was less than 400 ° C. It was. The concentrations of aluminum, silicon, titanium, and zirconium in the copper powders of Example 1, Reference Examples 1 and 2, and Comparative Example 1 were all below the detection limit.
  • the sintering start temperature does not simply depend on the carbon concentration, but the ratio of the average crystallite diameter D to the average particle size D 50 (D / D 50 ) has a large effect, and D / D 50 is 0. It is considered that the temperature of .10 or more also contributes to the increase in the sintering start temperature. It is presumed that this is probably because the larger the D / D 50, the higher the proportion of copper present in the crystalline state.
  • the copper powder of Example 1 not only showed a degassing peak temperature below the sintering start temperature, but also had a temperature difference of 300 ° C. or more (Table 1). This suggests that degassing is almost complete before sintering begins. Therefore, a large amount of gas is not desorbed in the process of sintering progressing and the film is formed, and by using the copper powders of Examples 1 to 3, voids are formed in the copper film and the copper thin film is formed. It can be said that deformation can be suppressed.
  • the copper powder of Comparative Example 1 although the peak temperature of degassing was lower than the sintering start temperature, the difference was found to be as small as about 240 ° C.
  • the ratio (W 1 / W 0 ) of the amount of desorbed gas at 600 ° C. or higher and 950 ° C. or lower to the total amount of gas desorbed by heating at 60 ° C. or higher and 950 ° C. or lower is significantly larger in Example 1 than in Comparative Example 1. It is understood from Table 1 that it is very low. From this, when the copper powder of Example 1 is sintered, a large amount of gas is not desorbed in the process of forming the film, and void generation and deformation of the copper film are effectively prevented. It can be said that it is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

This copper powder is configured such that the average particle diameter D50 is 100-500 nm, the sintering start temperature is 450°C or higher, and the peak degassing temperature is 150-300°C. The copper powder may be configured such that the ratio (W1/W0) of the total amount of gas (W1), which is desorbed at a temperature range between 600°C and 950°C, to the total amount of gas (W0), which is desorbed at a temperature range of 60-950°C, is 0.6 wt% or less. The ratio D/D50 of the average crystallite diameter (D) of the copper powder to the average particle diameter (D50) may be 0.10 to 0.50.

