JP2022007624A - Production method for copper powder - Google Patents

Production method for copper powder Download PDF

Info

Publication number
JP2022007624A
JP2022007624A JP2020110702A JP2020110702A JP2022007624A JP 2022007624 A JP2022007624 A JP 2022007624A JP 2020110702 A JP2020110702 A JP 2020110702A JP 2020110702 A JP2020110702 A JP 2020110702A JP 2022007624 A JP2022007624 A JP 2022007624A
Authority
JP
Japan
Prior art keywords
copper
copper powder
gas
particles
50sem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020110702A
Other languages
Japanese (ja)
Other versions
JP7498604B2 (en
Inventor
諒太 小林
Ryota Kobayashi
貢 吉田
Mitsugu Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2020110702A priority Critical patent/JP7498604B2/en
Publication of JP2022007624A publication Critical patent/JP2022007624A/en
Application granted granted Critical
Publication of JP7498604B2 publication Critical patent/JP7498604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

To provide a production method for copper powder having a high sintering start temperature and excellent smoothness of a coating film, which can suppress crack and delamination of an electrode layer of MLCC.SOLUTION: A production method for copper powder includes reacting copper with chlorine gas to generate copper chloride gas, reacting copper chloride gas with a reducing gas, and producing copper powder by a reduction reaction. A partial pressure of the copper chloride gas in the reduction reaction is 10% or more and 40% or less, and the produced copper powder is cooled at a cooling rate of 2,000°C/sec or more and 9,000°C/sec or less.SELECTED DRAWING: Figure 1

Description

本発明は、銅粉の製造方法に関する。 The present invention relates to a method for producing copper powder.

微細な金属粒子の集合体である金属粉や金属粉を含む導電性ペーストは、低温同時焼成セラミックス(LTCC)基板の配線や端子、積層セラミックコンデンサ(MLCC)の内部電極や外部電極など、各種電子部品を製造するための原材料として幅広く利用されている。特に、銅粉は、銅の高い導電性に起因し、MLCCの内部電極の薄膜化や外部電極の小型が可能であること、周波数特性の大幅な改善が可能であることから、従来多用されてきたニッケル粉や銀粉に替わる材料として期待されている(特許文献1~特許文献5参照)。 Conductive paste containing metal powder or metal powder, which is an aggregate of fine metal particles, is used for various electrons such as wiring and terminals of low-temperature co-fired ceramics (LTCC) substrate, internal electrodes and external electrodes of laminated ceramic capacitors (MLCC). It is widely used as a raw material for manufacturing parts. In particular, copper powder has been widely used in the past because of the high conductivity of copper, which enables thinning of the internal electrode of MLCC, miniaturization of the external electrode, and significant improvement of frequency characteristics. It is expected as a material to replace nickel powder and silver powder (see Patent Documents 1 to 5).

特開2015-36439号公報JP-A-2015-36439 国際公開第2015/137015号International Publication No. 2015/137015 特開2018-076597号公報Japanese Unexamined Patent Publication No. 2018-0769597 特開2016-108649号公報Japanese Unexamined Patent Publication No. 2016-108649 特開2004-211108号公報Japanese Unexamined Patent Publication No. 2004-211108

しかしながら、銅の融点(約1083度)はニッケルの融点(約1455度)よりも低い。また、銅粉の微細化に伴って、銅粉の比表面積が増加するため、銅粉の融点(焼結開始温度)はさらに低下する。そのため、MLCCの電極層として微細な銅粉を用いた場合、ニッケル粉よりも低温で溶融が開始されることになる。この場合、MLCCの誘電層の焼結開始温度と電極層の焼結温度との温度差が大きくなり、降温時の電極層の収縮によって電極層にクラックが発生する問題や誘電層と電極層との剥離(デラミネーション)が発生する問題があった。したがって、銅粉をMLCCの電極層に用いるためには、電極層の焼結開始温度を誘電層の焼結開始温度に近づける、すなわち、焼結開始温度が高く、かつ、塗膜の平滑性に優れる銅粉が要求されていた。 However, the melting point of copper (about 1083 degrees) is lower than the melting point of nickel (about 1455 degrees). Further, as the copper powder becomes finer, the specific surface area of the copper powder increases, so that the melting point (sintering start temperature) of the copper powder further decreases. Therefore, when fine copper powder is used as the electrode layer of MLCC, melting is started at a lower temperature than nickel powder. In this case, the temperature difference between the sintering start temperature of the dielectric layer of the MLCC and the sintering temperature of the electrode layer becomes large, and the problem that cracks occur in the electrode layer due to the shrinkage of the electrode layer at the time of temperature decrease and the dielectric layer and the electrode layer There was a problem that peeling (delamination) occurred. Therefore, in order to use the copper powder for the electrode layer of MLCC, the sintering start temperature of the electrode layer is brought close to the sintering start temperature of the dielectric layer, that is, the sintering start temperature is high and the coating film is smooth. Excellent copper powder was required.

本発明は、上記問題に鑑み、高い焼結開始温度を有し、かつ、塗膜の平滑性に優れた銅粉の製造方法を提供することを課題の一つとする。 In view of the above problems, one of the problems of the present invention is to provide a method for producing a copper powder having a high sintering start temperature and excellent smoothness of a coating film.

本発明の一実施形態に係る銅粉の製造方法は、銅と塩素ガスとを反応させて塩化銅ガスを生成し、塩化銅ガスと還元性ガスとを反応させ、還元反応により銅粉を生成することを含み、還元反応における塩化銅ガスの分圧は、10%以上40%以下であり、生成された銅粉は、2000℃/秒以上9000℃/秒以下の冷却速度で冷却される。 In the method for producing copper powder according to an embodiment of the present invention, copper and chlorine gas are reacted to generate copper chloride gas, copper chloride gas and a reducing gas are reacted, and copper powder is produced by a reduction reaction. The partial pressure of the copper chloride gas in the reduction reaction is 10% or more and 40% or less, and the produced copper powder is cooled at a cooling rate of 2000 ° C./sec or more and 9000 ° C./sec or less.

塩化銅ガスの分圧が20%以上30%以下であってもよい。また、冷却速度が3000℃/秒以上5000℃/秒以下であってもよい。 The partial pressure of the copper chloride gas may be 20% or more and 30% or less. Further, the cooling rate may be 3000 ° C./sec or more and 5000 ° C./sec or less.

本発明の一実施形態に係る銅粉の製造方法によれば、高い焼結開始温度を有し、かつ、塗膜の平滑性に優れた銅粉を製造することができる。また、本発明に係る銅粉の製造方法によって製造された銅粉をMLCCの電極層に用いれば、電極層の焼結開始温度と誘電層の焼結開始温度との温度差が小さくなるため、電極層のクラックやデラミネーションを抑制することができる。 According to the method for producing copper powder according to an embodiment of the present invention, it is possible to produce copper powder having a high sintering start temperature and excellent smoothness of a coating film. Further, if the copper powder produced by the method for producing copper powder according to the present invention is used for the electrode layer of MLCC, the temperature difference between the sintering start temperature of the electrode layer and the sintering start temperature of the dielectric layer becomes small. It is possible to suppress cracks and delamination of the electrode layer.

本発明の一実施形態に係る銅粉の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the copper powder which concerns on one Embodiment of this invention. 本発明の一実施形態に係る銅粉の製造方法に用いる金属塩化物生成装置の概略図である。It is a schematic diagram of the metal chloride generation apparatus used in the method for producing copper powder which concerns on one Embodiment of this invention. 本発明の一実施形態に係る銅粉の製造方法に用いる還元装置の概略図である。It is a schematic diagram of the reduction apparatus used in the method for producing copper powder which concerns on one Embodiment of this invention.

以下、本発明の実施形態について詳細に説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態または実施例の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention can be carried out in various embodiments without departing from the gist thereof, and is not construed as being limited to the contents of the embodiments or examples illustrated below.

また、以下の実施形態または実施例においては、銅粉の利用として、MLCCの電極層への適用を例示するが、本発明の一実施形態に係る銅粉製造方法によって製造された銅粉は、これに限られず、その他の電子部品へ適用することも可能である。 Further, in the following embodiments or examples, the application of MLCC to the electrode layer is exemplified as the use of copper powder, but the copper powder produced by the copper powder production method according to the embodiment of the present invention is used. Not limited to this, it can also be applied to other electronic components.

[1.銅粉の製造方法]
図1を参照して、本発明の一実施形態に係る銅粉の製造方法の概要について説明する。図1は、本発明の一実施形態に係る銅粉の製造方法を示すフローチャートである。本実施形態に係る銅粉の製造方法は、塩素ガスの生成工程(S100)、塩化銅の還元工程(S200)、塩素成分の低減工程(S300)、酸素成分の低減工程(S400)、および表面処理工程(S500)を含む。なお、各工程は、必ずしも明確に分離されていなくてもよく、例えば、塩素ガスの生成工程(S100)と塩化銅の還元工程(S200)とが同時に行われるような構成であってもよい。また、一部の工程を省略する構成であってもよい。
[1. Copper powder manufacturing method]
An outline of a method for producing copper powder according to an embodiment of the present invention will be described with reference to FIG. 1. FIG. 1 is a flowchart showing a method for producing copper powder according to an embodiment of the present invention. The method for producing copper powder according to the present embodiment includes a chlorine gas generation step (S100), a copper chloride reduction step (S200), a chlorine component reduction step (S300), an oxygen component reduction step (S400), and a surface. The processing step (S500) is included. It should be noted that each step does not necessarily have to be clearly separated, and may be configured such that, for example, the chlorine gas generation step (S100) and the copper chloride reduction step (S200) are performed at the same time. Further, the configuration may omit some steps.

以下、各工程について詳細に説明する。 Hereinafter, each step will be described in detail.

[1-1.塩化銅ガスの生成工程(S100)]
本実施形態に係る銅粉の製造方法では、塩化銅ガスと還元性ガスとの還元反応を利用して銅粉を生成する。ここでは、還元反応で用いる塩化銅ガスの製造方法について説明する。
[1-1. Copper chloride gas generation step (S100)]
In the method for producing copper powder according to the present embodiment, copper powder is produced by utilizing a reduction reaction between copper chloride gas and a reducing gas. Here, a method for producing copper chloride gas used in the reduction reaction will be described.

塩化銅ガスは、金属銅を原料として、金属銅と塩素含有ガスとを反応させることにより生成する。具体的には、金属銅を加熱して塩素含有ガスと反応させることによって、塩化銅ガスを生成させることができる。生成された塩化銅ガスは、原料として塩化銅ではなく、塩化銅よりも安価な金属銅を用いているため、塩化銅ガスの製造コストを抑制することができる。また、金属銅を用いることで塩化銅ガスの生成量を制御することができるため、塩化銅ガスの供給量を安定化させることができる。 Copper chloride gas is produced by reacting metallic copper with a chlorine-containing gas using metallic copper as a raw material. Specifically, copper chloride gas can be generated by heating metallic copper and reacting it with a chlorine-containing gas. Since the produced copper chloride gas uses metallic copper, which is cheaper than copper chloride, instead of copper chloride as a raw material, the production cost of copper chloride gas can be suppressed. Further, since the amount of copper chloride gas produced can be controlled by using metallic copper, the amount of copper chloride gas supplied can be stabilized.

