JP3812359B2 - Method for producing metal powder - Google Patents

Method for producing metal powder Download PDF

Info

Publication number
JP3812359B2
JP3812359B2 JP2001108533A JP2001108533A JP3812359B2 JP 3812359 B2 JP3812359 B2 JP 3812359B2 JP 2001108533 A JP2001108533 A JP 2001108533A JP 2001108533 A JP2001108533 A JP 2001108533A JP 3812359 B2 JP3812359 B2 JP 3812359B2
Authority
JP
Japan
Prior art keywords
powder
metal
highly crystalline
metal powder
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001108533A
Other languages
Japanese (ja)
Other versions
JP2002020809A (en
Inventor
裕二 秋本
和郎 永島
宏志 吉田
裕孝 多久島
雅之 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2001108533A priority Critical patent/JP3812359B2/en
Publication of JP2002020809A publication Critical patent/JP2002020809A/en
Application granted granted Critical
Publication of JP3812359B2 publication Critical patent/JP3812359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エレクトロニクス用に適した金属粉末の製造方法、特に導体ペースト用の導電性粉末として有用な結晶性の高い金属粉末の製造方法に関するものである。
【0002】
【従来の技術】
エレクトロニクス回路形成用導体ペーストに使用される導電性金属粉末としては、不純物が少ないこと、平均粒径が0.1μm以下のものから10μm程度までの微細な粉末であること、粒子形状及び粒径が揃っており、凝集のない単分散粒子であることなどが望まれる。またペースト中での分散性が良いことや、不均一な焼結を起こさないよう結晶性が良好であることも要求される。特に積層コンデンサ、積層インダクタ等の積層セラミック電子部品において内部導体や外部導体の形成に用いられる場合は、デラミネーション、クラック等の構造欠陥を防止しかつ導体を薄膜化するために、より微細で粒径、形状の揃ったサブミクロン粒子であることと共に、焼成中に酸化還元による膨張収縮が起こりにくく、かつ焼結開始温度が高い、球状で活性の低い高結晶性または単結晶の金属粉末が要求されている。
【0003】
即ち、積層セラミック電子部品は、一般に誘電体、磁性体等の未焼成セラミックグリーンシートと、パラジウム、銀−パラジウム等の貴金属やニッケル、銅等の卑金属の粉末を導電成分とする内部導体ペースト層とを交互に複数層積層し、この積層体を高温で同時焼成することにより製造されるが、内部導体に酸化しやすい卑金属を用いた場合、種々の問題がある。例えば内部導体ペーストの導電成分としてニッケル粉末を用いた場合、積層体は、通常300〜600℃程度の温度で行われる脱バインダ工程までは酸化性雰囲気中で加熱して、ペースト中及びセラミックグリーンシート中の有機ビヒクルを完全に燃焼除去する。このときニッケル粉末は若干酸化される。その後不活性雰囲気中又は還元性雰囲気中で焼成し、必要により還元処理を行うが、脱バインダ時に酸化したニッケル粉末を完全に還元することは難しく、抵抗値の上昇など電気特性の低下につながる。またこの酸化還元に伴って電極の体積の膨張収縮が起こるが、この体積変化がセラミック層の焼結収縮挙動と一致しないことにより、デラミネーションやクラック等の構造欠陥を引き起こし易い。またニッケル粉末は非酸化性雰囲気中では焼結が早く、過焼結によって内部導体が不連続膜となって抵抗値の上昇や断線を起こしたり、導体厚みが厚くなってしまう問題があり、近年の部品の高積層化に伴う内部導体層の薄膜化の要求に対応することが困難である。このような酸化や過焼結は、ニッケルペーストを用いて外部導体を同時焼成によって形成する場合にも同様に問題となる。従って少なくとも脱バインダ時に酸化しにくく、かつ焼結開始温度の高い高結晶性ニッケル粉末が望まれる。
【0004】
一方貴金属であるパラジウムは、焼成中比較的低温で酸化し、更に高温に加熱されると還元される性質があり、このため電極層とセラミック層との焼結収縮挙動の不一致による構造欠陥を引き起こす。従ってパラジウムやパラジウム合金の場合も酸化しにくいことが望まれるが、耐酸化性の点では球状の高結晶性粉末、特に単結晶粉末は非常に優れたものである。
【0005】
従来このような結晶性の高い金属粉末を製造する方法として、噴霧熱分解法が知られている。噴霧熱分解法は、特公昭63−31522号公報等に記載されているように、1種又は2種以上の金属化合物を含む溶液またはこれらを分散させた懸濁液を噴霧して微細な液滴にし、その液滴を該金属化合物の分解温度より高い温度、望ましくは該金属の融点近傍又はそれ以上の高温で加熱し、金属化合物を熱分解することにより金属又は合金の粉末を析出させる方法である。この方法によれば、高結晶性または単結晶で、高密度、高分散性の真球状金属粉末や合金粉末が得られる。また湿式還元法と異なり固液分離の必要がないので製造が容易であり、また純度に影響を及ぼすような添加剤や溶媒を使用しないので、不純物を含まない高純度の粉末が得られる利点がある。更に粒径のコントロールが容易であり、また生成粒子の組成は基本的に溶液中の出発金属化合物の組成と一致するので、組成の制御が容易であるという利点もある。
【0006】
しかしこの方法では、原料の金属化合物を液滴とするのに溶媒または分散媒として水や、アルコール、アセトン、エーテル等の有機溶媒を使用するため、熱分解時のエネルギーロスが大きく、コストが高くなる問題がある。即ちこのプロセスにおいては、加熱により溶媒の蒸発と同時に金属化合物の熱分解が行われるか、または溶媒の蒸発後、金属化合物の熱分解が行われるのであるが、いずれにおいても溶媒を蒸発させるのに多大なエネルギーを要する。また反応容器内において液滴の合着や分裂が起こることにより、生成する粉末の粒度分布が大きくなることがある。このため噴霧速度、キャリヤガス中での液滴濃度、反応器中の滞留時間等、反応条件の設定が難しい。また特にニッケル、鉄、コバルト、銅などの卑金属粉末の場合、酸化防止のため、熱分解を厳密にコントロールされた還元性または弱還元性雰囲気で行う必要がある。さらに溶媒として水を使用する場合は、水分の分解により発生する酸化性ガスのために高温で酸化されやすく、結晶性の良好な粉末が得られにくい。
【0007】