Description

銅粉体とその製造方法Copper powder and its manufacturing method
 本発明の実施形態の一つは、銅粉体、および銅粉体の製造方法に関する。 One of the embodiments of the present invention relates to copper powder and a method for producing copper powder.
 微細な金属粒子の集合体である金属粉体や金属粉体を含むペーストは、低温同時焼成セラミックス(LTCC)基板の配線や端子、積層セラミックコンデンサ(MLCC)の内部電極や外部電極など、各種電子部品を製造するための原材料として幅広く利用されている。特に銅粉体は、銅の高い導電性に起因し、MLCCの内部電極の薄膜化や外部電極の小型が可能であること、周波数特性の大幅な改善が可能であることから、従来多用されてきたニッケル粉体や銀粉体に替わる材料として期待されている(特許文献1から5参照)。 Metal powder, which is an aggregate of fine metal particles, and paste containing metal powder are various electrons such as wiring and terminals of low-temperature simultaneous firing ceramics (LTCC) substrate, internal electrodes and external electrodes of multilayer ceramic capacitors (MLCC). It is widely used as a raw material for manufacturing parts. In particular, copper powder has been widely used in the past because of the high conductivity of copper, which enables thinning of the internal electrode of MLCC, miniaturization of the external electrode, and significant improvement of frequency characteristics. It is expected as a material to replace nickel powder and silver powder (see Patent Documents 1 to 5).
特開2015-36439号公報JP-A-2015-36439 国際公開第2015/137015号International Publication No. 2015/137015 特開2018-076597号公報JP-A-2018-076597 特開2016-108649号公報Japanese Unexamined Patent Publication No. 2016-108649 特開2004-211108号公報Japanese Unexamined Patent Publication No. 2004-211108
 本発明の実施形態の一つは、銅粉体、および銅粉体の製造方法を提供することを課題の一つとする。例えば本発明の実施形態の一つは、高い焼結開始温度を有し、焼結時における脱ガス挙動が制御された銅粉体、およびその製造方法を提供することを課題の一つとする。 One of the objects of the embodiment of the present invention is to provide a copper powder and a method for producing the copper powder. For example, one of the embodiments of the present invention is to provide a copper powder having a high sintering start temperature and controlled degassing behavior during sintering, and a method for producing the same.
 本発明に係る実施形態の一つは、銅粉体である。この銅粉体は、平均粒径D50が100nm以上500nm以下であり、焼結開始温度が450℃以上であり、脱ガスピーク温度が150℃以上300℃以下である。 One of the embodiments according to the present invention is copper powder. This copper powder has an average particle size D 50 of 100 nm or more and 500 nm or less, a sintering start temperature of 450 ° C. or more, and a degassing peak temperature of 150 ° C. or more and 300 ° C. or less.
 本発明に係る実施形態の一つは、銅粉体の製造方法である。この製造方法は、金属銅と塩素含有ガスとの反応により塩化銅ガスを生成すること、塩化銅ガスと還元性ガスとの反応により銅を含む一次粉体を生成すること、および一次粉体を含窒素ヘテロ芳香族化合物で処理することを含む。 One of the embodiments according to the present invention is a method for producing copper powder. In this production method, copper chloride gas is produced by the reaction of metallic copper and a chlorine-containing gas, primary powder containing copper is produced by the reaction of copper chloride gas and a reducing gas, and the primary powder is produced. Includes treatment with nitrogen-containing heteroaromatic compounds.
 本発明に係る実施形態の一つに係る銅粉体は、高い焼成開始温度を示すのみならず、焼結時において脱離するガスが少ない。このため、本銅粉体は、焼結によって構造が明確に定義された銅膜を与えることが可能であり、MLCCなどの各種機能性素子の薄膜化や小型化、電子部品の配線や端子の微細化などに寄与することができる。 The copper powder according to one of the embodiments according to the present invention not only exhibits a high firing start temperature, but also has a small amount of gas desorbed during sintering. For this reason, this copper powder can provide a copper film whose structure is clearly defined by sintering, making various functional elements such as MLCCs thinner and smaller, and wiring and terminals for electronic components. It can contribute to miniaturization and the like.
本発明の実施形態の一つに係る、銅粉体を製造するためのフロー。A flow for producing copper powder according to one of the embodiments of the present invention.
 以下、本発明の各実施形態について、図面等を参照しつつ説明する。本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態や実施例の記載内容に限定して解釈されるものではない。図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。 Hereinafter, each embodiment of the present invention will be described with reference to drawings and the like. The present invention can be carried out in various aspects without departing from the gist thereof, and is not construed as being limited to the description contents of the embodiments and examples illustrated below. The drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual embodiment in order to clarify the explanation, but this is merely an example and the interpretation of the present disclosure is limited. It's not something to do.
1.銅粉体の製造方法
 本発明の実施形態の一つは、複数の銅粒子を含む銅粉体である。本銅粉体を製造する方法の一例を図1に示すフローを用いて説明する。ここでは、いわゆる気相成長法を利用する銅粉体の製造方法について述べるが、銅粉体の製造方法は気相成長法に限られず、湿式法やプラズマ法などを利用して銅粉体を製造してもよい。
1. 1. Method for Producing Copper Powder One of the embodiments of the present invention is a copper powder containing a plurality of copper particles. An example of the method for producing the present copper powder will be described with reference to the flow shown in FIG. Here, a method for producing copper powder using the so-called vapor phase growth method will be described, but the method for producing copper powder is not limited to the vapor phase growth method, and the copper powder is produced by using a wet method, a plasma method, or the like. It may be manufactured.
1-1.塩化銅の生成
 まず、金属銅を塩素ガスと反応させることで塩化銅ガスを生成する。この方法は、塩化銅よりも安価な金属銅を用いることができる点でコスト的に優位であるのみならず、塩化銅ガスの供給量を安定化させることができる。具体的な塩化銅ガスの製造方法としては、金属銅をその融点以下(例えば800℃以上1000℃以下)で塩素ガスと反応させることによって塩化銅ガスを生成させる。塩素ガスは、実質的に塩素のみを含有するものであっても良く、希釈用の不活性ガスを含有する塩素と希釈用の不活性ガスの混合ガスであってもよい。混合ガスを用いることで、金属銅と反応させる塩素の量を容易に、かつ精密に制御することが可能となる。
1-1. Production of copper chloride First, copper chloride gas is produced by reacting metallic copper with chlorine gas. This method is not only cost-effective in that metallic copper, which is cheaper than copper chloride, can be used, but also can stabilize the supply amount of copper chloride gas. As a specific method for producing copper chloride gas, copper chloride gas is produced by reacting metallic copper with chlorine gas at a melting point or lower (for example, 800 ° C. or higher and 1000 ° C. or lower). The chlorine gas may be a gas containing substantially only chlorine, or may be a mixed gas of chlorine containing an inert gas for dilution and an inert gas for dilution. By using the mixed gas, it is possible to easily and precisely control the amount of chlorine that reacts with metallic copper.
1-2.塩化銅の還元
 生成した塩化銅ガスを還元性ガスと反応させて銅粉体を生成させる。還元性ガスとしては、例えば水素やヒドラジン、アンモニア、メタンなどを用いることができる。還元性ガスは、塩化銅ガスに対して化学量論量以上用いることができる。例えば、塩化銅ガスがすべて一価の銅の塩化物からなり、還元性ガスが水素の場合、還元性ガスの導入量は塩化銅ガスに対して50モル%以上10000モル%以下、500モル%以上10000モル%以下、あるいは1000モル%以上10000モル%以下とすることができる。この反応によって、塩化銅は還元されて銅になり、銅元素は銅粒子に成長して、集合体としての銅粉体となる。この還元反応で生成する銅粉体を以下、一次粉体と呼ぶ。
1-2. Reduction of Copper Chloride The produced copper chloride gas is reacted with the reducing gas to produce copper powder. As the reducing gas, for example, hydrogen, hydrazine, ammonia, methane and the like can be used. The reducing gas can be used in a stoichiometric amount or more with respect to the copper chloride gas. For example, when the copper chloride gas is entirely composed of monovalent copper chloride and the reducing gas is hydrogen, the amount of the reducing gas introduced is 50 mol% or more and 10000 mol% or less, 500 mol% with respect to the copper chloride gas. It can be 10000 mol% or more, or 1000 mol% or more and 10000 mol% or less. By this reaction, copper chloride is reduced to copper, and the copper element grows into copper particles to become copper powder as an aggregate. The copper powder produced by this reduction reaction is hereinafter referred to as a primary powder.
1-3.塩素成分の低減
 上記の製造方法によって得られた一次粉体に対して塩基の水溶液あるいは懸濁液で処理することで、塩素成分の低減を行っても良い。
1-3. Reduction of Chlorine Component The chlorine component may be reduced by treating the primary powder obtained by the above production method with an aqueous solution or suspension of a base.
1-4.酸素成分の低減
 上記の製造方法によって得られた一次粉体に対し、酸素成分の低減のために、アスコルビン酸やヒドラジン、クエン酸などを含む溶液、または懸濁液を洗浄液として用いて処理した後、水で洗浄し、ろ過、乾燥を行っても良い。
1-4. Reduction of oxygen component After treating the primary powder obtained by the above production method with a solution or suspension containing ascorbic acid, hydrazine, citric acid, etc. as a cleaning solution in order to reduce the oxygen component. , It may be washed with water, filtered and dried.
1-5.表面処理
 上記の製造方法によって得られた一次粉体に対して、所定の表面処理を行っても良い。表面処理剤としては、ベンゾトリアゾールとその誘導体、トリアゾールとその誘導体、チアゾールとその誘導体、ベンゾチアゾールとその誘導体、イミダゾールとその誘導体、およびベンズイミダゾールとその誘導体などの含窒素ヘテロ芳香族化合物などを使用することができる。
1-5. Surface treatment A predetermined surface treatment may be applied to the primary powder obtained by the above production method. As the surface treatment agent, benzotriazole and its derivative, triazole and its derivative, thiazole and its derivative, benzothiazole and its derivative, imidazole and its derivative, and nitrogen-containing heteroaromatic compounds such as benzimidazole and its derivative are used. can do.
1-6.その他の処理
 上記の製造方法によって得られた銅粉体に対して、乾燥、分級、解砕、篩別などの処理を行ってもよい。分級は乾式分級でも湿式分級でも良く、乾式分級では、気流分級、重力場分級、慣性力場分級、遠心力場分級など、任意の方式を採用できる。湿式分級においても同様に、重力場分級や遠心力場分級などの方式を採用することができる。解砕は、例えばジェットミルを用いて行うことができる。篩別は、所望のメッシュサイズを有する篩を振動させ、これに銅粉体を通過させることで行うことができる。分級、解砕、篩別処理を行うことで、銅粉体の粒子径分布をより小さくすることが可能である。
1-6. Other Treatments The copper powder obtained by the above production method may be subjected to treatments such as drying, classification, crushing, and sieving. The classification may be dry classification or wet classification, and in the dry classification, any method such as air flow classification, gravitational field classification, inertial force field classification, and centrifugal force field classification can be adopted. Similarly, in wet classification, methods such as gravitational field classification and centrifugal force field classification can be adopted. Crushing can be performed using, for example, a jet mill. Sieve separation can be performed by vibrating a sieve having a desired mesh size and passing copper powder through the sieve. By performing classification, crushing, and sieving, the particle size distribution of copper powder can be made smaller.