図2は、本発明の一実施形態に係る銅粉の製造方法に用いる金属塩化物生成装置10の概略図である。金属塩化物生成装置10は、塩化炉100、投入口110、導入管120、回収管130、およびヒータ140を含む。投入口110、導入管120、および回収管130の各々は、塩化炉100に連結されている。金属銅は投入口110から投入され、塩素含有ガスは導入管120から供給される。すなわち、投入された金属銅と供給された塩素含有ガスとが塩化炉100内で反応し、その反応によって生成された塩化銅ガスが回収管130を通じて回収される。 FIG. 2 is a schematic view of a metal chloride generator 10 used in the method for producing copper powder according to an embodiment of the present invention. The metal chloride generator 10 includes a chloride furnace 100, an inlet 110, an introduction pipe 120, a recovery pipe 130, and a heater 140. Each of the input port 110, the introduction pipe 120, and the recovery pipe 130 is connected to the chloride furnace 100. The metallic copper is charged from the charging port 110, and the chlorine-containing gas is supplied from the introduction pipe 120. That is, the charged metallic copper and the supplied chlorine-containing gas react in the chloride furnace 100, and the copper chloride gas generated by the reaction is recovered through the recovery pipe 130.

塩化炉100は、ヒータ140によって加熱することができる。塩化炉100の加熱温度は、塩化炉100内で金属銅が溶融しない温度、すなわち、銅の融点(約1083度)以下である。 The chlorination furnace 100 can be heated by the heater 140. The heating temperature of the chlorination furnace 100 is a temperature at which the metallic copper does not melt in the chlorination furnace 100, that is, a temperature equal to or lower than the melting point of copper (about 1083 degrees).

ここで、塩化炉100の加熱温度とは、加熱された塩化炉100内の温度をいうが、塩化炉100内の温度を直接測定することが困難である場合は、金属塩化物生成装置10において設定した塩化炉100の設定温度とすることもできる。 Here, the heating temperature of the chloride furnace 100 means the temperature inside the heated chloride furnace 100, but if it is difficult to directly measure the temperature inside the chloride furnace 100, the metal chloride generator 10 may be used. It is also possible to set the set temperature of the set chloride furnace 100.

供給された塩素含有ガスは、塩化炉100に充満し、自然流によって回収管130の方向に流れる。そのため、塩素含有ガスの流量を調整することにより、塩化炉100内に滞留する塩素含有ガスの量を調整し、生成される塩化銅ガスの量を制御することができる。 The supplied chlorine-containing gas fills the chlorination furnace 100 and flows in the direction of the recovery pipe 130 by a natural flow. Therefore, by adjusting the flow rate of the chlorine-containing gas, the amount of the chlorine-containing gas staying in the chloride furnace 100 can be adjusted and the amount of the generated copper chloride gas can be controlled.

塩素含有ガスは、塩素ガスのみであってもよく、塩素ガスに希釈用の不活性ガスを含有した混合ガスであってもよい。不活性ガスとしては、窒素ガスまたはアルゴンガスなどを用いることができる。また、生成される塩化銅ガスの量は、不活性ガスの量を調整することにより、塩化炉100内の塩素ガスの量を調整し、生成される塩化銅ガスの量を制御することができる。 The chlorine-containing gas may be only chlorine gas, or may be a mixed gas containing an inert gas for dilution in chlorine gas. As the inert gas, nitrogen gas, argon gas or the like can be used. Further, the amount of copper chloride gas produced can be adjusted by adjusting the amount of inert gas to adjust the amount of chlorine gas in the chloride furnace 100, and the amount of copper chloride gas produced can be controlled. ..

塩素含有ガスは、加熱されて塩化炉100に導入されてもよい。塩素含有ガスの加熱は、塩素含有ガスが導入管120に供給される前に行われてもよく、塩素含有ガスが導入管120に供給された後、導入管120を加熱することによって行われてもよい。また、塩素含有ガスが塩素ガスと不活性ガスとの混合ガスである場合、加熱した不活性ガスと塩素ガスとを混合してもよい。 The chlorine-containing gas may be heated and introduced into the chlorination furnace 100. The heating of the chlorine-containing gas may be performed before the chlorine-containing gas is supplied to the introduction pipe 120, or is performed by heating the introduction pipe 120 after the chlorine-containing gas is supplied to the introduction pipe 120. May be good. When the chlorine-containing gas is a mixed gas of chlorine gas and an inert gas, the heated inert gas and chlorine gas may be mixed.

ここで、塩素含有ガスの加熱温度とは、加熱された塩素含有ガスの温度をいうが、塩素含有ガスの温度を直接測定することが困難である場合は、塩素含有ガスを加熱するヒータの設定温度とすることもできる。 Here, the heating temperature of the chlorine-containing gas means the temperature of the heated chlorine-containing gas, but if it is difficult to directly measure the temperature of the chlorine-containing gas, a heater for heating the chlorine-containing gas is set. It can also be the temperature.

以上、塩化銅ガスの生成工程(S100)では、塩化炉100の加熱温度、塩素含有ガスの流量、塩素含有ガスに占める不活性ガスの割合、または塩素含有ガスの加熱温度などの条件を調整することで、塩化銅ガスの生成量を精密に制御することが可能となる。 As described above, in the copper chloride gas generation step (S100), conditions such as the heating temperature of the chloride furnace 100, the flow rate of the chlorine-containing gas, the ratio of the inert gas to the chlorine-containing gas, or the heating temperature of the chlorine-containing gas are adjusted. This makes it possible to precisely control the amount of copper chloride gas produced.

[1-2.塩化銅の還元工程(S200)]
次に、生成された塩化銅ガスと還元性ガスとを反応させて塩化銅を還元し、銅粉を生成する。
[1-2. Copper chloride reduction step (S200)]
Next, the generated copper chloride gas is reacted with the reducing gas to reduce copper chloride to produce copper powder.

図3は、本発明の一実施形態に係る銅粉の製造方法に用いる還元装置20の概略図である。還元装置20は、還元炉200、第1導入管210、第2導入管220、回収管230、およびヒータ240を含む。第1導入管210、第2導入管220、および回収管230の各々は、還元炉200に連結されている。塩化銅ガスは第1導入管210から供給され、還元性ガスは第2導入管220から供給される。すなわち、供給された塩化銅ガスと還元性ガスとが還元炉200内で反応し、その反応によって生成された銅粉が回収管230を通じて回収される。なお、金属塩化物生成装置10の回収管130と還元装置20の第1導入管210とが連結され、金属塩化物生成装置10で生成された塩化銅ガスを還元装置20に直接供給することもできる。 FIG. 3 is a schematic view of a reducing device 20 used in the method for producing copper powder according to an embodiment of the present invention. The reduction device 20 includes a reduction furnace 200, a first introduction pipe 210, a second introduction pipe 220, a recovery pipe 230, and a heater 240. Each of the first introduction pipe 210, the second introduction pipe 220, and the recovery pipe 230 is connected to the reduction furnace 200. The copper chloride gas is supplied from the first introduction pipe 210, and the reducing gas is supplied from the second introduction pipe 220. That is, the supplied copper chloride gas and the reducing gas react in the reduction furnace 200, and the copper powder produced by the reaction is recovered through the recovery pipe 230. The recovery pipe 130 of the metal chloride generation device 10 and the first introduction pipe 210 of the reduction device 20 may be connected to directly supply the copper chloride gas generated by the metal chloride generation device 10 to the reduction device 20. can.

還元炉200は、ヒータ240によって加熱することができる。 The reduction furnace 200 can be heated by the heater 240.

ここで、還元炉200の加熱温度とは、加熱された還元炉200内の温度をいうが、還元炉200内の温度を直接測定することが困難である場合は、還元装置20において設定した還元炉200の設定温度とすることもできる。 Here, the heating temperature of the reduction furnace 200 means the temperature inside the heated reduction furnace 200, but when it is difficult to directly measure the temperature inside the reduction furnace 200, the reduction set in the reduction apparatus 20 It can also be set to the set temperature of the furnace 200.

還元性ガスとしては、例えば、水素、ヒドラジン、アンモニア、またはメタンなどを用いることができる。 As the reducing gas, for example, hydrogen, hydrazine, ammonia, methane and the like can be used.

塩化銅ガスに対する還元性ガスの比率は、第1導入管210からの塩化銅ガスの流量と、第2導入管220からの還元性ガスの流量とを調整することにより可能である。 The ratio of the reducing gas to the copper chloride gas can be adjusted by adjusting the flow rate of the copper chloride gas from the first introduction pipe 210 and the flow rate of the reducing gas from the second introduction pipe 220.

気相成長法の塩化銅ガスと還元性ガスとの還元反応において、塩化銅ガスの分圧とは、還元反応時に塩化炉から供給されるガス全体に対する塩化銅ガスの分圧のことをいう。例えば、反応系に存在するガスが塩化銅ガスおよび窒素ガスである場合における塩化銅ガスの分圧は、塩化銅ガスおよび窒素ガスの合計のモル数に対して占める塩化銅ガスのモル数の割合として得られる。 In the reduction reaction between the copper chloride gas and the reducing gas in the vapor phase growth method, the partial pressure of the copper chloride gas means the partial pressure of the copper chloride gas with respect to the entire gas supplied from the chloride furnace during the reduction reaction. For example, when the gas present in the reaction system is copper chloride gas and nitrogen gas, the partial pressure of copper chloride gas is the ratio of the number of moles of copper chloride gas to the total number of moles of copper chloride gas and nitrogen gas. Obtained as.

塩化銅ガスの分圧は、例えば、10%以上40%以下であり、好ましくは20%以上30%以下である。塩化銅ガスの分圧が40%超である場合には、還元反応が十分に進行せず、未反応の粗粒が発生するため、後述する銅粉の個数50%径(D50SEM)が大きくなり、塗膜の平滑性が悪くなるという問題が生じることがある。一方、塩化銅ガスの分圧が10%未満である場合には、個数50%径(D50SEM)が小さくなり、銅粉の焼結開始温度が低下するという問題が生じることがある。また、凝集性が強くなるため、塗膜の平滑性が悪くなるという問題が生じることがある。 The partial pressure of the copper chloride gas is, for example, 10% or more and 40% or less, preferably 20% or more and 30% or less. When the partial pressure of the copper chloride gas exceeds 40%, the reduction reaction does not proceed sufficiently and unreacted coarse particles are generated. Therefore, the number of copper powders described later, 50% diameter (D 50SEM ), is large. Therefore, there may be a problem that the smoothness of the coating film is deteriorated. On the other hand, when the partial pressure of the copper chloride gas is less than 10%, the number 50% diameter (D 50SEM ) becomes small, and there may be a problem that the sintering start temperature of the copper powder decreases. In addition, since the cohesiveness becomes strong, there may be a problem that the smoothness of the coating film deteriorates.

