JPS58171506A - Manufacture of fine metallic nickel powder - Google Patents

Manufacture of fine metallic nickel powder

Info

Publication number
JPS58171506A
JPS58171506A JP5229182A JP5229182A JPS58171506A JP S58171506 A JPS58171506 A JP S58171506A JP 5229182 A JP5229182 A JP 5229182A JP 5229182 A JP5229182 A JP 5229182A JP S58171506 A JPS58171506 A JP S58171506A
Authority
JP
Japan
Prior art keywords
powder
nickel
reduction
nickel powder
metallic nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5229182A
Other languages
Japanese (ja)
Inventor
Yasuhiro Okajima
岡島 靖弘
Yasuhiro Tsugita
泰裕 次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5229182A priority Critical patent/JPS58171506A/en
Publication of JPS58171506A publication Critical patent/JPS58171506A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain metallic Ni powder having a desired grain size and shape in the titled manufacture by reducing Ni chloride powder with gaseous H2, by treating the Ni chloride powder at a specified temp. while fluidizing the powder. CONSTITUTION:Solid NiCl2 is fluidized in a gas flow contg. gaseous H2, preferably a gas flow consisting of >=about 30vol.% gaseous H2 and the balance N2 or other inert gas in a furnace kept at 500-700 deg.C by heating the furnace from the outside or by blowing a heated gas. Thus, the NiCl2 is reduced, and the reduced product is cooled to ordinary temp. in an inert atmosphere and taken out as fine metallic Ni powder which is hardly reoxidized.

Description

【発明の詳細な説明】 本発明は微細な金槁ニッケル粉末の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing fine nickel powder.

微細な金属ニッケル粉末は電池用および粉末冶金用とし
て広く用いられているものである。
Fine metallic nickel powder is widely used for batteries and powder metallurgy.

一般に金属ニッケル粉末の製造方法として麿に実用化さ
れている方法としては、(1)粉末状又はガス状のニッ
ケル化合物を熱分解するか、あるいはガス還元する方法
、(2)ニッケル含有水溶液から還元によって製造する
方法、(3)ニッケル合金(NiとAt又はSiの合金
)を水酸化ナトリウムで処理し。
In general, methods for producing metallic nickel powder that have been put to practical use include (1) thermal decomposition or gas reduction of a powdered or gaseous nickel compound, and (2) reduction from a nickel-containing aqueous solution. (3) A nickel alloy (an alloy of Ni and At or Si) is treated with sodium hydroxide.

AI +8iを溶出分離することにより水素活性の高い
ニッケル粉末を製造する方法及び塊状金属ニッケルから
金属ニッケル粉末を製造する方法等に大別されるが、第
2.第3の方法では望ましい微細な金属ニッケル粉末を
得ることは困難でるる。
There are two main methods: a method for producing nickel powder with high hydrogen activity by eluting and separating AI +8i, and a method for producing metallic nickel powder from bulk metallic nickel. In the third method, it is difficult to obtain the desired fine metallic nickel powder.

第1の方法は、酸化ニッケル、水酸化ニッケルあるいは
炭酸ニッケル粉末を水素ガスによって還元するか、ある
いは蓚酸ニッケルの如き固体粉末や、ニッケルカーゼニ
ル化合物の熱分解によって金属ニッケル粉末を得るもの
である。本発明で対象とする電池用および粉末冶金用の
金属ニッケル粉末は、フィッシャーサブシーブサイザー
で測定した平均粒径〔以下平均粒径(Fsss )と略
する〕が約10μ以、下、好ましくは3μ以下のものが
使用されている。
The first method is to obtain metallic nickel powder by reducing nickel oxide, nickel hydroxide, or nickel carbonate powder with hydrogen gas, or by thermally decomposing a solid powder such as nickel oxalate or a nickel carzenyl compound. The metallic nickel powder for batteries and powder metallurgy that is the object of the present invention has an average particle size [hereinafter abbreviated as average particle size (Fsss)] measured using a Fischer subsieve sizer of about 10μ or less, preferably 3μ or less. The following are used:

