JPH01162701A - Method for refining copper super fine powder - Google Patents

Method for refining copper super fine powder

Info

Publication number
JPH01162701A
JPH01162701A JP62319029A JP31902987A JPH01162701A JP H01162701 A JPH01162701 A JP H01162701A JP 62319029 A JP62319029 A JP 62319029A JP 31902987 A JP31902987 A JP 31902987A JP H01162701 A JPH01162701 A JP H01162701A
Authority
JP
Japan
Prior art keywords
vacuum
super fine
heating
powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62319029A
Other languages
Japanese (ja)
Inventor
Yumiko Kouno
有美子 河野
Kenichi Otsuka
大塚 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62319029A priority Critical patent/JPH01162701A/en
Publication of JPH01162701A publication Critical patent/JPH01162701A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove chrolide as contained impurity without sintering super fine powdery Cu by heating the super fine powdery Cu obtd. by hydrogen- reducing CuCl vapor in gas phase at the specific temp. in the vacuum. CONSTITUTION:In the super fine powdery Cu obtd. by gas-phase-reducing the CuC vapor in the hydrogen, the non-reducing CuCl remains and also O2 is contained at 0.5-5wt.% ratio. After packing, this impurity-contained super fine powdery Cu into a board 3 in a vacuum vessel 1, while vacuum-exhausting the inner part of the vessel 1 with a pump 6 providing a dust filter 4 and condensed part 5, it is heated with an electric furnace at outside of the vessel 1. As condition of treatment in this case, the inner part of the vacuum vessel 1 is made to vacuum at less than 10 torr under inert gas atmosphere of Ar, etc., and the heating temp. is made to temp. range of 350-500 deg.C. The contained Cl is removed without sintering the super fine powdery Cu and the high purity Cu fine powder is manufactured at low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、塩化第一銅蒸気を気相中で水素還元すること
により製造される銅超微粉について、不純物として含有
される塩化物を除去する精製方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is a method for removing chlorides contained as impurities from ultrafine copper powder produced by hydrogen reduction of cuprous chloride vapor in the gas phase. The present invention relates to a purification method.

(従来の技術) 金属ハロゲン化物蒸気を気相中で水素還元して金属超微
粉を精製する方法は生産性が高く、得られた超微粉の粉
体特性が秀れている。しかし、この方法では塩化物系の
不純物の混入が避けられないという欠点があった。その
ため、広く、金属超微粉中の塩素含有量を低減させる方
法が試みられてきた。ランブリーら(H,Lampre
y and R,L。
(Prior Art) A method of purifying ultrafine metal powder by reducing metal halide vapor with hydrogen in the gas phase has high productivity, and the obtained ultrafine powder has excellent powder properties. However, this method has the disadvantage that contamination with chloride-based impurities cannot be avoided. Therefore, a wide range of methods have been attempted to reduce the chlorine content in ultrafine metal powder. H, Lampre et al.
y and R,L.

Riplay、 Journal of Electr
ochemical Soc、、旦。
Riplay, Journal of Electr
chemical soc,,dan.

109 (1962))は、塩化タングステンの水素還
元により生成したタングステン超微粉を、乾燥水素雰囲
気中で24時間、800℃に加熱することにより塩素含
有量を0.24重量%から0.04重量%へ、低減させ
ることができた。このとき比表面積は12m/gから6
.49m/gへ減少した。この方法は、水素雰囲気中で
の加熱により塩素含有量の低減は可能であるが、同時に
超微粉が焼結し、粉末粒子も成長する問題を有している
109 (1962)) reduced the chlorine content from 0.24% by weight to 0.04% by weight by heating ultrafine tungsten powder produced by hydrogen reduction of tungsten chloride at 800°C for 24 hours in a dry hydrogen atmosphere. I was able to reduce it. At this time, the specific surface area is 12 m/g to 6
.. It decreased to 49m/g. Although this method can reduce the chlorine content by heating in a hydrogen atmosphere, it also has the problem that the ultrafine powder is sintered and the powder particles also grow.

また、特開昭60−174807号および特公昭61−
48506号には、超微粉の酸化および焼結を防ぎつつ
脱塩素を行うために、常温で溶媒洗浄(各々水および酸
性溶媒)の後、真空乾燥を行う方法が開示されているが
、塩素含有量の低減に関しては、未反応ハロゲン化物、
副生成物のX線ピークが消滅する程度であり不十分であ
る。
Also, JP-A-60-174807 and JP-A-61-
No. 48506 discloses a method of vacuum drying after solvent washing (with water and an acidic solvent, respectively) at room temperature in order to dechlorinate ultrafine powder while preventing oxidation and sintering. In terms of reducing the amount of unreacted halides,
This is insufficient because the X-ray peak of the by-product disappears.