塩化銅ガスと還元性ガスとの還元反応によって生成された銅粉は回収管230を通じて回収されるが、冷却ガスを供給して銅粉を冷却してから回収してもよい。冷却ガスは、銅粉に対して不活性なガスであればよく、例えば、窒素ガス、ヘリウムガス、アルゴンガス、ネオンガス、または水素ガス、もしくはこれらの混合ガスである。冷却ガスの温度は、通常、0℃以上100℃以下、好ましくは0℃以上50℃以下、より好ましくは0℃以上30℃以下である。 The copper powder produced by the reduction reaction between the copper chloride gas and the reducing gas is recovered through the recovery pipe 230, but may be recovered after the copper powder is cooled by supplying a cooling gas. The cooling gas may be any gas that is inert to the copper powder, and is, for example, nitrogen gas, helium gas, argon gas, neon gas, hydrogen gas, or a mixed gas thereof. The temperature of the cooling gas is usually 0 ° C. or higher and 100 ° C. or lower, preferably 0 ° C. or higher and 50 ° C. or lower, and more preferably 0 ° C. or higher and 30 ° C. or lower.

還元反応によって生成された銅粉の冷却速度は、銅粉の連結粒子や粗大粒子の形成に影響を及ぼすため、銅粉の冷却速度の調整は重要である。銅粉の冷却速度は、例えば、2000℃/秒以上9000℃/秒以下であり、好ましくは3000℃/秒以上5000℃/秒以下である。銅粉の冷却速度が9000℃/秒超である場合には、結晶性が悪くなるため、銅粉の焼結開始温度が低下するという問題が生じることがある。一方、銅粉の冷却速度が2000℃/秒未満である場合には、冷却が不十分であるため、連結粒子や粗大粒子が多く発生し、塗膜の平滑性が悪くなるという問題が生じることがある。 Since the cooling rate of the copper powder produced by the reduction reaction affects the formation of the connecting particles and coarse particles of the copper powder, it is important to adjust the cooling rate of the copper powder. The cooling rate of the copper powder is, for example, 2000 ° C./sec or more and 9000 ° C./sec or less, preferably 3000 ° C./sec or more and 5000 ° C./sec or less. When the cooling rate of the copper powder is more than 9000 ° C./sec, the crystallinity is deteriorated, which may cause a problem that the sintering start temperature of the copper powder is lowered. On the other hand, when the cooling rate of the copper powder is less than 2000 ° C./sec, the cooling is insufficient, so that many connecting particles and coarse particles are generated, which causes a problem that the smoothness of the coating film is deteriorated. There is.

ここで、銅粉の冷却速度とは、還元反応で生成された銅粉の温度と、冷却ガスに接触させて温度が低下した銅粉の温度との温度差を、当該温度差を得るのに要した時間で除した値をいう。 Here, the cooling rate of the copper powder is the temperature difference between the temperature of the copper powder produced by the reduction reaction and the temperature of the copper powder whose temperature has dropped due to contact with the cooling gas, in order to obtain the temperature difference. The value divided by the time required.

以上、塩化銅の還元工程(S200)では、還元性ガスの種類、塩化銅ガスの分圧、冷却ガスの種類、または銅粉の冷却速度などの条件を調整することで、高い焼結開始温度を有する銅粉を製造することが可能となる。 As described above, in the copper chloride reduction step (S200), a high sintering start temperature is obtained by adjusting conditions such as the type of reducing gas, the partial pressure of copper chloride gas, the type of cooling gas, or the cooling rate of copper powder. It becomes possible to produce copper powder having.

[1-3.塩素成分の低減工程(S300)]
塩化銅の還元工程(S200)においては、銅粉とともに塩化水素が生成される。また、未反応の塩素が還元性ガスと反応することによっても塩化水素が生成される。これらの塩化水素は、塩化水素に由来する塩素が塩化銅として銅粉の中に残留することになり、銅粉の純度を低下させる。また、銅粉の中に残留した塩化銅は、MLCCの電極層にも取り込まれ、MLCCの電極層の劣化を加速させる要因となり得る。そこで、塩化銅の還元工程(S200)によって得られた銅粉に対し、銅紛が含有する塩素成分を低減するための処理を行ってもよい。
[1-3. Chlorine component reduction step (S300)]
In the copper chloride reduction step (S200), hydrogen chloride is produced together with the copper powder. Hydrogen chloride is also produced by the reaction of unreacted chlorine with the reducing gas. In these hydrogen chlorides, chlorine derived from hydrogen chloride remains in the copper powder as copper chloride, which lowers the purity of the copper powder. Further, the copper chloride remaining in the copper powder is also taken into the electrode layer of the MLCC, which can be a factor of accelerating the deterioration of the electrode layer of the MLCC. Therefore, the copper powder obtained in the copper chloride reduction step (S200) may be subjected to a treatment for reducing the chlorine component contained in the copper powder.

具体的には、銅紛を塩基の水溶液あるいは懸濁液で処理することで、塩素成分の除去を行うことができる。塩基の水溶液としては、水酸化ナトリウムや水酸化カリウムなどのアルカリ金属の水酸化物が挙げられる。塩基濃度は、0.1モル/L以上、あるいは0.5モル/L以上でよく、1.5モル/L以下、あるいは1.2モル/L以下とすることができる。 Specifically, the chlorine component can be removed by treating the copper powder with an aqueous solution or suspension of a base. Examples of the aqueous solution of the base include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide. The base concentration may be 0.1 mol / L or more, 0.5 mol / L or more, and may be 1.5 mol / L or less, or 1.2 mol / L or less.

[1-4.酸素成分の低減工程(S400)]
銅は比較的酸化されやすい金属であるため、銅粉の酸化は、銅粒子の表面だけでなく内部まで進行しやすい。酸化が進行すると銅粒子の表面に酸化銅の層が形成されるとともに、凹凸が発生する。このような酸化に起因する凹凸は、MLCCの電極層の導電性を低下させ、または電極層の表面の平坦性を低下させる要因となり得る。すなわち、酸素成分の多い銅粉を用いた電極層は、電気抵抗の増大し、接触不良を誘発する。また、銅粒子の表面に凹凸があると、電極層の焼結時において収縮率が増大するため、デラミネーションが生じやすくなる。そこで、塩素成分の低減工程(S300)によって得られた銅粉に対して、銅粉の酸素成分を低減するために、酸化銅を除去し、または酸素含有量を低減する処理を行ってもよい。
[1-4. Oxygen component reduction step (S400)]
Since copper is a metal that is relatively easily oxidized, the oxidation of copper powder tends to proceed not only to the surface of the copper particles but also to the inside. As the oxidation progresses, a layer of copper oxide is formed on the surface of the copper particles, and unevenness is generated. The unevenness caused by such oxidation can be a factor that lowers the conductivity of the electrode layer of MLCC or lowers the flatness of the surface of the electrode layer. That is, the electrode layer using the copper powder having a large oxygen component increases the electric resistance and induces poor contact. Further, if the surface of the copper particles is uneven, the shrinkage rate increases when the electrode layer is sintered, so that delamination is likely to occur. Therefore, in order to reduce the oxygen component of the copper powder, the copper powder obtained in the chlorine component reduction step (S300) may be subjected to a treatment of removing copper oxide or reducing the oxygen content. ..

具体的には、塩素成分の低減工程(S300)によって得られた銅粉を、アスコルビン酸、ヒドラジン、またはクエン酸などを含む溶液、もしくは懸濁液を洗浄液として用いて処理する。その後、銅粉を水で洗浄し、ろ過し、乾燥する。 Specifically, the copper powder obtained in the chlorine component reduction step (S300) is treated with a solution or suspension containing ascorbic acid, hydrazine, citric acid or the like as a cleaning solution. The copper powder is then washed with water, filtered and dried.

[1-5.表面処理工程(S500)]
上述したように、銅は比較的酸化されやすい金属である。そこで、銅粒子の表面の酸化を抑制するため、酸素成分の低減工程(S400)によって得られた銅粉に対して、表面処理を行ってもよい。
[1-5. Surface treatment step (S500)]
As mentioned above, copper is a metal that is relatively easily oxidized. Therefore, in order to suppress the oxidation of the surface of the copper particles, the copper powder obtained in the oxygen component reduction step (S400) may be surface-treated.

具体的には、表面処理剤を含む溶液または懸濁液で銅紛を処理する。表面処理剤としては、ベンゾトリアゾールとその誘導体、トリアゾールとその誘導体、チアゾールとその誘導体、ベンゾチアゾールとその誘導体、イミダゾールとその誘導体、およびベンズイミダゾールとその誘導体などの含窒素ヘテロ芳香族化合物に例示される材料を使用することができる。 Specifically, the copper powder is treated with a solution or suspension containing a surface treatment agent. Examples of surface treatment agents include nitrogen-containing heteroaromatic compounds such as benzotriazole and its derivatives, triazole and its derivatives, thiazole and its derivatives, benzothiazole and its derivatives, imidazole and its derivatives, and benzimidazole and its derivatives. Materials can be used.

[1-6.その他の工程]
その他の任意の工程として、得られる銅粉を乾燥、分級、解砕、または篩別などの工程を行ってもよい。分級は乾式分級でも湿式分級でもよく、乾式分級では、気流分級、重力場分級、慣性力場分級、遠心力場分級など、任意の方式を採用できる。解砕は、例えば、ジェットミルを用いて行うことができる。篩別は、所望のメッシュサイズを有する篩を振動させ、これに銅粉を通過させることで行うことができる。分級、解砕、または篩別などの工程を行うことで、銅粉の粒子径分布をより小さくすることが可能である。
[1-6. Other processes]
As any other step, the obtained copper powder may be dried, classified, crushed, or sieved. The classification may be dry classification or wet classification, and in the dry classification, any method such as air flow classification, gravitational field classification, inertial force field classification, centrifugal force field classification, etc. can be adopted. Crushing can be performed using, for example, a jet mill. Sieve separation can be performed by vibrating a sieve having a desired mesh size and passing copper powder through the sieve. It is possible to make the particle size distribution of the copper powder smaller by performing steps such as classification, crushing, and sieving.

以上、本実施形態に係る銅粉の製造方法によれば、上述した各工程の条件を調整することにより、高い焼結開始温度を有し、かつ、塗膜の平滑性に優れた銅粉を製造することができる。また、本実施形態に係る銅粉の製造方法によって製造された銅粉をMLCCの電極層に用いれば、電極層の焼結開始温度と誘電層の焼結開始温度との温度差が小さくなるため、電極層のクラックやデラミネーションを抑制することができる。 As described above, according to the method for producing copper powder according to the present embodiment, by adjusting the conditions of each of the above-mentioned steps, a copper powder having a high sintering start temperature and excellent smoothness of a coating film can be obtained. Can be manufactured. Further, if the copper powder produced by the method for producing copper powder according to the present embodiment is used for the electrode layer of MLCC, the temperature difference between the sintering start temperature of the electrode layer and the sintering start temperature of the dielectric layer becomes small. , Cracks and delamination of the electrode layer can be suppressed.

[2.銅粉の評価]
本発明の一実施形態に係る銅粉の製造方法によって製造された銅粉の評価における定義と測定方法は、以下の通りである。
[2. Evaluation of copper powder]
The definition and measurement method in the evaluation of the copper powder produced by the method for producing copper powder according to the embodiment of the present invention are as follows.