気相法で金属超微粒子を製造する方法もよく知られている。例えばニッケル粉末を得るには、塩化ニッケルを蒸発させ、高温で還元性ガスにより還元する。しかし気相からの析出反応で得られる粉末は凝集しやすく、しかも粒子径の制御が困難である。また蒸気圧の異なる金属の合金を、正確にコントロールされた組成で作ることは不可能である。
【0008】
特表平11−503205号公報には、酸化タングステンなどの金属化合物粉末を、還元剤を用いて固気反応により還元する方法が記載されている。この方法は、原料の金属化合物粉末を、ガス状還元剤及び任意にキャリヤガスと共に、加熱した反応室を所定の飛跡で通過させ、化学的に還元するものである。この反応は、還元ガスが還元されるべき原料に接触することにより起こるので、原料が固体粉末であると、前述の気相法と比べてガスと接触する面積が小さいため、短時間で完全に金属にまで還元するのが難しい。サイクロンを使用して飛跡を長くしたり粒子を破裂させるなどの手段を用いても、未反応物や不完全な還元状態の生成物が残りやすく、このため飛跡や還元ガスの供給方法等のプロセスパラメータの設定が難しい。従って、エレクトロニクス用に好適な、粒径の揃った球状の高結晶性粉末を得ることは困難と考えられる。
【0009】
特公昭36−9163号公報には、銀、ニッケル、銅の有機多塩基酸の塩を空気中または不活性気体中比較的低温即ち100〜500℃で熱分解させて、高純度の金属粉末またはその混合物を製造する方法が記載されており、摩砕によって粒径数ミクロン以下の微細な金属粉末を得ることも述べられている。しかしこの方法では、粒径の厳密なコントロールができないばかりでなく、結晶性を上げるために金属の融点以上あるいは融点近傍にまで加熱すると粒子形状を保つことができず、摩砕しても粒径数ミクロン以下とすることはできなくなる。
【0010】
【発明が解決しようとする課題】
本発明の目的は、厚膜ペースト、特にセラミック積層電子部品を製造するための導体ペースト用等に適した、球状で粒度の揃った、高純度、高密度、高分散性の微細な高結晶性金属粉末を得ることにある。他の目的は、このような金属粉末をローコストかつ簡単な方法で製造する新規な方法を提供することにある。
【0011】
【課題を解決するための手段】
即ち本発明は、熱分解性の金属化合物粉末の1種又は2種以上を、キャリヤガスを用いて反応容器に供給し、該金属化合物粉末を10g/l以下の濃度で気相中に分散させた状態で、その分解温度より高く、かつ該金属の融点をTm℃としたとき(Tm−200)℃以上の温度で加熱することにより金属粉末を生成させることを特徴とする高結晶性金属粉末の製造方法を要旨とするものである。
【0012】
また本発明は、金属化合物粉末が2種以上の金属元素を含む金属化合物の均質な混合粉末または複合粉末であり、金属粉末が合金粉末である、前記高結晶性金属粉末の製造方法を要旨とするものである。
更に本発明は、上記の方法で製造された高結晶性金属粉末、及び該高結晶性金属粉末を含む導体ペースト、並びに該導体ペーストを用いて導体層を形成したことを特徴とするセラミック積層電子部品を要旨とするものである。
【0013】
【発明の実施の形態】
本方法で製造される金属粉末は特に限定されるものではないが、特に例えば銅、ニッケル、コバルト、鉄等の卑金属粉末や銀、パラジウム、金、白金等の貴金属粉末の製造に好適である。原料金属化合物粉末の選択により、複数の金属の混合粉末や合金粉末が得られる。本発明の「金属粉末」は、このような混合粉末、合金粉末も含むものである。
【0014】
金属粉末の原料となる熱分解性の金属化合物粉末としては、水酸化物、硝酸塩、硫酸塩、炭酸塩、オキシ硝酸塩、オキシ硫酸塩、塩化物、酸化物、アンモニウム錯体、リン酸塩等の無機化合物や、カルボン酸塩、樹脂酸塩、スルホン酸塩、アセチルアセトナート、金属の1価または多価アルコラート等の有機化合物が使用される。ことに水酸化物、炭酸塩、カルボン酸塩、樹脂酸塩、アセチルアセトナート、アルコラートなどは、熱分解後有害な副生成物を生成しないので好ましい。
【0015】
原料粉末として、2種以上の金属化合物粉末を混合して使用することもできる。
合金粉末を製造する場合は、単に合金成分金属の原料粉末を所定の組成比で均一に混合して供給してもよいが、原料粉末の1粒子中に複数の金属成分が一定の組成比で含まれるよう予め複合化させた複合粉末とすることが望ましい。複合化の方法としては、予め原料となる金属化合物粉末を混合し、組成的に均一になるまで熱処理した後粉砕する方法や、ゾルゲル法、共沈法など公知の方法がある。また複塩、錯塩、金属複酸化物などを用いてもよい。
【0016】
本方法では原料の熱分解性金属化合物1粒子あたり1粒子の金属又は合金粒子が生成すると考えられる。このため生成する金属粒子の粒度は、金属化合物の種類によってその比率は異なってくるが、原料粉末の粒度にほぼ比例する。従って均一な粒径の金属粉末を得るためには、金属化合物粉末として粒度の揃ったものを用いる。原料粉末の粒度分布が広い場合は、気相中に分散させる前に予め粉砕機や分級機で粉砕、解砕又は分級を行って粒度調整しておくことが望ましい。
【0017】
本発明においては、固体の金属化合物粉末を、気相中に分散させた状態で熱分解することが重要である。しかも反応容器内では、原料粉末を、原料粉末及び生成粉末が互いに衝突を起こさないような低い濃度で分散させた状態で熱分解を行う必要がある。このため気相中での濃度は、10g/l以下でなくてはならない。これより濃度が高いと、粉末同士の衝突により粒度の揃った金属粉末が得られない。分散濃度は、用いる分散装置や熱分解装置に応じて適宜決めることができる。10g/l以下であれば特に制限はないが、あまり低濃度になると生産効率が悪くなるので、0.01g/l以上とすることが望ましい。
【0018】
原料粉末を気相中に分散させる手段は特に限定はなく、通常の分散機が用いられる。低濃度の分散状態を保ったままで熱分解を行うためには、例えば外側から加熱された管状の反応容器を用い、一方の開口部から原料粉末をキャリヤガスと共に一定の流速で供給して反応容器内を通過させ、熱分解されて生成した金属粉末を他方の開口部から回収する。粉末とキャリヤガスの混合物の流速及び通過時間は、粉末が所定の温度に十分に加熱されるように、用いる装置に応じて設定される。加熱は電気炉やガス炉等で反応容器の外側から行うほか、燃料ガスを反応容器に供給しその燃焼炎を用いてもよい。
【0019】
キャリヤガスとしては、貴金属の場合は特に制限はなく、空気、酸素、水蒸気などの酸化性ガスや、窒素、アルゴンなどの不活性ガス、これらの混合ガスなどが使用される。酸化しやすいニッケル、銅等の卑金属の場合は不活性ガスを用いるが、熱分解時の雰囲気を弱還元性として酸化防止効果を高めるため水素、一酸化炭素、メタンなどの還元性ガスを併用してもよい。
【0020】
本発明の特徴の一つは、加熱時に厳密な雰囲気調整を行なう必要がないことである。特に卑金属の場合、不活性ガス中で熱分解させると一酸化炭素や水素、メタン等を生成して還元性雰囲気を作り出すことのできる金属化合物を原料として用いることにより、外部から反応系に還元性ガスを供給する必要がなく、ほとんど酸化のない金属粉末を得る。例えばニッケル粉末を従来の水溶液を用いた噴霧熱分解法で製造する場合は、ニッケルの酸化を抑制するために通常厳密にコントロールされた量の還元性ガスを導入する必要がある。しかし本発明の方法において例えば原料に酢酸ニッケル等のカルボン酸塩粉末を用い、窒素雰囲気中で熱分解を行うと、カルボン酸根の分解により一酸化炭素と水素を発生し反応器内は還元性雰囲気となるので、ほとんど酸化のないニッケル粉末が得られる。