さらに、特公昭60−67603号には、金属超微粉を
水洗し、付着するハロゲン化物を除いた後、制御された
量の酸素を含むガスにより徐酸化する方法について、鉄
−30%コバルト合金超微粉の塩素含有量を、2.43
%から30ppm以下に低減せしめた実施例を挙げてい
るが、その工程は超微粉30gに対して、■攪拌沈降(
純水317回xlO回)、■水分抽出(アセトン1.S
M!/回×5回)、■真空乾燥、■徐酸化(真空状態に
段階的に空気を導入)の各工程から成り立っており、大
量の溶媒を使用する上、乾燥時の酸化に関しても厳重に
制御する必要がある。
Furthermore, Japanese Patent Publication No. 60-67603 describes a method in which ultrafine metal powder is washed with water to remove adhering halides, and then slowly oxidized with a gas containing a controlled amount of oxygen. The chlorine content of the fine powder is 2.43
% to 30 ppm or less, but the process was as follows: ■ Stirring sedimentation (
Pure water 317 times x lO times), ■ Moisture extraction (acetone 1.S
M! It consists of the following steps: vacuum drying, and slow oxidation (introducing air in stages in a vacuum), which uses a large amount of solvent and strictly controls oxidation during drying. There is a need to.

(発明が解決しようとする問題点) 上述のように、金属塩化物蒸気を水素やアンモニアなど
の還元性ガスと反応させることにより製造した金属ある
いはセラミックス超微粉中の塩化物系不純物を除去する
方法として、従来、還元性雰囲気で加熱する乾式の方法
と、溶媒洗浄による湿式の方法とが試みられてきたが、
前者は超微粉の焼結、粗粒化、後者は溶媒の大量使用と
工程の複雑化によるコストアンプという問題点を有する
(Problems to be Solved by the Invention) As described above, a method for removing chloride-based impurities from ultrafine metal or ceramic powder produced by reacting metal chloride vapor with a reducing gas such as hydrogen or ammonia. Conventionally, dry methods using heating in a reducing atmosphere and wet methods using solvent washing have been attempted.
The former has the problem of sintering and coarsening of ultra-fine powder, while the latter has the problem of cost increase due to the use of a large amount of solvent and the complexity of the process.

従って本発明は、銅超漱粉中の塩化物系不純物の除去に
関し、湿式法と比較してコスト的に有利な、−段の乾式
加熱による方法を従案するもので、従来問題になってい
た加熱による超微粉の焼結、粗粒化を解決することを目
的とする。
Therefore, the present invention proposes a method using a -stage dry heating, which is more cost-effective than a wet method, for removing chloride-based impurities from copper superstarch, and which has been a problem in the past. The aim is to solve the problem of sintering and coarsening of ultrafine powder due to heating.

(問題点を解決するための手段) 本発明の銅超微粉の精製方法は、塩化第一銅蒸気を気相
中で水素還元することにより製造され、不純物として塩
化物を含み、総酸素含有量が0.5〜5重量%の範囲に
ある銅超微粉を、10Torr以下の真空中で350℃
以上500℃未満に加熱処理することにより、該銅超微
粉の焼結を抑制しつつ該塩化物を除去することを特徴と
する。
(Means for Solving the Problems) The method for refining ultrafine copper powder of the present invention is produced by reducing cuprous chloride vapor with hydrogen in the gas phase, contains chloride as an impurity, and has a total oxygen content of Ultrafine copper powder in the range of 0.5 to 5% by weight was heated at 350°C in a vacuum of 10 Torr or less.
It is characterized in that the chloride is removed while suppressing sintering of the ultrafine copper powder by heat treatment at a temperature below 500°C.

従来の乾式法は、還元により塩化物系不純物を除去する
ため、超微粉自体の表面酸化膜の還元も同時に行ってい
たので、粉末表面の活性化により焼結、粗粒化は不可避
であった。
In the conventional dry method, in order to remove chloride-based impurities by reduction, the surface oxide film of the ultrafine powder itself was also reduced at the same time, so sintering and coarse graining due to activation of the powder surface were inevitable. .

