WO2023074827A1 - Copper particles and method for producing same - Google Patents

Copper particles and method for producing same Download PDF

Info

Publication number
WO2023074827A1
WO2023074827A1 PCT/JP2022/040269 JP2022040269W WO2023074827A1 WO 2023074827 A1 WO2023074827 A1 WO 2023074827A1 JP 2022040269 W JP2022040269 W JP 2022040269W WO 2023074827 A1 WO2023074827 A1 WO 2023074827A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper particles
copper
dry
particles
less
Prior art date
Application number
PCT/JP2022/040269
Other languages
French (fr)
Japanese (ja)
Inventor
瑞樹 秋澤
仁彦 井手
隆史 佐々木
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2023074827A1 publication Critical patent/WO2023074827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds

Definitions

  • the present invention relates to copper particles and a method for producing the same.
  • Copper is a highly conductive metal and a versatile material, so it is widely used industrially as a conductive material.
  • copper powder which is an aggregate of copper particles, is widely used as a raw material for manufacturing various electronic components such as external electrodes and internal electrodes of multilayer ceramic capacitors (hereinafter also referred to as "MLCC").
  • MLCC multilayer ceramic capacitors
  • Patent Document 1 describes that a copper powder having a degassing peak temperature of 150° C. or higher and 300° C. or lower can be obtained.
  • the firing temperature of the copper powder ranges from a relatively low temperature range to a high temperature range depending on the properties of the copper powder, and the technique described in the document cannot prevent gas generation when firing in a high temperature range.
  • the sintering start temperature measured by thermomechanical analysis is Ts
  • P1 the maximum peak in the temperature range below Ts obtained by measurement using a thermogravimetric-mass spectrometer
  • P2 the maximum peak in the temperature range above Ts
  • P2/P1 the maximum peak in the temperature range above Ts
  • the value of P2/P1 is less than 0.2
  • the crystallite size is 30 nm or more and 80 nm or less
  • copper particles having a median diameter of 0.3 ⁇ m or more and 2.0 ⁇ m or less as determined by image analysis.
  • the present invention also provides a method for producing copper particles, comprising the step of adding a reducing agent to a dispersion containing dry copper particles and a copper compound, and depositing copper on the surfaces of the dry copper particles by wet reduction. is.
  • FIG. 1 is a schematic diagram showing a DC plasma apparatus suitable for producing dry copper particles.
  • FIG. 2 is a graph showing the results of thermomechanical analysis of the copper particles obtained in Examples and Comparative Examples.
  • FIG. 3 is a graph showing the measurement results of thermogravimetric-mass spectrometry on the copper particles obtained in Examples and Comparative Examples.
  • 4 is a scanning electron microscope image of the copper particles obtained in Example 3.
  • FIG. 5 is a scanning electron microscope image of the copper particles obtained in Comparative Example 1.
  • FIG. 1 is a schematic diagram showing a DC plasma apparatus suitable for producing dry copper particles.
  • FIG. 2 is a graph showing the results of thermomechanical analysis of the copper particles obtained in Examples and Comparative Examples.
  • FIG. 3 is a graph showing the measurement results of thermogravimetric-mass spectrometry on the copper particles obtained in Examples and Comparative Examples.
  • 4 is a scanning electron microscope image of the copper particles obtained in Example 3.
  • FIG. 5 is a scanning electron microscope image of the copper particles obtained in Comparative Example 1.
  • the present invention will be described below based on its preferred embodiments.
  • This production method is roughly divided into the following two steps.
  • Each step will be described below.
  • the dry copper particles prepared in this step are copper particles produced by a dry method.
  • the term "copper particles” mainly refers to particles consisting of copper and the remainder being unavoidable impurities. Particles which are unavoidable impurities are also included.
  • the copper particles produced by the dry method have a much lower content of organic substances that cause gas generation compared to the copper particles produced by the wet method. Therefore, by using the dry copper particles as cores for grain growth, the copper particles obtained by this production method are those in which the generation of gas during firing in a high temperature range is suppressed.
  • the term "high temperature range” preferably refers to a temperature range of 450°C, more preferably a temperature range of 500°C or higher, and even more preferably a temperature range of 550°C or higher.
  • a gas atomization method and a water atomization method can be used.
  • the atomization method after the copper base metal is melted in an induction furnace or gas furnace, the molten metal flowing out from the nozzle at the bottom of the tundish is blown with a jet stream of gas such as air or inert gas, or water to melt the molten metal. Copper particles are produced by pulverizing and solidifying into droplets.
  • the water atomization method uses liquid water, it is not included in the wet method because it can be regarded as a dry method from the principle of manufacturing copper particles.
  • a method of heating and injecting raw copper powder using a DC plasma device for example, can be adopted.
  • a mixed gas of argon and nitrogen can be used as the plasma gas.
  • fine dry copper particles having a uniform particle size can be easily obtained.
  • Whether or not the plasma flame is in a laminar flow state is determined when the aspect ratio of the frame length to the frame width (hereinafter referred to as the frame aspect ratio) is 3 when the plasma flame is observed from the side where the frame width is observed to be the widest. It can be judged by whether or not it is above. Specifically, if the frame aspect ratio is 3 or more, it can be determined that the flow is laminar, and if it is less than 3, it can be determined that the flow is turbulent.
  • a plasma apparatus equipped with a powder supply device 2, a chamber 3, a DC plasma torch 4, a recovery pot 5, a powder supply nozzle 6, a gas supply device 7 and a pressure adjustment device 8. 1 can be used.
  • the raw material powder passes through the inside of the DC plasma torch 4 from the powder supply device 2 through the powder supply nozzle 6 .
  • a mixed gas of argon and nitrogen is supplied to the DC plasma torch 4 from a gas supply device 7, thereby generating a plasma flame.
  • the raw material powder is gasified in the plasma flame generated by the DC plasma torch 4 , discharged into the chamber 3 , cooled to become fine powder, and accumulated and collected in the collection pot 5 .
  • the inside of the chamber 3 is controlled by the pressure regulator 8 so as to maintain a negative pressure relative to the powder supply nozzle 6, and has a structure for stably generating a plasma flame.
  • the plasma conditions When heating and injecting raw material copper powder using a DC plasma apparatus, as described above, it is preferable to adjust the plasma conditions so that the plasma flame becomes thick and long in a laminar flow state.
  • a mixed gas of argon and nitrogen is preferably used as the plasma gas.
  • the plasma output of the DC thermal plasma apparatus is preferably 2 kW or more and 30 kW or less, more preferably 4 kW or more and 15 kW or less.
  • the gas flow rate of the plasma gas is preferably 0.1 L/min or more and 20 L/min or less, and more preferably 0.5 L/min or more and 18 L/min or less.
  • the Ar gas flow rate (B) and N 2 gas flow rate (C) with respect to the plasma power (A) is preferably 0.50 or more and 2.00 or less.
  • the value of (B + C)/A is preferably 0.50 or more in order to obtain the flow rate necessary for gasifying the raw material powder.
  • the value of B+C)/A is preferably 2.00 or less. In particular, it is more preferable to adjust the value of (B+C)/A to 0.70 or more and 1.70 or less, particularly 0.75 or more and 1.50 or less.
  • the ratio of argon and nitrogen in the plasma gas is preferably 99:1 to 10:90, particularly 95:5 to 60:40, especially 95: A ratio of 5 to 80:20 is preferred.
  • the particle diameter of the dry copper particles is determined by image analysis based on the image taken by electron microscope observation. It is preferable that the particle size is 0.05 ⁇ m or more and less than 0.5 ⁇ m from the point of successfully obtaining the desired copper particles. From the viewpoint of making this advantage more remarkable, the particle size of the dry copper particles is more preferably 0.1 ⁇ m or more and 0.4 ⁇ m or less, and even more preferably 0.1 ⁇ m or more and 0.3 ⁇ m or less. A method for measuring the median diameter will be described in Examples.
  • dry copper particles produced by the vapor phase method have the advantage that the content of organic substances that cause gas generation is less. It is also conceivable to use dry copper particles themselves produced by a vapor phase method such as a plasma method as copper particles for sintering. However, since it is difficult to produce dry copper particles with a large particle size by a vapor phase method such as a plasma method, it is not easy to produce copper particles with a particle size suitable for sintering. Therefore, in this production method, dry copper particles produced by a gas phase method such as a plasma method are used as cores for grain growth because the content of organic substances that cause gas generation is small, although the particle size is small.
  • the dry copper particles were subjected to the next step of reducing and depositing copper ions. It is also not advantageous to use the dry copper particles themselves produced by the atomization method as the copper particles for sintering. The reason for this is that it is not easy to produce copper particles of a size required for sintering copper particles used in small electronic devices by the atomization method.
  • a reducing agent is added to the dispersion containing the dry copper particles and the copper compound prepared in the preparation step, and copper is precipitated on the surface of the dry copper particles by wet reduction.
  • a compound containing monovalent or divalent copper can be used as the copper compound.
  • Compounds containing monovalent copper include, for example, cuprous oxide (Cu 2 O).
  • Compounds containing divalent copper include, for example, copper hydroxide (Cu(OH) 2 ) and copper sulfate (CuSO 4 ).
  • cuprous oxide or cuprous hydroxide is preferably used, and cuprous oxide is more preferably used.
  • cuprous oxide is also preferable because the amount of reducing agent used can be reduced. This is because the reducing agent can also be one of the causative substances for gas generation.
  • a compound that does not contain a carbon element as a reducing agent that reduces the copper compound.
  • hydrazine which is a compound consisting only of hydrogen and nitrogen, as the reducing agent.
  • the ratio of the dry copper particles to the copper compound used is determined from the viewpoint of the desired particle size of the copper particles and the uniformity of the particle size.
  • the desired particle size of the copper particles can be estimated from the amount of dry copper particles to be added and the amount of copper deposited by wet reduction.
  • it is not easy to produce copper particles with a uniform particle size by the dry method and the particle size distribution tends to be wide and the distribution shape varies, so there may be a deviation between the theoretical value and the actual particle size.
  • the particle size of the copper particles produced by wet reduction converges to the particle size of the dry copper particles as the amount of the dry copper particles added increases with respect to the amount of the copper compound added.
  • the amount of the dry copper particles added is preferably 80 atomic % or less with respect to the total copper atoms of the dry copper particles and the copper compound. It is preferably 60 atomic % or less, more preferably 40 atomic % or less. The lower limit of this value is preferably 0.1 atomic % or more as a realistic value.
  • the ratio of the dry copper particles and water is preferably 10 parts by mass or more and 20000 parts by mass or less, preferably 50 parts by mass or more, relative to 1 part by mass of the dry copper particles, from the viewpoint of successful reduction deposition of copper ions. It is more preferable to use 10000 parts by mass or less, and it is even more preferable to use 100 parts by mass or more and 1000 parts by mass or less.
  • water in an amount of 20000 parts by mass or less with respect to 1 part by mass of the dry copper particles the dispersibility of the dry copper particles can be sufficiently enhanced. Further, by using water in an amount of 10 parts by mass or more with respect to 1 part by mass of the dry copper particles, production efficiency can be enhanced.
  • the dry copper particles and water are mixed, (a) prior to mixing the two, the copper compound and water are mixed, and the resulting dispersion and the dry copper particles can be mixed.
  • the dry copper particles and water can be mixed first, and the resulting dispersion can be mixed with the copper compound. Which of (a) and (b) is adopted can be appropriately determined according to the type of copper compound.
  • the dry copper particles and water are first mixed, and the resulting dispersion and reducing agent are mixed, and then the copper compound can be added.
  • the reason for adding the reducing agent to the dispersion containing the dry copper particles and water is to remove the oxide film that may exist on the surface of the dry copper particles, so that the subsequent reduction deposition of copper ions can be performed successfully. That's what it is. Therefore, when the reducing agent is added to the dispersion containing the dry copper particles and water, no copper compound is present in the dispersion, and no copper ions are precipitated by reduction.
  • a reducing agent is added to the dispersion while the dry copper particles and the copper compound are present in the dispersion. As a result, copper ions derived from the copper compound present in the dispersion are reduced, and copper is deposited on the surface of the dry copper particles as cores.
  • the method of adding the reducing agent is preferably determined according to the valence of copper ions contained in the copper compound.
  • the copper ion contained in the copper compound is divalent (for example, when copper hydroxide or copper sulfate is used as the copper compound)
  • the first addition of the reducing agent reduces the divalent copper ions to monovalent copper ions, and then, upon completion of the reduction of the divalent copper ions in the system, the second addition of the reducing agent.
  • An addition is made to reduce the monovalent copper ions to metallic copper, which is deposited on the surface of the dry copper particles.
  • Both the first addition of the reducing agent and the second addition of the reducing agent may be performed sequentially over a predetermined period of time, or the entire amount may be added at once.
  • the reduction reaction of the copper ions is only one step from monovalent to zero valent, so the reducing agent is added all at once. be able to. In this case, adding the reducing agent in multiple times is not prevented, but adding the reducing agent in multiple times has no particular practical advantage.
  • the copper contained in the copper compound is reduced, and the reduced copper is deposited on the surface of the dry copper particles.
  • the reduced copper grows pseudoepitaxially on the surface of the dry copper particles.
  • Epitaxial growth is a method in which the crystal planes of the material grown on top are aligned with the crystal planes of the underlying material when the same or different material is grown on the crystal of the underlying material. is. Strictly speaking, the reduction deposition of copper in the present production method is not epitaxial growth. It is called pseudo epitaxial growth in this specification.
  • the copper produced by the reduction undergoes pseudoepitaxial growth on the surface of the dry copper particles, so that the finally obtained copper particles radially extend from the central area of the particles toward the surface area, and have a plurality of crystal grains exposed on the surface. It becomes a structure with Copper grains having such a structure are less likely to retain impurities at the grain boundaries, so that the content of impurities is small. Due to this also, the copper particles obtained by this production method are those in which the generation of gas during firing in a high temperature range is suppressed. In particular, when the grain boundaries are shaped so as to radially extend from the surface of the dry copper particles toward the surface of the copper particles, gas can easily escape to the outside during the sintering process of the copper particles. Voids are less likely to occur in the
  • dry copper particles produced by a vapor phase method such as a plasma method in order to allow the copper produced by reduction to grow pseudo-epitaxially on the surface of the dry copper particles.
  • dry copper particles produced by a vapor phase method such as a plasma method have very high crystallinity compared to dry copper particles produced by other methods.
  • the dispersion When reducing the copper contained in the copper compound by adding a reducing agent to the dispersion, the dispersion may be heated or may be reduced without heating. Moreover, the dispersion may be stirred, or the reduction may be carried out while standing still.
  • copper particles having the desired particle size By depositing copper on the surface of the dry copper particles, copper particles having the desired particle size can be obtained.
  • copper particles of the present invention are referred to as "copper particles of the present invention".
  • the copper particles of the present invention are subjected to washing and drying processes as necessary. Copper particles obtained by adding a reducing agent to the copper particles of the present invention thus obtained, i.e., the dispersion containing the dry copper particles and the copper compound, and reducing and depositing copper on the surface of the dry copper particles. Owing to its manufacturing method, it combines the starting points of dry copper particles with the advantages of wet copper particles.
  • the degree of suppression of gas generation in firing in a high temperature range can be evaluated by measurement using a thermogravimetric-mass spectrometer (hereinafter also referred to as “TG-MS”). Specifically, when the copper particles of the present invention are subjected to TG-MS measurement, preferably at temperatures above the sintering start temperature, peaks of a certain size or more are not observed.
  • the sintering start temperature is the temperature at which the displacement rate changes by 2% when measured by thermomechanical analysis (hereinafter also referred to as "TMA"). Note that "a peak of a certain size or more is not observed at temperatures above the sintering start temperature" does not mean that no peaks are observed in a temperature range below the sintering start temperature.
  • the copper particles of the present invention preferably show no peak in the temperature range above the sintering start temperature, and may have a peak in the temperature range below the sintering start temperature.
  • a peak of a certain size or more is not observed above the sintering start temperature means that the sintering start temperature measured by TMA is Ts, and is obtained by measurement using TG-MS.
  • the value of P2/P1 is less than 0.2, where P1 is the maximum peak in the temperature range below Ts and P2 is the maximum peak in the temperature range above Ts. From the viewpoint of further suppressing gas generation, the value of P2/P1 is preferably 0.18 or less, more preferably 0.15 or less.
  • the copper particles of the present invention may contain carbon in an amount suitable for preventing oxidation or agglomeration of the particle surface. From this point of view, the copper particles of the present invention preferably have a carbon content of 10 ppm or more and 7000 ppm or less, more preferably 10 ppm or more and 5000 ppm or less, even more preferably 100 ppm or more and 2000 ppm or less, and 150 ppm or more and 1000 ppm or less. The following are even more preferred.
  • the carbon contained in the copper particles of the present invention is an organic substance derived from raw materials, or a carbonate derived from adsorption of carbon dioxide.
  • organic substances such as fatty acids and aliphatic amines may be intentionally applied to the surface of the copper particles for the purpose of preventing oxidation and aggregation.
  • carbon content By setting the carbon content to 7000 ppm or less, carbon hardly remains after sintering, and gas generation is effectively suppressed.
  • the amount of carbon contained in the copper particles of the present invention is measured by placing 0.50 g of copper particles in a magnetic crucible using a carbon/sulfur analyzer (CS844 manufactured by LECO Japan LLC).
  • the carrier gas is oxygen gas (purity: 99.5%), and the analysis time is 40 seconds.
  • the crystallite size is larger than that of conventionally known dry copper particles, such as dry copper particles produced by an atomizing method. becomes small.
  • the copper particles of the present invention preferably have a crystallite size of 30 nm or more and 80 nm or less, more preferably 35 nm or more and 75 nm or less, and still more preferably 40 nm or more and 65 nm or less.
  • the copper particles produced by the production method described above and having such a small crystallite size can more effectively suppress gas generation. A method for measuring the crystallite size of copper particles will be described in Examples.
  • the copper particles of the present invention preferably have a particle size suitable for forming a sintered body by firing.
  • the copper particles of the present invention preferably have a median diameter of 0.3 ⁇ m or more and 2.0 ⁇ m or less by image analysis, more preferably 0.4 ⁇ m or more and 1.8 ⁇ m or less, and 0.4 ⁇ m or more. It is more preferably 1.5 ⁇ m or less. Copper particles having a particle size within this range and having suppressed gas generation during firing in a high-temperature range cannot be easily obtained by a gas phase method such as a plasma method, and can be obtained by adopting this production method. It is obtained for the first time. A method for measuring the median diameter will be described in Examples.
  • the copper particles of the present invention are measured by the image analysis particle size distribution measurement method, with the volume cumulative particle diameter at 50 volume % of the cumulative volume measured by the image analysis particle size distribution measurement method as D50.
  • the value of SD/D50 is 0.9 or less. is preferable from the viewpoint of improvement.
  • the value of SD/D50 is an index of the sharpness of the particle size distribution of copper particles, and the closer this value is to 0, the sharper the particle size distribution of copper particles.
  • the SD/D50 value is more preferably 0.7 or less, and even more preferably 0.6 or less. Methods for measuring SD and D50 are described in the Examples. Note that D50 has the same meaning as the median diameter described above.
  • the copper particles of the present invention have a volume cumulative particle diameter measured by image analysis particle size distribution measurement method at 10% by volume and 90% by volume respectively. It is preferable that the value of D90/D10, which is the ratio of D90 to D10, is small.
  • D90/D10 is a value that is an index indicating the sharpness of the particle size distribution of copper particles, and the closer the value is to 1, the sharper the particle size distribution of copper particles is. do.
  • the copper particles of the present invention preferably have a D90/D10 value of 20.0 or less, more preferably 10.0 or less, and even more preferably 5.0 or less. The closer the lower limit of the D90/D10 value is to 1, the better from the point of view of sharpness of the particle size distribution. . Methods for measuring D10 and D90 are described in Examples.
  • the present invention discloses the following copper particles and a method for producing copper particles.
  • Ts the sintering start temperature measured by thermomechanical analysis
  • P1 the maximum peak in the temperature range below Ts obtained by measurement using a thermogravimetric-mass spectrometer
  • P2 the maximum peak in the temperature range above Ts
  • P2/P1 the maximum peak in the temperature range above Ts
  • the value of P2/P1 is less than 0.2
  • the crystallite size is 30 nm or more and 80 nm or less
  • the volume cumulative particle size measured by image analysis particle size distribution measurement is defined as D50, When the standard deviation of the particle size distribution measured by the image analysis particle size distribution measurement method is SD, The copper particles according to [1], having an SD/D50 value of 0.9 or less. [3] The copper particles according to [1] or [2], wherein the amount of carbon is 10 ppm or more and 7000 ppm or less. [4] Any one of [1] to [3], which is obtained by adding a reducing agent to a dispersion containing dry copper particles and a copper compound to reduce and deposit copper on the surface of the dry copper particles. Copper particles as described.
  • a method for producing copper particles comprising a step of adding a reducing agent to a dispersion containing dry copper particles and a copper compound, and depositing copper on the surfaces of the dry copper particles by wet reduction.
  • the copper compound is a divalent copper compound, The production method according to any one of [5] to [7], wherein the reducing agent is added in multiple batches.
  • the copper compound is a monovalent copper compound, The production method according to any one of [5] to [7], wherein the reducing agent is added all at once.
  • Example 1 (1) Production of Dry Copper Particles Using the apparatus shown in FIG. 1, dry copper particles were produced by a vapor-phase DC plasma method.
  • a raw material copper powder (particle size: 10 ⁇ m, spherical particles) was introduced into the powder supply device 2 and supplied into the chamber 3 from the powder supply nozzle 6 at a supply rate of 10 g/min.
  • a mixed gas of argon and nitrogen was used as the plasma gas, and the mixed gas was supplied to the inside of the plasma flame at an argon flow rate of 13.0 L/min and a nitrogen flow rate of 0.7 L/min.
  • the ratio of argon flow (B) to nitrogen flow (C) was 95:5.
  • the plasma power was 10.0 kW.
  • the produced plasma flame was photographed from the side where the frame width was observed to be the widest, the photographed image was binarized, and the aspect ratio of the frame length to the frame width (frame aspect ratio) was measured. As a result, the flame aspect ratio of the plasma flame was 4, confirming that the flow was laminar.
  • the median diameter of the dry copper particles thus obtained was 150 nm.
  • the liquid was heated to 35° C., and 50 g of hydrazine was added at an addition rate of 2 ml/min to carry out the second reduction.
  • the dispersion was kept under stirring.
  • the resulting dispersion of copper particles was washed with decantation using pure water to reduce the electrical conductivity to 2 mS/cm or less and prepare a dispersion having a solid concentration of 10%.
  • a solution obtained by dissolving 0.48 g of lauric acid in 300 mL of methanol was added all at once to this dispersion for surface treatment. After that, a cake of copper particles was collected by filtration and vacuum-dried at 70° C. to obtain copper powder.
  • Example 2 The same dry copper particles and reducing agent as used in Example 1 were used. Cuprous oxide (Cu 2 O) having a specific surface area of 5.4 m 2 /g was used as the copper compound. Copper particles were produced according to the following (4). (4) Production of Copper Particles 7 g of dry copper particles and 2000 mL of water were mixed to obtain a dispersion. 7 g of hydrazine was added to this dispersion without heating to remove the oxide film present on the surface of the dry copper particles. 100 g of cuprous oxide was then added to the dispersion. After the temperature was raised to 40° C., 70 g of hydrazine was added to the dispersion at an addition rate of 10 ml/min for reduction. The dispersion was kept under stirring. The copper particles thus obtained were washed with water, surface-treated and dried in the same manner as in Example 1, except that the amount of lauric acid added was changed to 0.26 g.
  • Cu 2 O Cuprous oxide having a specific surface area of 5.4 m 2
  • Example 3 The same dry copper particles and reducing agent as used in Example 1 were used. Copper sulfate pentahydrate (CuSO 4 .5H 2 O) was used as the copper compound. Copper particles were produced according to the following (4). (4) Production of Copper Particles 600 g of copper sulfate pentahydrate and 700 mL of water were mixed and stirred at 40° C. to obtain a copper raw material solution. To this solution, 180 g of 25% aqueous ammonia was added at an addition rate of 18 ml/min to adjust the pH. An additional 7.5 g of dry copper particles were added.
  • a mixed solution of 25 g of hydrazine and 100 g of 25% aqueous ammonia was added at an addition rate of 4 ml/min to carry out the first reduction.
  • the dispersion was kept under stirring.
  • 150 g of a 25% sodium hydroxide aqueous solution was added at an addition rate of 40 ml/min to adjust the pH.
  • a mixed solution of 110 g of hydrazine and 110 g of water was added at an addition rate of 15 ml/min to carry out the second reduction.
  • the dispersion was kept under stirring.
  • the copper particles thus obtained were washed with water, surface-treated and dried in the same manner as in Example 1 except that the amount of lauric acid added was changed to 0.75 g.
  • Example 4 The same dry copper particles and reducing agent as used in Example 1 were used. Cuprous oxide (Cu 2 O) having a specific surface area of 6.8 m 2 /g was used as the copper compound. Copper particles were produced according to the following (4). (4) Production of Copper Particles 10 g of dry copper particles and 2000 mL of water were mixed to obtain a dispersion liquid. To this dispersion was added 0.4 g of sodium diphosphate decahydrate. 7 g of hydrazine was added to this dispersion without heating to remove the oxide film present on the surface of the dry copper particles. 100 g of cuprous oxide was then added to the dispersion.
  • Example 2 After heating to 40° C., 50 g of hydrazine was added to the dispersion at an addition rate of 10 ml/min for reduction. The dispersion was kept under stirring. Water washing, surface treatment and drying treatment were carried out in the same manner as in Example 2 except that the amount of lauric acid for surface treatment of the copper particles thus obtained was changed to 0.3 g to obtain copper particles. rice field.
  • Example 5 The same dry copper particles and reducing agent as used in Example 1 were used. Cuprous oxide (Cu 2 O) having a specific surface area of 1.9 m 2 /g was used as the copper compound. Copper particles were produced according to the following (4). (4) Production of Copper Particles 3 g of dry copper particles and 2000 mL of water were mixed to obtain a dispersion. 7 g of hydrazine was added to this dispersion without heating to remove the oxide film present on the surface of the dry copper particles. 100 g of cuprous oxide was then added to the dispersion. After heating to 35° C., 70 g of hydrazine was added to the dispersion liquid at an addition rate of 10 ml/min for reduction. The dispersion was kept under stirring. The copper particles thus obtained were washed with water, surface-treated and dried in the same manner as in Example 2.
  • the median diameter of the copper particles obtained in Examples and Comparative Examples was measured by the following method. Also, TMA measurement was performed by the following method to obtain the sintering start temperature. Furthermore, TG-MS measurement was performed by the following method, and the above P2/P1 value was calculated. Furthermore, the presence or absence of a peak in the temperature range above the sintering start temperature Ts was observed. Furthermore, the crystallite size of the copper particles and SD, D10, D50 and D90 by image analysis particle size distribution measurement were measured by the following methods. Furthermore, the amount of carbon (C value) was measured by the method described above. The results are shown in Table 1 below. FIG. 2 shows the TMA measurement results, and FIG.
  • FIG. 3 shows the results normalized by the maximum peak height of P1 using the TG-MS measurement results.
  • FIG. 3 also shows the results of TG-MS measurement of the dry copper particles themselves. Furthermore, the SEM image of the copper particles obtained in Example 3 is shown in FIG. 4, and the SEM image of the copper particles obtained in Comparative Example 1 is shown in FIG.
  • the median diameter of the copper particles was measured using image analysis type particle size distribution measurement software Mac-View manufactured by MOUNTECH. For the measurement, 1000 particles are measured using an SEM image observed at a magnification of 5000 times, and the median value obtained from the obtained particle size distribution is defined as the median diameter of the copper particles.
  • TMA measurement The sintering start temperature Ts was measured using EXSTAR 6000 manufactured by Seiko Instruments. Pellets were produced by putting 500 mg of copper particles into an aluminum cup of ⁇ 4.0 mm and pressing at 1.0 MPa. This pellet was heated at a rate of 10° C./min in a nitrogen atmosphere, measurement was started from room temperature (25° C.), and a graph showing the relationship between temperature and displacement rate (%) was obtained. The relationship between the two shows a flat graph with no change in the displacement rate in the low temperature range, and the displacement rate becomes negative (shrinkage) as it reaches the high temperature range.
  • the sintering start temperature in this specification is the temperature at which the displacement rate decreases by 2.0% from the flat state when the graph of the displacement rate changes from a flat state to a negative value as the temperature rises. defined as the initiation temperature.
  • the displacement rate decreases by 2.0% from the time when the rise turns to the decline. This temperature is defined as the sintering start temperature.
  • the displacement rate (%) is defined as (T1 ⁇ T0)/T0 ⁇ 100, where T0 is the initial height of the pellet before heating and T1 is the height of the pellet at a certain temperature after heating. be.
  • Crystallite size The copper particles were classified using a sieve with an opening of 75 ⁇ m, and the fraction under the sieve was used as a sample. This sample was filled in a sample holder and measured under the following conditions using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.). Then, among the diffraction peaks, the crystallite size was calculated using Scherrer's formula based on the full width of the half-width of the main peak corresponding to the (111) plane of copper. The results are shown in Table 1 below.
  • ⁇ X-ray diffraction measurement conditions> ⁇ Tube: CuK ⁇ ray ⁇ Tube voltage: 40 kV ⁇ Tube current: 50mA ⁇ Measurement diffraction angle: 2 ⁇ 20 to 100° ⁇ Measurement step width: 0.01° ⁇ Collection time: 3 sec/step ⁇ Light receiving slit width: 0.3 mm ⁇ Vertical divergence limiting slit width: 10 mm ⁇ Detector: High-speed one-dimensional X-ray detector D/teX Ultra250
  • the copper powder to be measured was spread over a measurement holder and smoothed using a glass plate so that the copper powder had a thickness of 0.5 mm and was smooth.
  • the peaks of the X-ray diffraction pattern used for analysis are as follows.
  • the Miller indices shown below are synonymous with the crystal planes of copper described above.
  • a peak indexed by the Miller index (111) around 2 ⁇ 40°-45°.
  • [SD and D10, D50 and D90] D10, D50, D90 and SD of the copper particles were measured using image analysis type particle size distribution measurement software Mac-View manufactured by MOUNTECH. For the measurement, 1000 particles were measured using an SEM image observed at a magnification of 5000, and volume cumulative particle diameters D10, D50, D90 and SD of the particle size distribution were obtained.
  • the copper particles obtained in each example had a particle size similar to that of the copper particles of the comparative examples, and were sintered in a temperature range equal to or higher than the sintering start temperature. It can be seen that the generation of gas is suppressed.
  • the peak observed below the sintering start temperature is considered to be derived from impurities existing on the particle surface.
  • noise is magnified in the case of copper particles that are less likely to generate gas, such as in Example 1-3, due to the fact that the graph is normalized by the height of the maximum peak in the entire temperature range. tend to