【0021】
本発明の方法で得られる金属粉末は、粒径の揃った、凝集のない球状の一次粒子である。また結晶性が良好で粒子内部に欠陥が少なく、粒界をほとんど含まない。このため微粉末であるにもかかわらず活性が低い。特にニッケル、鉄、コバルト、銅等の卑金属やパラジウムなどの易酸化性金属でも酸化しにくく、空気中でも安定に保存できるほか、高温まで耐酸化性を保持する。従って積層コンデンサの内部導体用や外部導体用の導体ペーストに使用した場合、導電性金属の酸化による抵抗値の上昇や、焼成中の酸化還元に起因するデラミネーション、クラック等の構造欠陥の発生がなく、特性の優れたコンデンサを製造することができる。
【0022】
加熱温度が目的とする金属または合金の融点をTm℃としたとき(Tm−200)℃より低いと、球状の高結晶性金属粉末が得られない。特に、表面が平滑な真球状の単結晶金属粉末を得るには、加熱処理を目的とする金属または合金の融点またはそれ以上の高温で行うことが望ましい。なお、熱分解の際、あるいは熱分解後に該金属が酸化物や窒化物、炭化物等を生成する場合には、これらが分解する条件で加熱を行う必要がある。
【0023】
【実施例】
次に、実施例及び比較例により本発明を具体的に説明する。
実施例1
酢酸ニッケル四水和物の粉末を5Kg/hrの供給速度で気流式粉砕機に供給し200l/minの流速の窒素ガスで粉砕、分散させた。得られた酢酸ニッケル四水和物粉末の平均粒径はおよそ1.0μm、最大粒径はおよそ3.0μmであった。気相中の酢酸ニッケル四水和物粉末濃度は0.4g/lである。この気体−固体混合物をこの粉末濃度を保ったまま、1550℃に加熱した電気炉内の反応管に導入し、加熱、分解を行い、バグフィルターにて生成した粉末を捕集した。
【0024】
得られた粉末をX線回折計で分析したところ、金属ニッケル単結晶粉末であることが確認された。また走査型電子顕微鏡(SEM)で観察を行ったところ、凝集のない真球状粒子であり、平均粒径0.5μm、最大粒径2.0μmであった。また空気中で熱重量分析を行ったところ、350℃まで酸化を起こさなかった。湿式法で得られた平均粒径0.5μmの多結晶ニッケル粉末の酸化温度は250℃であるから、本発明のニッケル粉末は安定した粉末であることがわかる。
【0025】
実施例2、3
電気炉の温度をそれぞれ1300℃、1650℃とする以外は実施例1と同様にして、ニッケル粉末を製造した。得られた粉末の特性を表1に示す。
実施例4
粉砕機への供給速度を62.5Kg/hrとする以外は実施例1と同様にして、酢酸ニッケル四水和物粉末を窒素ガスで粉砕、分散させた。この気体−固体混合物を実施例1と同様に1550℃に加熱された反応管に導入し、熱分解してニッケル粉末を製造した。なお反応管に導入する際の酢酸ニッケル四水和物粉末の平均粒径はおよそ2.5μm、最大粒径はおよそ6.0μmであり、また気相中の粉末濃度は5.0g/lであった。得られた粉末の特性を表1に示す。
【0026】
実施例5、6
酢酸ニッケル四水和物粉末に代えて、それぞれギ酸ニッケル二水和物粉末、シュウ酸ニッケル二水和物粉末を用いる以外は実施例1と同様にして、ニッケル粉末を製造した。得られた粉末の特性を表1に示す。
比較例1
粉砕機への供給速度を150Kg/hrとする以外は実施例1と同様にして、酢酸ニッケル四水和物粉末を窒素ガスで粉砕、分散させた。この気体−固体混合物を実施例1と同様に1550℃に加熱された反応管に導入し、熱分解してニッケル粉末を製造した。なお反応管に導入する際の酢酸ニッケル四水和物粉末の平均粒径はおよそ5.0μmであり、また気相中の粉末濃度は12.0g/lであった。得られた粉末をSEMで観察したところ、結晶性の高い粒子が多数融着して巨大な不定形粒子を形成しており、粒度分布の広いものであった。
【0027】
比較例2
電気炉の温度を1100℃とする以外は実施例1と同様にして、ニッケル粉末を製造した。得られた粉末は、表1に示すように不定形で粒度分布が広く、また微結晶の集合体であり、結晶性の低いものであった。耐酸化性も低かった。
実施例7
酢酸ニッケル四水和物粉末と酢酸銅粉末を、金属成分の重量比でNi:Cu=7:3となるように予め混合し、実施例1と同様の方法で粉末を製造した。
【0028】
得られた粉末は、X線回折により単結晶のニッケル‐銅合金であることが確認された。特性を表1に示す。
実施例8
原料として塩化パラジウムの粉末を用い、反応管に導入する際の気相中の分散濃度が1.0g/lとなるようにし、粉砕ガス及びキャリヤガスとして空気を用い、また電気炉の温度を1600℃とする以外は実施例1と同様の方法で粉末を製造した。
【0029】
得られた粉末は、X線回折により金属パラジウム単結晶粉末であることが確認された。特性を表1に示す。
実施例9
塩化パラジウム粉末と酢酸銀粉末を、金属成分の重量比でPd:Ag=2:8となるように予め混合し、気相中の分散濃度が0.4g/lとなるようにし、また電気炉の温度を1400℃とする以外は実施例8と同様の方法でパラジウム−銀合金単結晶粉末を得た。特性を表1に示す。
【0030】
比較例3
電気炉の温度を900℃とする以外は実施例9と同様にして、粉末を製造した。得られた粉末は、表1に示すように結晶性の低いパラジウム−銀合金粉末と酸化パラジウム粉末の混合物であった。
また実施例9と比較例3の結果から、本発明で得られたパラジウム−銀合金粉末は耐酸化性が極めて優れていることがわかる。
【0031】
【表1】

Figure 0003812359
【0032】
【発明の効果】
本発明の方法では、球状で、結晶性が良く、かつ高分散性の金属粉末が容易に得られる。また原料化合物粉末を金属の融点以上の温度で加熱することにより、単結晶金属粉末を得ることが可能である。純度に影響を及ぼす添加剤や溶媒を使用しないので、不純物を含まない高純度の粉末が得られる。
【0033】
更に本方法によれば、原料粉末の粒度コントロールにより粒径が揃った金属粉末を得ることができ、粒度の調整も容易である。従って分級工程の必要なく、粒度分布の狭い、極めて微細な、厚膜ペーストに適した粉末を得ることができる。
また原料を溶液、懸濁液状としないため、通常の噴霧熱分解法と比べて溶媒の蒸発によるエネルギーロスが少なく、ローコストで簡単に製造できる。しかも液滴の合着の問題がなく、比較的高濃度で気相中に分散させることができるため、効率が高い。
【0034】
更に本法は、溶媒からの酸化性ガスの発生がないので、低酸素分圧下で合成する必要のある易酸化性の卑金属粉末の製造に適している。しかも化合物の選択により還元性ガスを外部から供給する必要なく、酸化を極力抑えることができるので、反応条件の設定が簡単である。しかも得られる金属粉末は活性が低く耐酸化性が良好であり、このため積層コンデンサ等の導体を形成するための導体ペーストに使用した場合、クラック等の構造欠陥のない、信頼性の高い部品を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a metal powder suitable for electronics, and more particularly to a method for producing a highly crystalline metal powder useful as a conductive powder for a conductor paste.
[0002]