2.銅粉体の特性
2-1.粒子径
 以上の工程により製造される銅粉体は、気相成長法によって一次粉体が生成されることに起因して平均粒子径が小さく、その分布も狭い。ここで銅粉体の平均粒子径とは、銅粉体の体積基準の粒子径ヒストグラムにおける累積頻度が50%になるときの粒子径のことをいう。銅粉体の体積基準の粒子径とは、銅粉体に含まれる各粒子の体積で重みづけられた粒子径である。以下の式で表されるように、粒子径di(iは1からkの自然数、i≦k)を有する粒子の総体積を粉体体に含まれる全粒子の総体積で除すことで、粒子径diを有する粒子の頻度Fが得られる。この頻度Fを累積し、50%となるときの粒子径がメジアン径D50である。ここでは、平均粒子径もD50として表記する。
2. Characteristics of copper powder 2-1. The copper powder produced by the steps having a particle size or larger has a small average particle size and a narrow distribution due to the production of the primary powder by the vapor phase growth method. Here, the average particle size of the copper powder means the particle size when the cumulative frequency in the volume-based particle size histogram of the copper powder becomes 50%. The volume-based particle size of the copper powder is a particle size weighted by the volume of each particle contained in the copper powder. As expressed by the following formula, the total volume of particles having a particle size di (i is a natural number from 1 to k, i ≦ k) is divided by the total volume of all particles contained in the powder body. The frequency F of the particles having the particle size di is obtained. The particle size when the frequency F is accumulated and reaches 50% is the median diameter D 50 . Here, the average particle size is also expressed as D 50.
Figure JPOXMLDOC01-appb-M000001
 ここでViは、粒子径diを有する銅粒子の体積であり、niは粒子径diを有する銅粒子の個数である。
Figure JPOXMLDOC01-appb-M000001
Here, Vi is the volume of copper particles having a particle size di, and ni is the number of copper particles having a particle size di.
 以下に、体積Viおよび粒子径diの算出方法について説明する。銅粉体を光学顕微鏡や電子顕微鏡で観察した顕微鏡写真において、輪郭が確認された銅粒子(例えば100個から10000個、典型的には500個)を目視観察する。次いで、目視観察された銅粒子の表面積Siから、その表面積と同じ面積を有する想定円の直径としてその銅粒子の粒子径を算出する、具体的には、下式により、粒子径diを算出する。
              Si=π(di)2
The method of calculating the volume Vi and the particle size di will be described below. In a micrograph of copper powder observed with an optical microscope or an electron microscope, copper particles having confirmed contours (for example, 100 to 10,000, typically 500) are visually observed. Next, the particle size of the copper particles is calculated as the diameter of an assumed circle having the same area as the surface area from the visually observed surface area Si of the copper particles. Specifically, the particle size di is calculated by the following formula. ..
Si = π (di) 2
 次いで、算出された粒子径diから、下式により、銅粒子の体積Viを算出する。
            Vi=4π(di/2)3/3
Next, the volume Vi of the copper particles is calculated from the calculated particle diameter di by the following formula.
Vi = 4π (di / 2) 3/3
 本発明の実施形態の一つである銅粉体の平均粒子径D50は、具体的には100nm以上500nm以下、100nm以上300nm以下、または100nm以上200nm以下である。この範囲を満たす本銅粉体を焼結することで、厚さの小さい金属膜を与えることができるため、例えばMLCCの電極の薄膜化、その他電子部品の配線や端子の微細化などに寄与することができる。また、銅粒子の凝集を抑制することができ、このことは銅粉体の取り扱いを容易にする。銅粉体の平均粒子径D50は、金属銅の塩化時の温度、塩素ガスの流量、塩素ガスと希釈ガスの比率、塩化銅の還元時の温度、塩化銅ガスと還元性ガスの流量比などの条件を適宜設定することで、上述した範囲で制御することができる。 The average particle size D 50 of the copper powder, which is one of the embodiments of the present invention, is specifically 100 nm or more and 500 nm or less, 100 nm or more and 300 nm or less, or 100 nm or more and 200 nm or less. By sintering this copper powder that satisfies this range, a metal film with a small thickness can be provided, which contributes to, for example, thinning of MLCC electrodes and miniaturization of wiring and terminals of other electronic components. be able to. In addition, agglomeration of copper particles can be suppressed, which facilitates the handling of copper powder. The average particle size D 50 of copper powder is the temperature at the time of chloride of metallic copper, the flow rate of chlorine gas, the ratio of chlorine gas and diluted gas, the temperature at the time of reduction of copper chloride, and the flow rate ratio of copper chloride gas and reducing gas. By appropriately setting such conditions, control can be performed within the above-mentioned range.
2-2.平均結晶子径
 本発明の実施形態の一つである銅粉体は、気相成長法によって一次粉体が生成されることに起因して平均結晶子径Dが大きいことが一つの特徴である。ここで、結晶子とは単結晶とみなせる領域の長さを表す指標である。個々の銅粒子は、単一、または複数の結晶子を有している。平均結晶子径Dは、銅粉体に対してX線回折の測定によって得られる各種パラメータ(使用するX線の波長λ、回折X線の広がりの半値幅β、ブラッグ角θ)を、以下に示すシェラーの式(式1)に代入して計算することで得られる。ここで、Kはシェラー定数である。例えば、X線回折装置を用いて銅結晶の(111)面、(200)面、(220)面の回折ピークの半値幅を求め、下記式1に従って平均結晶子径Dを算出することができる。平均結晶子径Dは、個々の銅粒子の結晶子の大きさを反映したパラメータである。
       D=(K×λ)/(β×cosθ)・・・式1
2-2. Average crystallite diameter One of the features of the copper powder, which is one of the embodiments of the present invention, is that the average crystallite diameter D is large due to the production of the primary powder by the vapor phase growth method. .. Here, the crystallite is an index showing the length of a region that can be regarded as a single crystal. Each copper particle has a single crystallite or multiple crystallites. The average crystallite diameter D includes various parameters (wavelength λ of X-rays used, half-value width β of spread of diffracted X-rays, Bragg angle θ) obtained by measuring X-ray diffraction with respect to copper powder. It can be obtained by substituting into the Scherrer's equation (Equation 1) shown. Here, K is a Scheller constant. For example, the half width of the diffraction peaks of the (111) plane, (200) plane, and (220) plane of the copper crystal can be obtained using an X-ray diffractometer, and the average crystallite diameter D can be calculated according to the following equation 1. .. The average crystallite diameter D is a parameter that reflects the crystallite size of each copper particle.
D = (K × λ) / (β × cos θ) ・ ・ ・ Equation 1
 小さい平均粒子径D50と大きな平均結晶子径Dに起因し、本発明の実施形態の一つである銅粉体の平均結晶子径Dの平均粒子径D50に対する比D/D50は、0.10以上0.50以下とすることができる。このような大きなD/D50に起因し、本銅粉体は高い焼結開始温度を示す。なお、銅粉体の製造方法の一つとして、塩化銅や水酸化銅、硫酸銅、あるいは硝酸銅などの銅塩の溶液または懸濁液を還元剤で処理する方法(湿式法)が挙げられる。しかしながら、湿式法ではこのような大きなD/D50を得ることは困難である。この理由としては、気相成長法では高温で銅粒子が成長すること、成長した銅粒子を窒素ガスなどを用いて急速に冷却することで粒子の成長を停止できることなどが挙げられる。 Due to the small average particle size D 50 and larger average crystallite diameter D, embodiment copper powder average crystallite diameter The average ratio D / D 50 for the particle diameter D 50 of D which is one of the present invention, It can be 0.10 or more and 0.50 or less. Due to such a large D / D 50 , this copper powder exhibits a high sintering start temperature. As one of the methods for producing copper powder, there is a method (wet method) in which a solution or suspension of a copper salt such as copper chloride, copper hydroxide, copper sulfate, or copper nitrate is treated with a reducing agent. .. However, it is difficult to obtain such a large D / D 50 by the wet method. The reason for this is that in the vapor phase growth method, copper particles grow at a high temperature, and the growth of the grown copper particles can be stopped by rapidly cooling the grown copper particles with nitrogen gas or the like.
2-3.平均円形度
 銅粉体の銅粒子は、その形状が真球に近い。より具体的には、銅粉体の平均円形度すなわち銅粒子の円形度Cの平均は、例えば0.85以上0.95以下、または0.87以上0.95以下である。平均円形度とは、粉体に含まれる各粒子の形状を表すパラメータの一つであり、粉体を顕微鏡観察して得られる画像を解析し、複数の(例えば500個)粒子について円形度Cを求め、それを平均した値である。円形度Cは、以下の式によって表される。ここで、Aは顕微鏡像中における各粒子の投影面の周囲長、Bはこの投影面の面積と等しい面積の円の周囲長である。高い平均円形度に起因し、銅粉体は高い充填性を示す。このため、本銅粉体を用いることで、密度が高く、低抵抗な高い電極や配線を形成することができる。
2-3. Average circularity Copper particles of copper powder are close to a true sphere in shape. More specifically, the average circularity of the copper powder, that is, the average circularity C of the copper particles is, for example, 0.85 or more and 0.95 or less, or 0.87 or more and 0.95 or less. The average circularity is one of the parameters representing the shape of each particle contained in the powder, and the image obtained by observing the powder under a microscope is analyzed, and the circularity C is obtained for a plurality of (for example, 500) particles. Is calculated and averaged. Circularity C is expressed by the following equation. Here, A is the perimeter of the projection plane of each particle in the microscope image, and B is the perimeter of a circle having an area equal to the area of the projection plane. Due to the high average circularity, the copper powder exhibits high filling properties. Therefore, by using this copper powder, it is possible to form high-density and low-resistance electrodes and wiring.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
2-4.脱ガス挙動
 本発明の実施形態の一つである銅粉体は、焼結時における脱ガス挙動が高度に制御されており、その結果、後述するように、焼結によって構造が明確に定義された銅膜を与えることが可能である。脱ガス挙動を評価する方法に限定はないが、スループット法、またはコンダクタンス法と呼ばれる方法を用いることができる。この方法では、減圧されたチャンバー内で所定の温度範囲において一定の昇温速度で銅粉体を加熱し、チャンバー内の圧力変化に基づいて脱離したガスの量が見積もられる。例えば昇温脱離ガス分析(TDS)装置を用い、減圧下で銅粉を載置したステージを所定の温度範囲(例えば60℃から950℃)において一定の昇温速度(例えば30℃/min)で加熱し、圧力変化をモニターする。脱離したガスは質量分析装置で分析することができ、これにより、脱離したガスを同定し、その組成比を求めることができる。脱離するガスとしては、水、水素、二酸化炭素、一酸化炭素、窒素、シアン化水素などが挙げられる。なお、窒素と一酸化炭素は分子量が同一であるため、これらは混合ガスとして評価される。