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

In the copper particles of the present invention, when Ts represents the sintering start temperature measured by thermomechanical analysis, P1 represents the maximum peak in the temperature range below Ts obtained by measurement using a thermogravimetric-mass spectrometer, and P2 represents the maximum in the temperature range at and above Ts, the value of P2/P1 is less than 0.2. In addition, in the copper particles, the crystallite size is 30-80 nm (inclusive). Furthermore, in the copper particles, the median diameter by image analysis is 0.3-2.0 μm (inclusive). The copper particles are preferably obtained by adding a reducing agent to a liquid dispersion containing dry copper particles and a copper compound and causing copper to reduce and deposit onto the surface of the dry copper particles.

Description

銅粒子及びその製造方法Copper particles and method for producing the same
 本発明は、銅粒子及びその製造方法に関する。 The present invention relates to copper particles and a method for producing the same.
 銅は導電性の高い金属であり、また汎用性が高い材料であることから、導電材料として工業的に広く用いられている。例えば銅粒子の集合体である銅粉は、積層セラミックコンデンサ(以下「MLCC」ともいう。)の外部電極や内部電極など、各種電子部品を製造するための原材料として幅広く利用されている。  Copper is a highly conductive metal and a versatile material, so it is widely used industrially as a conductive material. For example, copper powder, which is an aggregate of copper particles, is widely used as a raw material for manufacturing various electronic components such as external electrodes and internal electrodes of multilayer ceramic capacitors (hereinafter also referred to as "MLCC").
 銅粉をMLCCの外部電極や内部電極として用いる場合には、焼成によって銅粒子どうしを焼結させ、焼結体を形成する工程が行われる。この場合、銅粒子中に有機物等の不純物が存在していると、焼結工程において当該不純物が燃焼し、ガスが発生して、焼結体にボイド等の欠陥を生じさせる一因となる。そこで、ガスの発生を抑制することを目的として、特許文献1においては、金属銅と塩素含有ガスとの反応により塩化銅ガスを生成させ、生成した塩化銅ガスと還元性ガスとの反応により銅を含む一次粉体を生成させ、該一次粉体を含窒素ヘテロ芳香族化合物で処理することによって銅粉を製造することが提案されている。 When copper powder is used as an external electrode or an internal electrode of an MLCC, a step of sintering the copper particles to form a sintered body is performed. In this case, if impurities such as organic substances are present in the copper particles, the impurities are burned during the sintering process to generate gas, which causes defects such as voids in the sintered body. Therefore, for the purpose of suppressing gas generation, in Patent Document 1, copper chloride gas is generated by a reaction between metallic copper and a chlorine-containing gas, and copper chloride gas is generated by a reaction between the generated copper chloride gas and a reducing gas. It has been proposed to produce copper powder by producing a primary powder containing and treating the primary powder with a nitrogen-containing heteroaromatic compound.
特開2021-80549号公報JP 2021-80549 A
 特許文献1には、脱ガスピーク温度が150℃以上300℃以下である銅粉が得られると記載されている。しかし、銅粉の焼成温度は、銅粉の性状に応じて比較的低温域から高温域にわたっており、同文献に記載の技術では、高温域で焼成したときのガス発生を防止することはできない。
 したがって本発明の課題は、前述した従来技術が有する欠点を解消し得る銅粒子及びその製造方法を提供することにある。
Patent Document 1 describes that a copper powder having a degassing peak temperature of 150° C. or higher and 300° C. or lower can be obtained. However, the firing temperature of the copper powder ranges from a relatively low temperature range to a high temperature range depending on the properties of the copper powder, and the technique described in the document cannot prevent gas generation when firing in a high temperature range.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a copper particle and a method for producing the same that can overcome the above-described drawbacks of the prior art.
 本発明は、熱機械分析によって測定された焼結開始温度をTsとし、
 熱重量-質量分析装置を用いた測定で得られたTs未満の温度領域での最大ピークをP1とし、Ts以上の温度領域での最大ピークをP2としたとき、
 P2/P1の値が0.2未満であり、
 結晶子サイズが30nm以上80nm以下であり、
 画像解析によるメジアン径が0.3μm以上2.0μm以下である、銅粒子を提供するものである。
In the present invention, the sintering start temperature measured by thermomechanical analysis is Ts,
When the maximum peak in the temperature range below Ts obtained by measurement using a thermogravimetric-mass spectrometer is P1, and the maximum peak in the temperature range above Ts is P2,
The value of P2/P1 is less than 0.2,
The crystallite size is 30 nm or more and 80 nm or less,
Provided are copper particles having a median diameter of 0.3 μm or more and 2.0 μm or less as determined by image analysis.
 また本発明は、乾式銅粒子及び銅化合物を含む分散液に還元剤を添加して、該乾式銅粒子の表面に銅を湿式還元により析出させる工程を有する、銅粒子の製造方法を提供するものである。 The present invention also provides a method for producing copper particles, comprising the step of adding a reducing agent to a dispersion containing dry copper particles and a copper compound, and depositing copper on the surfaces of the dry copper particles by wet reduction. is.
図1は、乾式銅粒子の製造に好適に用いられるDCプラズマ装置を示す模式図である。FIG. 1 is a schematic diagram showing a DC plasma apparatus suitable for producing dry copper particles. 図2は、実施例及び比較例で得られた銅粒子についての熱機械分析の測定結果を示すグラフである。FIG. 2 is a graph showing the results of thermomechanical analysis of the copper particles obtained in Examples and Comparative Examples. 図3は、実施例及び比較例で得られた銅粒子についての熱重量-質量分析の測定結果を示すグラフである。FIG. 3 is a graph showing the measurement results of thermogravimetric-mass spectrometry on the copper particles obtained in Examples and Comparative Examples. 図4は、実施例3で得られた銅粒子の走査型電子顕微鏡像である。4 is a scanning electron microscope image of the copper particles obtained in Example 3. FIG. 図5は、比較例1で得られた銅粒子の走査型電子顕微鏡像である。5 is a scanning electron microscope image of the copper particles obtained in Comparative Example 1. FIG.
 以下本発明を、その好ましい実施形態に基づき説明する。先ず、本発明の銅粒子の製造方法について説明する。
 本製造方法においては、以下の2工程に大別される。
(1)乾式銅粒子の準備工程。
(2)乾式銅粒子及び銅化合物を含む分散液に還元剤を添加して、該乾式銅粒子の表面に銅を湿式還元により析出させる工程。
 以下、それぞれの工程について説明する。
The present invention will be described below based on its preferred embodiments. First, the method for producing copper particles of the present invention will be described.
This production method is roughly divided into the following two steps.
(1) A step of preparing dry copper particles.
(2) A step of adding a reducing agent to a dispersion containing dry copper particles and a copper compound to deposit copper on the surface of the dry copper particles by wet reduction.
Each step will be described below.
<乾式銅粒子の準備工程>
 本工程で準備する乾式銅粒子とは、乾式法で製造された銅粒子のことである。本明細書において「銅粒子」というときには、銅からなり残部不可避不純物である粒子を主として意図しているが、本発明の効果を損なわない範囲において、銅及び銅と合金の形成が可能な元素からなり残部不可避不純物である粒子も包含される。
<Preparation process for dry copper particles>
The dry copper particles prepared in this step are copper particles produced by a dry method. In the present specification, the term "copper particles" mainly refers to particles consisting of copper and the remainder being unavoidable impurities. Particles which are unavoidable impurities are also included.
 乾式法で製造された銅粒子は、その製造方法に起因して、ガス発生の原因となる有機物の含有量が、湿式法で製造された銅粒子に比べて非常に少ない。したがって乾式銅粒子を粒成長のコアとして用いることで、本製造方法で得られた銅粒子は、高温域での焼成におけるガスの発生が抑制されたものとなる。本明細書にいう「高温域」とは、好ましくは450℃の温度域、更に好ましくは500℃以上の温度域、一層好ましくは550℃以上の温度域のことである。 Due to the production method, the copper particles produced by the dry method have a much lower content of organic substances that cause gas generation compared to the copper particles produced by the wet method. Therefore, by using the dry copper particles as cores for grain growth, the copper particles obtained by this production method are those in which the generation of gas during firing in a high temperature range is suppressed. As used herein, the term "high temperature range" preferably refers to a temperature range of 450°C, more preferably a temperature range of 500°C or higher, and even more preferably a temperature range of 550°C or higher.
 乾式法で銅粒子を製造する場合、その方法に特に制限はない。一例としてプラズマ法などの気相法が挙げられる。また他の例としてアトマイズ法が用いられる。乾式法で銅粒子を製造する最大の利点は、製造された銅粒子中に有機物等のコンタミネーションが少ないことにある。このこととは対照的に、湿式法で銅粒子を製造すると、還元剤、錯化剤及び/又は表面処理剤等に由来する有機物が不純物として混入しやすい。有機物の混入は、先に述べたとおり、焼結体中にボイドが発生する一因となるので極力避けるべきものである。 When producing copper particles by a dry method, there are no particular restrictions on the method. One example is a vapor phase method such as a plasma method. As another example, the atomization method is used. The greatest advantage of producing copper particles by the dry method is that the produced copper particles are less contaminated with organic matter and the like. In contrast, when copper particles are produced by a wet method, organic substances derived from reducing agents, complexing agents, and/or surface treatment agents are likely to be mixed as impurities. Mixing of organic matter, as described above, is one of the causes of voids in the sintered body, and should be avoided as much as possible.
 アトマイズ法で銅粒子を製造する場合、例えばガスアトマイズ法及び水アトマイズ法を用いることができる。アトマイズ法においては、誘導炉やガス炉で銅の地金を溶解後、タンディッシュの底のノズルから流出する溶湯に、空気や不活性ガスなどの気体又は水のジェット流を吹きつけて溶湯を粉砕して液滴として凝固させて銅粒子を製造する。なお水アトマイズ法では、液体である水を用いているが、銅粒子の製造原理上、乾式法と見做せるので湿式法には含めない。 When producing copper particles by the atomization method, for example, a gas atomization method and a water atomization method can be used. In the atomization method, after the copper base metal is melted in an induction furnace or gas furnace, the molten metal flowing out from the nozzle at the bottom of the tundish is blown with a jet stream of gas such as air or inert gas, or water to melt the molten metal. Copper particles are produced by pulverizing and solidifying into droplets. Although the water atomization method uses liquid water, it is not included in the wet method because it can be regarded as a dry method from the principle of manufacturing copper particles.
 プラズマ法などの気相法で乾式銅粒子を製造する場合、例えばDCプラズマ装置を使用して原料銅粉を加熱噴射する方法を採用できる。この方法を行う場合には、プラズマガスとして、アルゴンと窒素の混合ガスを使用することができる。特に、プラズマフレームが層流状態で太く長くなるようにプラズマ条件を調整することで、微粒で且つ粒径が揃った乾式銅粒子を容易に得ることができる。 When producing dry copper particles by a vapor phase method such as a plasma method, a method of heating and injecting raw copper powder using a DC plasma device, for example, can be adopted. When performing this method, a mixed gas of argon and nitrogen can be used as the plasma gas. In particular, by adjusting the plasma conditions so that the plasma flame becomes thick and long in a laminar flow state, fine dry copper particles having a uniform particle size can be easily obtained.
 プラズマフレームが層流状態であるか否かは、プラズマフレームを、フレーム幅が最も太く観察される側面から観察した際に、フレーム幅に対するフレーム長さの縦横比(以下、フレームアスペクト比)が3以上であるか否かによって判断することができる。具体的には、フレームアスペクト比が3以上であれば層流状態、3未満であれば乱流状態と判断することができる。 Whether or not the plasma flame is in a laminar flow state is determined when the aspect ratio of the frame length to the frame width (hereinafter referred to as the frame aspect ratio) is 3 when the plasma flame is observed from the side where the frame width is observed to be the widest. It can be judged by whether or not it is above. Specifically, if the frame aspect ratio is 3 or more, it can be determined that the flow is laminar, and if it is less than 3, it can be determined that the flow is turbulent.
 DCプラズマ装置としては、例えば図1に示すように、粉末供給装置2、チャンバー3、DCプラズマトーチ4、回収ポット5、粉末供給ノズル6、ガス供給装置7及び圧力調整装置8を備えたプラズマ装置1を用いることができる。このプラズマ装置1においては、原料粉末は、粉末供給装置2から粉末供給ノズル6を通してDCプラズマトーチ4内部を通ることになる。DCプラズマトーチ4には、アルゴンと窒素の混合ガスがガス供給装置7から供給され、それによってプラズマフレームが発生する。
 DCプラズマトーチ4で発生させたプラズマフレーム内で、原料粉末はガス化され、チャンバー3に放出された後、冷却され微粉末となって回収ポット5内に蓄積回収される。
 チャンバー3の内部は、圧力調整装置8によって粉末供給ノズル6よりも相対的に陰圧が保持されるように制御され、プラズマフレームを安定して発生する構造になっている。
As a DC plasma apparatus, for example, as shown in FIG. 1, a plasma apparatus equipped with a powder supply device 2, a chamber 3, a DC plasma torch 4, a recovery pot 5, a powder supply nozzle 6, a gas supply device 7 and a pressure adjustment device 8. 1 can be used. In this plasma device 1 , the raw material powder passes through the inside of the DC plasma torch 4 from the powder supply device 2 through the powder supply nozzle 6 . A mixed gas of argon and nitrogen is supplied to the DC plasma torch 4 from a gas supply device 7, thereby generating a plasma flame.
The raw material powder is gasified in the plasma flame generated by the DC plasma torch 4 , discharged into the chamber 3 , cooled to become fine powder, and accumulated and collected in the collection pot 5 .
The inside of the chamber 3 is controlled by the pressure regulator 8 so as to maintain a negative pressure relative to the powder supply nozzle 6, and has a structure for stably generating a plasma flame.
 DCプラズマ装置を使用して原料銅粉を加熱噴射する場合には、上述のとおり、プラズマフレームが層流状態で太く長くなるようにプラズマ条件を調整することが好ましい。プラズマガスとしては、アルゴンと窒素の混合ガスを使用することが好ましい。このように調整すれば、投入した原料銅粉は、プラズマフレーム中で瞬時に蒸発気化し、プラズマフレーム内で十分なエネルギーを供給することができるため、プラズマ尾炎部に向かって核形成、凝集及び凝縮が生じて微粒子、特にサブミクロンオーダーの微粒子を形成することができる。 When heating and injecting raw material copper powder using a DC plasma apparatus, as described above, it is preferable to adjust the plasma conditions so that the plasma flame becomes thick and long in a laminar flow state. A mixed gas of argon and nitrogen is preferably used as the plasma gas. By adjusting in this way, the raw material copper powder that is put into the plasma flame can be instantly vaporized and vaporized, and sufficient energy can be supplied within the plasma flame. and condensation can occur to form fine particles, especially fine particles of submicron order.