[Prior art]
The conductive metal powder used in the conductive paste for forming an electronic circuit has few impurities, is a fine powder having an average particle size of 0.1 μm or less to about 10 μm, and has a uniform particle shape and particle size. It is desirable that the particles are monodispersed particles that are free from aggregation. It is also required that the dispersibility in the paste is good and that the crystallinity is good so as not to cause non-uniform sintering. Especially when used for the formation of internal conductors and external conductors in multilayer ceramic electronic parts such as multilayer capacitors and multilayer inductors, in order to prevent structural defects such as delamination and cracks and to make the conductors thinner, it is finer and more granular. In addition to submicron particles with a uniform diameter and shape, there is a need for spherical, low-activity, highly crystalline or single-crystal metal powders that are resistant to expansion and contraction due to redox during firing and have a high sintering start temperature. Has been.
[0003]
That is, a multilayer ceramic electronic component generally includes an unfired ceramic green sheet such as a dielectric material or a magnetic material, and an inner conductor paste layer containing a noble metal powder such as palladium or silver-palladium or a base metal powder such as nickel or copper as a conductive component. However, when a base metal that easily oxidizes is used for the internal conductor, there are various problems. For example, when nickel powder is used as the conductive component of the internal conductor paste, the laminate is heated in an oxidizing atmosphere until the binder removal process, which is usually performed at a temperature of about 300 to 600 ° C. Completely burn and remove the organic vehicle inside. At this time, the nickel powder is slightly oxidized. Thereafter, firing is performed in an inert atmosphere or a reducing atmosphere, and reduction treatment is performed as necessary. However, it is difficult to completely reduce the nickel powder oxidized at the time of binder removal, which leads to a decrease in electrical characteristics such as an increase in resistance value. In addition, the expansion and contraction of the volume of the electrode occur along with this redox, but this volume change does not coincide with the sintering shrinkage behavior of the ceramic layer, so that structural defects such as delamination and cracks are likely to occur. In addition, nickel powder sinters quickly in a non-oxidizing atmosphere, and due to oversintering, the internal conductor becomes a discontinuous film, causing a resistance increase or disconnection, and there is a problem that the conductor thickness is increased. It is difficult to meet the demand for thinning of the inner conductor layer accompanying the increase in the number of laminated parts. Such oxidation or over-sintering is also a problem when an external conductor is formed by simultaneous firing using a nickel paste. Therefore, a highly crystalline nickel powder that is difficult to oxidize at least during binder removal and has a high sintering start temperature is desired.