2-4. Degassing behavior The copper powder, which is one of the embodiments of the present invention, has a highly controlled degassing behavior during sintering, and as a result, the structure is clearly defined by sintering as described later. It is possible to give a copper film. The method for evaluating the degassing behavior is not limited, but a method called a throughput method or a conductance method can be used. In this method, the copper powder is heated in a depressurized chamber at a constant temperature rise rate in a predetermined temperature range, and the amount of desorbed gas is estimated based on the pressure change in the chamber. For example, using a heated desorption gas analysis (TDS) device, a stage on which copper powder is placed under reduced pressure is placed at a constant temperature rising rate (for example, 30 ° C./min) in a predetermined temperature range (for example, 60 ° C. to 950 ° C.). Heat with and monitor pressure changes. The desorbed gas can be analyzed by a mass spectrometer, whereby the desorbed gas can be identified and its composition ratio can be determined. Examples of the desorbed gas include water, hydrogen, carbon dioxide, carbon monoxide, nitrogen, hydrogen cyanide and the like. Since nitrogen and carbon monoxide have the same molecular weight, they are evaluated as a mixed gas.
 本発明の実施形態の一つである銅粉体は、比較的低い温度で脱ガスピークを示す。ここで脱ガスピーク温度とは、一定の昇温速度で銅粉体を加熱した際、温度または加熱時間に対する脱離したガスの量のプロットにおいてピークが観測される温度である。具体的には、30℃/minの昇温速度で60℃から950℃まで加熱する際の本銅粉体の脱ガスピークは、150℃以上300℃以下、あるいは150℃以上260℃以下に観察される。さらに、60℃以上950℃以下の温度範囲における加熱によって脱離したガスの総量(W0)を基準とすると、600℃以上950℃以下で脱離するガスの量(W1)の比(W1/W0)は、0.6重量%以下、好ましくは0.4重量%以下、より好ましくは0.3重量%以下である。W1/W0は、0.1重量%以上でもよい。これらの特性は、本発明の実施形態の一つである銅粉体では、低い温度(150℃以上300℃以下)で大部分のガスが脱離し、焼結が進行する温度(例えば600℃以上)では脱ガスが大幅に抑制されることを意味する。 Copper powder, which is one of the embodiments of the present invention, shows a degassing peak at a relatively low temperature. Here, the degassing peak temperature is a temperature at which a peak is observed in the plot of the amount of degassed gas with respect to the temperature or the heating time when the copper powder is heated at a constant heating rate. Specifically, the degassing peak of the copper powder when heated from 60 ° C. to 950 ° C. at a heating rate of 30 ° C./min is observed at 150 ° C. or higher and 300 ° C. or lower, or 150 ° C. or higher and 260 ° C. or lower. To. Further, based on the total amount of gas desorbed by heating in the temperature range of 60 ° C. or higher and 950 ° C. or lower (W 0 ), the ratio (W 1 ) of the amount of gas desorbed at 600 ° C. or higher and 950 ° C. or lower (W 1). 1 / W 0 ) is 0.6% by weight or less, preferably 0.4% by weight or less, and more preferably 0.3% by weight or less. W 1 / W 0 may be 0.1% by weight or more. These characteristics show that in copper powder, which is one of the embodiments of the present invention, most of the gas is desorbed at a low temperature (150 ° C or higher and 300 ° C or lower), and sintering proceeds (for example, 600 ° C or higher). ) Means that degassing is significantly suppressed.
2-5.炭素濃度と焼結開始温度
 上述したように、本発明の実施形態の一つである銅粉体は、気相成長法で得られる一次粉体を表面安定化処理することで製造される。このため、銅粒子は、その表面に表面処理剤に由来する微量の炭素を含む。銅粉体中の炭素濃度は、例えば0.04重量%以上1.00重量%以下、0.04重量%以上0.90重量%以下、または0.04重量%以上0.80重量%以下である。
2-5. Carbon Concentration and Sintering Start Temperature As described above, the copper powder, which is one of the embodiments of the present invention, is produced by surface-stabilizing the primary powder obtained by the vapor phase growth method. Therefore, the copper particles contain a trace amount of carbon derived from the surface treatment agent on the surface thereof. The carbon concentration in the copper powder is, for example, 0.04% by weight or more and 1.00% by weight or less, 0.04% by weight or more and 0.90% by weight or less, or 0.04% by weight or more and 0.80% by weight or less. is there.
 銅粉体中の炭素濃度は、例えば燃焼・赤外線吸収法を利用することで測定することができ、この場合、JIS H1617、JIS Z2615、およびASTM E1941に準拠した方法で測定すればよい。具体的には、銅粉体を燃焼炉において酸素気流下で燃焼させることにより、銅粉体中の炭素から二酸化炭素を生成する。生成した二酸化炭素を酸素ガスを用いて赤外線分析計に導入し、その吸収を検出器で測定することで二酸化炭素の濃度を決定する。この二酸化炭素の濃度から銅粉体中の炭素濃度が定量される。 The carbon concentration in the copper powder can be measured by using, for example, the combustion / infrared absorption method. In this case, the carbon concentration may be measured by a method compliant with JIS H1617, JIS Z2615, and ASTM E1941. Specifically, carbon dioxide is generated from carbon in the copper powder by burning the copper powder in a combustion furnace under an oxygen stream. The generated carbon dioxide is introduced into an infrared analyzer using oxygen gas, and its absorption is measured with a detector to determine the concentration of carbon dioxide. The carbon concentration in the copper powder is quantified from this carbon dioxide concentration.
 実施例でも示すように、本実施形態の銅粉体では、微量の炭素が銅粒子表面に含まれることで、銅粉体の焼結開始温度を大幅に向上させることができる。また、残留する炭素濃度を制御することで、焼結開始温度を制御することが可能である。具体的には、450℃以上、あるいは740℃以上の焼結開始温度を有する銅粉体を提供することができる。なお、焼結開始温度の評価方法に限定はないが、例えば銅粉体を含むペレットの熱機械分析による収縮率を測定し、収縮率が一定の値(例えば5%)となるときの温度を採用することができる。 As shown in the examples, the copper powder of the present embodiment contains a small amount of carbon on the surface of the copper particles, so that the sintering start temperature of the copper powder can be significantly improved. Further, by controlling the residual carbon concentration, it is possible to control the sintering start temperature. Specifically, it is possible to provide a copper powder having a sintering start temperature of 450 ° C. or higher or 740 ° C. or higher. The method for evaluating the sintering start temperature is not limited, but for example, the shrinkage rate of pellets containing copper powder is measured by thermomechanical analysis, and the temperature at which the shrinkage rate reaches a constant value (for example, 5%) is determined. Can be adopted.
2-6.不純物濃度
 上述したように、本発明の実施形態の一つである銅粉体の製造方法には、一次粒子の表面安定化処理が含まれ、さらに塩素成分や酸素成分の低減処理を含むことができる。この製造方法では、例えばアルミニウムやチタン、ジルコニウム、セリウムなどの遷移金属、あるいはケイ素などの不純物の混入の原因となる工程を含める必要は無い。したがって銅粉体は、焼結によって形成される銅膜の電気的特性に対して悪影響を及ぼし得るこれらの不純物を実質的に含まない。上述した元素の濃度は、例えば誘導結合プラズマ(ICP)発光分光などを利用する元素分析測定において、検出限界値未満であることが好ましい。なお、本発明における「検出限界値未満」とは、アルミニウムが1ppm未満、ケイ素が1ppm未満、チタンが10ppm未満、ジルコニウムが1ppm未満であることを意味する。
2-6. Impurity Concentration As described above, the method for producing copper powder, which is one of the embodiments of the present invention, includes a surface stabilization treatment of primary particles, and further includes a treatment for reducing chlorine components and oxygen components. it can. This manufacturing method does not need to include a step that causes contamination of transition metals such as aluminum, titanium, zirconium, and cerium, or impurities such as silicon. Therefore, the copper powder is substantially free of these impurities that can adversely affect the electrical properties of the copper film formed by sintering. The concentration of the above-mentioned element is preferably less than the detection limit value in the elemental analysis measurement using, for example, inductively coupled plasma (ICP) emission spectroscopy. The term "less than the detection limit" in the present invention means that aluminum is less than 1 ppm, silicon is less than 1 ppm, titanium is less than 10 ppm, and zirconium is less than 1 ppm.
 本実施形態に係る銅粉体の高い焼結開始温度は、銅粉体をMLCCなどの電子部品の電極、その他配線、端子用の材料として用いる場合、電子部品の信頼性の向上や歩留まりの改善に大きく寄与する。このような特徴は、特にMLCCの電極用材料として用いる際に顕著である。この理由は以下の通りである。MLCCの小型化に伴って電極の薄膜化が要求されるが、このためには銅粉体の平均粒子径を小さくすることが効果的な方法の一つである。しかしながら、銅粉体の平均粒子径が小さくなると比表面積が増加するため、焼結開始温度が低下する。MLCCは誘電体を含む分散液と銅粉体を含む分散液を交互に塗布した後に加熱し、銅粉体と誘電体を焼結することで作製されるが、銅粉体の焼結開始温度の低下は、銅粉体と誘電体の焼結開始温度の差の増大を招き、その結果、銅粉体と誘電体の焼結開始時間に大きな差が発生する。このため、誘電体の焼結開始前に銅粉体は焼結によって収縮し、銅粉体が焼結することで形成される電極と誘電体との間に間隙が生じ、この間隙に起因して電極と誘電体膜間で剥離が生じる。一方、本発明の実施形態の一つである銅粉体は、小さな平均粒子径D50を有するにもかかわらず高い焼結開始温度を有するため、誘電体との焼結開始温度の差が小さく、その結果、焼結時における電極の剥離を抑制することができる。したがって、本銅粉体を用いることで高い歩留りで高信頼性のMLCCを提供することが可能となる。 The high sintering start temperature of the copper powder according to the present embodiment improves the reliability and yield of the electronic components when the copper powder is used as a material for electrodes, other wirings, and terminals of electronic components such as MLCCs. Contributes greatly to. Such characteristics are particularly remarkable when used as an electrode material for MLCCs. The reason for this is as follows. As the MLCC becomes smaller, the electrodes are required to be thinner, and for this purpose, reducing the average particle size of the copper powder is one of the effective methods. However, as the average particle size of the copper powder decreases, the specific surface area increases, so that the sintering start temperature decreases. MLCC is produced by alternately applying a dispersion containing a dielectric and a dispersion containing a copper powder and then heating the mixture to sinter the copper powder and the dielectric. The sintering start temperature of the copper powder The decrease causes an increase in the difference in the sintering start temperature between the copper powder and the dielectric, and as a result, a large difference occurs in the sintering start time between the copper powder and the dielectric. Therefore, the copper powder shrinks due to sintering before the dielectric starts sintering, and a gap is generated between the electrode formed by sintering the copper powder and the dielectric, which is caused by this gap. Peeling occurs between the electrode and the dielectric film. On the other hand, the copper powder, which is one of the embodiments of the present invention, has a high sintering start temperature even though it has a small average particle diameter D 50 , so that the difference between the sintering start temperature and the dielectric is small. As a result, peeling of the electrode during sintering can be suppressed. Therefore, by using this copper powder, it is possible to provide a highly reliable MLCC with a high yield.