現在この分野で日本で使用されている金属ニッケル粉末
は、有毒なニッケルカーゼニルを経由するカー−ニル法
と呼ばれる方法で製造されたものが輸入されている。こ
れは前述のような、酸化ニッケル、水酸化ニッケル等の
ニッケル塩を水素還元するより一般的な方法によって得
られる金属ニッケル粉末は再酸化されやすいという欠点
がめることに因る。
The metallic nickel powder currently used in Japan in this field is manufactured by a method called the carnil process, which uses toxic nickel carzenyl, and is imported. This is because, as mentioned above, metallic nickel powder obtained by the more general method of reducing nickel salts such as nickel oxide and nickel hydroxide with hydrogen is susceptible to re-oxidation.

これを防止するためニッケルの水素還元に必要な温度、
例えば500〜700℃以上の温度で処理して不活性化
するか、るるいは防錆剤(例えば商品名コータミン、パ
ル等を溶解した水溶液に浸漬する)による不活性化処理
を行なうなどの方法が行われている。
To prevent this, the temperature required for hydrogen reduction of nickel,
For example, methods such as inactivation by treatment at a temperature of 500 to 700°C or higher, or inactivation treatment with a rust preventive (for example, immersion in an aqueous solution containing a product name Cortamine, Pal, etc.) is being carried out.

しかしながら、高温での不活性化処理は微細な金属ニッ
ケル粉末の生成を困難とし、又防錆化処理は熱処理での
安定化に問題があり、何れも微細な金属ニッケル粉末の
製造には困難がある。
However, inactivation treatment at high temperatures makes it difficult to produce fine metallic nickel powder, and rust prevention treatment has problems with stabilization during heat treatment, making it difficult to produce fine metallic nickel powder. be.

この発明は上記の欠点を解消し、望ましい粒度、形状を
有する金属ニッケル粉末の製造方法を提供することを目
的とする。
The object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for producing metallic nickel powder having a desirable particle size and shape.

この目的を達成するため本発明者等は、塩化ニッケルの
水素還元方法について種々検討したところ、固体状の塩
化ニッケルを所定の温度の水素含有気流中で流動還元す
る事によって好ましい粒度と形状を有し、しかも再酸化
が起り難い金属ニッケル粉末の製造方法を見出した。
To achieve this objective, the present inventors conducted various studies on hydrogen reduction methods for nickel chloride, and found that solid nickel chloride was fluidized in a hydrogen-containing air stream at a predetermined temperature to achieve a desirable particle size and shape. However, we have found a method for producing metallic nickel powder that is less susceptible to reoxidation.

すなわち、炉外から炉体を加熱するか、あるいは加熱ガ
スを吹きこむ事によって500〜700℃に保持された
水素ガス含有気流中、好ましくは水素ガス30容量チ以
上、残部はN2.Ar等の不活性ガス中で固体状の塩化
ニッケルを流動させながら還元処理を行い、後不活性雰
囲気中で常温まで冷却して微細な金属ニッケル粉末を取
出すようにしたものである。
That is, in a hydrogen gas-containing air stream maintained at 500 to 700°C by heating the furnace body from outside the furnace or blowing heated gas into it, preferably 30 volumes or more of hydrogen gas, and the remainder being N2. A reduction treatment is performed while solid nickel chloride is fluidized in an inert gas such as Ar, and then it is cooled to room temperature in an inert atmosphere to extract fine metallic nickel powder.

この処理を行う炉としては流動炉が好ましく、処理温度
を500〜700℃の範囲とするのは、これ以下では水
素濃度が高くても還元処理所要時間が長過ぎて実用的で
ないからであり、逆に処理温度がこれ以上になるとi切
な粒径のものが得られないだけでなく、揮発損失も大き
くなるからでるる。
A fluidized fluidized furnace is preferable as the furnace for this treatment, and the reason why the treatment temperature is set in the range of 500 to 700°C is because below this temperature, even if the hydrogen concentration is high, the time required for the reduction treatment is too long to be practical. On the other hand, if the processing temperature is higher than this, not only will it not be possible to obtain grains with a suitable particle size, but the volatilization loss will also increase.