[0004]
On the other hand, palladium, a noble metal, oxidizes at a relatively low temperature during firing and is reduced when heated to a higher temperature, which causes structural defects due to mismatch in sintering shrinkage behavior between the electrode layer and the ceramic layer. . Accordingly, it is desired that palladium and palladium alloy are not easily oxidized, but spherical high crystalline powder, particularly single crystal powder is very excellent in terms of oxidation resistance.
[0005]
Conventionally, a spray pyrolysis method is known as a method for producing such highly crystalline metal powder. As described in Japanese Patent Publication No. 63-31522, the spray pyrolysis method is a fine liquid obtained by spraying a solution containing one or more metal compounds or a suspension in which these are dispersed. A method of depositing a metal or alloy powder by heating the droplet at a temperature higher than the decomposition temperature of the metal compound, preferably at a temperature close to or higher than the melting point of the metal, and thermally decomposing the metal compound It is. According to this method, a highly crystalline or single crystal, high density, highly dispersible true spherical metal powder or alloy powder can be obtained. Unlike the wet reduction method, solid-liquid separation is not necessary, and manufacturing is easy, and since no additives or solvents that affect the purity are used, there is an advantage that a high-purity powder containing no impurities can be obtained. is there. In addition, the particle size can be easily controlled, and the composition of the produced particles basically matches the composition of the starting metal compound in the solution, so that there is an advantage that the composition can be easily controlled.
[0006]
However, this method uses water or an organic solvent such as alcohol, acetone or ether as a solvent or dispersion medium to form the metal compound of the raw material as droplets, so that energy loss during pyrolysis is large and cost is high. There is a problem. That is, in this process, the metal compound is thermally decomposed simultaneously with the evaporation of the solvent by heating, or after the evaporation of the solvent, the metal compound is thermally decomposed. A lot of energy is required. In addition, the particle size distribution of the generated powder may be increased due to the coalescence or breakage of droplets in the reaction vessel. For this reason, it is difficult to set reaction conditions such as the spray rate, the droplet concentration in the carrier gas, and the residence time in the reactor. In particular, in the case of base metal powders such as nickel, iron, cobalt, and copper, it is necessary to perform thermal decomposition in a strictly controlled reducing or weakly reducing atmosphere in order to prevent oxidation. Further, when water is used as a solvent, it is easily oxidized at a high temperature because of the oxidizing gas generated by the decomposition of moisture, and it is difficult to obtain a powder having good crystallinity.
[0007]
A method for producing ultrafine metal particles by a vapor phase method is also well known. For example, to obtain nickel powder, nickel chloride is evaporated and reduced with a reducing gas at a high temperature. However, the powder obtained by the precipitation reaction from the gas phase is likely to aggregate and it is difficult to control the particle size. Also, it is impossible to make alloys of metals with different vapor pressures with a precisely controlled composition.
[0008]
Japanese Patent Publication No. 11-503205 describes a method of reducing a metal compound powder such as tungsten oxide by a solid-gas reaction using a reducing agent. In this method, the raw metal compound powder is chemically reduced by passing it through a heated reaction chamber together with a gaseous reducing agent and optionally a carrier gas in a predetermined track. This reaction occurs when the reducing gas comes into contact with the raw material to be reduced. Therefore, if the raw material is a solid powder, the area in contact with the gas is small compared to the above-described gas phase method, so that it can be completely completed in a short time. It is difficult to reduce to metal. Even when using a cyclone to lengthen the track or rupture the particles, unreacted products and incompletely reduced products are likely to remain, so processes such as track and reducing gas supply methods Setting parameters is difficult. Therefore, it is considered difficult to obtain a spherical highly crystalline powder having a uniform particle size suitable for electronics.
[0009]
In Japanese Patent Publication No. 36-9163, silver, nickel, copper organic polybasic acid salt is thermally decomposed in air or inert gas at a relatively low temperature, ie, 100 to 500 ° C. A method for producing the mixture is described, and it is also stated that fine metal powder with a particle size of several microns or less is obtained by grinding. However, in this method, not only the particle size cannot be strictly controlled, but also the particle shape cannot be maintained when heated to a temperature above or near the melting point of the metal in order to increase crystallinity. It can no longer be reduced to several microns or less.
[0010]
[Problems to be solved by the invention]
The object of the present invention is a spherical, uniform particle size, high purity, high density, high dispersibility and fine high crystallinity suitable for thick film pastes, especially for conductive pastes for producing ceramic multilayer electronic components. It is to obtain metal powder. Another object is to provide a novel method for producing such metal powder in a low cost and simple manner.
[0011]
[Means for Solving the Problems]
That is, in the present invention, one or more kinds of thermally decomposable metal compound powders are supplied to a reaction vessel using a carrier gas, and the metal compound powders are dispersed in the gas phase at a concentration of 10 g / l or less. A highly crystalline metal powder, characterized by being heated at a temperature higher than its decomposition temperature and having a melting point of the metal Tm ° C. (Tm−200) ° C. or higher. The manufacturing method is the gist.
[0012]
The present invention also provides a method for producing the highly crystalline metal powder, wherein the metal compound powder is a homogeneous mixed powder or composite powder of metal compounds containing two or more metal elements, and the metal powder is an alloy powder. To do.
Furthermore, the present invention provides a highly crystalline metal powder produced by the above method, a conductor paste containing the highly crystalline metal powder, and a ceramic laminated electron comprising a conductor layer formed using the conductor paste. The gist of the parts.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The metal powder produced by this method is not particularly limited, but is particularly suitable for the production of base metal powders such as copper, nickel, cobalt and iron and noble metal powders such as silver, palladium, gold and platinum. By selecting the raw metal compound powder, a mixed powder or alloy powder of a plurality of metals can be obtained. The “metal powder” of the present invention includes such mixed powders and alloy powders.
[0014]
Thermally decomposable metal compound powders used as raw materials for metal powders include inorganic substances such as hydroxides, nitrates, sulfates, carbonates, oxynitrates, oxysulfates, chlorides, oxides, ammonium complexes, and phosphates. Compounds and organic compounds such as carboxylates, resinates, sulfonates, acetylacetonates, and monovalent or polyvalent alcoholates of metals are used. In particular, hydroxides, carbonates, carboxylates, resinates, acetylacetonates, alcoholates and the like are preferred because they do not produce harmful by-products after thermal decomposition.