 さらに本実施形態に係る銅粉体は、上述したように、脱ガスピークを比較的低い温度で与え、600℃以上950℃以下で脱離するガスの量が相対的に少ない。このため、本銅粉体の脱ガスピークは、焼結開始温度よりも低い温度で観察される。このことは、焼結が開始して銅膜が形成される過程が始まる前に大部分のガスが脱離し、焼結開始温度付近、あるいは焼結後には脱ガスは殆ど生じないことを意味する。このため、脱ガスに起因するボイドの発生や変形が防止され、焼結前後における形状変化が小さい。このため、制御された構造を有する銅膜、すなわち、構造が明確に定義された銅膜を提供することができる。 Further, as described above, the copper powder according to the present embodiment gives a degassing peak at a relatively low temperature, and the amount of gas degassed at 600 ° C. or higher and 950 ° C. or lower is relatively small. Therefore, the degassing peak of the present copper powder is observed at a temperature lower than the sintering start temperature. This means that most of the gas is desorbed before the start of sintering and the process of forming the copper film, and almost no degassing occurs near the sintering start temperature or after sintering. .. Therefore, the generation and deformation of voids due to degassing are prevented, and the shape change before and after sintering is small. Therefore, it is possible to provide a copper film having a controlled structure, that is, a copper film having a well-defined structure.
 銅粉体の焼結開始温度を向上させる方法として、例えばケイ素や炭素を含む溶融した銅をアトマイズ法によって粉体化する方法、銅粒子表面にアルミニウムやチタン、ジルコニウム、セリウム、スズ、またはケイ素を含む被膜を形成する方法、銅粒子表面に酸化ケイ素の被膜を形成する方法などが知られている。しかしながら、これらの元素は絶縁性である、あるいは銅と比較して電気抵抗が高いため、銅粉体を焼結して得られる銅膜の電気的特性に対して悪影響を与える。また、銅粒子内部、または表面にこれらの元素が比較的大量に含まれるように銅粉体を構成すると、焼結時に大量のガスが脱離するため、脱ガスによるボイドの発生や銅膜の変形を防止することが困難である。 As a method for improving the sintering start temperature of copper powder, for example, a method of pulverizing molten copper containing silicon or carbon by an atomizing method, aluminum, titanium, zirconium, cerium, tin, or silicon is applied to the surface of copper particles. A method of forming a film containing the mixture, a method of forming a film of silicon oxide on the surface of copper particles, and the like are known. However, since these elements are insulating or have higher electrical resistance than copper, they adversely affect the electrical properties of the copper film obtained by sintering copper powder. Further, if the copper powder is formed so that a relatively large amount of these elements are contained inside or on the surface of the copper particles, a large amount of gas is desorbed at the time of sintering, so that voids are generated due to degassing and the copper film is formed. It is difficult to prevent deformation.
 これに対し、本発明の実施形態の一つである銅粉体は、表面処理剤に由来する微量の炭素を含むものの、上述した遷移金属やケイ素の含有量は無視できる程度である。このため、焼結によって得られる銅膜は高い導電性を示す。このことは、本銅粉体がMLCCなどの各種機能性素子の薄膜化や小型化、電子部品の配線や端子の微細化などに有効な材料として利用できることを意味する。 On the other hand, the copper powder, which is one of the embodiments of the present invention, contains a trace amount of carbon derived from the surface treatment agent, but the above-mentioned contents of the transition metal and silicon are negligible. Therefore, the copper film obtained by sintering exhibits high conductivity. This means that this copper powder can be used as an effective material for thinning and miniaturizing various functional elements such as MLCCs, and for wiring and terminal miniaturization of electronic components.
 以下、本発明の実施形態に係る実施例を説明する。本実施例では、上述した方法に従って銅粉体を作製し、その特性を評価した結果について述べる。 Hereinafter, examples according to the embodiment of the present invention will be described. In this example, the results of producing copper powder according to the above-mentioned method and evaluating its characteristics will be described.
1.実施例1
 塩化炉に球状の金属銅を設置し、塩化炉を900℃に加熱した。この温度において、塩化炉の上部と下部に接続された塩素導入管(以下、それぞれ上部導入管と下部導入管と記す)から塩素ガスと窒素ガスの混合ガスを供給した。上部導入管を介して導入された混合ガスにおける塩素ガスと窒素ガスの体積比(VCl2:VN2)は29:61、下部導入管を介して導入された混合ガスにおける塩素ガスと窒素ガスの体積比(VCl2:VN2)は2:98であった。上部導入管を介して導入された混合ガスと下部導入管を介して導入された混合ガスの体積比(Vu:Vl)は1:0.17であった。
1. 1. Example 1
Spherical copper was installed in the chlorination furnace, and the chlorination furnace was heated to 900 ° C. At this temperature, a mixed gas of chlorine gas and nitrogen gas was supplied from chlorine introduction pipes (hereinafter referred to as upper introduction pipe and lower introduction pipe, respectively) connected to the upper part and the lower part of the chloride furnace. The volume ratio of the chlorine gas and nitrogen gas in the mixed gas introduced through the upper inlet (V Cl2: V N2) is 29:61, the chlorine gas and nitrogen gas in the mixed gas introduced through the lower inlet pipe volume ratio (V Cl2: V N2) was 2:98. The volume ratio (V u : V l ) of the mixed gas introduced through the upper introduction pipe and the mixed gas introduced through the lower introduction pipe was 1: 0.17.
 金属銅と塩素との反応で生じた塩化銅ガスを1150℃に加熱した還元炉に導き、塩化銅ガスに対して水素ガスと窒素ガスをそれぞれ4600モル%、24600モル%となるように、水素ガスと窒素ガスを還元炉に導入した。塩化銅ガスと水素ガスとの反応で得られた銅粉体を窒素ガスで冷却し、銅の一次粉体を得た。 Copper chloride gas generated by the reaction of metallic copper and chlorine is led to a reduction furnace heated to 1150 ° C., and hydrogen is added so that hydrogen gas and nitrogen gas are 4600 mol% and 24600 mol%, respectively, with respect to the copper chloride gas. Gas and nitrogen gas were introduced into the reduction furnace. The copper powder obtained by the reaction of copper chloride gas and hydrogen gas was cooled with nitrogen gas to obtain a primary copper powder.
 引き続き、得られた一次粉体に対して塩素・酸素成分の低減処理を行った。具体的には、一次粉体に対し40重量%の水酸化ナトリウム水溶液、10重量%のアスコルビン酸水溶液を用いて酸素成分の低減処理を行った。 Subsequently, the obtained primary powder was treated to reduce chlorine and oxygen components. Specifically, the oxygen component was reduced by using a 40% by weight sodium hydroxide aqueous solution and a 10% by weight ascorbic acid aqueous solution with respect to the primary powder.
 その後、表面安定化処理を行った。具体的には、アスコルビン酸水溶液で処理した一次粉体に対し、室温で1.0重量%のベンゾトリアゾールを表面処理剤として含む水溶液を加え、得られた混合物を30分間攪拌した。攪拌終了後、混合物を静置し、上澄みを除去し、乾燥することにより、実施例1の銅粉体を得た。 After that, surface stabilization treatment was performed. Specifically, an aqueous solution containing 1.0% by weight of benzotriazole as a surface treatment agent was added to the primary powder treated with an aqueous ascorbic acid solution, and the obtained mixture was stirred for 30 minutes. After the stirring was completed, the mixture was allowed to stand, the supernatant was removed, and the mixture was dried to obtain the copper powder of Example 1.
2.参考例1
 銅粉体を表面処理するときのベンゾトリアゾールの水溶液の濃度を0.33重量%とした以外は、実施例1と同様の条件で銅粉体を調製した。
2. Reference example 1
The copper powder was prepared under the same conditions as in Example 1 except that the concentration of the aqueous solution of benzotriazole when the copper powder was surface-treated was 0.33% by weight.
3.参考例2
 銅粉体を表面処理するときのベンゾトリアゾールの水溶液の濃度を0.05重量%とした以外は、実施例1と同様の条件で銅粉体を調製した
3. 3. Reference example 2
The copper powder was prepared under the same conditions as in Example 1 except that the concentration of the aqueous solution of benzotriazole when the copper powder was surface-treated was 0.05% by weight.
4.比較例
 比較例1の銅粉体は、特許文献3に開示された湿式還元法を利用して調製した。
4. Comparative Example The copper powder of Comparative Example 1 was prepared by using the wet reduction method disclosed in Patent Document 3.
5.評価
 実施例1、参考例1と2、および比較例1の銅粉体の平均粒子径D50、平均結晶子径D、平均円形度、焼結開始温度、炭素濃度、およびアルミニウム、ケイ素、チタン、およびジルコニウムの濃度を測定した。さらに、スループット法を適用して脱ガス挙動を評価した。
5. Evaluation Example 1, Reference Examples 1 and 2, and Comparative Example 1 copper powder average particle size D 50 , average crystallite diameter D, average circularity, sintering start temperature, carbon concentration, and aluminum, silicon, titanium , And the concentration of zirconium was measured. Furthermore, the throughput method was applied to evaluate the degassing behavior.
 平均粒子径D50は以下のように測定した。走査型電子顕微鏡(SEM:株式会社日立ハイテクノロジーズ製、SU5000、以下同様)を用い、倍率15000倍における銅粉体のSEM像の一つの視野中に存在する500個の銅粒子の像を画像解析ソフト(株式会社マウンテック製Macview4.0)を用いて解析した。この解析で得られた個々の銅粒子の粒子径から平均粒子径D50を算出した。 The average particle size D 50 was measured as follows. Using a scanning electron microscope (SEM: Hitachi High-Technologies Co., Ltd., SU5000, the same applies hereinafter), image analysis of 500 copper particles existing in one field of view of the SEM image of copper powder at a magnification of 15,000 times. The analysis was performed using software (Macview 4.0 manufactured by Mountech Co., Ltd.). The average particle size D 50 was calculated from the particle size of each copper particle obtained by this analysis.
 平均結晶子径Dは、X線回折装置(スペクトリス株式会社製、X’PertPro)を用い、加速電圧45kV、放電電流40mAの条件で発生させたCuKα線で得られた銅結晶の(111)面、(200)面、(220)面の回折ピークの半値幅とシェラーの式により算出した。 The average crystallite diameter D is the (111) plane of the copper crystal obtained by CuKα rays generated under the conditions of an acceleration voltage of 45 kV and a discharge current of 40 mA using an X-ray diffractometer (X'PertPro manufactured by Spectris Co., Ltd.). , (200) plane, (220) plane, half-value width of the diffraction peak and Scherrer's formula.
 平均円形度は、以下のように測定した。SEMを用い、倍率15000倍におけるSEM像の一つの視野中に存在する約500個の銅粒子を画像解析ソフト(株式会社マウンテック製Macview4.0)を用いて解析し、約500個の銅粒子について円形度Cを求め、その平均値、すなわち平均円形度を算出した。 The average circularity was measured as follows. Using SEM, about 500 copper particles existing in one field of view of an SEM image at a magnification of 15,000 were analyzed using image analysis software (Macview 4.0 manufactured by Mountech Co., Ltd.), and about 500 copper particles were analyzed. The circularity C was obtained, and the average value, that is, the average circularity was calculated.