[2-1.個数50%径(D50SEM)]
銅粉の個数50%径(D50SEM)とは、銅粉の粒子径ヒストグラムにおける累積頻度が50%になるときの粒子径のことをいう。銅粉の個々の銅粒子の粒子径は、銅粉を電子顕微鏡で観察したときに得られる個々の銅粒子の像に内接する最小円の直径、あるいは最小長方形の長辺として得られる。銅粉の個数50%径(D50SEM)は、100個から10000個、典型的には500個の銅粒子を観測した結果の粒子径ヒストグラムにおける累積頻度が50%になるときの粒子径として得られる。例えば、銅粉の個数50%径(D50SEM)は、走査型電子顕微鏡(SEM:株式会社日立ハイテクノロジーズ製、SU5000)の倍率15000倍におけるSEM像の一つの視野中に存在する約500個の銅粒子を、画像解析ソフト(株式会社マウンテック製Macview4.0)を用いて解析することによって得ることができる。
[2-1. Number 50% diameter (D 50SEM )]
The number of copper powders 50% diameter (D 50SEM ) means the particle size when the cumulative frequency in the particle size histogram of the copper powder reaches 50%. The particle size of the individual copper particles of the copper powder is obtained as the diameter of the smallest circle inscribed in the image of the individual copper particles obtained when the copper powder is observed with an electron microscope, or as the long side of the smallest rectangle. The number of copper powders 50% diameter (D 50SEM ) is obtained as the particle diameter when the cumulative frequency in the particle size histogram as a result of observing 100 to 10,000, typically 500 copper particles is 50%. Be done. For example, the number of copper powders 50% diameter (D 50SEM ) is about 500 existing in one field of view of an SEM image at a magnification of 15,000 times of a scanning electron microscope (SEM: Hitachi High-Technologies Co., Ltd., SU5000). Copper particles can be obtained by analyzing with image analysis software (Macview 4.0 manufactured by Mountech Co., Ltd.).

本実施形態に係る銅粉の製造方法によって製造された銅粉の個数50%径(D50SEM)は、例えば、100nm以上400nm以下であり、好ましくは200nm以上300nm以下である。また、個数50%径(D50SEM)の下限は100nm以上であることが必要である。個数50%径(D50SEM)の下限が小さい銅粉は、製造することが困難であり、個数50%径(D50SEM)が小さすぎると、銅粒子同士が凝集し易くなり、取り扱いが困難になる場合がある。個数50%径(D50SEM)が100nm以上400nm以下の銅粉は、上述した本実施形態に係る銅粉の製造方法において、各工程の条件を適正に調整することで得られる。 The number 50% diameter (D 50SEM ) of the copper powder produced by the method for producing copper powder according to the present embodiment is, for example, 100 nm or more and 400 nm or less, preferably 200 nm or more and 300 nm or less. Further, the lower limit of the number 50% diameter (D 50SEM ) needs to be 100 nm or more. Copper powder having a small lower limit of 50% diameter (D 50SEM ) is difficult to manufacture, and if the 50% diameter (D 50SEM ) is too small, copper particles tend to aggregate with each other, making handling difficult. May be. The copper powder having a 50% diameter (D 50SEM ) of 100 nm or more and 400 nm or less can be obtained by appropriately adjusting the conditions of each step in the above-mentioned method for producing copper powder according to the present embodiment.

[2-2.平均結晶子径]
結晶子径とは、単結晶とみなせる領域の長さを表す指標である。個々の銅粒子は、単一または複数の結晶子を有している。平均結晶子径は、個々の銅粒子の結晶子の大きさの平均値である。平均結晶子径は、銅粉に対してX線回折の測定によって得られる各種のパラメータ(使用するX線の波長λ、回折X線の広がりの半値幅β、ブラッグ角θ)を、下記の(式1)に示すシェラーの式に代入して計算することで得られる値として定義される。ここで、Kはシェラー定数である。
[2-2. Average crystallite diameter]
The crystallite diameter is an index showing the length of a region that can be regarded as a single crystal. Each copper particle has a single crystallite or multiple crystallites. The average crystallite diameter is the average value of the crystallite size of each copper particle. The average crystallite diameter has various parameters (wavelength λ of X-rays used, half width β of spread of diffracted X-rays, Bragg angle θ) obtained by measuring X-ray diffraction with respect to copper powder. It is defined as a value obtained by substituting into the Scherrer's equation shown in equation 1) and calculating. Here, K is a Scheller constant.

Figure 2022007624000002
Figure 2022007624000002

平均結晶子径の具体的な測定条件としては、加速電圧45kV、放電電流40mAの条件を用いることができ、例えば、X線回折装置(スペクトリス株式会社製、X’PertPro)を用いて、CuKα線で銅結晶の(111)面の回折ピークの半値幅を求め、上記(式1)のシェラーの式により平均結晶子径を算出することができる。なお、本明細書においては、平均結晶子径を、(式1)に示すようにDとして記載する。 As specific measurement conditions for the average crystallite diameter, conditions of an acceleration voltage of 45 kV and a discharge current of 40 mA can be used. The half width of the diffraction peak of the (111) plane of the copper crystal can be obtained, and the average crystallite diameter can be calculated by the Scherrer equation of the above (Equation 1). In this specification, the average crystallite diameter is described as D as shown in (Equation 1).

本実施形態に係る銅紛の製造方法によって製造された銅粉の平均結晶子径Dは、個数50%径(D50SEM)に対する平均結晶子径Dの比(D/D50SEM)で評価する。個数50%径(D50SEM)が小さくなると平均結晶子径Dも小さくなるため、平均結晶子径Dは、個数50%径(D50SEM)で規格化したD/D50SEMで評価する。本実施形態に係る銅粉の製造方法によって製造された銅粉の個数50%径(D50SEM)に対する平均結晶子径Dの比D/D50SEMは、0.50以上0.75以下であることが好ましく、0.60以上0.70以下であることがさらに好ましい。D/D50SEMが0.50以上であると平均結晶子径Dが大きく、焼結開始温度が高くなる効果があるので好ましい。個数50%径(D50SEM)に対する平均結晶子径Dの比D/D50SEMが0.50以上0.75以下である銅粉は、上述した本実施形態に係る銅粉の製造方法において、各工程の条件を適正に調整することで得られる。また、気相成長法は、高温で成長させることができるため、銅粉の平均結晶子径Dが大きくなりやすい。 The average crystallite diameter D of the copper powder produced by the method for producing copper powder according to the present embodiment is evaluated by the ratio of the average crystallite diameter D to the number 50% diameter (D 50SEM ) (D / D 50SEM ). Since the average crystallite diameter D also decreases as the number 50% diameter (D 50SEM ) decreases, the average crystallite diameter D is evaluated by the D / D 50SEM standardized by the number 50% diameter (D 50SEM ). The ratio D / D 50SEM of the average crystallite diameter D to the number 50% diameter (D 50SEM ) of the number of copper powders produced by the method for producing copper powder according to the present embodiment shall be 0.50 or more and 0.75 or less. Is preferable, and more preferably 0.60 or more and 0.70 or less. When the D / D 50SEM is 0.50 or more, the average crystallite diameter D is large and the sintering start temperature is high, which is preferable. The copper powder having the ratio D / D 50SEM of the average crystallite diameter D to the number 50% diameter (D 50SEM ) of 0.50 or more and 0.75 or less is used in the above-described method for producing copper powder according to the present embodiment. It can be obtained by properly adjusting the conditions of the process. Further, in the vapor phase growth method, since the copper powder can be grown at a high temperature, the average crystallite diameter D of the copper powder tends to be large.

[2-3.連結粒子]
銅粉には、凝集のない独立した一次粒子に加え、一次粒子が凝集した二次粒子も含まれ得る。「連結粒子」とは、例えば、ジェットミル等の公知の解砕装置によって解砕してもなお、銅粉中に残留する二次粒子であり、典型的には、一次粒子同士が互いに融着してなる二次粒子のことを意味する。このような連結粒子のなかでも、球形度(真球度ともいう)が低い粒子、特に、複数の一次粒子が一列に連なった、特定の基準の長さを超える細長い形状の連結粒子の割合が、塗膜の平滑性に大きな影響を与えることが分かった。
[2-3. Linked particles]
The copper powder may include secondary particles in which the primary particles are aggregated, in addition to independent primary particles in which the primary particles are agglomerated. The "connected particles" are secondary particles that remain in the copper powder even after being crushed by a known crushing device such as a jet mill, and typically, the primary particles are fused to each other. It means a secondary particle made of copper. Among such connected particles, the proportion of particles having a low sphericity (also called sphericity), particularly elongated connected particles having a plurality of primary particles connected in a row and exceeding a specific reference length, is used. It was found that the smoothness of the coating film was greatly affected.

なお、本明細書中では、特に説明がない限り、便宜上、「連結粒子」とは、銅粉を走査電子顕微鏡により撮影したSEM像中の粒子のうち、当該SEM像において「アスペクト比」が1.2以上であり、「円形度」が0.675以下であり、「長径」が銅粉の個数50%径の3倍以上である二次粒子をいう。 In the present specification, unless otherwise specified, for convenience, the "connected particles" are particles in an SEM image obtained by photographing copper powder with a scanning electron microscope, and the "aspect ratio" is 1 in the SEM image. .2 or more, the "circularity" is 0.675 or less, and the "major axis" is 3 times or more the diameter of 50% of the number of copper powders.

ここで、「長径」とは、銅粒子の投影像に外接する最小面積の長方形の長辺の長さであり、「アスペクト比」とは、当該長方形における長辺の長さを短辺の長さで除した値である。 Here, the "major axis" is the length of the long side of the rectangle having the minimum area circumscribing the projected image of the copper particles, and the "aspect ratio" is the length of the long side in the rectangle as the length of the short side. It is the value divided by the value.

また、「円形度」は、下記の(式2)により求められる値である。円形度が1のとき、粒子の投影像は真円であり、当該粒子の立体形状は真球状に近いと予想できる。また、円形度が0に近づくにつれて、撮影された粒子の立体形状には、凹凸が多く存在し、複雑な形状であると予想できる。 Further, the "circularity" is a value obtained by the following (Equation 2). When the circularity is 1, the projected image of the particles is a perfect circle, and it can be expected that the three-dimensional shape of the particles is close to a true sphere. Further, as the circularity approaches 0, the three-dimensional shape of the photographed particles has many irregularities and can be expected to be a complicated shape.