[0015]
Two or more kinds of metal compound powders can be mixed and used as the raw material powder.
When producing an alloy powder, the raw material powder of the alloy component metal may be simply mixed and supplied at a predetermined composition ratio. However, a plurality of metal components are contained in one particle of the raw material powder at a constant composition ratio. It is desirable to use a composite powder that has been pre-composited to be included. As a method for compounding, there are known methods such as a method in which a metal compound powder as a raw material is mixed in advance, heat-treated until the composition becomes uniform and then pulverized, a sol-gel method, and a coprecipitation method. Double salts, complex salts, metal double oxides, and the like may also be used.
[0016]
In this method, it is considered that one metal or alloy particle is generated per one pyrolytic metal compound particle of the raw material. For this reason, the ratio of the particle size of the generated metal particles varies depending on the type of the metal compound, but is approximately proportional to the particle size of the raw material powder. Therefore, in order to obtain a metal powder having a uniform particle size, metal powder having a uniform particle size is used. When the particle size distribution of the raw material powder is wide, it is desirable to adjust the particle size by pulverizing, crushing or classifying in advance with a pulverizer or classifier before dispersing in the gas phase.
[0017]
In the present invention, it is important to thermally decompose the solid metal compound powder in a state dispersed in the gas phase. Moreover, in the reaction vessel, it is necessary to perform pyrolysis in a state where the raw material powder is dispersed at a low concentration so that the raw material powder and the generated powder do not collide with each other. For this reason, the concentration in the gas phase must be 10 g / l or less. If the concentration is higher than this, a metal powder having a uniform particle size cannot be obtained due to collision between the powders. The dispersion concentration can be appropriately determined according to the dispersion apparatus and the thermal decomposition apparatus to be used. If it is 10 g / l or less, there is no particular limitation. However, if the concentration is too low, production efficiency deteriorates, so 0.01 g / l or more is desirable.
[0018]
The means for dispersing the raw material powder in the gas phase is not particularly limited, and an ordinary disperser is used. In order to perform thermal decomposition while maintaining a low concentration dispersion state, for example, a tubular reaction vessel heated from the outside is used, and the raw material powder is supplied together with a carrier gas from one opening at a constant flow rate. The metal powder produced by being pyrolyzed through the inside is recovered from the other opening. The flow rate and transit time of the powder and carrier gas mixture are set according to the apparatus used so that the powder is sufficiently heated to a predetermined temperature. Heating may be performed from the outside of the reaction vessel in an electric furnace, a gas furnace, or the like, or fuel gas may be supplied to the reaction vessel and the combustion flame may be used.
[0019]
The carrier gas is not particularly limited in the case of a noble metal, and an oxidizing gas such as air, oxygen or water vapor, an inert gas such as nitrogen or argon, a mixed gas thereof or the like is used. In the case of base metals such as nickel and copper that are easily oxidized, an inert gas is used. However, in order to enhance the antioxidant effect by making the atmosphere during thermal decomposition weakly reducible, a reducing gas such as hydrogen, carbon monoxide, or methane is used in combination. May be.
[0020]
One of the features of the present invention is that no strict atmosphere adjustment is required during heating. In particular, in the case of base metals, by using as a raw material a metal compound that can generate carbon monoxide, hydrogen, methane, etc. when pyrolyzed in an inert gas to create a reducing atmosphere, it can be reduced to the reaction system from the outside. There is no need to supply gas and a metal powder with almost no oxidation is obtained. For example, when nickel powder is produced by a spray pyrolysis method using a conventional aqueous solution, it is usually necessary to introduce a strictly controlled amount of reducing gas in order to suppress nickel oxidation. However, in the method of the present invention, for example, when a carboxylate powder such as nickel acetate is used as a raw material and pyrolysis is performed in a nitrogen atmosphere, carbon monoxide and hydrogen are generated by decomposition of the carboxylic acid radical, and the inside of the reactor is a reducing atmosphere. Therefore, nickel powder with almost no oxidation can be obtained.
[0021]
The metal powder obtained by the method of the present invention is spherical primary particles having a uniform particle size and no aggregation. Also, the crystallinity is good, there are few defects inside the particles, and there are almost no grain boundaries. For this reason, the activity is low despite being a fine powder. In particular, base metals such as nickel, iron, cobalt, copper, and easily oxidizable metals such as palladium are not easily oxidized, and can be stored stably in the air, while maintaining oxidation resistance up to high temperatures. Therefore, when used as a conductor paste for inner conductors and outer conductors of multilayer capacitors, there is an increase in resistance due to oxidation of conductive metals, and occurrence of structural defects such as delamination and cracks due to oxidation and reduction during firing. Therefore, a capacitor having excellent characteristics can be manufactured.
[0022]
When the heating temperature is lower than Tm ° C. when the melting point of the target metal or alloy is Tm ° C. (Tm−200), spherical high crystalline metal powder cannot be obtained. In particular, in order to obtain a true spherical single crystal metal powder with a smooth surface, it is desirable to carry out at a temperature higher than the melting point or higher of the metal or alloy for the heat treatment. In addition, when the metal produces oxides, nitrides, carbides, or the like during or after thermal decomposition, it is necessary to perform heating under conditions that decompose these.
[0023]
【Example】
Next, the present invention will be specifically described with reference to Examples and Comparative Examples.
Example 1
Nickel acetate tetrahydrate powder was supplied to an air-flow type pulverizer at a supply rate of 5 kg / hr, and pulverized and dispersed with nitrogen gas at a flow rate of 200 l / min. The obtained nickel acetate tetrahydrate powder had an average particle size of about 1.0 μm and a maximum particle size of about 3.0 μm. The concentration of nickel acetate tetrahydrate powder in the gas phase is 0.4 g / l. While maintaining this powder concentration, this gas-solid mixture was introduced into a reaction tube in an electric furnace heated to 1550 ° C., heated and decomposed, and the powder produced by the bag filter was collected.