 プラズマフレームが層流状態で太く長くなるようにするために、プラズマ出力とガス流量を調整することが好ましい。この観点から、直流熱プラズマ装置のプラズマ出力は2kW以上30kW以下であることが好ましく、4kW以上15kW以下であることが更に好ましい。プラズマガスのガス流量は、上述の観点から、0.1L/min以上20L/min以下であることが好ましく、0.5L/min以上18L/min以下であることが更に好ましい。 It is preferable to adjust the plasma output and gas flow rate so that the plasma flame becomes thick and long in a laminar flow state. From this point of view, the plasma output of the DC thermal plasma apparatus is preferably 2 kW or more and 30 kW or less, more preferably 4 kW or more and 15 kW or less. From the above-described viewpoint, the gas flow rate of the plasma gas is preferably 0.1 L/min or more and 20 L/min or less, and more preferably 0.5 L/min or more and 18 L/min or less.
 プラズマフレームを層流状態に安定的に保つには、上述のプラズマ出力及びガス流量の範囲を保ち、且つ、プラズマ出力(A)に対する、Arガス流量(B)とNガス流量(C)との和の比、すなわち計算式(B+C)/Aで算出した値(単位:L/(min・kW))を、0.50以上2.00以下とすることが好ましい。特に、原料粉末のガス化に必要な流速を得るために、(B+C)/Aの値を0.50以上とすることが好ましく、プラズマフレームを層流で安定した状態を保持するために、(B+C)/Aの値を2.00以下とすることが好ましい。特に(B+C)/Aの値を、0.70以上1.70以下、特に0.75以上1.50以下となるように調整することが更に好ましい。 In order to stably maintain the plasma flame in a laminar flow state, the above ranges of plasma power and gas flow rate must be maintained, and the Ar gas flow rate (B) and N 2 gas flow rate (C) with respect to the plasma power (A) , that is, the value calculated by the formula (B+C)/A (unit: L/(min·kW)) is preferably 0.50 or more and 2.00 or less. In particular, the value of (B + C)/A is preferably 0.50 or more in order to obtain the flow rate necessary for gasifying the raw material powder. The value of B+C)/A is preferably 2.00 or less. In particular, it is more preferable to adjust the value of (B+C)/A to 0.70 or more and 1.70 or less, particularly 0.75 or more and 1.50 or less.
 プラズマガスにおけるアルゴンと窒素の割合は、粒度分布がシャープな銅粒子を得る観点から、流量比で99:1~10:90であることが好ましく、特に95:5~60:40、とりわけ95:5~80:20であることが好ましい。 From the viewpoint of obtaining copper particles with a sharp particle size distribution, the ratio of argon and nitrogen in the plasma gas is preferably 99:1 to 10:90, particularly 95:5 to 60:40, especially 95: A ratio of 5 to 80:20 is preferred.
 プラズマ法などの気相法及びアトマイズ法のいずれの方法を用いた場合であっても、乾式銅粒子の粒径は、電子顕微鏡観察で撮影された像に基づき画像解析によって求められたメジアン径が0.05μm以上0.5μm未満であることが、目的とする銅粒子を首尾よく得られる点から好ましい。この利点を一層顕著にする観点から、乾式銅粒子の粒径は、0.1μm以上0.4μm以下であることが更に好ましく、0.1μm以上0.3μm以下であることが一層好ましい。メジアン径の測定方法は実施例において説明する。 Regardless of whether the gas phase method such as the plasma method or the atomization method is used, the particle diameter of the dry copper particles is determined by image analysis based on the image taken by electron microscope observation. It is preferable that the particle size is 0.05 μm or more and less than 0.5 μm from the point of successfully obtaining the desired copper particles. From the viewpoint of making this advantage more remarkable, the particle size of the dry copper particles is more preferably 0.1 μm or more and 0.4 μm or less, and even more preferably 0.1 μm or more and 0.3 μm or less. A method for measuring the median diameter will be described in Examples.
 プラズマ法などの気相法とアトマイズ法とを比べると、ガス発生の原因となる有機物の含有量は、気相法で製造された乾式銅粒子の方が少ないという利点がある。
 なお、プラズマ法などの気相法で製造された乾式銅粒子そのものを、焼結用の銅粒子として用いることも考えられる。しかし、プラズマ法などの気相法では大粒径の乾式銅粒子を製造することが困難であることから、焼結に適した粒径の銅粒子を製造することが容易でない。そこで本製造方法においては、小粒径ではあるものの、ガス発生の原因となる有機物の含有量が少ないことから、プラズマ法などの気相法で製造された乾式銅粒子を粒成長のコアとして用い、該乾式銅粒子を、次工程である銅イオンの還元析出工程に供することとした。
 また、アトマイズ法で製造された乾式銅粒子そのものを、焼結用の銅粒子として用いることも有利ではない。その理由は、小型電子機器に使用される焼結用の銅粒子に求められる大きさの銅粒子を、アトマイズ法で製造することは容易でないからである。
Comparing the vapor phase method such as the plasma method with the atomization method, dry copper particles produced by the vapor phase method have the advantage that the content of organic substances that cause gas generation is less.
It is also conceivable to use dry copper particles themselves produced by a vapor phase method such as a plasma method as copper particles for sintering. However, since it is difficult to produce dry copper particles with a large particle size by a vapor phase method such as a plasma method, it is not easy to produce copper particles with a particle size suitable for sintering. Therefore, in this production method, dry copper particles produced by a gas phase method such as a plasma method are used as cores for grain growth because the content of organic substances that cause gas generation is small, although the particle size is small. , the dry copper particles were subjected to the next step of reducing and depositing copper ions.
It is also not advantageous to use the dry copper particles themselves produced by the atomization method as the copper particles for sintering. The reason for this is that it is not easy to produce copper particles of a size required for sintering copper particles used in small electronic devices by the atomization method.
<還元析出工程>
 本工程においては、準備工程で準備された乾式銅粒子及び銅化合物を含む分散液に還元剤を添加して、該乾式銅粒子の表面に銅を湿式還元により析出させる。
 銅化合物としては一価又は二価の銅を含む化合物を用いることができる。
 一価の銅を含む化合物としては、例えば亜酸化銅(CuO)が挙げられる。
 二価の銅を含む化合物としては、例えば水酸化銅(Cu(OH))及び硫酸銅(CuSO)が挙げられる。
 製造された銅粒子からのガス発生量を少なくする観点からは、亜酸化銅又は水酸化銅を用いることが好ましく、亜酸化銅を用いることが一層好ましい。亜酸化銅を用いることは、還元剤の使用量を低減できることからも好ましい。還元剤もガス発生の原因物質の一つとなり得るからである。
<Reduction deposition step>
In this step, a reducing agent is added to the dispersion containing the dry copper particles and the copper compound prepared in the preparation step, and copper is precipitated on the surface of the dry copper particles by wet reduction.
A compound containing monovalent or divalent copper can be used as the copper compound.
Compounds containing monovalent copper include, for example, cuprous oxide (Cu 2 O).
Compounds containing divalent copper include, for example, copper hydroxide (Cu(OH) 2 ) and copper sulfate (CuSO 4 ).
From the viewpoint of reducing the amount of gas generated from the produced copper particles, cuprous oxide or cuprous hydroxide is preferably used, and cuprous oxide is more preferably used. The use of cuprous oxide is also preferable because the amount of reducing agent used can be reduced. This is because the reducing agent can also be one of the causative substances for gas generation.
 銅化合物を還元させる還元剤としては、炭素元素を含まない化合物を用いることが、ガスの発生が抑制された銅粒子を首尾よく得る観点から好ましい。この観点から、還元剤として水素と窒素のみからなる化合物であるヒドラジンを用いることが好ましい。 From the viewpoint of successfully obtaining copper particles with suppressed gas generation, it is preferable to use a compound that does not contain a carbon element as a reducing agent that reduces the copper compound. From this point of view, it is preferable to use hydrazine, which is a compound consisting only of hydrogen and nitrogen, as the reducing agent.
 本工程において、乾式銅粒子と銅化合物との使用割合は、目的とする銅粒子の粒径の観点と粒径均一性の観点から決定される。理論的には、添加する乾式銅粒子の量と湿式還元により析出させる銅の量によって、目的とする銅粒子の粒径を推算することができる。しかし、乾式法では均一粒径な銅粒子を製造することは容易でなく、粒度分布が広い傾向があることや、分布形状が様々であることから、理論値と実粒径に乖離が生じる場合がある。
 湿式還元によって生成する銅粒子の粒径は、添加する銅化合物の量に対して乾式銅粒子の添加量が多くなるに連れて、該乾式銅粒子の粒径に収束する。しかし、添加する銅化合物の量に対して乾式銅粒子の割合が多くなると、生成する銅粒子の粒度分布が広くなる傾向になる。そこで、粒径均一性が高い銅粒子を得る観点から、乾式銅粒子の添加量は、乾式銅粒子と銅化合物との総銅原子に対して、80原子%以下にすることが好ましい。60原子%以下にすることが好ましく、40原子%以下にすることが更に好ましい。この値の下限は現実的な値として、0.1原子%以上であることが好ましい。
In this step, the ratio of the dry copper particles to the copper compound used is determined from the viewpoint of the desired particle size of the copper particles and the uniformity of the particle size. Theoretically, the desired particle size of the copper particles can be estimated from the amount of dry copper particles to be added and the amount of copper deposited by wet reduction. However, it is not easy to produce copper particles with a uniform particle size by the dry method, and the particle size distribution tends to be wide and the distribution shape varies, so there may be a deviation between the theoretical value and the actual particle size. There is
The particle size of the copper particles produced by wet reduction converges to the particle size of the dry copper particles as the amount of the dry copper particles added increases with respect to the amount of the copper compound added. However, when the ratio of the dry copper particles to the amount of the copper compound to be added increases, the particle size distribution of the generated copper particles tends to widen. Therefore, from the viewpoint of obtaining copper particles with high particle size uniformity, the amount of the dry copper particles added is preferably 80 atomic % or less with respect to the total copper atoms of the dry copper particles and the copper compound. It is preferably 60 atomic % or less, more preferably 40 atomic % or less. The lower limit of this value is preferably 0.1 atomic % or more as a realistic value.
 本工程においては、乾式銅粒子及び銅化合物が水に分散された状態で、銅イオンの還元を行う。乾式銅粒子と水との割合は、銅イオンの還元析出を首尾よく行う観点から、乾式銅粒子1質量部に対して水を10質量部以上20000質量部以下用いることが好ましく、50質量部以上10000質量部以下用いることが更に好ましく、100質量部以上1000質量部以下用いることが一層好ましい。乾式銅粒子1質量部に対して水を20000質量部以下の量で用いることで、乾式銅粒子の分散性を十分に高めることができる。また、乾式銅粒子1質量部に対して水を10質量部以上の量で用いることで、製造効率を高めることができる。 In this process, copper ions are reduced while the dry copper particles and copper compound are dispersed in water. The ratio of the dry copper particles and water is preferably 10 parts by mass or more and 20000 parts by mass or less, preferably 50 parts by mass or more, relative to 1 part by mass of the dry copper particles, from the viewpoint of successful reduction deposition of copper ions. It is more preferable to use 10000 parts by mass or less, and it is even more preferable to use 100 parts by mass or more and 1000 parts by mass or less. By using water in an amount of 20000 parts by mass or less with respect to 1 part by mass of the dry copper particles, the dispersibility of the dry copper particles can be sufficiently enhanced. Further, by using water in an amount of 10 parts by mass or more with respect to 1 part by mass of the dry copper particles, production efficiency can be enhanced.
 乾式銅粒子と水とを混合する場合、(a)両者の混合に先立ち、銅化合物と水とを混合し、それによって得られた分散液と乾式銅粒子とを混合することができる。あるいは、(b)先ず乾式銅粒子と水とを混合し、それによって得られた分散液と銅化合物とを混合することができる。(a)及び(b)のいずれを採用するかは、銅化合物の種類に応じて適宜決定することができる。 When the dry copper particles and water are mixed, (a) prior to mixing the two, the copper compound and water are mixed, and the resulting dispersion and the dry copper particles can be mixed. Alternatively, (b) the dry copper particles and water can be mixed first, and the resulting dispersion can be mixed with the copper compound. Which of (a) and (b) is adopted can be appropriately determined according to the type of copper compound.
 (b)の方法を採用する場合には、先ず乾式銅粒子と水とを混合し、それによって得られた分散液と還元剤とを混合した後に、銅化合物を添加することができる。乾式銅粒子と水を含む分散液に還元剤を添加する理由は、乾式銅粒子の表面に存在する可能性のある酸化膜を除去することで、その後に行う銅イオンの還元析出を首尾よく行うことにある。したがって、乾式銅粒子と水を含む分散液に還元剤を添加した時点では、分散液中に銅化合物は存在していないので、銅イオンの還元析出は生じていない。 When the method (b) is employed, the dry copper particles and water are first mixed, and the resulting dispersion and reducing agent are mixed, and then the copper compound can be added. The reason for adding the reducing agent to the dispersion containing the dry copper particles and water is to remove the oxide film that may exist on the surface of the dry copper particles, so that the subsequent reduction deposition of copper ions can be performed successfully. That's what it is. Therefore, when the reducing agent is added to the dispersion containing the dry copper particles and water, no copper compound is present in the dispersion, and no copper ions are precipitated by reduction.
 分散液中に乾式銅粒子と銅化合物とが存在している状態で、該分散液に還元剤を添加する。これによって、分散液中に存在する銅化合物に由来する銅イオンの還元が生じ、乾式銅粒子をコアとして、該粒子の表面に銅が析出される。 A reducing agent is added to the dispersion while the dry copper particles and the copper compound are present in the dispersion. As a result, copper ions derived from the copper compound present in the dispersion are reduced, and copper is deposited on the surface of the dry copper particles as cores.
 還元剤の添加の仕方は、銅化合物に含まれる銅イオンの価数に応じて決定することが好ましい。
 例えば銅化合物に含まれる銅イオンが二価である場合(例えば銅化合物として水酸化銅や硫酸銅を用いる場合)、還元剤を2回に分けて添加することが好ましい。こうすることで、最終的に得られる銅粒子の粒径を制御しやすいという利点がある。詳細には、1回目の還元剤の添加によって、二価の銅イオンを一価の銅イオンに還元し、次いで、系内の二価の銅イオンの還元が完了したら、2回目の還元剤の添加を行い、一価の銅イオンを金属銅に還元して、これを乾式銅粒子の表面に析出させる。1回目の還元剤の添加、及び2回目の還元剤の添加はいずれも、所定時間にわたって逐次的に行ってもよく、あるいは全量を一度に添加してもよい。
The method of adding the reducing agent is preferably determined according to the valence of copper ions contained in the copper compound.
For example, when the copper ion contained in the copper compound is divalent (for example, when copper hydroxide or copper sulfate is used as the copper compound), it is preferable to add the reducing agent in two steps. By carrying out like this, there exists an advantage that it is easy to control the particle size of the copper particle finally obtained. Specifically, the first addition of the reducing agent reduces the divalent copper ions to monovalent copper ions, and then, upon completion of the reduction of the divalent copper ions in the system, the second addition of the reducing agent. An addition is made to reduce the monovalent copper ions to metallic copper, which is deposited on the surface of the dry copper particles. Both the first addition of the reducing agent and the second addition of the reducing agent may be performed sequentially over a predetermined period of time, or the entire amount may be added at once.