 脱ガス挙動は、昇温脱離ガス分析装置(電子科学社製、TDS-1200)を用いて評価した。具体的には、昇温脱離ガス分析装置のチャンバー内に設置された石英ガラスに銅粉体(0.6mg)を配置した。ターボ分子ポンプを用いてチャンバー内を2×10-7Paまで減圧した後、室温から950℃まで加熱した。加熱時の昇温温度は30℃/minであった。加熱中のチャンバー内の圧力を真空計を用いてモニターしつつ、排出されるガスを質量分析装置を用いて分析した。チャンバー内の圧力変化からガスの脱離量を見積もった。なお、銅粉体からのガスの脱離量の定量は、銅粉体の非存在下で同一の条件下でチャンバーを加熱して測定されるガスの脱離量をブランクとして差し引くことで行った。また、質量分析装置を用いて脱離したガスの組成を算出した。 The degassing behavior was evaluated using a heated degassing gas analyzer (manufactured by Electronic Science Co., Ltd., TDS-1200). Specifically, copper powder (0.6 mg) was placed on quartz glass installed in the chamber of the temperature-temperature desorption gas analyzer. The inside of the chamber was depressurized to 2 × 10 -7 Pa using a turbo molecular pump, and then heated from room temperature to 950 ° C. The temperature rise during heating was 30 ° C./min. While monitoring the pressure in the chamber during heating with a vacuum gauge, the discharged gas was analyzed using a mass spectrometer. The amount of gas desorbed was estimated from the pressure change in the chamber. The amount of gas desorbed from the copper powder was quantified by heating the chamber under the same conditions in the absence of the copper powder and subtracting the amount of gas desorbed as a blank. .. In addition, the composition of the desorbed gas was calculated using a mass spectrometer.
 焼結開始温度は以下の方法で決定した。銅粉体を直径5mm、高さ約40mmの円筒状の筒体に充填した。筐体の上部からポンチを押し込み、0.87ton/cm2で10秒間加圧し、銅粉体を高さ約5mmの円柱状に成形した。この成形体を長軸が鉛直方向となるように配置し、長軸方向に98.0mNの荷重を付与しながら昇温炉で加熱した。加熱は、2体積%の水素ガスを含む窒素ガスの気流下(流速300mL/min)、5℃/minの昇温速度で室温から1000℃まで行った。加熱中、成形体の高さ変化(膨張・収縮)をモニターし、熱機械分析曲線を得た。この熱機械分析曲線に基づき、成形体の高さの変化(収縮)が始まり、その収縮率が5%に達した時の温度を焼結開始温度として採用した。 The sintering start temperature was determined by the following method. Copper powder was filled into a cylindrical cylinder having a diameter of 5 mm and a height of about 40 mm. The punch was pushed in from the upper part of the housing and pressed at 0.87 ton / cm 2 for 10 seconds to form a copper powder into a columnar shape having a height of about 5 mm. This molded product was arranged so that the long axis was in the vertical direction, and was heated in a heating furnace while applying a load of 98.0 mN in the long axis direction. Heating was carried out from room temperature to 1000 ° C. under a stream of nitrogen gas containing 2% by volume of hydrogen gas (flow rate 300 mL / min) at a heating rate of 5 ° C./min. During heating, the height change (expansion / contraction) of the molded product was monitored, and a thermomechanical analysis curve was obtained. Based on this thermomechanical analysis curve, the temperature at which the height change (shrinkage) of the molded product started and the shrinkage rate reached 5% was adopted as the sintering start temperature.
 炭素濃度の測定は、炭素・硫黄分析装置(堀場製作所社製、EMIA-920V2)を用い、燃焼・赤外線吸収法によって行った。 The carbon concentration was measured by a combustion / infrared absorption method using a carbon / sulfur analyzer (EMIA-920V2 manufactured by HORIBA, Ltd.).
 アルミニウム、ケイ素、チタン、およびジルコニウムの濃度をSIIナノテクノロジー株式会社製ICP発光分光分析装置(SPS3100)を使用して測定した。具体的には、銅粉体約1.0gを超純水(30mL)、硝酸(10mL)、および塩酸(10mL)の混合液に加え、ホットプレートを用いて加熱しながら溶解した。得られた溶液を室温まで冷却した後、純水を加えて全量を100mLとし、これを用いてICP発光分光分析を行った。発光波長396.15nm、251.61nm、334.94nm、339.20nmを用い、それぞれアルミニウム、ケイ素、チタン、およびジルコニウムの濃度を評価した。 The concentrations of aluminum, silicon, titanium, and zirconium were measured using an ICP emission spectrophotometer (SPS3100) manufactured by SII Nanotechnology Co., Ltd. Specifically, about 1.0 g of copper powder was added to a mixed solution of ultrapure water (30 mL), nitric acid (10 mL), and hydrochloric acid (10 mL), and dissolved while heating using a hot plate. After cooling the obtained solution to room temperature, pure water was added to make the total volume 100 mL, and ICP emission spectroscopic analysis was performed using this. The concentrations of aluminum, silicon, titanium, and zirconium were evaluated using emission wavelengths of 396.15 nm, 251.61 nm, 334.94 nm, and 339.20 nm, respectively.
 評価結果を表1にまとめる。実施例1の銅粉体は気相成長法で作製されており、このため、平均粒子径D50が小さく、平均結晶子径Dが大きい。その結果、大きなD/D50を与える。この結果は、湿式法で作製される比較例1の銅粉体の結果と対照的である。また、比較例1と比較すると、実施例1の銅粉体は、平均円形度が高い。 The evaluation results are summarized in Table 1. The copper powder of Example 1 is produced by the vapor phase growth method, and therefore, the average particle diameter D 50 is small and the average crystallite diameter D is large. The result is a large D / D 50 . This result is in contrast to the result of the copper powder of Comparative Example 1 produced by the wet method. Further, as compared with Comparative Example 1, the copper powder of Example 1 has a higher average circularity.
 表1に示すように、実施例1、および参考例1と2の銅粉体は0.04重量%以上1.00重量%以下の濃度で炭素を含むことが確認された。実施例1、参考例1、および参考例2を比較すると、表面処理剤を含む水溶液の濃度が増大するに従って炭素濃度が増大することが分かる。このことは、炭素濃度は表面処理剤を含む溶液または懸濁液の濃度によって制御できることを示している。 As shown in Table 1, it was confirmed that the copper powders of Examples 1 and Reference Examples 1 and 2 contained carbon at a concentration of 0.04% by weight or more and 1.00% by weight or less. Comparing Example 1, Reference Example 1, and Reference Example 2, it can be seen that the carbon concentration increases as the concentration of the aqueous solution containing the surface treatment agent increases. This indicates that the carbon concentration can be controlled by the concentration of the solution or suspension containing the surface treatment agent.
 実施例1、および参考例1と2の結果から、炭素濃度の増大に伴って焼結開始温度が増大することが分かった。特に炭素濃度が僅か0.04重量%である参考例1の銅粉体であっても450℃以上の高い開始温度を示すことは注目すべき点である。これに対し、炭素濃度が0.19重量%の比較例1の銅粉体は、参考例1よりも炭素濃度が高いにもかかわらず焼結開始温度は低く、400℃に満たないことが分かった。なお、実施例1、参考例1と2、および比較例1の銅粉体のアルミニウム、ケイ素、チタン、およびジルコニウムの濃度は、いずれも検出限界値未満であった。このことは、焼結開始温度は単に炭素濃度だけに依存するのではなく、平均粒子径D50に対する平均結晶子径Dの比(D/D50)の影響が大きく、D/D50が0.10以上であることも焼結開始温度の増大に寄与しているものと考えられる。これはおそらく、D/D50が大きいほど結晶状態で存在する銅の割合が高いためであると推測される。 From the results of Example 1 and Reference Examples 1 and 2, it was found that the sintering start temperature increases as the carbon concentration increases. In particular, it is noteworthy that even the copper powder of Reference Example 1 having a carbon concentration of only 0.04% by weight shows a high starting temperature of 450 ° C. or higher. On the other hand, it was found that the copper powder of Comparative Example 1 having a carbon concentration of 0.19% by weight had a lower sintering start temperature than Reference Example 1 and was less than 400 ° C. It was. The concentrations of aluminum, silicon, titanium, and zirconium in the copper powders of Example 1, Reference Examples 1 and 2, and Comparative Example 1 were all below the detection limit. This means that the sintering start temperature does not simply depend on the carbon concentration, but the ratio of the average crystallite diameter D to the average particle size D 50 (D / D 50 ) has a large effect, and D / D 50 is 0. It is considered that the temperature of .10 or more also contributes to the increase in the sintering start temperature. It is presumed that this is probably because the larger the D / D 50, the higher the proportion of copper present in the crystalline state.
 実施例1の銅粉体は、焼結開始温度以下に脱ガスピーク温度を示すだけでなく、これらの温度差が300℃以上存在することが分かった(表1)。このことは、焼結が開始される前に脱ガスがほぼ終了していることを示唆している。したがって、焼結が進行して膜が形成される過程で大量のガスが脱離することがなく、実施例1から3の銅粉体を用いることで銅膜中におけるボイドの形成や銅薄膜の変形が抑制可能であると言える。これに対し、比較例1の銅粉体では、脱ガスのピーク温度は焼結開始温度よりも低いものの、その差は240℃程度と小さいことが分かった。このことは、比較例1の銅粉体を用いる場合には、焼結が進行して膜が形成される過程でもガスが脱離することを示唆しており、形成される銅膜にボイドが発生する、あるいは銅膜の変形が生じる可能性が極めて高いと言える。 It was found that the copper powder of Example 1 not only showed a degassing peak temperature below the sintering start temperature, but also had a temperature difference of 300 ° C. or more (Table 1). This suggests that degassing is almost complete before sintering begins. Therefore, a large amount of gas is not desorbed in the process of sintering progressing and the film is formed, and by using the copper powders of Examples 1 to 3, voids are formed in the copper film and the copper thin film is formed. It can be said that deformation can be suppressed. On the other hand, in the copper powder of Comparative Example 1, although the peak temperature of degassing was lower than the sintering start temperature, the difference was found to be as small as about 240 ° C. This suggests that when the copper powder of Comparative Example 1 is used, the gas is desorbed even in the process of sintering progressing and the film is formed, and voids are formed in the formed copper film. It can be said that there is an extremely high possibility that it will occur or that the copper film will be deformed.
 60℃以上950℃以下の加熱によって脱離するガスの総量に対する600℃以上950℃以下における脱離ガス量の割合(W1/W0)は、比較例1と比較して実施例1では大幅に低いことが表1から理解される。このことからも、実施例1の銅粉体を焼結する場合には、膜が形成される過程において大量のガスが脱離することがなく、ボイド発生や銅膜の変形を効果的に防止することが可能であると言える。 The ratio (W 1 / W 0 ) of the amount of desorbed gas at 600 ° C. or higher and 950 ° C. or lower to the total amount of gas desorbed by heating at 60 ° C. or higher and 950 ° C. or lower is significantly larger in Example 1 than in Comparative Example 1. It is understood from Table 1 that it is very low. From this, when the copper powder of Example 1 is sintered, a large amount of gas is not desorbed in the process of forming the film, and void generation and deformation of the copper film are effectively prevented. It can be said that it is possible.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の実施形態として上述した実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、または工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 The above-described embodiments of the present invention can be appropriately combined and implemented as long as they do not contradict each other. Further, based on each embodiment, those skilled in the art who appropriately add, delete, or change the design, or add, omit, or change the conditions of the process also have the gist of the present invention. As long as it is, it is included in the scope of the present invention.
 上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 Of course, other effects different from those brought about by the aspects of each of the above-described embodiments, which are clear from the description of the present specification or which can be easily predicted by those skilled in the art, are described in the present invention. It is understood that it is brought about by the invention.