Figure 2022007624000003
Figure 2022007624000003

銅粉中の連結粒子の割合(以下、「連結粒子率」と表記することもある)は、走査電子顕微鏡により銅粉のSEM像を撮影し、そのSEM像に撮影された約40,000個の銅粒子から、画像解析ソフトを使用して、アスペクト比が1.2以上であり、円形度が0.675以下であり、長径が金属粉末の個数50%径の3倍以上である銅粒子の数を計測して得られる。すなわち、連結粒子の割合は、計測した全ての銅粒子の数に対する連結粒子の数の割合を意味する。なお、銅粉のSEM像を撮影するための試料を調製する条件等は、後述する実施例を参照することができる。 The ratio of the connected particles in the copper powder (hereinafter, also referred to as "connected particle ratio") is about 40,000 pieces taken by taking an SEM image of the copper powder with a scanning electron microscope and taking the SEM image. Copper particles with an aspect ratio of 1.2 or more, a circularity of 0.675 or less, and a major axis of 3 times or more the diameter of 50% of the number of metal powders, using image analysis software. It is obtained by measuring the number of particles. That is, the ratio of the connected particles means the ratio of the number of connected particles to the measured number of all copper particles. For the conditions for preparing a sample for photographing the SEM image of the copper powder, the examples described later can be referred to.

本実施形態において、銅粉に含まれる連結粒子の割合は、個数基準で500ppm以下であることが好ましい。連結粒子の割合がこの範囲であることにより、銅粉の電極ペースト中での分散性を改善し、電極中の銅粉の充填率を高くすることができるため、塗膜の平滑性が向上するという効果を得ることができる。銅粉の個数50%径が400nm以下の超微粉であっても、上記の効果が得られる。したがって、この銅粉を内部電極用導電ペーストのフィラーとして用いることにより、電極の欠陥によるコンデンサの容量の低下を防ぐことができる。 In the present embodiment, the ratio of the connecting particles contained in the copper powder is preferably 500 ppm or less on the basis of the number of particles. When the ratio of the connecting particles is in this range, the dispersibility of the copper powder in the electrode paste can be improved, and the filling rate of the copper powder in the electrode can be increased, so that the smoothness of the coating film is improved. You can get the effect. The above effect can be obtained even if the number of copper powders is 50% and the diameter is 400 nm or less. Therefore, by using this copper powder as a filler for the conductive paste for an internal electrode, it is possible to prevent a decrease in the capacity of the capacitor due to a defect in the electrode.

[2-4.粗大粒子]
銅粉には、連結粒子だけでなく、粗大粒子が含まれ得る。ここで、「粗大粒子」とは、アスペクト比が1.2未満、または円形度が0.675を超える球状または略球状粒子であって、長径が銅粉の個数50%径の3倍以上である銅粒子をいう。つまり、粗大粒子とは、アスペクト比または円形度が連結粒子の要件を満たしていないが、連結粒子と同様に長径が大きく、球形状に近い一次粒子または二次粒子である。銅粉中に含まれる粗大粒子の割合は、個数基準で15ppm以下であることが好ましい。連結粒子率が500ppm以下である銅粉において、粗大粒子の割合がこの範囲であることにより、積層セラミックコンデンサの内部電極の導電ペーストフィラーとして用いるときに、電極層を平滑にすることができ、電極間のショート等の不良を防止することができる。
[2-4. Coarse particles]
The copper powder may contain coarse particles as well as connecting particles. Here, the "coarse particles" are spherical or substantially spherical particles having an aspect ratio of less than 1.2 or a circularity of more than 0.675, and have a major axis of 3 times or more the diameter of 50% of the number of copper powders. A certain copper particle. That is, the coarse particles are primary particles or secondary particles having a large major axis and a nearly spherical shape, similar to the connected particles, although the aspect ratio or the circularity does not satisfy the requirements for the connected particles. The ratio of coarse particles contained in the copper powder is preferably 15 ppm or less on a number basis. In copper powder having a linked particle ratio of 500 ppm or less, the ratio of coarse particles in this range makes it possible to smooth the electrode layer when used as a conductive paste filler for the internal electrode of a laminated ceramic capacitor, and the electrode. It is possible to prevent defects such as short circuits between them.

銅粉中の「粗大粒子」の割合(以下、「粗大粒子率」と表記することもある)は、走査電子顕微鏡により銅粉のSEM像を撮影し、そのSEM像に撮影された銅粒子約60,000個から、画像解析ソフトを使用して、アスペクト比が1.2未満、または円形度が0.675以上であり、長径が銅粉の個数50%径の3倍以上である銅粒子の数を計測して得られる。すなわち、粗大粒子の割合は、計測した全ての銅粒子の数に対する粗大粒子の数の割合を意味する。 The ratio of "coarse particles" in the copper powder (hereinafter, also referred to as "coarse particle ratio") is about the copper particles photographed in the SEM image of the copper powder by taking an SEM image of the copper powder with a scanning electron microscope. From 60,000 copper particles, using image analysis software, the aspect ratio is less than 1.2, the circularity is 0.675 or more, and the major axis is 3 times or more the diameter of 50% of the number of copper powders. It is obtained by measuring the number of particles. That is, the ratio of coarse particles means the ratio of the number of coarse particles to the total number of measured copper particles.

[2-3.焼結開始温度]
銅粉の焼結開始温度とは、銅粉を加熱し、銅粉の溶融が開始される温度をいう。銅粉の焼結開始温度は、例えば、熱機械分析装置(株式会社 リガク製、商品名 TMA8310)を用いて、1.5体積%水素-窒素の還元性ガス雰囲気下、大気圧、昇温速度5℃/分の条件で測定することができる。なお、銅粉の焼結開始温度は、銅粉の体積が5%収縮する温度としてもよい。
[2-3. Sintering start temperature]
The sintering start temperature of the copper powder is the temperature at which the copper powder is heated and the melting of the copper powder is started. The sintering start temperature of the copper powder is, for example, using a thermomechanical analyzer (manufactured by Rigaku Co., Ltd., trade name TMA8310) under a reducing gas atmosphere of 1.5% by volume hydrogen-nitrogen, atmospheric pressure, and heating rate. It can be measured under the condition of 5 ° C./min. The sintering start temperature of the copper powder may be a temperature at which the volume of the copper powder shrinks by 5%.

本実施形態に係る銅粉の製造方法によって製造された銅粉の焼結開始温度は、680℃以上であることが好ましい。銅の融点(約1083℃)はニッケルの融点(約1455℃)よりも低いことから、銅粉の焼結開始温度はニッケル粉の焼結開始温度より低くなる。そのため、可能な限りニッケル粉の焼結開始温度に近づけるため、銅粉の焼結開始温度は、好ましくは680℃以上であり、さらに好ましくは720℃以上である。焼結開始温度が680℃以上である銅粉は、上述した本実施形態に係る銅粉の製造方法において、各工程の条件を適正に調整することで得られる。 The sintering start temperature of the copper powder produced by the method for producing copper powder according to the present embodiment is preferably 680 ° C. or higher. Since the melting point of copper (about 1083 ° C.) is lower than the melting point of nickel (about 1455 ° C.), the sintering start temperature of copper powder is lower than the sintering start temperature of nickel powder. Therefore, in order to bring the nickel powder to the sintering start temperature as close as possible, the sintering start temperature of the copper powder is preferably 680 ° C. or higher, more preferably 720 ° C. or higher. The copper powder having a sintering start temperature of 680 ° C. or higher can be obtained by appropriately adjusting the conditions of each step in the copper powder production method according to the present embodiment described above.

本実施形態に係る銅粉の製造方法によって製造された銅粉は、焼結開始温度が高く、かつ、塗膜の平滑性に優れているため、デラミネーションが発生しにくい。焼結開始温度が高く、かつ、塗膜の平滑性に優れている銅粉は、上述した本実施形態に係る銅粉の製造方法において、各工程の条件を適正に調整することで得られる。 The copper powder produced by the method for producing copper powder according to the present embodiment has a high sintering start temperature and excellent smoothness of the coating film, so that delamination is unlikely to occur. The copper powder having a high sintering start temperature and excellent smoothness of the coating film can be obtained by appropriately adjusting the conditions of each step in the above-described method for producing copper powder according to the present embodiment.

以下に実施例をあげて、本発明を更に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
塩化炉に、原料として平均直径1.5cmの球状の金属銅を設置し、塩化炉の温度を900℃に加熱した。塩化炉の上部の塩素導入管から導入された混合ガスの塩素ガスと窒素ガスの体積比は29:61であった。また、塩化炉の下部の塩素導入管から導入された混合ガスの塩素ガスと窒素ガスの体積比は2:98であった。その結果、塩化炉の上部の塩素導入菅および下部の塩素導入管から導入された混合ガスの塩素ガスと窒素ガスの体積比は1:0.17であった。このような条件の下で、金属銅と塩素ガスとを反応させて、塩化銅ガスを生成させた。また、塩化銅ガスの分圧は、10%であった。
(Example 1)
Spherical copper with an average diameter of 1.5 cm was installed in the chloride furnace as a raw material, and the temperature of the chloride furnace was heated to 900 ° C. The volume ratio of chlorine gas and nitrogen gas of the mixed gas introduced from the chlorine introduction pipe at the top of the chlorination furnace was 29:61. The volume ratio of chlorine gas to nitrogen gas in the mixed gas introduced from the chlorine introduction pipe at the bottom of the chlorination furnace was 2:98. As a result, the volume ratio of the chlorine gas and the nitrogen gas of the mixed gas introduced from the chlorine introduction tube at the upper part and the chlorine introduction pipe at the lower part of the chloride furnace was 1: 0.17. Under such conditions, metallic copper and chlorine gas were reacted to generate copper chloride gas. The partial pressure of the copper chloride gas was 10%.

生成させた塩化銅ガスを1150℃に加熱した還元炉に導入した。また、塩化銅ガスに対して4600モル%の水素ガス、および塩化銅ガスに対して24600モル%の窒素ガスを還元炉に導入した。塩化銅が還元され、銅を生成させた。生成させた銅を窒素ガスで冷却速度2000℃/秒で冷却して個々の銅粒子とし、銅粒子の集合体として銅粉を得た。 The generated copper chloride gas was introduced into a reduction furnace heated to 1150 ° C. Further, 4600 mol% of hydrogen gas with respect to copper chloride gas and 24600 mol% of nitrogen gas with respect to copper chloride gas were introduced into the reduction furnace. Copper chloride was reduced to produce copper. The produced copper was cooled with nitrogen gas at a cooling rate of 2000 ° C./sec to form individual copper particles, and copper powder was obtained as an aggregate of the copper particles.

その後、表面安定化処理を行った。具体的には、アスコルビン酸水溶液で処理した銅紛に対し、室温で0.33重量%のベンゾトリアゾールを表面処理剤として含む水溶液(約300mL)を加え、得られた混合物を30分間攪拌した。攪拌終了後、混合物を静置し、上澄みを除去し、乾燥することにより、実施例1の銅粉を得た。 Then, surface stabilization treatment was performed. Specifically, an aqueous solution (about 300 mL) containing 0.33 wt% benzotriazole as a surface treatment agent was added to the copper powder treated with the ascorbic acid aqueous solution, and the obtained mixture was stirred for 30 minutes. After the stirring was completed, the mixture was allowed to stand, the supernatant was removed, and the mixture was dried to obtain the copper powder of Example 1.