本発明者らは、還元以外に塩化物系不純物を除去する方
法として、金属塩化物が一般に蒸気圧が高い点に注目し
、蒸発−排気により除去する方法を検討した。その結果
、加熱によりその蒸気圧を高めると同時に加熱する系を
真空に保つことにより、発生した塩化物蒸気を迅速に除
去することができることを見出した。
The present inventors focused on the fact that metal chlorides generally have a high vapor pressure as a method for removing chloride-based impurities other than reduction, and investigated a method for removing them by evaporation and exhaust. As a result, it was discovered that the generated chloride vapor could be quickly removed by increasing its vapor pressure through heating and simultaneously keeping the heating system in a vacuum.

さらに重要なことには、加熱の際の超微粒子の焼結粗粒
化を防ぐためには、その表面がある程度酸化されている
ことが有効であることを見出した。
More importantly, we have found that it is effective to oxidize the surface to some extent in order to prevent the ultrafine particles from becoming coarse due to sintering during heating.

本発明に用いる装置としては、例えば第1図に示すよう
な装置があげられる。図において真空容器lは電気炉2
を備え、真空容器1内に設けた試料搭載ボート3に充填
された銅超微粉を、ダストフィルター4と凝集部5を備
えたポンプ6で真空排気しつつ、加熱保持する。加熱前
後、容器をパージし、不活性雰囲気にするには、ポンプ
につながるメインバルブ7を閉め、アルゴンガスリーク
弁8、同導入用バルブ9、同流量計10を用いてアルゴ
ンガスを導入する。真空計11は容器内真空度をモニタ
ーする。熱電対12は電気炉20発熱体制御に用いる。
An example of the apparatus used in the present invention is the apparatus shown in FIG. In the figure, vacuum vessel l is electric furnace 2
The ultrafine copper powder filled in a sample loading boat 3 provided in a vacuum container 1 is heated and held while being evacuated by a pump 6 equipped with a dust filter 4 and an agglomerating section 5. To purge the container and create an inert atmosphere before and after heating, the main valve 7 connected to the pump is closed, and argon gas is introduced using the argon gas leak valve 8, the introduction valve 9, and the flow meter 10. A vacuum gauge 11 monitors the degree of vacuum inside the container. The thermocouple 12 is used to control the electric furnace 20 heating element.

13はポンプリーク弁である。13 is a pump leak valve.

次に精製処理の条件(真空度、加熱温度、時間)につい
て述べる。塩化第一銅の水素還元により得られた銅超微
粉中の塩化物系不純物の主形態は、CuC1であること
を、発明者らはX線解析等の手段を用いて確かめた。C
uClの蒸気圧は、化学工学協会編、物性定数Iによれ
ば、 log P CuCL−EH56/ T + 11.2
35と表され、例えば200℃から500℃の間に約1
O−bTorrから4.8Torrへと増加する。各加
熱保持温度の蒸気圧に近づいた減圧状態を作ることによ
り、排気中のCuC1分圧を大きくできる。加熱状態で
高真空を得るのは容易ではない。また、CuClの蒸気
圧を大きくして蒸発速度を上げるためには高温での処理
が望まれるが、高温では超微粉の焼結、粗粒化が進行す
る。
Next, the conditions for purification treatment (degree of vacuum, heating temperature, time) will be described. The inventors have confirmed, using means such as X-ray analysis, that the main form of chloride-based impurities in ultrafine copper powder obtained by hydrogen reduction of cuprous chloride is CuC1. C
The vapor pressure of uCl is log P CuCL-EH56/T + 11.2, according to Physical Properties Constant I, edited by the Society of Chemical Engineers.
35, for example, about 1 between 200°C and 500°C.
Increases from O-bTorr to 4.8Torr. By creating a reduced pressure state close to the vapor pressure at each heating and holding temperature, the partial pressure of CuC1 in the exhaust gas can be increased. It is not easy to obtain a high vacuum in a heated state. Further, in order to increase the vapor pressure of CuCl and increase the evaporation rate, treatment at high temperature is desired, but at high temperature, sintering of ultrafine powder and coarsening proceed.

従って、真空度と加熱温度の関係は重要である。Therefore, the relationship between the degree of vacuum and the heating temperature is important.