 一方、銅化合物に含まれる銅イオンが一価である場合(例えば銅化合物として亜酸化銅を用いる場合)、銅イオンの還元反応は一価からゼロ価の一段だけなので、還元剤を一括添加することができる。この場合、還元剤を複数回に分けて添加することは妨げられないが、複数回に分けて還元剤を添加することに特段の実益はない。 On the other hand, when the copper ions contained in the copper compound are monovalent (for example, when cuprous oxide is used as the copper compound), the reduction reaction of the copper ions is only one step from monovalent to zero valent, so the reducing agent is added all at once. be able to. In this case, adding the reducing agent in multiple times is not prevented, but adding the reducing agent in multiple times has no particular practical advantage.
 分散液中に還元剤を添加することで、銅化合物に含まれる銅の還元が生じ、還元した銅が乾式銅粒子の表面に析出する。還元した銅は、乾式銅粒子の表面において擬似エピタキシャル成長する。エピタキシャル成長とは、下地となる材料の結晶の上に同種又は異種の材料を結晶成長させるときに、下地の材料の結晶面に揃えて、その上に成長する材料の結晶面が配列する様式のことである。本製造方法における銅の還元析出は厳密な意味でのエピタキシャル成長ではないが、乾式銅粒子の結晶面に揃えて、その上に成長する銅の結晶面が概ね配列することから、この現象のことを本明細書では擬似エピタキシャル成長と呼んでいる。
 還元によって生成した銅が、乾式銅粒子の表面で擬似エピタキシャル成長することによって、最終的に得られる銅粒子は、粒子の中心域から表面域へ向けて放射状に延び、表面において露出する結晶粒を複数有する構造となる。このような構造の銅粒子は、粒界に不純物を保持しにくいことから、不純物の含有量が少ないものとなる。このことによっても、本製造方法で得られる銅粒子は、高温域での焼成におけるガスの発生が抑制されたものとなる。特に、結晶粒界が乾式銅粒子の表面から銅粒子表面に向かって放射状に延在するような形状であると、銅粒子の焼結過程でガスが外部へ抜けやすくなるので、焼結体中にボイドが生じにくくなる。
By adding a reducing agent to the dispersion liquid, the copper contained in the copper compound is reduced, and the reduced copper is deposited on the surface of the dry copper particles. The reduced copper grows pseudoepitaxially on the surface of the dry copper particles. Epitaxial growth is a method in which the crystal planes of the material grown on top are aligned with the crystal planes of the underlying material when the same or different material is grown on the crystal of the underlying material. is. Strictly speaking, the reduction deposition of copper in the present production method is not epitaxial growth. It is called pseudo epitaxial growth in this specification.
The copper produced by the reduction undergoes pseudoepitaxial growth on the surface of the dry copper particles, so that the finally obtained copper particles radially extend from the central area of the particles toward the surface area, and have a plurality of crystal grains exposed on the surface. It becomes a structure with Copper grains having such a structure are less likely to retain impurities at the grain boundaries, so that the content of impurities is small. Due to this also, the copper particles obtained by this production method are those in which the generation of gas during firing in a high temperature range is suppressed. In particular, when the grain boundaries are shaped so as to radially extend from the surface of the dry copper particles toward the surface of the copper particles, gas can easily escape to the outside during the sintering process of the copper particles. Voids are less likely to occur in the
 還元によって生成した銅を、乾式銅粒子の表面で擬似エピタキシャル成長させるために、乾式銅粒子としてプラズマ法などの気相法で製造されたものを用いることが有利である。プラズマ法などの気相法で製造された乾式銅粒子は、それ以外の方法で製造された乾式銅粒子に比べて結晶性が非常に高いからである。 It is advantageous to use dry copper particles produced by a vapor phase method such as a plasma method in order to allow the copper produced by reduction to grow pseudo-epitaxially on the surface of the dry copper particles. This is because dry copper particles produced by a vapor phase method such as a plasma method have very high crystallinity compared to dry copper particles produced by other methods.
 分散液に還元剤を添加して、銅化合物に含まれる銅の還元を行う場合には、該分散液を加熱してもよく、あるいは非加熱下に還元を行ってもよい。また、分散液は撹拌してもよく、あるいは静置下に還元を行ってもよい。 When reducing the copper contained in the copper compound by adding a reducing agent to the dispersion, the dispersion may be heated or may be reduced without heating. Moreover, the dispersion may be stirred, or the reduction may be carried out while standing still.
 乾式銅粒子の表面に銅が析出することによって、目的とする粒径を有する銅粒子が得られる。以下、この銅粒子のことを「本発明の銅粒子」という。本発明の銅粒子は、必要に応じて水洗・乾燥工程に付される。このようにして得られた本発明の銅粒子、すなわち乾式銅粒子及び銅化合物を含む分散液に還元剤を添加して、該乾式銅粒子の表面に銅を還元析出させて得られた銅粒子は、その製造方法に起因して、乾式銅粒子の始点と湿式銅粒子の利点とを併せ持ったものとなる。具体的には、乾式銅粒子が有する利点、すなわち粒子内部における不純物、特に有機物の含有量が少ないことに起因して、該銅粒子を用いて焼結体を製造するときに、高温域での焼成におけるガスの発生が抑制されたものとなる。また、湿式銅粒子が有する利点、すなわち粒度分布がシャープであることや、粒径が小さいことに起因して、銅粒子を含むペーストから製造された塗膜の表面平滑性が高くなる。 By depositing copper on the surface of the dry copper particles, copper particles having the desired particle size can be obtained. Hereinafter, these copper particles are referred to as "copper particles of the present invention". The copper particles of the present invention are subjected to washing and drying processes as necessary. Copper particles obtained by adding a reducing agent to the copper particles of the present invention thus obtained, i.e., the dispersion containing the dry copper particles and the copper compound, and reducing and depositing copper on the surface of the dry copper particles. Owing to its manufacturing method, it combines the starting points of dry copper particles with the advantages of wet copper particles. Specifically, due to the advantage of dry copper particles, that is, the content of impurities, especially organic matter, in the interior of the particles is small, when producing a sintered body using the copper particles, it is possible to use the copper particles in a high temperature range. Generation of gas during firing is suppressed. In addition, due to the advantages of wet copper particles, namely sharp particle size distribution and small particle size, the surface smoothness of a coating film produced from a paste containing copper particles is enhanced.
 高温域での焼成におけるガスの発生の抑制の程度は、熱重量-質量分析装置(以下「TG-MS」ともいう。)を用いた測定によって評価できる。詳細には、本発明の銅粒子は、これをTG-MS測定したときに、好ましくは焼結開始温度以上に、ある一定以上の大きさのピークが観察されないものである。本明細書において焼結開始温度とは、熱機械分析(以下「TMA」ともいう。)測定したときに、変位率が2%変化したときの温度である。なお「焼結開始温度以上に、ある一定以上の大きさのピークが観察されない」とは、焼結開始温度未満の温度域にピークが観察されないことを妨げるものではない。つまり本発明の銅粒子は、焼結開始温度以上の温度域にピークが観察されないことが好ましく、焼結開始温度未満の温度域にピークが観察されてもよい。
 本明細書において「焼結開始温度以上に、ある一定以上の大きさのピークが観察されない」とは、TMAによって測定された焼結開始温度をTsとし、TG-MSを用いた測定で得られたTs未満の温度領域での最大ピークをP1とし、Ts以上の温度領域での最大ピークをP2としたとき、P2/P1の値が0.2未満であることをいう。P2/P1の値は、ガス発生を一層抑制する観点から0.18以下であることが好ましく、0.15以下であることが更に好ましい。
 本発明の銅粒子についてのTMA及びTG-MSの測定方法は実施例において説明する。
The degree of suppression of gas generation in firing in a high temperature range can be evaluated by measurement using a thermogravimetric-mass spectrometer (hereinafter also referred to as “TG-MS”). Specifically, when the copper particles of the present invention are subjected to TG-MS measurement, preferably at temperatures above the sintering start temperature, peaks of a certain size or more are not observed. In this specification, the sintering start temperature is the temperature at which the displacement rate changes by 2% when measured by thermomechanical analysis (hereinafter also referred to as "TMA"). Note that "a peak of a certain size or more is not observed at temperatures above the sintering start temperature" does not mean that no peaks are observed in a temperature range below the sintering start temperature. In other words, the copper particles of the present invention preferably show no peak in the temperature range above the sintering start temperature, and may have a peak in the temperature range below the sintering start temperature.
In the present specification, "a peak of a certain size or more is not observed above the sintering start temperature" means that the sintering start temperature measured by TMA is Ts, and is obtained by measurement using TG-MS. The value of P2/P1 is less than 0.2, where P1 is the maximum peak in the temperature range below Ts and P2 is the maximum peak in the temperature range above Ts. From the viewpoint of further suppressing gas generation, the value of P2/P1 is preferably 0.18 or less, more preferably 0.15 or less.
The TMA and TG-MS measurement methods for the copper particles of the present invention will be described in Examples.
 本発明の銅粒子は、粒子表面の酸化防止、あるいは、凝集防止に適した量の炭素を含有していてもよい。この観点から、本発明の銅粒子は、炭素の量が10ppm以上7000ppm以下であることが好ましく、10ppm以上5000ppm以下であることが更に好ましく、100ppm以上2000ppm以下であることが一層好ましく、150ppm以上1000ppm以下であることが更に一層好ましい。本発明の銅粒子に含まれる炭素は、原料由来の有機物、あるいは、二酸化炭素の吸着に由来する炭酸塩などである。加えて、酸化防止や凝集防止の目的で意図的に銅粒子の表面に脂肪酸や脂肪族アミンなどの有機物を施してもよい。炭素量を7000ppm以下にすることで、焼結後に炭素が残存しにくくなり、ガス発生が効果的に抑制される。
 本発明の銅粒子に含まれる炭素の量は、炭素・硫黄分析装置(LECOジャパン合同会社製CS844)を用い、銅粒子0.50gを磁性坩堝に入れて測定される。キャリアガスは酸素ガス(純度:99.5%)とし、分析時間は40秒とする。
The copper particles of the present invention may contain carbon in an amount suitable for preventing oxidation or agglomeration of the particle surface. From this point of view, the copper particles of the present invention preferably have a carbon content of 10 ppm or more and 7000 ppm or less, more preferably 10 ppm or more and 5000 ppm or less, even more preferably 100 ppm or more and 2000 ppm or less, and 150 ppm or more and 1000 ppm or less. The following are even more preferred. The carbon contained in the copper particles of the present invention is an organic substance derived from raw materials, or a carbonate derived from adsorption of carbon dioxide. In addition, organic substances such as fatty acids and aliphatic amines may be intentionally applied to the surface of the copper particles for the purpose of preventing oxidation and aggregation. By setting the carbon content to 7000 ppm or less, carbon hardly remains after sintering, and gas generation is effectively suppressed.
The amount of carbon contained in the copper particles of the present invention is measured by placing 0.50 g of copper particles in a magnetic crucible using a carbon/sulfur analyzer (CS844 manufactured by LECO Japan LLC). The carrier gas is oxygen gas (purity: 99.5%), and the analysis time is 40 seconds.
 本発明の銅粒子は、好適には上述した方法によって製造されるので、その結晶子サイズが、従来知られている乾式銅粒子、例えばアトマイズ法によって製造された乾式銅粒子の結晶子サイズよりも小さいものとなる。具体的には、本発明の銅粒子は、その結晶子サイズが好ましくは30nm以上80nm以下であり、更に好ましくは35nm以上75nm以下であり、一層好ましくは40nm以上65nm以下である。上述した製造方法によって製造され且つこのような小さな結晶子サイズを有する銅粒子によれば、ガス発生を一層効果的に抑制することができる。銅粒子の結晶子サイズの測定方法については実施例において説明する。 Since the copper particles of the present invention are preferably produced by the method described above, the crystallite size is larger than that of conventionally known dry copper particles, such as dry copper particles produced by an atomizing method. becomes small. Specifically, the copper particles of the present invention preferably have a crystallite size of 30 nm or more and 80 nm or less, more preferably 35 nm or more and 75 nm or less, and still more preferably 40 nm or more and 65 nm or less. The copper particles produced by the production method described above and having such a small crystallite size can more effectively suppress gas generation. A method for measuring the crystallite size of copper particles will be described in Examples.
 本発明の銅粒子は、焼成によって焼結体が形成されるのに適した粒径を有することが好ましい。この観点から、本発明の銅粒子は、画像解析によるメジアン径が0.3μm以上2.0μm以下であることが好ましく、0.4μm以上1.8μm以下であることが更に好ましく、0.4μm以上1.5μm以下であることが一層好ましい。この範囲の粒径を有し且つ高温域での焼成におけるガスの発生が抑制された銅粒子は、プラズマ法などの気相法で容易に得ることはできず、本製造方法を採用することで初めて得られるものである。メジアン径の測定方法は実施例において説明する。 The copper particles of the present invention preferably have a particle size suitable for forming a sintered body by firing. From this point of view, the copper particles of the present invention preferably have a median diameter of 0.3 μm or more and 2.0 μm or less by image analysis, more preferably 0.4 μm or more and 1.8 μm or less, and 0.4 μm or more. It is more preferably 1.5 μm or less. Copper particles having a particle size within this range and having suppressed gas generation during firing in a high-temperature range cannot be easily obtained by a gas phase method such as a plasma method, and can be obtained by adopting this production method. It is obtained for the first time. A method for measuring the median diameter will be described in Examples.
 上述したメジアン径に関連して、本発明の銅粒子は、画像解析粒度分布測定法により測定された累積体積50容量%における体積累積粒径をD50とし、画像解析粒度分布測定法により測定された粒度分布の標準偏差をSDとしたとき、SD/D50の値が0.9以下であることが、該銅粒子を含むペーストを用いて塗膜を形成した場合に、該塗膜の表面平滑性が向上する観点から好ましい。SD/D50の値は銅粒子の粒度分布のシャープさの指標であり、この値が0に近いほど銅粒子の粒度分布はシャープであることを意味する。前記塗膜の表面平滑性を一層高める観点から、SD/D50の値は0.7以下であることが更に好ましく、0.6以下であることが一層好ましい。SD及びD50の測定方法は実施例において説明する。なおD50は、上述したメジアン径と同じ意味である。 In relation to the median diameter described above, the copper particles of the present invention are measured by the image analysis particle size distribution measurement method, with the volume cumulative particle diameter at 50 volume % of the cumulative volume measured by the image analysis particle size distribution measurement method as D50. When the standard deviation of the particle size distribution is SD, the value of SD/D50 is 0.9 or less. is preferable from the viewpoint of improvement. The value of SD/D50 is an index of the sharpness of the particle size distribution of copper particles, and the closer this value is to 0, the sharper the particle size distribution of copper particles. From the viewpoint of further enhancing the surface smoothness of the coating film, the SD/D50 value is more preferably 0.7 or less, and even more preferably 0.6 or less. Methods for measuring SD and D50 are described in the Examples. Note that D50 has the same meaning as the median diameter described above.