還元処理を流動させながら行うと確実に平均粒径及びタ
ップ密度の小さい金属粉末を得ることができる。
If the reduction treatment is performed while fluidizing, metal powder with a small average particle size and tap density can be reliably obtained.

いまこれらを第1図に従ってさらに詳細に説明する。These will now be explained in more detail with reference to FIG.

150℃で脱水したNi04を、所定の温度で静置水素
還元した場合と、流動水素還元した場合を第1図で比較
対照すると、流動還元法で得られるニッケル粉末は、静
置還元法で得られるニッケル粉末より平均粒径(Fss
s)およびタップ密度ともに小さいことがわかる。
When Ni04 dehydrated at 150°C is subjected to static hydrogen reduction at a predetermined temperature and fluidized hydrogen reduction in Figure 1, the nickel powder obtained by the fluidized reduction method is different from that obtained by the static reduction method. The average particle size (Fss
s) and tap density are both small.

また処理温度が750℃以上になると流動還元法に於て
も、平均粒径及びタップ密度ともに急激に大きくなって
いる。
Furthermore, when the treatment temperature is 750° C. or higher, both the average particle size and the tap density increase rapidly even in the fluidized reduction method.

従って電池用および粉末冶金用に適切な3μ以下の平均
粒径を得るためには、静置還元焙焼では約650℃以下
、流動還元焙焼では約750℃以下である。これはタッ
プ密度についても同様のことが言える。
Therefore, in order to obtain an average particle size of 3 μm or less suitable for use in batteries and powder metallurgy, the temperature should be about 650° C. or less for static reduction roasting, and about 750° C. or less for fluidized reduction roasting. The same can be said about tap density.

又処理温度が750℃以上になるとNi CJ!、の蒸
気圧も極端に大きぐなるので、これの回収設備も必要と
なる。
Also, if the processing temperature is 750°C or higher, Ni CJ! Since the vapor pressure of , becomes extremely high, recovery equipment for this is also required.

一方処理温度が″00℃以下の場合は特に図示してない
が反応速度が極端に遅く、静置還元法では反応時間が長
くニッケルの金属化に多量の水素ガスを必要とし、また
流動還元法では反応時間が長いだけでなく、生成したニ
ッケル金属粉末中の塩素品位が高くなる傾向を示すので
好ましくない。
On the other hand, when the treatment temperature is below 00°C, the reaction rate is extremely slow (not shown in the figure), and the static reduction method takes a long reaction time and requires a large amount of hydrogen gas to metalize nickel, and the fluidized reduction method requires a large amount of hydrogen gas. This is not preferable because not only the reaction time is long, but also the chlorine content in the produced nickel metal powder tends to be high.

適切な温度範囲と水素ガス気流中で流動還元すると平均
粒径(Fs−ss)+タップ密度Cf/ld)とも低く
良い性状のものが工業的製造規模で得られる。
When fluidized reduction is carried out in an appropriate temperature range and in a hydrogen gas flow, a product with good properties and low average particle size (Fs-ss) + tap density Cf/ld) can be obtained on an industrial scale.

第2図は、不純なNiC4をH2還元した場合の結果を
示したものであるがs NIC4のH2還元法によれば
含有されるzt、、pbが製品の金属粉末から除去され
るので、特に高純度品製造に好適である。
Figure 2 shows the results when impure NiC4 is reduced with H2. Since the H2 reduction method of NIC4 removes the zt, pb contained in the product metal powder, it is especially Suitable for manufacturing high purity products.

この現象は静置還元法、流動還元法の何れでも同様の結
果が得られる。
Regarding this phenomenon, similar results can be obtained by both the static reduction method and the fluidized reduction method.

以下本発明を実施例について説明する。The present invention will be described below with reference to Examples.