[個数50%径(D50SEM)]
実施例1の銅粉を走査型電子顕微鏡(SEM:株式会社 日立ハイテクノロジーズ製、商品名 SU5000)を用いて、倍率15000倍におけるSEM像の一つの視野中に存在する500個の銅粒子を画像解析ソフト(株式会社 マウンテック製、商品名 Macview4.0)を用いて解析した結果、個数50%径(D50SEM)は100nmであった。
[Number 50% diameter (D 50SEM )]
Using a scanning electron microscope (SEM: Hitachi High-Technologies Corporation, trade name SU5000), the copper powder of Example 1 is imaged with 500 copper particles existing in one field of view of an SEM image at a magnification of 15,000 times. As a result of analysis using analysis software (manufactured by Mountech Co., Ltd., trade name: Microscope 4.0), the number 50% diameter (D 50SEM ) was 100 nm.

[D/D50SEM
実施例1の銅粉をX線回折装置(株式会社 スペクトリス製、商品名 X’PertPro)を用いて、加速電圧45kV、放電電流40mAの条件で発生させたCuKα線で得られた銅結晶の(111)面の回折ピークの半値幅とシェラーの式により平均結晶子径(D)を算出した結果、65nmであった。また、D/D50SEMは0.65であった。
[D / D 50SEM ]
The copper powder of Example 1 was generated from CuKα rays using an X-ray diffractometer (manufactured by Spectris Co., Ltd., trade name X'PertPro) under the conditions of an acceleration voltage of 45 kV and a discharge current of 40 mA. 111) As a result of calculating the average crystallite diameter (D) by the half width of the diffraction peak of the plane and Scherrer's equation, it was 65 nm. The D / D 50 SEM was 0.65.

[連結粒子率]
走査電子顕微鏡(株式会社 日本電子製、商品名 JSM-7800F)により銅粉のSEM像を撮影し、そのSEM像から画像解析ソフト(株式会社 マウンテック製、商品名 MacView4.0)を使用して、約40,000個の銅粒子のうち、アスペクト比が1.2以上かつ円形度が0.675以下の連結粒子であって、長径が個数50%径の3倍以上である粒子の数を数えて算出した。その結果、連結粒子率は500ppmであった。
[Connected particle ratio]
An SEM image of copper powder was taken with a scanning electron microscope (manufactured by JEOL Ltd., trade name JSM-7800F), and image analysis software (manufactured by Mountech Co., Ltd., trade name MacView 4.0) was used from the SEM image. Of the approximately 40,000 copper particles, the number of connected particles having an aspect ratio of 1.2 or more and a circularity of 0.675 or less and having a major axis of 3 times or more the number of 50% diameters is counted. Calculated. As a result, the linked particle ratio was 500 ppm.

[粗大粒子率]
走査電子顕微鏡(株式会社 日本電子製、商品名 JSM-7800F)により金属銅粉末の写真を撮影し、その写真から画像解析ソフト(株式会社 マウンテック製、商品名 MacView4.0)を使用して、粒子約600,000個のうち、アスペクト比が1.2未満、もしくは円形度が0.675を超える球状または略球状粒子で、個数50%径の3倍以上の長径を持つ粒子の数を算出した。その結果、粗大粒子率は14ppmであった。
[Coarse particle ratio]
Take a picture of the metallic copper powder with a scanning electron microscope (manufactured by JEOL Ltd., trade name JSM-7800F), and use image analysis software (manufactured by Mountech Co., Ltd., trade name MacView 4.0) to obtain particles from the picture. Of the approximately 600,000 particles, the number of spherical or substantially spherical particles having an aspect ratio of less than 1.2 or an circularity of more than 0.675 and having a major axis three times or more the diameter of 50% was calculated. .. As a result, the coarse particle ratio was 14 ppm.

[焼結開始温度]
実施例1の銅粉末1g、樟脳3重量%、およびアセトン3重量%を混合し、この混合物を内径5mm、長さ10mmの円柱状金属容器に充填し、500MPaで圧縮して試験ペレットを作製した。この試験ペレットの熱収縮挙動を、熱機械分析装置(株式会社 リガク製、商品名 TMA8310)を使用し、1.5体積%水素-窒素の還元性ガス雰囲気下、大気圧、昇温速度5℃/分の条件で測定した。試験ペレットの体積が5%収縮した温度、すなわち、焼結開始温度は680℃であった。
[Sintering start temperature]
1 g of copper powder of Example 1, 3% by weight of camphor, and 3% by weight of acetone were mixed, and this mixture was filled in a cylindrical metal container having an inner diameter of 5 mm and a length of 10 mm and compressed at 500 MPa to prepare test pellets. .. The heat shrinkage behavior of these test pellets was measured using a thermomechanical analyzer (manufactured by Rigaku Co., Ltd., trade name TMA8310) under a reducing gas atmosphere of 1.5% by volume hydrogen-nitrogen, atmospheric pressure, and heating rate of 5 ° C. It was measured under the condition of / minute. The temperature at which the volume of the test pellet shrank by 5%, that is, the sintering start temperature was 680 ° C.

[塗膜の平滑性の評価]
実施例1の銅粉末0.5gにポリカルボン酸系分散剤5重量%水溶液100mlを加え、超音波分散機(株式会社 ギンセン製、商品名 GSD600AT)を使用して出力600W、振幅幅30μmで60秒分散した。分散したスラリーを10分間静置して沈降させた後、上澄みを捨て、沈降したスラリー約100mgを5μmのアプリケータで石英板上に塗布した。石英板上の銅塗膜を電気炉(株式会社 モトヤマ製、商品名 SLT-2035D)を使用して、1.5体積%水素-窒素の還元性ガス雰囲気下、大気圧、昇温速度5℃/分の条件で昇温し、1,000℃で1時間焼成した。焼成した塗膜の表面粗さ(Sz:最大高さ;最高ピークと最深谷との間の高さ)をデジタルマイクロスコープ(株式会社 キーエンス製、商品名 VHX-1000)で測定し、塗膜の平滑性を(Sz値/銅粉の個数50%径)の値で表1のように評価した。
[Evaluation of coating film smoothness]
To 0.5 g of the copper powder of Example 1, 100 ml of a 5 wt% aqueous solution of a polycarboxylic acid-based dispersant was added, and an ultrasonic disperser (manufactured by Ginsen Co., Ltd., trade name GSD600AT) was used to output 600 W and an amplitude width of 30 μm. Distributed for seconds. After allowing the dispersed slurry to stand for 10 minutes to settle, the supernatant was discarded, and about 100 mg of the settled slurry was applied onto a quartz plate with a 5 μm applicator. Using an electric furnace (manufactured by Motoyama Co., Ltd., trade name SLT-2035D), the copper coating on the quartz plate is subjected to a 1.5% by volume hydrogen-nitrogen reducing gas atmosphere, atmospheric pressure, and a heating rate of 5 ° C. The temperature was raised under the condition of / minute, and the mixture was fired at 1,000 ° C. for 1 hour. The surface roughness (Sz: maximum height; height between the highest peak and the deepest valley) of the fired coating film was measured with a digital microscope (manufactured by KEYENCE Co., Ltd., trade name VHX-1000), and the coating film was coated. The smoothness was evaluated as shown in Table 1 by the value of (Sz value / number of copper powders 50% diameter).

Figure 2022007624000004
Figure 2022007624000004

実施例1の銅粉の(Sz値/銅粉の個数50%径)の値は1.0以上1.5未満であった。そのため、実施例1の銅粉の塗膜の平滑性は、〇(良)であった。 The value of the copper powder of Example 1 (Sz value / 50% diameter of the number of copper powders) was 1.0 or more and less than 1.5. Therefore, the smoothness of the coating film of the copper powder of Example 1 was 〇 (good).

(実施例2)
塩化銅の分圧を40%とした以外は、実施例1と同様の条件で製造し、実施例2の銅粉を得た。実施例2の銅粉を評価したところ、個数50%径(D50SEM)は400nm、平均結晶子径(D)は260nm、D/D50SEMは0.65、連結粒子率は500ppm、粗大粒子率は14ppm、焼結開始温度は700℃、塗膜の平滑性は、〇(良)であった。
(Example 2)
It was produced under the same conditions as in Example 1 except that the partial pressure of copper chloride was 40%, and the copper powder of Example 2 was obtained. When the copper powder of Example 2 was evaluated, the number 50% diameter (D 50SEM ) was 400 nm, the average crystallite diameter (D) was 260 nm, the D / D 50SEM was 0.65, the linked particle ratio was 500 ppm, and the coarse particle ratio. Was 14 ppm, the sintering start temperature was 700 ° C., and the smoothness of the coating film was 〇 (good).

(実施例3)
塩化銅の分圧を20%、冷却速度を3000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例3の銅粉を得た。実施例3の銅粉を評価したところ、個数50%径(D50SEM)は200nm、平均結晶子径(D)は130nm、D/D50SEMは0.65、連結粒子率は400ppm、粗大粒子率は12ppm、焼結開始温度は720℃、塗膜の平滑性は、◎(最良)であった。
(Example 3)
The copper powder of Example 3 was obtained by manufacturing under the same conditions as in Example 1 except that the partial pressure of copper chloride was 20% and the cooling rate was 3000 ° C./sec. When the copper powder of Example 3 was evaluated, the number 50% diameter (D 50SEM ) was 200 nm, the average crystallite diameter (D) was 130 nm, the D / D 50SEM was 0.65, the linked particle ratio was 400 ppm, and the coarse particle ratio. Was 12 ppm, the sintering start temperature was 720 ° C, and the smoothness of the coating film was ⊚ (best).

(実施例4)
塩化銅の分圧を30%、冷却速度を3000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例4の銅粉を得た。実施例4の銅粉を評価したところ、個数50%径(D50SEM)は300nm、平均結晶子径(D)は195nm、D/D50SEMは0.65、連結粒子率は400ppm、粗大粒子率は12ppm、焼結開始温度は750℃、塗膜の平滑性は、◎(最良)であった。
(Example 4)
The copper powder of Example 4 was obtained by manufacturing under the same conditions as in Example 1 except that the partial pressure of copper chloride was 30% and the cooling rate was 3000 ° C./sec. When the copper powder of Example 4 was evaluated, the number 50% diameter (D 50SEM ) was 300 nm, the average crystallite diameter (D) was 195 nm, the D / D 50SEM was 0.65, the linked particle ratio was 400 ppm, and the coarse particle ratio. Was 12 ppm, the sintering start temperature was 750 ° C., and the smoothness of the coating film was ⊚ (best).

(実施例5)
塩化銅の分圧を20%、冷却速度を4000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例5の銅粉を得た。実施例5の銅粉を評価したところ、個数50%径(D50SEM)は200nm、平均結晶子径(D)は130nm、D/D50SEMは0.65、連結粒子率は300ppm、粗大粒子率は10ppm未満、焼結開始温度は720℃、塗膜の平滑性は、◎(最良)であった。
(Example 5)
The copper powder of Example 5 was obtained by manufacturing under the same conditions as in Example 1 except that the partial pressure of copper chloride was 20% and the cooling rate was 4000 ° C./sec. When the copper powder of Example 5 was evaluated, the number 50% diameter (D 50SEM ) was 200 nm, the average crystallite diameter (D) was 130 nm, the D / D 50SEM was 0.65, the linked particle ratio was 300 ppm, and the coarse particle ratio. Was less than 10 ppm, the sintering start temperature was 720 ° C., and the smoothness of the coating film was ⊚ (best).