 上述したSD/D50に関連して、本発明の銅粒子は、画像解析粒度分布測定法により測定された累積体積10容量%及び90容量%における体積累積粒径をそれぞれD10及びD90としたとき、D10に対するD90の比であるD90/D10の値が小さいことが好ましい。D90/D10は、上述したSD/D50と同様に、銅粒子の粒度分布のシャープさを示す指標となる値であり、その値が1に近いほど銅粒子の粒度分布がシャープであることを意味する。この観点から本発明の銅粒子は、D90/D10の値が20.0以下であることが好ましく、10.0以下であることが更に好ましく、5.0以下であることが一層好ましい。D90/D10の値の下限は、1に近ければ近いほど粒度分布のシャープさの点から望ましいが、D90/D10の値が1.6程度に小さければ、粒度分布は十分にシャープであると言える。
 D10及びD90の測定方法は実施例において説明する。
In relation to the SD/D50 described above, the copper particles of the present invention have a volume cumulative particle diameter measured by image analysis particle size distribution measurement method at 10% by volume and 90% by volume respectively. It is preferable that the value of D90/D10, which is the ratio of D90 to D10, is small. D90/D10, like SD/D50 described above, is a value that is an index indicating the sharpness of the particle size distribution of copper particles, and the closer the value is to 1, the sharper the particle size distribution of copper particles is. do. From this viewpoint, the copper particles of the present invention preferably have a D90/D10 value of 20.0 or less, more preferably 10.0 or less, and even more preferably 5.0 or less. The closer the lower limit of the D90/D10 value is to 1, the better from the point of view of sharpness of the particle size distribution. .
Methods for measuring D10 and D90 are described in Examples.
 本発明は、以下の銅粒子及び銅粒子の製造方法を開示する。
[1]
 熱機械分析によって測定された焼結開始温度をTsとし、
 熱重量-質量分析装置を用いた測定で得られたTs未満の温度領域での最大ピークをP1とし、Ts以上の温度領域での最大ピークをP2としたとき、
 P2/P1の値が0.2未満であり、
 結晶子サイズが30nm以上80nm以下であり、
 画像解析によるメジアン径が0.3μm以上2.0μm以下である、銅粒子。
[2]
 画像解析粒度分布測定法により測定された体積累積粒径をD50とし、
 画像解析粒度分布測定法により測定された粒度分布の標準偏差をSDとしたとき、
 SD/D50の値が0.9以下である、[1]に記載の銅粒子。
[3]
 炭素の量が10ppm以上7000ppm以下である、[1]又は[2]に記載の銅粒子。
[4]
 乾式銅粒子及び銅化合物を含む分散液に還元剤を添加して、該乾式銅粒子の表面に銅を還元析出させて得られたものである、[1]~[3]のいずれか一に記載の銅粒子。
[5]
 乾式銅粒子及び銅化合物を含む分散液に還元剤を添加して、該乾式銅粒子の表面に銅を湿式還元により析出させる工程を有する、銅粒子の製造方法。
[6]
 気相法によって前記乾式銅粒子を製造する、[5]に記載の製造方法。
[7]
 アトマイズ法によって前記乾式銅粒子を製造する、[5]又は[6]に記載の製造方法。
[8]
 前記銅化合物が二価の銅の化合物であり、
 前記還元剤を複数回に分けて添加する、[5]~[7]のいずれか一に記載の製造方法。
[9]
 前記銅化合物が一価の銅の化合物であり、
 前記還元剤を一括添加する、[5]~[7]のいずれか一に記載の製造方法。
The present invention discloses the following copper particles and a method for producing copper particles.
[1]
Let the sintering start temperature measured by thermomechanical analysis be Ts,
When the maximum peak in the temperature range below Ts obtained by measurement using a thermogravimetric-mass spectrometer is P1, and the maximum peak in the temperature range above Ts is P2,
The value of P2/P1 is less than 0.2,
The crystallite size is 30 nm or more and 80 nm or less,
Copper particles having a median diameter of 0.3 μm or more and 2.0 μm or less as determined by image analysis.
[2]
The volume cumulative particle size measured by image analysis particle size distribution measurement is defined as D50,
When the standard deviation of the particle size distribution measured by the image analysis particle size distribution measurement method is SD,
The copper particles according to [1], having an SD/D50 value of 0.9 or less.
[3]
The copper particles according to [1] or [2], wherein the amount of carbon is 10 ppm or more and 7000 ppm or less.
[4]
Any one of [1] to [3], which is obtained by adding a reducing agent to a dispersion containing dry copper particles and a copper compound to reduce and deposit copper on the surface of the dry copper particles. Copper particles as described.
[5]
A method for producing copper particles, comprising a step of adding a reducing agent to a dispersion containing dry copper particles and a copper compound, and depositing copper on the surfaces of the dry copper particles by wet reduction.
[6]
The production method according to [5], wherein the dry copper particles are produced by a vapor phase method.
[7]
The production method according to [5] or [6], wherein the dry copper particles are produced by an atomizing method.
[8]
the copper compound is a divalent copper compound,
The production method according to any one of [5] to [7], wherein the reducing agent is added in multiple batches.
[9]
the copper compound is a monovalent copper compound,
The production method according to any one of [5] to [7], wherein the reducing agent is added all at once.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。 The present invention will be described in more detail below with reference to examples. However, the scope of the invention is not limited to such examples. "%" means "% by mass" unless otherwise specified.
  〔実施例1〕
(1)乾式銅粒子の製造
 図1に示す装置を用い、気相法のDCプラズマ法によって乾式銅粒子を製造した。
 原料銅粉(粒径10μm、球状粒子)を粉末供給装置2に導入し、10g/分の供給量で粉末供給ノズル6からチャンバー3内に供給した。
 プラズマガスとしてアルゴン及び窒素の混合ガスを用い、アルゴン流量13.0L/分及び窒素流量0.7L/分で、該混合ガスをプラズマフレームの内部に供給した。アルゴン流量(B)と窒素流量(C)との比は95:5であった。プラズマ出力は10.0kWであった。
 生成したプラズマフレームについて、フレーム幅が最も太く観察される側面から該プラズマフレームを写真撮影し、撮影像を二値化して、フレーム幅に対するフレーム長さの縦横比(フレームアスペクト比)を測定した。その結果、プラズマフレームのフレームアスペクト比は4であり、層流であることが確認された。
 このようにして得られた乾式銅粒子のメジアン径は150nmであった。
[Example 1]
(1) Production of Dry Copper Particles Using the apparatus shown in FIG. 1, dry copper particles were produced by a vapor-phase DC plasma method.
A raw material copper powder (particle size: 10 μm, spherical particles) was introduced into the powder supply device 2 and supplied into the chamber 3 from the powder supply nozzle 6 at a supply rate of 10 g/min.
A mixed gas of argon and nitrogen was used as the plasma gas, and the mixed gas was supplied to the inside of the plasma flame at an argon flow rate of 13.0 L/min and a nitrogen flow rate of 0.7 L/min. The ratio of argon flow (B) to nitrogen flow (C) was 95:5. The plasma power was 10.0 kW.
The produced plasma flame was photographed from the side where the frame width was observed to be the widest, the photographed image was binarized, and the aspect ratio of the frame length to the frame width (frame aspect ratio) was measured. As a result, the flame aspect ratio of the plasma flame was 4, confirming that the flow was laminar.
The median diameter of the dry copper particles thus obtained was 150 nm.
(2)銅化合物の準備
 銅化合物として水酸化銅(Cu(OH))の粉末を準備した。
(3)還元剤の準備
 還元剤としてヒドラジンを準備した。
(4)銅粒子の製造
 200gの水酸化銅と2000mLの水とを混合した後、更に13gの前記の乾式銅粒子を添加した。このようにして得られた分散液に、25%アンモニア水を200g添加した。アンモニア水の添加によって反応活性を調整した。
 更に、30gのヒドラジン及び60gの水の混合溶液を、2ml/minの添加速度で添加して25℃で1回目の還元を行った。分散液は撹拌状態とした。
 ヒドラジンの添加から30分経過後に、液を35℃に昇温させ、50gのヒドラジンを2ml/minの添加速度で添加して2回目の還元を行った。分散液は撹拌状態とした。得られた銅粒子の分散液を、純水を使用してデカンテーション洗浄により、導電率を2mS/cm以下までとして、固形分濃度が10%の分散液を調製した。この分散液に、0.48gのラウリン酸を300mLのメタノールに溶解させた溶液を一括添加して表面処理を行った。その後、濾過することで銅粒子のケーキを回収し、70℃で真空乾燥することで銅粉を得た。
(2) Preparation of Copper Compound Powder of copper hydroxide (Cu(OH) 2 ) was prepared as a copper compound.
(3) Preparation of reducing agent Hydrazine was prepared as a reducing agent.
(4) Production of Copper Particles After mixing 200 g of copper hydroxide and 2000 mL of water, 13 g of the dry copper particles were added. 200 g of 25% aqueous ammonia was added to the dispersion thus obtained. The reaction activity was adjusted by adding aqueous ammonia.
Furthermore, a mixed solution of 30 g of hydrazine and 60 g of water was added at an addition rate of 2 ml/min to perform the first reduction at 25°C. The dispersion was kept under stirring.
Thirty minutes after the addition of hydrazine, the liquid was heated to 35° C., and 50 g of hydrazine was added at an addition rate of 2 ml/min to carry out the second reduction. The dispersion was kept under stirring. The resulting dispersion of copper particles was washed with decantation using pure water to reduce the electrical conductivity to 2 mS/cm or less and prepare a dispersion having a solid concentration of 10%. A solution obtained by dissolving 0.48 g of lauric acid in 300 mL of methanol was added all at once to this dispersion for surface treatment. After that, a cake of copper particles was collected by filtration and vacuum-dried at 70° C. to obtain copper powder.
  〔実施例2〕
 乾式銅粒子及び還元剤として、実施例1で用いたものと同様のものを用いた。銅化合物として比表面積が5.4m/gの亜酸化銅(CuO)を用いた。銅粒子の製造は以下の(4)に従い行った。
(4)銅粒子の製造
 7gの乾式銅粒子と2000mLの水とを混合して分散液を得た。この分散液に7gのヒドラジンを非加熱下に添加して、乾式銅粒子の表面に存在する酸化膜を除去した。
 次いで分散液に100gの亜酸化銅を添加した。40℃に昇温後、分散液に、70gのヒドラジンを10ml/minの添加速度で添加して還元を行った。分散液は撹拌状態とした。
 このようにして得られた銅粒子をラウリン酸の添加量を0.26gに変更する以外、実施例1と同様に水洗・表面処理・乾燥処理に付した。
[Example 2]
The same dry copper particles and reducing agent as used in Example 1 were used. Cuprous oxide (Cu 2 O) having a specific surface area of 5.4 m 2 /g was used as the copper compound. Copper particles were produced according to the following (4).
(4) Production of Copper Particles 7 g of dry copper particles and 2000 mL of water were mixed to obtain a dispersion. 7 g of hydrazine was added to this dispersion without heating to remove the oxide film present on the surface of the dry copper particles.
100 g of cuprous oxide was then added to the dispersion. After the temperature was raised to 40° C., 70 g of hydrazine was added to the dispersion at an addition rate of 10 ml/min for reduction. The dispersion was kept under stirring.
The copper particles thus obtained were washed with water, surface-treated and dried in the same manner as in Example 1, except that the amount of lauric acid added was changed to 0.26 g.
  〔実施例3〕
 乾式銅粒子及び還元剤として、実施例1で用いたものと同様のものを用いた。銅化合物として硫酸銅・五水和物(CuSO・5HO)を用いた。銅粒子の製造は以下の(4)に従い行った。
(4)銅粒子の製造
 600gの硫酸銅・五水和物と、700mLの水とを混合し、40℃下で撹拌することで、銅原料溶液を得た。この溶液に、180gの25%アンモニア水を18ml/minの添加速度で添加してpHを調整した。
 更に7.5gの乾式銅粒子を添加した。次いで、25gのヒドラジンと25%アンモニア水100gの混合溶液を4ml/minの添加速度で添加して1回目の還元を行った。分散液は撹拌状態とした。
 ヒドラジンの添加から30分経過後に、150gの25%水酸化ナトリウム水溶液を40ml/minの添加速度で添加してpHを調整した。更に、110gのヒドラジンと110gの水との混合溶液を15ml/minの添加速度で添加して2回目の還元を行った。分散液は撹拌状態とした。
 このようにして得られた銅粒子をラウリン酸の添加量を0.75gに変更する以外実施例1と同様に水洗・表面処理・乾燥処理に付した。
[Example 3]
The same dry copper particles and reducing agent as used in Example 1 were used. Copper sulfate pentahydrate (CuSO 4 .5H 2 O) was used as the copper compound. Copper particles were produced according to the following (4).
(4) Production of Copper Particles 600 g of copper sulfate pentahydrate and 700 mL of water were mixed and stirred at 40° C. to obtain a copper raw material solution. To this solution, 180 g of 25% aqueous ammonia was added at an addition rate of 18 ml/min to adjust the pH.
An additional 7.5 g of dry copper particles were added. Next, a mixed solution of 25 g of hydrazine and 100 g of 25% aqueous ammonia was added at an addition rate of 4 ml/min to carry out the first reduction. The dispersion was kept under stirring.
Thirty minutes after hydrazine addition, 150 g of a 25% sodium hydroxide aqueous solution was added at an addition rate of 40 ml/min to adjust the pH. Furthermore, a mixed solution of 110 g of hydrazine and 110 g of water was added at an addition rate of 15 ml/min to carry out the second reduction. The dispersion was kept under stirring.
The copper particles thus obtained were washed with water, surface-treated and dried in the same manner as in Example 1 except that the amount of lauric acid added was changed to 0.75 g.
  〔実施例4〕
 乾式銅粒子及び還元剤として、実施例1で用いたものと同様のものを用いた。銅化合物として比表面積が6.8m/gの亜酸化銅(CuO)を用いた。銅粒子の製造は以下の(4)に従い行った。
(4)銅粒子の製造
 10gの乾式銅粒子と2000mLの水とを混合して分散液を得た。この分散液に二リン酸ナトリウム十水和物を0.4g添加した。この分散液に7gのヒドラジンを非加熱下に添加して、乾式銅粒子の表面に存在する酸化膜を除去した。
 次いで分散液に100gの亜酸化銅を添加した。40℃に昇温後、分散液に、50gのヒドラジンを10ml/minの添加速度で添加して還元を行った。分散液は撹拌状態とした。
 このようにして得られた銅粒子に表面処理を施すためのラウリン酸の量を0.3gに変更した以外は実施例2と同様にして水洗・表面処理・乾燥処理を行い、銅粒子を得た。
[Example 4]
The same dry copper particles and reducing agent as used in Example 1 were used. Cuprous oxide (Cu 2 O) having a specific surface area of 6.8 m 2 /g was used as the copper compound. Copper particles were produced according to the following (4).
(4) Production of Copper Particles 10 g of dry copper particles and 2000 mL of water were mixed to obtain a dispersion liquid. To this dispersion was added 0.4 g of sodium diphosphate decahydrate. 7 g of hydrazine was added to this dispersion without heating to remove the oxide film present on the surface of the dry copper particles.
100 g of cuprous oxide was then added to the dispersion. After heating to 40° C., 50 g of hydrazine was added to the dispersion at an addition rate of 10 ml/min for reduction. The dispersion was kept under stirring.
Water washing, surface treatment and drying treatment were carried out in the same manner as in Example 2 except that the amount of lauric acid for surface treatment of the copper particles thus obtained was changed to 0.3 g to obtain copper particles. rice field.
  〔実施例5〕
 乾式銅粒子及び還元剤として、実施例1で用いたものと同様のものを用いた。銅化合物として比表面積が1.9m/gの亜酸化銅(CuO)を用いた。銅粒子の製造は以下の(4)に従い行った。
(4)銅粒子の製造
 3gの乾式銅粒子と2000mLの水とを混合して分散液を得た。この分散液に7gのヒドラジンを非加熱下に添加して、乾式銅粒子の表面に存在する酸化膜を除去した。