Claims (4)

  1.  平均粒径D50が297nm以上500nm以下であり、
     平均結晶子径(D)が92.3nm以上250nm以下であり、
     平均結晶子径(D)の平均粒子径(D50)に対する比D/D50が0.31以上0.50以下であり、
     炭素濃度が0.73重量%以上1.00重量%以下である、銅粉体。
    The average particle size D 50 is 297 nm or more and 500 nm or less.
    The average crystallite diameter (D) is 92.3 nm or more and 250 nm or less.
    The ratio D / D 50 of the average crystallite diameter (D) to the average particle size (D 50 ) is 0.31 or more and 0.50 or less.
    Copper powder having a carbon concentration of 0.73% by weight or more and 1.00% by weight or less.
  2.  60℃以上950℃以下の温度範囲で脱離するガスの総量(W0)に対する、600℃以上950℃以下の温度範囲で脱離するガスの量(W1)の比(W1/W0)は、0.6重量%以下である、請求項1に記載の銅粉体。 For 60 ° C. or higher 950 ° C. or less of the total amount of gas desorbed at a temperature range (W 0), the ratio of the amount of gas desorbed at a temperature range of 600 ° C. or higher 950 ° C. or less (W 1) (W 1 / W 0 ) Is the copper powder according to claim 1, which is 0.6% by weight or less.
  3.  焼結開始温度が450℃以上である、請求項1または2に記載の銅粉体。 The copper powder according to claim 1 or 2, wherein the sintering start temperature is 450 ° C. or higher.
  4.  脱ガスピーク温度が150℃以上300℃以下である、請求項1から3のいずれか一項に記載の銅粉体。 The copper powder according to any one of claims 1 to 3, wherein the degassing peak temperature is 150 ° C. or higher and 300 ° C. or lower.
PCT/JP2020/042217 2019-11-22 2020-11-12 Copper powder and method for producing the same WO2021100595A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080073528.5A CN114786839B (en) 2019-11-22 2020-11-12 Copper powder and method for producing same
KR1020227013850A KR20220070003A (en) 2019-11-22 2020-11-12 Copper powder and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019211359A JP6704083B1 (en) 2019-11-22 2019-11-22 Copper powder and its manufacturing method
JP2019-211359 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021100595A1 true WO2021100595A1 (en) 2021-05-27