[0024]
When the obtained powder was analyzed with an X-ray diffractometer, it was confirmed to be a metal nickel single crystal powder. Further, when observed with a scanning electron microscope (SEM), it was a true spherical particle having no aggregation, an average particle diameter of 0.5 μm, and a maximum particle diameter of 2.0 μm. When thermogravimetric analysis was performed in air, no oxidation occurred up to 350 ° C. Since the oxidation temperature of the polycrystalline nickel powder having an average particle size of 0.5 μm obtained by the wet method is 250 ° C., it can be seen that the nickel powder of the present invention is a stable powder.
[0025]
Examples 2 and 3
Nickel powder was produced in the same manner as in Example 1 except that the temperature of the electric furnace was 1300 ° C. and 1650 ° C., respectively. The characteristics of the obtained powder are shown in Table 1.
Example 4
Nickel acetate tetrahydrate powder was pulverized and dispersed with nitrogen gas in the same manner as in Example 1 except that the supply rate to the pulverizer was 62.5 kg / hr. This gas-solid mixture was introduced into a reaction tube heated to 1550 ° C. in the same manner as in Example 1 and pyrolyzed to produce nickel powder. When introduced into the reaction tube, the nickel acetate tetrahydrate powder had an average particle size of about 2.5 μm, a maximum particle size of about 6.0 μm, and a powder concentration in the gas phase of 5.0 g / l. The characteristics of the obtained powder are shown in Table 1.
[0026]
Examples 5 and 6
Nickel powder was produced in the same manner as in Example 1 except that nickel formate dihydrate powder and nickel oxalate dihydrate powder were used instead of nickel acetate tetrahydrate powder, respectively. The characteristics of the obtained powder are shown in Table 1.
Comparative Example 1
Nickel acetate tetrahydrate powder was pulverized and dispersed with nitrogen gas in the same manner as in Example 1 except that the supply rate to the pulverizer was 150 kg / hr. This gas-solid mixture was introduced into a reaction tube heated to 1550 ° C. in the same manner as in Example 1 and pyrolyzed to produce nickel powder. The average particle diameter of the nickel acetate tetrahydrate powder when introduced into the reaction tube was about 5.0 μm, and the powder concentration in the gas phase was 12.0 g / l. When the obtained powder was observed with an SEM, a large number of highly crystalline particles were fused to form huge amorphous particles, and the particles had a wide particle size distribution.
[0027]
Comparative Example 2
Nickel powder was produced in the same manner as in Example 1 except that the temperature of the electric furnace was 1100 ° C. As shown in Table 1, the obtained powder was amorphous and had a wide particle size distribution, was an aggregate of fine crystals, and had low crystallinity. The oxidation resistance was also low.
Example 7
Nickel acetate tetrahydrate powder and copper acetate powder were mixed in advance so that the weight ratio of metal components was Ni: Cu = 7: 3, and powder was produced in the same manner as in Example 1.
[0028]
The obtained powder was confirmed to be a single crystal nickel-copper alloy by X-ray diffraction. The characteristics are shown in Table 1.
Example 8
Palladium chloride powder is used as the raw material, the dispersion concentration in the gas phase when introduced into the reaction tube is 1.0 g / l, air is used as the grinding gas and carrier gas, and the temperature of the electric furnace is 1600 ° C. A powder was produced in the same manner as in Example 1 except that
[0029]
The obtained powder was confirmed to be a metal palladium single crystal powder by X-ray diffraction. The characteristics are shown in Table 1.
Example 9
Palladium chloride powder and silver acetate powder are mixed in advance so that the weight ratio of metal components is Pd: Ag = 2: 8, so that the dispersion concentration in the gas phase is 0.4 g / l, and the electric furnace A palladium-silver alloy single crystal powder was obtained in the same manner as in Example 8 except that the temperature was 1400 ° C. The characteristics are shown in Table 1.
[0030]
Comparative Example 3
A powder was produced in the same manner as in Example 9 except that the temperature of the electric furnace was 900 ° C. As shown in Table 1, the obtained powder was a mixture of palladium-silver alloy powder and palladium oxide powder having low crystallinity.
Further, from the results of Example 9 and Comparative Example 3, it can be seen that the palladium-silver alloy powder obtained in the present invention is extremely excellent in oxidation resistance.
[0031]
[Table 1]
Figure 0003812359
[0032]
【The invention's effect】
According to the method of the present invention, a spherical metal powder having good crystallinity and high dispersibility can be easily obtained. Moreover, it is possible to obtain a single crystal metal powder by heating the raw material compound powder at a temperature equal to or higher than the melting point of the metal. Since no additive or solvent affecting the purity is used, a high-purity powder containing no impurities can be obtained.
[0033]
Furthermore, according to this method, a metal powder having a uniform particle size can be obtained by controlling the particle size of the raw material powder, and the particle size can be easily adjusted. Therefore, it is possible to obtain a very fine powder suitable for a thick film paste with a narrow particle size distribution without the need for a classification step.
In addition, since the raw material is not in the form of a solution or suspension, energy loss due to evaporation of the solvent is less than that in a normal spray pyrolysis method, and the production can be easily performed at low cost. In addition, there is no problem of droplet coalescence, and since it can be dispersed in the gas phase at a relatively high concentration, the efficiency is high.
[0034]
Furthermore, this method is suitable for the production of an easily oxidizable base metal powder that needs to be synthesized under a low oxygen partial pressure because no oxidizing gas is generated from the solvent. Moreover, since it is not necessary to supply a reducing gas from the outside by selecting a compound, the oxidation can be suppressed as much as possible, so that the reaction conditions can be easily set. Moreover, the obtained metal powder has low activity and good oxidation resistance, and therefore, when used as a conductor paste for forming a conductor such as a multilayer capacitor, a highly reliable part free from structural defects such as cracks. Can be manufactured.