 次いで分散液に100gの亜酸化銅を添加した。35℃に昇温後、分散液に、70gのヒドラジンを10ml/minの添加速度で添加して還元を行った。分散液は撹拌状態とした。
 このようにして得られた銅粒子を実施例2と同様に水洗・表面処理・乾燥処理に付した。
[Example 5]
The same dry copper particles and reducing agent as used in Example 1 were used. Cuprous oxide (Cu 2 O) having a specific surface area of 1.9 m 2 /g was used as the copper compound. Copper particles were produced according to the following (4).
(4) Production of Copper Particles 3 g of dry copper particles and 2000 mL of water were mixed to obtain a dispersion. 7 g of hydrazine was added to this dispersion without heating to remove the oxide film present on the surface of the dry copper particles.
100 g of cuprous oxide was then added to the dispersion. After heating to 35° C., 70 g of hydrazine was added to the dispersion liquid at an addition rate of 10 ml/min for reduction. The dispersion was kept under stirring.
The copper particles thus obtained were washed with water, surface-treated and dried in the same manner as in Example 2.
  〔比較例1〕
 本比較例では乾式銅粒子を用いずに湿式還元によって銅粒子を製造した。
 4000gの硫酸銅・五水和物と4400mLの水とを45℃下で混合して水溶液を得た。この水溶液に2.17gのピロリン酸ナトリウムを添加した。更に、25%アンモニア水を874g添加するとともに、25%水酸化ナトリウム水溶液を2836g添加した。
 更に、300gのヒドラジンを、25%アンモニア水393gとともに60分で定速添加して1回目の還元を行った。分散液は撹拌状態とした。
 ヒドラジンの添加から15分経過後に、200gのヒドラジンを10分で定速添加して2回目の還元を行った。分散液は撹拌状態とした。
 このようにして得られた銅粒子をラウリン酸の添加量を3.0gに変更する以外実施例1と同様に水洗・表面処理・乾燥処理に付した。
[Comparative Example 1]
In this comparative example, copper particles were produced by wet reduction without using dry copper particles.
An aqueous solution was obtained by mixing 4000 g of copper sulfate pentahydrate and 4400 mL of water at 45°C. 2.17 g of sodium pyrophosphate was added to this aqueous solution. Further, 874 g of 25% aqueous ammonia was added, and 2836 g of 25% aqueous sodium hydroxide solution was added.
Further, 300 g of hydrazine was added together with 393 g of 25% aqueous ammonia at a constant rate over 60 minutes to carry out the first reduction. The dispersion was kept under stirring.
After 15 minutes from the addition of hydrazine, 200 g of hydrazine was added at a constant rate over 10 minutes for the second reduction. The dispersion was kept under stirring.
The copper particles thus obtained were washed with water, surface-treated and dried in the same manner as in Example 1 except that the amount of lauric acid added was changed to 3.0 g.
  〔評価〕
 実施例及び比較例で得られた銅粒子について、以下の方法でメジアン径を測定した。また、以下の方法でTMA測定を行い、焼結開始温度を求めた。更に、以下の方法でTG-MS測定を行い、前記のP2/P1の値を算出した。更に焼結開始温度Ts以上の温度域におけるピークの有無を観察した。更に、以下の方法で、銅粒子の結晶子サイズ、並びに画像解析粒度分布測定法によるSD、D10、D50及びD90を測定した。更に、炭素の量(C値)を上述の方法で測定した。それらの結果を以下の表1に示す。また、TMAの測定結果を図2に示し、TG-MSの測定結果を用いて、P1の最大ピーク高さで規格化したものを図3に示す。図3には、乾式銅粒子そのもののTG-MSの測定結果を併記した。更に、図4に、実施例3で得られた銅粒子のSEM像を示し、図5に、比較例1で得られた銅粒子のSEM像を示す。
〔evaluation〕
The median diameter of the copper particles obtained in Examples and Comparative Examples was measured by the following method. Also, TMA measurement was performed by the following method to obtain the sintering start temperature. Furthermore, TG-MS measurement was performed by the following method, and the above P2/P1 value was calculated. Furthermore, the presence or absence of a peak in the temperature range above the sintering start temperature Ts was observed. Furthermore, the crystallite size of the copper particles and SD, D10, D50 and D90 by image analysis particle size distribution measurement were measured by the following methods. Furthermore, the amount of carbon (C value) was measured by the method described above. The results are shown in Table 1 below. FIG. 2 shows the TMA measurement results, and FIG. 3 shows the results normalized by the maximum peak height of P1 using the TG-MS measurement results. FIG. 3 also shows the results of TG-MS measurement of the dry copper particles themselves. Furthermore, the SEM image of the copper particles obtained in Example 3 is shown in FIG. 4, and the SEM image of the copper particles obtained in Comparative Example 1 is shown in FIG.
  〔メジアン径〕
 MOUNTECH社製画像解析式粒度分布測定ソフトウェアMac-Viewを用いて銅粒子のメジアン径を計測した。計測は、倍率5000倍で観察したSEM画像を用いて、1000個の粒子を計測し、得られた粒度分布から得られたメジアン値を、銅粒子のメジアン径と定義する。
[Median diameter]
The median diameter of the copper particles was measured using image analysis type particle size distribution measurement software Mac-View manufactured by MOUNTECH. For the measurement, 1000 particles are measured using an SEM image observed at a magnification of 5000 times, and the median value obtained from the obtained particle size distribution is defined as the median diameter of the copper particles.
  〔TMA測定〕
 セイコーインスツル製EXSTAR 6000を用いて、焼結開始温度Tsの測定を行った。500mgの銅粒子をφ4.0mmのアルミ製カップに入れて1.0MPaで加圧成形することでペレットを製造した。このペレットを窒素雰囲気下に10℃/minで昇温させ、室温(25℃)から測定を開始し、温度と変位率(%)との関係を示すグラフを得た。両者の関係は、低温域では変位率に変化はなく平坦なグラフとなり、高温域に達するに連れて変位率がマイナス(収縮)になった。場合によっては、ペレットの作製時のばらつきに起因して、低温域において変位率が一旦プラス(膨張)側に上昇した後、高温域に達するに連れて変位量が下降に転じて最終的にはマイナス(収縮)になった。そこで本明細書における焼結開始温度は、変位率のグラフが昇温に連れて平坦な状態からマイナスに変化する場合には、その平坦な状態から変位率が2.0%減少した温度をもって焼結開始温度と定義する。また、変位率のグラフが昇温に連れて一旦プラス方向に上昇し、その後マイナス方向に降下するように変化する場合には、変位率が、上昇から下降に転じた時点から2.0%減少した温度をもって焼結開始温度と定義する。
 変位率(%)は、昇温前のペレットの初期高さをT0とし、昇温後のある温度でのペレットの高さをT1としたとき、(T1-T0)/T0×100で定義される。
[TMA measurement]
The sintering start temperature Ts was measured using EXSTAR 6000 manufactured by Seiko Instruments. Pellets were produced by putting 500 mg of copper particles into an aluminum cup of φ4.0 mm and pressing at 1.0 MPa. This pellet was heated at a rate of 10° C./min in a nitrogen atmosphere, measurement was started from room temperature (25° C.), and a graph showing the relationship between temperature and displacement rate (%) was obtained. The relationship between the two shows a flat graph with no change in the displacement rate in the low temperature range, and the displacement rate becomes negative (shrinkage) as it reaches the high temperature range. In some cases, due to variations in pellet production, the displacement rate once rises to the positive (expansion) side in the low temperature range, and then the displacement turns downward as the high temperature range is reached, and finally became negative (shrinkage). Therefore, the sintering start temperature in this specification is the temperature at which the displacement rate decreases by 2.0% from the flat state when the graph of the displacement rate changes from a flat state to a negative value as the temperature rises. defined as the initiation temperature. In addition, when the graph of the displacement rate once rises in the positive direction as the temperature rises and then falls in the negative direction, the displacement rate decreases by 2.0% from the time when the rise turns to the decline. This temperature is defined as the sintering start temperature.
The displacement rate (%) is defined as (T1−T0)/T0×100, where T0 is the initial height of the pellet before heating and T1 is the height of the pellet at a certain temperature after heating. be.
  〔TG-MS測定〕
 Rigaku製ThermoMassPhotoを用いて、ガス発生性を測定した。50mgの銅粒子をアルミナパンに秤量し、He雰囲気下で25℃から900℃まで、50℃/minの速度で昇温して測定した。測定には、Thermo plus EVO2ソフトウェアを用い、測定条件を設定した。Heガス流量は、300ml/min、イオン化モードは、電子イオン化を選択し、エミッションを1.0mA、SEMを1000Vで設定した。データの取得間隔は、1秒とした。測定感度、スキャン速度、フィルタは、AUTO設定で測定した。得られたMSデータをQuadVisionによって解析した。解析方法は、TICデータをもとにm/z=44に関するデータに変換した。一般には、m/z=44は、有機物の分解によって生じる二酸化炭素であると考えられる。
[TG-MS measurement]
Gas generation was measured using Rigaku's ThermoMassPhoto. 50 mg of copper particles were weighed in an alumina pan, and the temperature was raised from 25° C. to 900° C. at a rate of 50° C./min under a He atmosphere and measured. Thermo plus EVO2 software was used for the measurement, and measurement conditions were set. The He gas flow rate was set to 300 ml/min, the ionization mode was selected to be electron ionization, the emission was set to 1.0 mA, and the SEM was set to 1000V. The data acquisition interval was 1 second. Measurement sensitivity, scan speed, and filters were measured with AUTO settings. The obtained MS data were analyzed by QuadVision. As for the analysis method, the TIC data was converted into data relating to m/z=44. Generally, m/z=44 is considered to be carbon dioxide produced by decomposition of organic matter.
  〔結晶子サイズ〕
 75μmの目開きの篩を用いて銅粒子を分級し、その篩下分をサンプルとした。このサンプルをサンプルホルダに充填し、X線回折装置(株式会社Rigaku製 Ultima IV)を使用し、以下の条件で測定を行った。
 その後、回折ピークのうち、銅の(111)面に相当する位置のメインピークを対象として、該ピークの半値幅の全幅に基づき、シェラーの式を用いて結晶子サイズを算出した。結果を以下の表1に示す。
[Crystallite size]
The copper particles were classified using a sieve with an opening of 75 μm, and the fraction under the sieve was used as a sample. This sample was filled in a sample holder and measured under the following conditions using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.).
Then, among the diffraction peaks, the crystallite size was calculated using Scherrer's formula based on the full width of the half-width of the main peak corresponding to the (111) plane of copper. The results are shown in Table 1 below.
<X線回折測定条件>
 ・管球:CuKα線
 ・管電圧:40kV
 ・管電流:50mA
 ・測定回折角:2θ=20~100°
 ・測定ステップ幅:0.01°
 ・収集時間:3sec/ステップ
 ・受光スリット幅:0.3mm
 ・発散縦制限スリット幅:10mm
 ・検出器:高速1次元X線検出器 D/teX Ultra250
<X-ray diffraction measurement conditions>
・Tube: CuKα ray ・Tube voltage: 40 kV
・Tube current: 50mA
・Measurement diffraction angle: 2θ = 20 to 100°
・Measurement step width: 0.01°
・Collection time: 3 sec/step ・Light receiving slit width: 0.3 mm
・Vertical divergence limiting slit width: 10 mm
・Detector: High-speed one-dimensional X-ray detector D/teX Ultra250
<X線回折用試料の調製方法>
 測定対象の銅粉を測定ホルダに敷き詰め、銅粉の厚さが0.5mmで且つ平滑になるように、ガラスプレートを用いて平滑化した。
<Method for preparing sample for X-ray diffraction>
The copper powder to be measured was spread over a measurement holder and smoothed using a glass plate so that the copper powder had a thickness of 0.5 mm and was smooth.
 上述の測定条件にて得られたX線回折パターンを用いて、以下の条件にて、解析用ソフトウェアで解析した。ピーク幅の補正にはLaBを用いた。結晶子サイズは、ピークの半値全幅とシェラー定数(0.94)とを用いて算出した。 Using the X-ray diffraction pattern obtained under the above measurement conditions, analysis was performed using analysis software under the following conditions. LaB 6 was used for peak width correction. Crystallite size was calculated using the full width at half maximum of the peak and the Scherrer constant (0.94).
<測定データ解析条件>
 ・解析ソフトウェア:Rigaku製PDXL2
 ・平滑処理:ガウス関数、平滑化パラメータ=10
 ・バックグラウンド除去:フィッティング方式
 ・Kα2除去:強度比0.497
 ・ピークサーチ:二次微分法
 ・プロファイルフィッティング:FP法
 ・結晶子サイズ分布タイプ:ローレンツモデル
 ・シェラー定数:0.9400
<Measurement data analysis conditions>
・ Analysis software: Rigaku PDXL2
・Smoothing: Gaussian function, smoothing parameter=10
・Background removal: fitting method ・Kα2 removal: intensity ratio 0.497
・Peak search: second derivative method ・Profile fitting: FP method ・Crystallite size distribution type: Lorentz model ・Scherrer constant: 0.9400
 なお、解析を行う際に使用したX線回折パターンのピークは、以下のとおりである。以下に示すミラー指数は、上述した銅の結晶面と同義である。
 ・2θ=40°~45°付近にあるミラー指数(111)で指数付けされるピーク。
The peaks of the X-ray diffraction pattern used for analysis are as follows. The Miller indices shown below are synonymous with the crystal planes of copper described above.
A peak indexed by the Miller index (111) around 2θ=40°-45°.
  〔SD並びにD10、D50及びD90〕
 MOUNTECH社製画像解析式粒度分布測定ソフトウェアMac-Viewを用いて銅粒子のD10、D50、D90及びSDを計測した。計測は、倍率5000倍で観察したSEM画像を用いて、1000個の粒子を計測し、粒度分布の体積累積粒径D10、D50、D90及びSDを求めた。
[SD and D10, D50 and D90]
D10, D50, D90 and SD of the copper particles were measured using image analysis type particle size distribution measurement software Mac-View manufactured by MOUNTECH. For the measurement, 1000 particles were measured using an SEM image observed at a magnification of 5000, and volume cumulative particle diameters D10, D50, D90 and SD of the particle size distribution were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図3に示す結果から明らかなとおり、各実施例で得られた銅粒子は、比較例の銅粒子の同程度の粒径を有しつつ、焼結開始温度以上の温度域でのガスの発生が抑制されていることが分かる。
 なお、図3に示す実施例1-3において、焼結開始温度未満に観察されるピークは、粒子表面に存在する不純物に由来するものであると考えられる。また図3においては、全温度領域における最大ピークの高さでグラフを規格化したことに起因して、実施例1-3のような、ガスが発生しにくい銅粒子の場合、ノイズが拡大される傾向にある。
As is clear from the results shown in Table 1 and FIG. 3, the copper particles obtained in each example had a particle size similar to that of the copper particles of the comparative examples, and were sintered in a temperature range equal to or higher than the sintering start temperature. It can be seen that the generation of gas is suppressed.
In addition, in Example 1-3 shown in FIG. 3, the peak observed below the sintering start temperature is considered to be derived from impurities existing on the particle surface. In addition, in FIG. 3, noise is magnified in the case of copper particles that are less likely to generate gas, such as in Example 1-3, due to the fact that the graph is normalized by the height of the maximum peak in the entire temperature range. tend to
 以上、詳述したとおり本発明によれば、高温域での焼成におけるガスの発生が抑制された銅粒子及びその製造方法が提供される。 As described in detail above, according to the present invention, copper particles in which the generation of gas during firing in a high temperature range is suppressed, and a method for producing the same are provided.