Family

ID=70858249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042217 WO2021100595A1 (en) 2019-11-22 2020-11-12 Copper powder and method for producing the same

Country Status (5)

Country Link
JP (1) JP6704083B1 (en)
KR (1) KR20220070003A (en)
CN (1) CN114786839B (en)
TW (1) TWI763135B (en)
WO (1) WO2021100595A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498604B2 (en) 2020-06-26 2024-06-12 東邦チタニウム株式会社 Manufacturing method of copper powder
WO2023074827A1 (en) * 2021-10-28 2023-05-04 三井金属鉱業株式会社 Copper particles and method for producing same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270001A (en) * 1991-02-26 1992-09-25 Kawasaki Steel Corp Method for improving shape of checkered plate
JP2004124257A (en) * 2002-09-11 2004-04-22 Sumitomo Metal Mining Co Ltd Metal copper particulate, and production method therefor
JP2007184143A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Mining Co Ltd Surface treatment method of conductive powder, and conductive powder and conductive paste
JP2014034697A (en) * 2012-08-08 2014-02-24 Furukawa Co Ltd Method for producing copper fine particle, conductive paste and method for producing conductive paste
WO2014080662A1 (en) * 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
WO2015122251A1 (en) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 Copper powder
JP2015168878A (en) * 2014-03-10 2015-09-28 三井金属鉱業株式会社 copper powder
JP2017039990A (en) * 2015-08-21 2017-02-23 住友金属鉱山株式会社 Copper powder, method for producing the same, and conductive paste using the same
WO2017103503A1 (en) * 2015-12-17 2017-06-22 Safran Nacelles Semi-fluid variable nozzle
JP2017137530A (en) * 2016-02-03 2017-08-10 住友金属鉱山株式会社 Copper powder and manufacturing method therefor
JP2017157329A (en) * 2016-02-29 2017-09-07 三井金属鉱業株式会社 Copper paste and manufacturing method of sintered body of copper
JP2017171984A (en) * 2016-03-23 2017-09-28 東洋インキScホールディングス株式会社 Reactant, conductive composition and manufacturing method of surface treated copper powder
JP2017182932A (en) * 2016-03-28 2017-10-05 Jxtgエネルギー株式会社 Manufacturing method of metal powder paste, screen printing method of metal powder paste, manufacturing method of electrode, manufacturing method of tip laminate ceramic capacitor, and metal powder paste
WO2018181482A1 (en) * 2017-03-31 2018-10-04 三井金属鉱業株式会社 Copper particles and manufacturing method therefor
WO2019009130A1 (en) * 2017-07-04 2019-01-10 株式会社ヤクルト本社 Method for producing galactooligosaccharide
WO2019189411A1 (en) * 2018-03-30 2019-10-03 東邦チタニウム株式会社 Metal chloride generator, and method for manufacturing metal powder
JP2019183242A (en) * 2018-04-13 2019-10-24 Jx金属株式会社 Copper powder
JP2019200896A (en) * 2018-05-16 2019-11-21 株式会社村田製作所 Conductive paste

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162701A (en) * 1987-12-18 1989-06-27 Kawasaki Steel Corp Method for refining copper super fine powder
JP3102574B2 (en) * 1991-03-04 2000-10-23 川崎製鉄株式会社 Purification method of ultrafine metal powder and fine powder
JP3130676B2 (en) * 1992-09-03 2001-01-31 三井金属鉱業株式会社 Copper fine powder for filling via holes
JP3492672B1 (en) * 2002-05-29 2004-02-03 東邦チタニウム株式会社 Metal powder manufacturing method and manufacturing apparatus
JP4204849B2 (en) 2002-11-12 2009-01-07 Dowaエレクトロニクス株式会社 Production method of fine copper powder
JP5392884B2 (en) * 2007-09-21 2014-01-22 三井金属鉱業株式会社 Method for producing copper powder
JP5986046B2 (en) 2013-08-13 2016-09-06 Jx金属株式会社 Surface-treated metal powder and method for producing the same
KR101628872B1 (en) 2014-05-28 2016-06-09 주식회사 레고켐 바이오사이언스 Compounds comprising self-immolative group
JP2016108649A (en) 2014-11-26 2016-06-20 住友金属鉱山株式会社 Silver-coated copper powder and method of producing the same
JP6539085B2 (en) * 2015-03-31 2019-07-03 Dowaエレクトロニクス株式会社 Copper powder and method for producing the same
JP6762718B2 (en) * 2016-01-05 2020-09-30 Dowaエレクトロニクス株式会社 Surface-treated copper powder and its manufacturing method
JP6967839B2 (en) * 2016-03-23 2021-11-17 日東電工株式会社 Heat bonding sheet, heat bonding sheet with dicing tape, manufacturing method of bonded body, power semiconductor device
JP6857453B2 (en) * 2016-05-20 2021-04-14 京セラ株式会社 Manufacturing method of copper fine particles, copper fine particles, paste composition, semiconductor devices and electrical / electronic parts
JP7039126B2 (en) * 2016-12-28 2022-03-22 Dowaエレクトロニクス株式会社 Copper powder and its manufacturing method
JP6553313B2 (en) * 2017-07-05 2019-07-31 東邦チタニウム株式会社 Metal powder and method for producing the same
JP7035455B2 (en) * 2017-10-31 2022-03-15 株式会社豊田自動織機 Covers for in-vehicle electrical equipment and their manufacturing methods
JP6541764B2 (en) 2017-12-27 2019-07-10 Dowaエレクトロニクス株式会社 Silver-coated copper powder and conductive paste, and method for producing them
JP7131099B2 (en) * 2018-06-06 2022-09-06 株式会社デンソー Optical ranging device and method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270001A (en) * 1991-02-26 1992-09-25 Kawasaki Steel Corp Method for improving shape of checkered plate
JP2004124257A (en) * 2002-09-11 2004-04-22 Sumitomo Metal Mining Co Ltd Metal copper particulate, and production method therefor
JP2007184143A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Mining Co Ltd Surface treatment method of conductive powder, and conductive powder and conductive paste
JP2014034697A (en) * 2012-08-08 2014-02-24 Furukawa Co Ltd Method for producing copper fine particle, conductive paste and method for producing conductive paste
WO2014080662A1 (en) * 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
WO2015122251A1 (en) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 Copper powder
JP2015168878A (en) * 2014-03-10 2015-09-28 三井金属鉱業株式会社 copper powder
JP2017039990A (en) * 2015-08-21 2017-02-23 住友金属鉱山株式会社 Copper powder, method for producing the same, and conductive paste using the same
WO2017103503A1 (en) * 2015-12-17 2017-06-22 Safran Nacelles Semi-fluid variable nozzle
JP2017137530A (en) * 2016-02-03 2017-08-10 住友金属鉱山株式会社 Copper powder and manufacturing method therefor
JP2017157329A (en) * 2016-02-29 2017-09-07 三井金属鉱業株式会社 Copper paste and manufacturing method of sintered body of copper
JP2017171984A (en) * 2016-03-23 2017-09-28 東洋インキScホールディングス株式会社 Reactant, conductive composition and manufacturing method of surface treated copper powder
JP2017182932A (en) * 2016-03-28 2017-10-05 Jxtgエネルギー株式会社 Manufacturing method of metal powder paste, screen printing method of metal powder paste, manufacturing method of electrode, manufacturing method of tip laminate ceramic capacitor, and metal powder paste
WO2018181482A1 (en) * 2017-03-31 2018-10-04 三井金属鉱業株式会社 Copper particles and manufacturing method therefor
WO2019009130A1 (en) * 2017-07-04 2019-01-10 株式会社ヤクルト本社 Method for producing galactooligosaccharide
WO2019189411A1 (en) * 2018-03-30 2019-10-03 東邦チタニウム株式会社 Metal chloride generator, and method for manufacturing metal powder
JP2019183242A (en) * 2018-04-13 2019-10-24 Jx金属株式会社 Copper powder
JP2019200896A (en) * 2018-05-16 2019-11-21 株式会社村田製作所 Conductive paste

Also Published As

Publication number Publication date
KR20220070003A (en) 2022-05-27
JP6704083B1 (en) 2020-06-03
TWI763135B (en) 2022-05-01
TW202120225A (en) 2021-06-01
CN114786839B (en) 2024-03-26
CN114786839A (en) 2022-07-22
JP2021080549A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2021100595A1 (en) Copper powder and method for producing the same
TWI716526B (en) Nickel powder
JP4613362B2 (en) Metal powder for conductive paste and conductive paste
TWI803486B (en) Copper particle and its manufacturing method
JP6559118B2 (en) Nickel powder
CN115206678A (en) Metal powder for use as electrode material in multilayer ceramic capacitors and methods of making and using the same
CN110461503B (en) Nickel powder and nickel paste
JP2007197836A (en) Nickel powder
JP6738460B1 (en) Method for producing copper powder
JP6738459B1 (en) Method for producing copper powder
JP2010196118A (en) Method for producing nickel powder
JP7490528B2 (en) Copper Powder
JP7448446B2 (en) copper powder
CN112423912B (en) Metal powder, method for producing same, and method for predicting sintering temperature
JP2022167683A (en) Copper powder and method for producing same
JP2022083703A (en) Method for producing copper powder
JP6771636B1 (en) Copper powder manufacturing method
JP6135479B2 (en) Method for producing nickel powder
WO2023228952A1 (en) Titanium oxide powder, method for producing titanium oxide powder, and method for identifying titanium oxide powders
JP2022007624A (en) Production method for copper powder
JP2024018487A (en) Nickel alloy powder and method for producing nickel alloy powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227013850

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889710

Country of ref document: EP

Kind code of ref document: A1