(実施例6)
塩化銅の分圧を30%、冷却速度を4000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例6の銅粉を得た。実施例6の銅粉を評価したところ、個数50%径(D50SEM)は300nm、平均結晶子径(D)は195nm、D/D50SEMは0.65、連結粒子率は300ppm、粗大粒子率は10ppm、焼結開始温度は750℃、塗膜の平滑性は、◎(最良)であった。
(Example 6)
The copper powder of Example 6 was obtained by manufacturing under the same conditions as in Example 1 except that the partial pressure of copper chloride was 30% and the cooling rate was 4000 ° C./sec. When the copper powder of Example 6 was evaluated, the number 50% diameter (D 50SEM ) was 300 nm, the average crystallite diameter (D) was 195 nm, the D / D 50SEM was 0.65, the linked particle ratio was 300 ppm, and the coarse particle ratio. Was 10 ppm, the sintering start temperature was 750 ° C., and the smoothness of the coating film was ⊚ (best).

(実施例7)
塩化銅の分圧を20%、冷却速度を5000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例7の銅粉を得た。実施例7の銅粉を評価したところ、個数50%径(D50SEM)は200nm、平均結晶子径(D)は130nm、D/D50SEMは0.65、連結粒子率は200ppm、粗大粒子率は8ppm、焼結開始温度は720℃、塗膜の平滑性は、◎(最良)であった。
(Example 7)
The copper powder of Example 7 was obtained by manufacturing under the same conditions as in Example 1 except that the partial pressure of copper chloride was 20% and the cooling rate was 5000 ° C./sec. When the copper powder of Example 7 was evaluated, the number 50% diameter (D 50SEM ) was 200 nm, the average crystallite diameter (D) was 130 nm, the D / D 50SEM was 0.65, the linked particle ratio was 200 ppm, and the coarse particle ratio. Was 8 ppm, the sintering start temperature was 720 ° C, and the smoothness of the coating film was ⊚ (best).

(実施例8)
塩化銅の分圧を30%、冷却速度を5000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例8の銅粉を得た。実施例8の銅粉を評価したところ、個数50%径(D50SEM)は300nm、平均結晶子径(D)は195nm、D/D50SEMは0.65、連結粒子率は200ppm、粗大粒子率は8ppm、焼結開始温度は750℃、塗膜の平滑性は、◎(最良)であった。
(Example 8)
The copper powder of Example 8 was obtained by manufacturing under the same conditions as in Example 1 except that the partial pressure of copper chloride was 30% and the cooling rate was 5000 ° C./sec. When the copper powder of Example 8 was evaluated, the number 50% diameter (D 50SEM ) was 300 nm, the average crystallite diameter (D) was 195 nm, the D / D 50SEM was 0.65, the linked particle ratio was 200 ppm, and the coarse particle ratio. Was 8 ppm, the sintering start temperature was 750 ° C., and the smoothness of the coating film was ⊚ (best).

(実施例9)
冷却速度を7000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例9の銅粉を得た。実施例9の銅粉を評価したところ、個数50%径(D50SEM)は100nm、平均結晶子径(D)は60nm、D/D50SEMは0.60、連結粒子率は150ppm、粗大粒子率は7ppm、焼結開始温度は680℃、塗膜の平滑性は、◎(最良)であった。
(Example 9)
It was produced under the same conditions as in Example 1 except that the cooling rate was set to 7000 ° C./sec, and the copper powder of Example 9 was obtained. When the copper powder of Example 9 was evaluated, the number 50% diameter (D 50SEM ) was 100 nm, the average crystallite diameter (D) was 60 nm, the D / D 50SEM was 0.60, the linked particle ratio was 150 ppm, and the coarse particle ratio. Was 7 ppm, the sintering start temperature was 680 ° C, and the smoothness of the coating film was ⊚ (best).

(実施例10)
塩化銅の分圧を40%、冷却速度を7000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例10の銅粉を得た。実施例10の銅粉を評価したところ、個数50%径(D50SEM)は400nm、平均結晶子径(D)は240nm、D/D50SEMは0.60、連結粒子率は150ppm、粗大粒子率は7ppm、焼結開始温度は690℃、塗膜の平滑性は、◎(最良)であった。
(Example 10)
The copper powder of Example 10 was obtained by manufacturing under the same conditions as in Example 1 except that the partial pressure of copper chloride was 40% and the cooling rate was 7000 ° C./sec. When the copper powder of Example 10 was evaluated, the number 50% diameter (D 50SEM ) was 400 nm, the average crystallite diameter (D) was 240 nm, the D / D 50SEM was 0.60, the linked particle ratio was 150 ppm, and the coarse particle ratio. Was 7 ppm, the sintering start temperature was 690 ° C., and the smoothness of the coating film was ⊚ (best).

(実施例11)
冷却速度を9000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例11の銅粉を得た。実施例11の銅粉を評価したところ、個数50%径(D50SEM)は100nm、平均結晶子径(D)は60nm、D/D50SEMは0.60、連結粒子率は100ppm、粗大粒子率は6ppm、焼結開始温度は685℃、塗膜の平滑性は、◎(最良)であった。
(Example 11)
It was produced under the same conditions as in Example 1 except that the cooling rate was set to 9000 ° C./sec, and the copper powder of Example 11 was obtained. When the copper powder of Example 11 was evaluated, the number 50% diameter (D 50SEM ) was 100 nm, the average crystallite diameter (D) was 60 nm, the D / D 50SEM was 0.60, the linked particle ratio was 100 ppm, and the coarse particle ratio. Was 6 ppm, the sintering start temperature was 685 ° C, and the smoothness of the coating film was ⊚ (best).

(実施例12)
塩化銅の分圧を40%、冷却速度を9000℃/秒とした以外は、実施例1と同様の条件で製造し、実施例12の銅粉を得た。実施例12の銅粉を評価したところ、個数50%径(D50SEM)は400nm、平均結晶子径(D)は240nm、D/D50SEMは0.60、連結粒子率は100ppm、粗大粒子率は6ppm、焼結開始温度は690℃、塗膜の平滑性は、◎(最良)であった。
(Example 12)
The copper powder of Example 12 was obtained by manufacturing under the same conditions as in Example 1 except that the partial pressure of copper chloride was 40% and the cooling rate was 9000 ° C./sec. When the copper powder of Example 12 was evaluated, the number 50% diameter (D 50SEM ) was 400 nm, the average crystallite diameter (D) was 240 nm, the D / D 50SEM was 0.60, the linked particle ratio was 100 ppm, and the coarse particle ratio. Was 6 ppm, the sintering start temperature was 690 ° C, and the smoothness of the coating film was ⊚ (best).

(比較例1)
冷却速度を1000℃/秒とした以外は、実施例1と同様の条件で製造し、比較例1の銅粉を得た。比較例1の銅粉を評価したところ、個数50%径(D50SEM)は100nm、平均結晶子径(D)は65nm、D/D50SEMは0.65、連結粒子率は2000ppm、粗大粒子率は100ppm、焼結開始温度は650℃、塗膜の平滑性は、×(不良)であった。
(Comparative Example 1)
It was produced under the same conditions as in Example 1 except that the cooling rate was 1000 ° C./sec, and the copper powder of Comparative Example 1 was obtained. When the copper powder of Comparative Example 1 was evaluated, the number 50% diameter (D 50SEM ) was 100 nm, the average crystallite diameter (D) was 65 nm, the D / D 50SEM was 0.65, the linked particle ratio was 2000 ppm, and the coarse particle ratio. Was 100 ppm, the sintering start temperature was 650 ° C., and the smoothness of the coating film was × (defective).

(比較例2)
塩化銅の分圧を40%、冷却速度を1000℃/秒とした以外は、実施例1と同様の条件で製造し、比較例2の銅粉を得た。比較例2の銅粉を評価したところ、個数50%径(D50SEM)は400nm、平均結晶子径(D)は260nm、D/D50SEMは0.65、連結粒子率は2000ppm、粗大粒子率は100ppm、焼結開始温度は650℃、塗膜の平滑性は、×(不良)であった。
(Comparative Example 2)
The copper powder of Comparative Example 2 was obtained by producing under the same conditions as in Example 1 except that the partial pressure of copper chloride was 40% and the cooling rate was 1000 ° C./sec. When the copper powder of Comparative Example 2 was evaluated, the number 50% diameter (D 50SEM ) was 400 nm, the average crystallite diameter (D) was 260 nm, the D / D 50SEM was 0.65, the linked particle ratio was 2000 ppm, and the coarse particle ratio. Was 100 ppm, the sintering start temperature was 650 ° C., and the smoothness of the coating film was × (defective).

(比較例3)
冷却速度を10000℃/秒とした以外は、実施例1と同様の条件で製造し、比較例3の銅粉を得た。比較例3の銅粉を評価したところ、個数50%径(D50SEM)は100nm、平均結晶子径(D)は45nm、D/D50SEMは0.45、連結粒子率は80ppm、粗大粒子率は5ppm、焼結開始温度は400℃、塗膜の平滑性は、◎(最良)であった。
(Comparative Example 3)
It was produced under the same conditions as in Example 1 except that the cooling rate was set to 10000 ° C./sec, and the copper powder of Comparative Example 3 was obtained. When the copper powder of Comparative Example 3 was evaluated, the number 50% diameter (D 50SEM ) was 100 nm, the average crystallite diameter (D) was 45 nm, the D / D 50SEM was 0.45, the linked particle ratio was 80 ppm, and the coarse particle ratio. Was 5 ppm, the sintering start temperature was 400 ° C., and the smoothness of the coating film was ⊚ (best).

(比較例4)
塩化銅の分圧を40%、冷却速度を10000℃/秒とした以外は、実施例1と同様の条件で製造し、比較例4の銅粉を得た。比較例4の銅粉を評価したところ、個数50%径(D50SEM)は400nm、平均結晶子径(D)は180nm、D/D50SEMは0.45、連結粒子率は80ppm、粗大粒子率は5ppm、焼結開始温度は450℃、塗膜の平滑性は、◎(最良)であった。
(Comparative Example 4)
It was produced under the same conditions as in Example 1 except that the partial pressure of copper chloride was 40% and the cooling rate was 10000 ° C./sec, to obtain the copper powder of Comparative Example 4. When the copper powder of Comparative Example 4 was evaluated, the number 50% diameter (D 50SEM ) was 400 nm, the average crystallite diameter (D) was 180 nm, the D / D 50SEM was 0.45, the linked particle ratio was 80 ppm, and the coarse particle ratio. Was 5 ppm, the sintering start temperature was 450 ° C., and the smoothness of the coating film was ⊚ (best).

(比較例5)
塩化銅の分圧を5%とした以外は、実施例1と同様の条件で製造し、比較例5の銅粉を得た。比較例5の銅粉を評価したところ、個数50%径(D50SEM)は50nm、平均結晶子径(D)は32.5nm、D/D50SEMは0.65、連結粒子率は1500ppm、粗大粒子率は60ppm、焼結開始温度は600℃、塗膜の平滑性は、×(不良)であった。
(Comparative Example 5)
It was produced under the same conditions as in Example 1 except that the partial pressure of copper chloride was 5%, and the copper powder of Comparative Example 5 was obtained. When the copper powder of Comparative Example 5 was evaluated, the number 50% diameter (D 50SEM ) was 50 nm, the average crystallite diameter (D) was 32.5 nm, the D / D 50 SEM was 0.65, the linked particle ratio was 1500 ppm, and the coarse size. The particle ratio was 60 ppm, the sintering start temperature was 600 ° C., and the smoothness of the coating film was × (poor).