Claims (9)

  1.  熱機械分析によって測定された焼結開始温度をTsとし、
     熱重量-質量分析装置を用いた測定で得られたTs未満の温度領域での最大ピークをP1とし、Ts以上の温度領域での最大ピークをP2としたとき、
     P2/P1の値が0.2未満であり、
     結晶子サイズが30nm以上80nm以下であり、
     画像解析によるメジアン径が0.3μm以上2.0μm以下である、銅粒子。
    Let the sintering start temperature measured by thermomechanical analysis be Ts,
    When the maximum peak in the temperature range below Ts obtained by measurement using a thermogravimetric-mass spectrometer is P1, and the maximum peak in the temperature range above Ts is P2,
    The value of P2/P1 is less than 0.2,
    The crystallite size is 30 nm or more and 80 nm or less,
    Copper particles having a median diameter of 0.3 μm or more and 2.0 μm or less as determined by image analysis.
  2.  画像解析粒度分布測定法により測定された体積累積粒径をD50とし、
     画像解析粒度分布測定法により測定された粒度分布の標準偏差をSDとしたとき、
     SD/D50の値が0.9以下である、請求項1に記載の銅粒子。
    The volume cumulative particle size measured by image analysis particle size distribution measurement is defined as D50,
    When the standard deviation of the particle size distribution measured by the image analysis particle size distribution measurement method is SD,
    The copper particles according to claim 1, having an SD/D50 value of 0.9 or less.
  3.  炭素の量が10ppm以上7000ppm以下である、請求項1に記載の銅粒子。 The copper particles according to claim 1, wherein the amount of carbon is 10 ppm or more and 7000 ppm or less.
  4.  乾式銅粒子及び銅化合物を含む分散液に還元剤を添加して、該乾式銅粒子の表面に銅を還元析出させて得られたものである、請求項1に記載の銅粒子。 The copper particles according to claim 1, which are obtained by adding a reducing agent to a dispersion containing dry copper particles and a copper compound, and reducing and depositing copper on the surfaces of the dry copper particles.
  5.  乾式銅粒子及び銅化合物を含む分散液に還元剤を添加して、該乾式銅粒子の表面に銅を湿式還元により析出させる工程を有する、銅粒子の製造方法。 A method for producing copper particles, comprising a step of adding a reducing agent to a dispersion containing dry copper particles and a copper compound, and depositing copper on the surface of the dry copper particles by wet reduction.
  6.  気相法によって前記乾式銅粒子を製造する、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the dry copper particles are manufactured by a vapor phase method.
  7.  アトマイズ法によって前記乾式銅粒子を製造する、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the dry copper particles are manufactured by an atomizing method.
  8.  前記銅化合物が二価の銅の化合物であり、
     前記還元剤を複数回に分けて添加する、請求項5ないし7のいずれか一項に記載の製造方法。
    the copper compound is a divalent copper compound,
    The production method according to any one of claims 5 to 7, wherein the reducing agent is added in multiple batches.
  9.  前記銅化合物が一価の銅の化合物であり、
     前記還元剤を一括添加する、請求項5ないし7のいずれか一項に記載の製造方法。
    the copper compound is a monovalent copper compound,
    The production method according to any one of claims 5 to 7, wherein the reducing agent is added all at once.
PCT/JP2022/040269 2021-10-28 2022-10-27 Copper particles and method for producing same WO2023074827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021176213 2021-10-28
JP2021-176213 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074827A1 true WO2023074827A1 (en) 2023-05-04