塩化第一銅の水素還元により得られた塩素含有量1.4
6重量%、酸素含有量1.6重量%の銅超微粉を約I 
Torrの真空中で、240分間加熱保持する処理を行
った後の、熱処理温度と処理後塩素含有量および比表面
積変化率(処理後比表面積SA/処理処理前面表面積)
との関係を第2図に示す。
Chlorine content obtained by hydrogen reduction of cuprous chloride 1.4
6% by weight, oxygen content 1.6% by weight, about I
Heat treatment temperature, post-treatment chlorine content, and specific surface area change rate (post-treatment specific surface area SA/treatment front surface area) after heating and holding treatment for 240 minutes in a Torr vacuum
Figure 2 shows the relationship between

図において200℃の処理においては超微粉の焼結は殆
どみられないが、処理後塩素含有量は大である。200
℃におけるPCuCLは9.8 X 10−’Torr
であり、加熱時到達真空度I Torrで処理を行う場
合にはCuC1分圧が小さく、240分の加熱では十分
に塩化物を除去できなかったためである。500℃では
処理後塩素含有量は小だが、超微粉の焼結が進行し、処
理後比表面積は処理前の50%程度になっている。
In the figure, almost no sintering of the ultrafine powder is seen in the treatment at 200°C, but the chlorine content after treatment is large. 200
PCuCL at °C is 9.8 X 10-'Torr
This is because when processing is performed at the ultimate vacuum degree of I Torr during heating, the CuC1 partial pressure is small, and chlorides cannot be sufficiently removed by heating for 240 minutes. At 500°C, the chlorine content after treatment is small, but sintering of the ultrafine powder progresses, and the specific surface area after treatment is about 50% of that before treatment.

超微粉の焼結は高温はど顕著だが、同じ温度では超微粉
中の酸素含有量の少ないものほど焼結が進んでいる。同
上の方法により得られたさまざまな酸素含有量の胴部微
粉を、約I Torrの真空中で450℃で240分間
保持した後の比表面積変化率を第3図にまとめて示した
The sintering of ultrafine powder is more pronounced at high temperatures, but at the same temperature, the lower the oxygen content in ultrafine powder, the more sintering progresses. Figure 3 summarizes the rate of change in specific surface area after the body fine powders with various oxygen contents obtained by the above method were held at 450° C. for 240 minutes in a vacuum of about I Torr.

以上の実験結果から圧力10Torr以下の真空中で加
熱保持を行う場合、350℃以上500℃未満に加熱し
、CuCl蒸気圧を大きくとることにより、CuC1の
蒸発除去が可能であり、この時、超微粉の総酸素含有量
が0.5〜5重量%であれば比較的焼結がおさえられる
From the above experimental results, when heating and holding is performed in a vacuum with a pressure of 10 Torr or less, it is possible to remove CuCl by evaporation by heating to 350°C or more and less than 500°C and increasing the CuCl vapor pressure. If the total oxygen content of the fine powder is 0.5 to 5% by weight, sintering can be relatively suppressed.

以下、本発明を実施例により更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) 実施例1 塩化第一銅の気相水素還元により製造された胴部微粉(
酸素含有量1.6重量%) 3gを、約I Torrの
真空中で450℃に240分保持することにより、塩素
含有量は1.46重量%から0.01重量%以下に低減
した。このとき処理後粉の比表面積は5.2n(/gで
加熱前の5.:M/gとほとんど変化がなかった。
(Example) Example 1 Fine body powder produced by gas-phase hydrogen reduction of cuprous chloride (
The chlorine content was reduced from 1.46 wt.% to below 0.01 wt.% by holding 3 g (oxygen content 1.6 wt.%) at 450° C. for 240 minutes in a vacuum of about I Torr. At this time, the specific surface area of the powder after treatment was 5.2 N/g, which was almost unchanged from 5.:M/g before heating.

実施例2 同上方法にて製造された胴部微粉(酸素含有量1.8重
量%) 3gを約5 Torrの真空中で450℃に6
0分保持することにより塩素含有量を1.49重量%か
ら0.08重量%に低減させた。この時、比表面積は5
.5%/gから5.1m/gに減少したにとどまった。
Example 2 3 g of body fine powder (oxygen content 1.8% by weight) produced by the same method as above was heated to 450°C in a vacuum of about 5 Torr for 6 hours.
By holding for 0 minutes, the chlorine content was reduced from 1.49% by weight to 0.08% by weight. At this time, the specific surface area is 5
.. It only decreased from 5%/g to 5.1 m/g.