Claims (9)

熱分解性の金属化合物粉末の1種又は2種以上を、キャリヤガスを用いて反応容器に供給し、該金属化合物粉末を10g/l以下の濃度で気相中に分散させた状態で、その分解温度より高く、かつ該金属の融点をTm℃としたとき(Tm−200)℃以上の温度で加熱することにより金属粉末を生成させることを特徴とする高結晶性金属粉末の製造方法。One or more kinds of thermally decomposable metal compound powders are supplied to a reaction vessel using a carrier gas, and the metal compound powders are dispersed in the gas phase at a concentration of 10 g / l or less. A method for producing a highly crystalline metal powder, wherein the metal powder is produced by heating at a temperature higher than the decomposition temperature and the melting point of the metal is Tm ° C (Tm-200) ° C. 金属化合物粉末が、2種以上の金属元素を含む金属化合物の均質な混合粉末または複合粉末であり、金属粉末が合金粉末である請求項1に記載の高結晶性金属粉末の製造方法。The method for producing a highly crystalline metal powder according to claim 1, wherein the metal compound powder is a homogeneous mixed powder or composite powder of metal compounds containing two or more kinds of metal elements, and the metal powder is an alloy powder. キャリヤガスが不活性ガスであり、金属粉末がニッケル粉末、銅粉末またはニッケル及び/又は銅を含む合金粉末である請求項1または2に記載の高結晶性金属粉末の製造方法。The method for producing a highly crystalline metal powder according to claim 1 or 2, wherein the carrier gas is an inert gas, and the metal powder is nickel powder, copper powder or alloy powder containing nickel and / or copper. 金属化合物粉末として、不活性ガス中で熱分解することにより熱分解時の雰囲気を還元性雰囲気とすることのできる金属化合物粉末を用いる請求項1乃至3のいずれかに記載の高結晶性金属粉末の製造方法。The highly crystalline metal powder according to any one of claims 1 to 3, wherein the metal compound powder is a metal compound powder that can be pyrolyzed in an inert gas so that the atmosphere during pyrolysis can be reduced. Manufacturing method. 金属化合物粉末が金属カルボン酸塩粉末である請求項4に記載の高結晶性金属粉末の製造方法。The method for producing a highly crystalline metal powder according to claim 4, wherein the metal compound powder is a metal carboxylate powder. 金属粉末がパラジウム粉末またはパラジウムを含む合金粉末である請求項1または2に記載の高結晶性金属粉末の製造方法。The method for producing a highly crystalline metal powder according to claim 1 or 2, wherein the metal powder is a palladium powder or an alloy powder containing palladium. 請求項1乃至6のいずれかに記載の方法で製造された高結晶性金属粉末。A highly crystalline metal powder produced by the method according to claim 1. 請求項7に記載の高結晶性金属粉末を含む導体ペースト。A conductor paste comprising the highly crystalline metal powder according to claim 7. 請求項8に記載の導体ペーストを用いて導体層を形成したことを特徴とするセラミック積層電子部品。A ceramic multilayer electronic component, wherein a conductor layer is formed using the conductor paste according to claim 8.
JP2001108533A 2000-05-02 2001-04-06 Method for producing metal powder Expired - Lifetime JP3812359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108533A JP3812359B2 (en) 2000-05-02 2001-04-06 Method for producing metal powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000133576 2000-05-02
JP2000-133576 2000-05-02
JP2001108533A JP3812359B2 (en) 2000-05-02 2001-04-06 Method for producing metal powder

Publications (2)

Publication Number Publication Date
JP2002020809A JP2002020809A (en) 2002-01-23
JP3812359B2 true JP3812359B2 (en) 2006-08-23

Family

ID=26591424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108533A Expired - Lifetime JP3812359B2 (en) 2000-05-02 2001-04-06 Method for producing metal powder

Country Status (1)

Country Link
JP (1) JP3812359B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3772967B2 (en) 2001-05-30 2006-05-10 Tdk株式会社 Method for producing magnetic metal powder
JP3812523B2 (en) 2002-09-10 2006-08-23 昭栄化学工業株式会社 Method for producing metal powder
JP2004124257A (en) 2002-09-11 2004-04-22 Sumitomo Metal Mining Co Ltd Metal copper particulate, and production method therefor
JP2006169559A (en) * 2004-12-14 2006-06-29 Sumitomo Metal Mining Co Ltd Copper alloy fine-particle and method for producing the same
JP4218067B2 (en) 2005-10-19 2009-02-04 昭栄化学工業株式会社 Method for producing rhenium-containing alloy powder
JP4978237B2 (en) 2006-04-27 2012-07-18 昭栄化学工業株式会社 Method for producing nickel powder
JP5327442B2 (en) 2006-10-02 2013-10-30 昭栄化学工業株式会社 Nickel-rhenium alloy powder and conductor paste containing the same
CA2663438C (en) 2006-10-02 2013-08-06 Shoei Chemical Inc. Nickel-rhenium alloy powder and conductor paste containing the same
JP4807581B2 (en) 2007-03-12 2011-11-02 昭栄化学工業株式会社 Nickel powder, method for producing the same, conductor paste, and multilayer ceramic electronic component using the same
JP5679204B2 (en) 2011-09-02 2015-03-04 昭栄化学工業株式会社 Method for producing metal powder, metal powder produced thereby, conductor paste, ceramic multilayer electronic component
CN112201474B (en) * 2020-07-03 2022-09-13 成都宏科电子科技有限公司 Pure palladium inner electrode slurry for radio frequency microwave ceramic dielectric capacitor and preparation method and application thereof

Also Published As

Publication number Publication date
JP2002020809A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
JP3812523B2 (en) Method for producing metal powder
US6530972B2 (en) Method for preparing metal powder
KR101745030B1 (en) Nickel powder and production method thereof
JP4218067B2 (en) Method for producing rhenium-containing alloy powder
US20120153238A1 (en) Multi-element alloy powder containing silver and at least two non-silver containing elements
JP3812359B2 (en) Method for producing metal powder
JPH10102108A (en) Manufacture of metallic powder
TWI419980B (en) Nickel-rhenium alloy powder and conductor paste containing the same
KR20190123777A (en) Nickel Powder And Nickel Paste
JP4540364B2 (en) Nickel powder, and conductive paste and multilayer ceramic capacitor using the same
JP2004263205A (en) Metallic impalpable powder, manufacturing method therefor, and conductive paste using the metallic impalpable powder
JP2006169559A (en) Copper alloy fine-particle and method for producing the same
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same
JP2004099979A (en) Process for manufacturing metal powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3812359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term