Family

ID=86159974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040269 WO2023074827A1 (en) 2021-10-28 2022-10-27 Copper particles and method for producing same

Country Status (2)

Country Link
TW (1) TW202327757A (en)
WO (1) WO2023074827A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307881A (en) * 2003-04-02 2004-11-04 Dowa Mining Co Ltd Copper powder and manufacturing method therefor
JP2012233222A (en) * 2011-04-28 2012-11-29 Mitsui Mining & Smelting Co Ltd Low-carbon copper particle
WO2015122251A1 (en) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 Copper powder
JP2017157329A (en) * 2016-02-29 2017-09-07 三井金属鉱業株式会社 Copper paste and manufacturing method of sintered body of copper
JP2018109225A (en) * 2016-12-28 2018-07-12 Dowaエレクトロニクス株式会社 Copper powder and method for producing same
WO2020066968A1 (en) * 2018-09-28 2020-04-02 ナミックス株式会社 Conductive paste
JP2021080549A (en) * 2019-11-22 2021-05-27 東邦チタニウム株式会社 Copper powder and method for manufacturing the same
JP7122436B1 (en) * 2021-06-08 2022-08-19 Jx金属株式会社 copper powder
WO2022209267A1 (en) * 2021-03-30 2022-10-06 三井金属鉱業株式会社 Copper particles and method for manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307881A (en) * 2003-04-02 2004-11-04 Dowa Mining Co Ltd Copper powder and manufacturing method therefor
JP2012233222A (en) * 2011-04-28 2012-11-29 Mitsui Mining & Smelting Co Ltd Low-carbon copper particle
WO2015122251A1 (en) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 Copper powder
JP2017157329A (en) * 2016-02-29 2017-09-07 三井金属鉱業株式会社 Copper paste and manufacturing method of sintered body of copper
JP2018109225A (en) * 2016-12-28 2018-07-12 Dowaエレクトロニクス株式会社 Copper powder and method for producing same
WO2020066968A1 (en) * 2018-09-28 2020-04-02 ナミックス株式会社 Conductive paste
JP2021080549A (en) * 2019-11-22 2021-05-27 東邦チタニウム株式会社 Copper powder and method for manufacturing the same
WO2022209267A1 (en) * 2021-03-30 2022-10-06 三井金属鉱業株式会社 Copper particles and method for manufacturing same
JP7122436B1 (en) * 2021-06-08 2022-08-19 Jx金属株式会社 copper powder

Also Published As

Publication number Publication date
TW202327757A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
JP5768322B2 (en) Nickel fine powder and method for producing the same
TWI803486B (en) Copper particle and its manufacturing method
JP2011195888A5 (en)
KR102278500B1 (en) Metal powder and its manufacturing method
JPWO2011037150A1 (en) Nickel fine powder and method for producing the same
JP6559118B2 (en) Nickel powder
JP2009285537A (en) Method for producing fine particle and production apparatus to be used therein
JP6596476B2 (en) Silicon-containing powder
CN113798504B (en) Preparation method of rare earth oxide dispersion-reinforced tungsten powder for 3D printing
TWI763135B (en) Copper powder
JP4701426B2 (en) Copper powder and copper powder manufacturing method
JP2004124257A (en) Metal copper particulate, and production method therefor
WO2023074827A1 (en) Copper particles and method for producing same
KR20190123777A (en) Nickel Powder And Nickel Paste
JP3812359B2 (en) Method for producing metal powder
JP2019108610A (en) Spherical silver powder and method for producing the same
JP2016185887A (en) Method for manufacturing silicon containing powder
JP4352121B2 (en) Copper powder manufacturing method
JP2009052146A (en) Copper powder and its manufacturing method
JP7390198B2 (en) Glass particles, conductive composition using the same, and method for producing glass particles
JP2008106327A (en) Fine powder of tin and production method therefor
JP5003648B2 (en) Method for producing oxide-coated copper fine particles
JP5354398B2 (en) True spherical fine powder
WO2020158685A1 (en) Sn particles, conductive composition using the same, and method for producing sn particles
JP2006169559A (en) Copper alloy fine-particle and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556656

Country of ref document: JP