(比較例6)
塩化銅の分圧を45%とした以外は、実施例1と同様の条件で製造し、比較例6の銅粉を得た。比較例6の銅粉を評価したところ、個数50%径(D50SEM)は450nm、平均結晶子径(D)は292.5nm、D/D50SEMは0.65、連結粒子率は1500ppm、粗大粒子率は60ppm、焼結開始温度は680℃、塗膜の平滑性は、×(不良)であった。
(Comparative Example 6)
It was produced under the same conditions as in Example 1 except that the partial pressure of copper chloride was 45%, and the copper powder of Comparative Example 6 was obtained. When the copper powder of Comparative Example 6 was evaluated, the number 50% diameter (D 50SEM ) was 450 nm, the average crystallite diameter (D) was 292.5 nm, the D / D 50 SEM was 0.65, the linked particle ratio was 1500 ppm, and the coarse size. The particle ratio was 60 ppm, the sintering start temperature was 680 ° C, and the smoothness of the coating film was × (poor).

(比較例7)
塩化銅の分圧を5%、冷却速度を9000℃/秒とした以外は、実施例1と同様の条件で製造し、比較例7の銅粉を得た。比較例7の銅粉を評価したところ、個数50%径(D50SEM)は50nm、平均結晶子径(D)は25nm、D/D50SEMは0.50、連結粒子率は300ppm、粗大粒子率は24ppm、焼結開始温度は400℃、塗膜の平滑性は、×(不良)であった。
(Comparative Example 7)
It was produced under the same conditions as in Example 1 except that the partial pressure of copper chloride was 5% and the cooling rate was 9000 ° C./sec, to obtain the copper powder of Comparative Example 7. When the copper powder of Comparative Example 7 was evaluated, the number 50% diameter (D 50SEM ) was 50 nm, the average crystallite diameter (D) was 25 nm, the D / D 50SEM was 0.50, the linked particle ratio was 300 ppm, and the coarse particle ratio. Was 24 ppm, the sintering start temperature was 400 ° C., and the smoothness of the coating film was × (poor).

(比較例8)
塩化銅の分圧を45%、冷却速度を9000℃/秒とした以外は、実施例1と同様の条件で製造し、比較例8の銅粉を得た。比較例8の銅粉を評価したところ、個数50%径(D50SEM)は450nm、平均結晶子径(D)は225nm、D/D50SEMは0.50、連結粒子率は300ppm、粗大粒子率は24ppm、焼結開始温度は480℃、塗膜の平滑性は、×(不良)であった。
(Comparative Example 8)
It was produced under the same conditions as in Example 1 except that the partial pressure of copper chloride was 45% and the cooling rate was 9000 ° C./sec, to obtain the copper powder of Comparative Example 8. When the copper powder of Comparative Example 8 was evaluated, the number 50% diameter (D 50SEM ) was 450 nm, the average crystallite diameter (D) was 225 nm, the D / D 50 SEM was 0.50, the linked particle ratio was 300 ppm, and the coarse particle ratio. Was 24 ppm, the sintering start temperature was 480 ° C., and the smoothness of the coating film was × (poor).

実施例1~実施例12および比較例1~比較例8の評価結果を表2に示す。 Table 2 shows the evaluation results of Examples 1 to 12 and Comparative Examples 1 to 8.

Figure 2022007624000005
Figure 2022007624000005

表2からわかるように、実施例1~実施例12においては、焼結開始温度が680℃以上と高く、かつ、塗膜の平滑性が優れていることが確認された。また、その中でも、実施例3~実施例8においては、焼結開始温度が720℃以上と非常に高く、かつ、塗膜の平滑性が非常に優れていることが確認された。 As can be seen from Table 2, in Examples 1 to 12, it was confirmed that the sintering start temperature was as high as 680 ° C. or higher and the smoothness of the coating film was excellent. In addition, it was confirmed that in Examples 3 to 8, the sintering start temperature was as high as 720 ° C. or higher, and the smoothness of the coating film was very excellent.

一方、比較例1および比較例2においては、焼結開始温度が650℃であり、かつ、塗膜の平滑性は不良であることが確認された。比較例3および比較例4においては、塗膜の平滑性は優れてはいるものの、焼結開始温度が450℃以下と低いことが確認された。比較例5は、塗膜の平滑性が不良であることが確認された。比較例6は、焼結開始温度が680℃と高いものの、塗膜の平滑性が不良であることが確認された。比較例7および比較例8においては、焼結開始温度が480℃以下と低く、かつ、塗膜の平滑性も不良であることが確認された。 On the other hand, in Comparative Example 1 and Comparative Example 2, it was confirmed that the sintering start temperature was 650 ° C. and the smoothness of the coating film was poor. In Comparative Example 3 and Comparative Example 4, it was confirmed that the sintering start temperature was as low as 450 ° C. or lower, although the smoothness of the coating film was excellent. In Comparative Example 5, it was confirmed that the smoothness of the coating film was poor. In Comparative Example 6, although the sintering start temperature was as high as 680 ° C., it was confirmed that the smoothness of the coating film was poor. In Comparative Example 7 and Comparative Example 8, it was confirmed that the sintering start temperature was as low as 480 ° C. or lower, and the smoothness of the coating film was also poor.

本発明の一実施形態は、相互に矛盾しない限りにおいて、適宜構成要素を組み合わせて実施することができる。また、本発明の一実施形態を基にして、当業者が適宜構成要素の追加、削除または設計変更を行ったもの、もしくは工程の追加、省略または条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 One embodiment of the present invention can be carried out by appropriately combining components as long as they do not contradict each other. Further, a gist of the present invention also includes a product to which a person skilled in the art appropriately adds, deletes, or changes a design based on an embodiment of the present invention, or a process to which a process is added, omitted, or a condition is changed. Is included in the scope of the present invention as long as it is provided.

また、本発明の一実施形態によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 In addition, even if the action and effect are different from the action and effect brought about by one embodiment of the present invention, those that are clear from the description of the present specification or those that can be easily predicted by those skilled in the art are of course. It is understood that it is brought about by the present invention.

本発明による銅粉は、焼結開始温度が高く、かつ、塗膜の平滑性に優れている特徴を有する。そのため、MLCCの電極に利用すれば、降温時の電極層の収縮による誘電層と電極層との剥離(デラミネーション)を抑制することができる。 The copper powder according to the present invention has the characteristics that the sintering start temperature is high and the smoothness of the coating film is excellent. Therefore, if it is used for the electrode of MLCC, it is possible to suppress the separation (delamination) between the dielectric layer and the electrode layer due to the shrinkage of the electrode layer at the time of lowering the temperature.

Claims (3)

銅と塩素ガスとを反応させて塩化銅ガスを生成し、
前記塩化銅ガスと還元性ガスとを反応させ、還元反応により銅粉を生成することを含み、
前記還元反応における前記塩化銅ガスの分圧は、10%以上40%以下であり、
生成された前記銅粉は、2000℃/秒以上9000℃/秒以下の冷却速度で冷却されることを特徴とする銅粉の製造方法。
Copper and chlorine gas are reacted to generate copper chloride gas,
It involves reacting the copper chloride gas with a reducing gas to produce copper powder by the reduction reaction.
The partial pressure of the copper chloride gas in the reduction reaction is 10% or more and 40% or less.
A method for producing copper powder, wherein the produced copper powder is cooled at a cooling rate of 2000 ° C./sec or more and 9000 ° C./sec or less.
前記塩化銅ガスの分圧が20%以上30%以下である請求項1に記載の銅粉の製造方法。 The method for producing copper powder according to claim 1, wherein the partial pressure of the copper chloride gas is 20% or more and 30% or less. 前記冷却速度が3000℃/秒以上5000℃/秒以下である請求項1または請求項2に記載の銅粉の製造方法。 The method for producing copper powder according to claim 1 or 2, wherein the cooling rate is 3000 ° C./sec or more and 5000 ° C./sec or less.
JP2020110702A 2020-06-26 2020-06-26 Manufacturing method of copper powder Active JP7498604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020110702A JP7498604B2 (en) 2020-06-26 2020-06-26 Manufacturing method of copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020110702A JP7498604B2 (en) 2020-06-26 2020-06-26 Manufacturing method of copper powder

Publications (2)

Publication Number Publication Date
JP2022007624A true JP2022007624A (en) 2022-01-13
JP7498604B2 JP7498604B2 (en) 2024-06-12

Family

ID=80111268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020110702A Active JP7498604B2 (en) 2020-06-26 2020-06-26 Manufacturing method of copper powder

Country Status (1)

Country Link
JP (1) JP7498604B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188726A (en) 2005-01-04 2006-07-20 Fujikura Ltd Apparatus for producing metal powder and method for producing metal powder
JP6016729B2 (en) 2013-08-02 2016-10-26 東邦チタニウム株式会社 Metal powder manufacturing method and manufacturing apparatus
CN110799285B (en) 2017-07-05 2022-04-29 东邦钛株式会社 Metal powder and method for producing same
WO2019189411A1 (en) 2018-03-30 2019-10-03 東邦チタニウム株式会社 Metal chloride generator, and method for manufacturing metal powder
JP6704083B1 (en) 2019-11-22 2020-06-03 東邦チタニウム株式会社 Copper powder and its manufacturing method

Also Published As

Publication number Publication date
JP7498604B2 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
JP7080856B2 (en) Metal powder and its manufacturing method
JP5706553B2 (en) Tantalum powder and method for producing the same
US7261761B2 (en) Metallic nickel powder and process for production thereof
TWI716526B (en) Nickel powder
JP6130209B2 (en) Conductive film
TWI803486B (en) Copper particle and its manufacturing method
TWI763135B (en) Copper powder
JP2007197836A (en) Nickel powder
JP7498604B2 (en) Manufacturing method of copper powder
JP2022083703A (en) Method for producing copper powder
JP6539520B2 (en) Nickel fine particle containing composition and method for producing the same
JP7448446B2 (en) copper powder
JP3945740B2 (en) Nickel powder
JP7390198B2 (en) Glass particles, conductive composition using the same, and method for producing glass particles
JP7490528B2 (en) Copper Powder
JP6738460B1 (en) Method for producing copper powder
JP6738459B1 (en) Method for producing copper powder
JP6771636B1 (en) Copper powder manufacturing method
JP5060227B2 (en) Method for producing nickel powder
JP2022167683A (en) Copper powder and method for producing same
JP2024018487A (en) Nickel alloy powder and method for producing nickel alloy powder
JP2024018489A (en) Nickel alloy powder and method for producing nickel alloy powder
JP2001073007A (en) Nickel powder for laminated ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240531

R150 Certificate of patent or registration of utility model

Ref document number: 7498604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150