実施例1 150℃で脱水した、粒度−48〜+100メツシユの
塩化ニッケル51Qを、pIr%定濃度の水素気流中(
残部窒素)で温度700℃に保持された内径100mm
の流動炉に装入し、所定の滞溜時間で流動還元を行い、
得られた金属ニッケル粉末は窒素雰囲気中で常温まで冷
却したのち空気中に取り出した。その結果を第1表に示
す。
Example 1 Nickel chloride 51Q, which had been dehydrated at 150°C and had a particle size of -48 to +100 mesh, was heated in a hydrogen stream at a constant concentration of pIr% (
Inner diameter 100mm maintained at a temperature of 700℃ with balance nitrogen)
charged into a fluidized fluidized furnace and subjected to fluidized reduction for a predetermined residence time.
The obtained metallic nickel powder was cooled to room temperature in a nitrogen atmosphere and then taken out into the air. The results are shown in Table 1.

第1表より明らかなように、水素濃度によって滞溜時間
(還元時間)に若干の差違が見られるが、何れも平均粒
径、タップ密度ともに満足すべき金属ニッケル粉末が得
られた。
As is clear from Table 1, there are some differences in residence time (reduction time) depending on the hydrogen concentration, but metallic nickel powders with satisfactory average particle diameter and tap density were obtained in all cases.

水素濃度が低くなるにし次が、って、滞溜時間(還元時
間)は長くなったが、これは装置により変化するもので
、たとえ水素濃度が低い場合にも例えば炉内径を大きく
すると還元所要時間は短かく尚得られた金属ニッケル粉
末は、走査型電子顕微鏡で観察したところ非常に多孔質
なものであり、空気中に放置しても再酸化は見られなか
った。
As the hydrogen concentration decreased, the residence time (reduction time) became longer, but this varies depending on the equipment, and even if the hydrogen concentration is low, for example, increasing the furnace inner diameter will increase the reduction time. Although the time was short, the obtained metallic nickel powder was observed with a scanning electron microscope and was found to be very porous, and no reoxidation was observed even when it was left in the air.

里11ユ 水素濃度を80容量チ残部窒素の雰囲気とし、処理温度
と滞溜時間を所定値とした以外は実施例1と同様にして
流動還元を行った。その結果を第2表に示す。
Fluid reduction was carried out in the same manner as in Example 1, except that the hydrogen concentration was 80 volumes, the balance was nitrogen, and the treatment temperature and residence time were set to predetermined values. The results are shown in Table 2.

第2表より解るように、本発明の方法の範囲を外れた。As can be seen from Table 2, this was outside the scope of the method of the present invention.

 No6は還元所要時間が長< 、No 10の場合は
平均粒径、タップ密度とも大きくなったが、それ以外は
はy満足する結果を得た。
For No. 6, the time required for reduction was long, and for No. 10, both the average particle diameter and the tap density were large, but otherwise satisfactory results were obtained.

得られた金属ニッケル粉末は実施例1の製品と同様に多
孔質なものであり、空気中での再酸化は観察されなかっ
た。
The obtained metallic nickel powder was porous like the product of Example 1, and no reoxidation in air was observed.

以上説明したように、塩化ニッケルの無水物を水素含有
ガスで流動させながら所定の温度で還元すると、電池用
および粉末冶金用として好適な粒度とタップ密度を有す
る金属ニッケル粉末を確実に製造することができる。
As explained above, when anhydrous nickel chloride is reduced at a predetermined temperature while flowing with a hydrogen-containing gas, it is possible to reliably produce metallic nickel powder having a particle size and tap density suitable for use in batteries and powder metallurgy. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は還元ニッケルのタップ密度とF’sssの関係
を示すグラフで、縦軸は左側はタップ密度(f/CC)
、右側はFsss(μ)、横軸は還元温度(℃)を示す
。O及び口は静置還元の場合、・■は流動還元の場合で
るる。なお、タップ密度は見掛は比容積域の度(タッピ
ング)測定装置により測定した値でおる。 第2図は還元ニッケル中の不純物の除去率挙動を示すグ
ラフで、縦軸は除去率(チ)、横軸は温度を示す。 特許出願人 住友金属鉱山株式会社 泉72 瓜2面
Figure 1 is a graph showing the relationship between the tap density of reduced nickel and F'sss, where the vertical axis is the tap density (f/CC) on the left.
, the right side shows Fsss (μ), and the horizontal axis shows reduction temperature (°C). O and 口 appear in the case of static reduction, and ・■ appears in the case of fluid reduction. Note that the apparent tap density is a value measured using a tapping measuring device in the specific volume range. FIG. 2 is a graph showing the behavior of the removal rate of impurities in reduced nickel, where the vertical axis shows the removal rate (ch) and the horizontal axis shows the temperature. Patent applicant Sumitomo Metal Mining Co., Ltd. Izumi 72 Melon 2 sides