実施例3 同上方法にて製造された胴部微粉(酸素含有量4重量%
) 3gを2Torr以下の真空中で、400℃に24
0分保持することにより塩素含有量を2.9重量%から
0.05重量%に低減させ、この時、比表面積の変化は
殆どなかった。
Example 3 Body fine powder produced by the same method as above (oxygen content 4% by weight)
) 3g was heated to 400℃ for 24 hours in a vacuum of 2 Torr or less.
By holding for 0 minutes, the chlorine content was reduced from 2.9% by weight to 0.05% by weight, and at this time, there was almost no change in the specific surface area.

実施例4 同上方法にて製造された胴部微粉(酸素含有量4.6重
量%、比表面積3.47m”/ g )を、約7 To
rrの真空中で480℃に120分保持することにより
塩素含有量を6.0重量%から0.02重量%に低減さ
せ処理後の比表面積は2.56m2/ gであった。
Example 4 About 7 To
The chlorine content was reduced from 6.0% by weight to 0.02% by weight by holding it at 480°C for 120 minutes in a vacuum of RR, and the specific surface area after treatment was 2.56 m2/g.

比較例1 塩化第一銅の水素還元により製造された胴部微粉(酸素
含有量4.4重量%) 5gを、約I Torrの真空
中で530℃で240分保持することにより比表面積が
3.58m”/ gから0.43m2/ gへ大きく減
少した。
Comparative Example 1 5 g of body fine powder (oxygen content: 4.4% by weight) produced by hydrogen reduction of cuprous chloride was held at 530° C. for 240 minutes in a vacuum of about I Torr, resulting in a specific surface area of 3. It decreased significantly from .58 m”/g to 0.43 m2/g.

比較例2 同上方法にて製造された胴部微粉(酸素含有量1.8重
量%、塩素含有量1.5重量%)を約3 Torrの真
空中で300℃で240分保持した。比表面積の変化は
殆どなかったが、処理後塩素含有量は0.5重量%にと
どまった。
Comparative Example 2 A fine body powder (oxygen content: 1.8% by weight, chlorine content: 1.5% by weight) produced by the same method as above was held at 300° C. for 240 minutes in a vacuum of about 3 Torr. Although there was almost no change in the specific surface area, the chlorine content remained at 0.5% by weight after treatment.

(発明の効果) 本発明による方法で、銅塩化物の気相水素還元により製
造された胴部微粉を、一定の温度および真空中で加熱処
理することにより、焼結、粗粒化を抑制しつつ容易に安
価に精製することが可能となった。
(Effects of the Invention) Sintering and coarsening can be suppressed by heat-treating the body fine powder produced by gas-phase hydrogen reduction of copper chloride in a vacuum at a constant temperature using the method according to the present invention. It has become possible to purify it easily and at low cost.

これにより、塩素含有量の少ない高純度の胴部微粉を得
ることができる。
This makes it possible to obtain high-purity body part fine powder with a low chlorine content.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、真空中で胴部微粉を加熱し不純物としての塩
化物を蒸発、排出するための真空排気を伴う加熱装置を
示す概略線図である。 第2図は、塩化第一銅蒸気の気相水素還元により製造し
た胴部微粉を、本発明による方法で200℃から530
℃までの各温度で各々240分保持し、脱塩素のための
精製を行った時の処理後塩素含有量と、比表面積変化率
(処理後比表面積SA/処理処理前面表面積)に及ぼす
処理温度の影響を示したグラフである。 第3図は、同上方法により得られた種々の酸素含有量の
胴部微粉を、各々450℃で240分保持した時の比表
面積変化率に及ぼす酸素含有量の影♂を示したグラフで
ある。 1・・・真空容器     2・・・電気炉3・・・試
料搭載ボート  4・・・フィルター5・・・凝集部 
     6・・・ポンプ7・・・メインバルブ   
8・・・Arガスリーク弁9・・・Arガス導入用バル
ブ IO・・・Arガス導入用流量計 11・・・真空計      12・・・熱電対13・
・・ポンプリーク弁
FIG. 1 is a schematic diagram showing a heating device accompanied by vacuum evacuation for heating the body part fine powder in a vacuum and evaporating and discharging chloride as an impurity. FIG. 2 shows the method according to the present invention in which the body powder produced by gas-phase hydrogen reduction of cuprous chloride vapor was heated from 200°C to 530°C.
The effect of treatment temperature on the chlorine content after treatment and specific surface area change rate (specific surface area after treatment SA/treatment front surface area) when purified for dechlorination by holding at each temperature up to ℃ for 240 minutes. This is a graph showing the influence of FIG. 3 is a graph showing the influence of oxygen content on the rate of change in specific surface area when body fine powders with various oxygen contents obtained by the above method were each held at 450°C for 240 minutes. . 1...Vacuum container 2...Electric furnace 3...Sample loading boat 4...Filter 5...Agglomeration section
6... Pump 7... Main valve
8... Ar gas leak valve 9... Ar gas introduction valve IO... Ar gas introduction flow meter 11... Vacuum gauge 12... Thermocouple 13.
・・Pump leak valve

Claims (1)

【特許請求の範囲】[Claims] 不純物として塩化物を含み、総酸素含有量が0.5〜5
重量%の範囲にある銅超微粉を、10Torr以下の真
空中で350℃以上500℃未満に加熱処理することに
より、該銅超微粉の焼結を抑制しつつ該塩化物を除去す
ることを特徴とする銅超微粉の精製方法。
Contains chloride as an impurity and has a total oxygen content of 0.5-5
The method is characterized in that the chloride is removed while suppressing sintering of the ultrafine copper powder by heat-treating the ultrafine copper powder in the range of % by weight to 350°C or more and less than 500°C in a vacuum of 10 Torr or less. A method for refining ultrafine copper powder.
JP62319029A 1987-12-18 1987-12-18 Method for refining copper super fine powder Pending JPH01162701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319029A JPH01162701A (en) 1987-12-18 1987-12-18 Method for refining copper super fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319029A JPH01162701A (en) 1987-12-18 1987-12-18 Method for refining copper super fine powder

Publications (1)

Publication Number Publication Date
JPH01162701A true JPH01162701A (en) 1989-06-27

Family

ID=18105716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319029A Pending JPH01162701A (en) 1987-12-18 1987-12-18 Method for refining copper super fine powder

Country Status (1)

Country Link
JP (1) JPH01162701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051767A1 (en) * 1999-03-03 2000-09-08 Fukuda Metal Foil & Powder Co., Ltd. Porous metal powder and method for production thereof
CN103153503A (en) * 2010-10-06 2013-06-12 旭硝子株式会社 Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
CN114786839A (en) * 2019-11-22 2022-07-22 东邦钛株式会社 Copper powder and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051767A1 (en) * 1999-03-03 2000-09-08 Fukuda Metal Foil & Powder Co., Ltd. Porous metal powder and method for production thereof
US6616727B1 (en) 1999-03-03 2003-09-09 Fukuda Metal Foil & Powder Co., Ltd. Porous metal powder
CN103153503A (en) * 2010-10-06 2013-06-12 旭硝子株式会社 Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
CN114786839A (en) * 2019-11-22 2022-07-22 东邦钛株式会社 Copper powder and method for producing same
CN114786839B (en) * 2019-11-22 2024-03-26 东邦钛株式会社 Copper powder and method for producing same

Similar Documents

Publication Publication Date Title
US6036741A (en) Process for producing high-purity ruthenium
JP2751958B2 (en) Adsorbent and method for removing trace oxygen from inert gas
JPH02225634A (en) Deoxidizing method for titanium metal or the like in carrier for molten metal, using deoxidizer
JPS6356700B2 (en)
WO1994027909A1 (en) Process and apparatus for the purification of graphite
JPH01162701A (en) Method for refining copper super fine powder
US2618531A (en) Method of purifying zirconium tetrachloride vapors
JPH0211702A (en) Method for refining copper ultra fine powder
US2857242A (en) Method for the preparation of titanium tetrachloride
JPS58171506A (en) Manufacture of fine metallic nickel powder
JPH072510A (en) Dephosphorization process for tetrachlorosilane
US20110052481A1 (en) Method of treating metalliferrous materials
US3188200A (en) Method of purifying refractory metals
RU2465097C1 (en) Method of producing tantalum powder
JP3260786B2 (en) Steam purification method
JPS60174807A (en) Refining method of fine particle
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
RU2764276C1 (en) Method for obtaining a binary composite powder from metals of the chromium subgroup
RU2494837C1 (en) Method of cleaning titanium powder of oxygen impurity
JP2747753B2 (en) Method and apparatus for removing trace impurity gas components in inert gas
JPS6148506A (en) Refining method of fine particle by gaseous phase process
RU2484927C1 (en) Method of producing niobium powder
JPH09324227A (en) Low-alpha-ray, low-oxygen metallic scandium and its production
JPH0375301A (en) Manufacture of low oxygen metal powder
JPH06171940A (en) Treatment of titanium oxide powder