Claims (1)

【特許請求の範囲】[Claims] 塩化ニッケル粉末を水素ガスで還元して、金属ニッケル
の粉末を製造する方法において、塩化ニッケル粉末を水
素ガス含有気流中で流動させつ\500〜700℃で処
理することを特徴とする微細な金属ニッケル粉末の製造
方法。
A method for producing metallic nickel powder by reducing nickel chloride powder with hydrogen gas, characterized in that the nickel chloride powder is treated at 500 to 700°C while flowing in an air stream containing hydrogen gas. Method for producing nickel powder.
JP5229182A 1982-04-01 1982-04-01 Manufacture of fine metallic nickel powder Pending JPS58171506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5229182A JPS58171506A (en) 1982-04-01 1982-04-01 Manufacture of fine metallic nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5229182A JPS58171506A (en) 1982-04-01 1982-04-01 Manufacture of fine metallic nickel powder

Publications (1)

Publication Number Publication Date
JPS58171506A true JPS58171506A (en) 1983-10-08

Family

ID=12910697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5229182A Pending JPS58171506A (en) 1982-04-01 1982-04-01 Manufacture of fine metallic nickel powder

Country Status (1)

Country Link
JP (1) JPS58171506A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152305A (en) * 1984-08-22 1986-03-15 Daido Steel Co Ltd Production of pulverous metallic powder
JPS6152304A (en) * 1984-08-20 1986-03-15 Daido Steel Co Ltd Apparatus for producing pulverous metallic powder
GB2399815A (en) * 2003-03-27 2004-09-29 Chemical Vapour Metal Refining Making activated nickel and producing nickel carbonyl therefrom
EP1591178A1 (en) * 2004-04-27 2005-11-02 Falconbridge Limited Production of active nickel powder and transformation thereof into nickel carbonyl
JP2006176830A (en) * 2004-12-22 2006-07-06 Taiyo Nippon Sanso Corp Method for concentrating/recovering metal nickel from powder comprising nickel element
US7198770B2 (en) 2002-12-04 2007-04-03 Chemical Vapour Metal Refining, Inc. Process for producing nickel carbonyl, nickel powder and use thereof
US20100307291A1 (en) * 2007-12-10 2010-12-09 Philippus Jacobus Mostert Reduction of metal chloride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123907A (en) * 1976-04-10 1977-10-18 Japan Storage Battery Co Ltd Process for production of sintered nickel base plate for alkaline battery electrode
JPS55134110A (en) * 1979-04-04 1980-10-18 Yukichi Toba Production of pure iron powder by hydrogen reduction of ferrous chloride crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123907A (en) * 1976-04-10 1977-10-18 Japan Storage Battery Co Ltd Process for production of sintered nickel base plate for alkaline battery electrode
JPS55134110A (en) * 1979-04-04 1980-10-18 Yukichi Toba Production of pure iron powder by hydrogen reduction of ferrous chloride crystal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152304A (en) * 1984-08-20 1986-03-15 Daido Steel Co Ltd Apparatus for producing pulverous metallic powder
JPH0465122B2 (en) * 1984-08-20 1992-10-19 Daido Tokushuko Kk
JPS6152305A (en) * 1984-08-22 1986-03-15 Daido Steel Co Ltd Production of pulverous metallic powder
US7198770B2 (en) 2002-12-04 2007-04-03 Chemical Vapour Metal Refining, Inc. Process for producing nickel carbonyl, nickel powder and use thereof
GB2399815A (en) * 2003-03-27 2004-09-29 Chemical Vapour Metal Refining Making activated nickel and producing nickel carbonyl therefrom
GB2399815B (en) * 2003-03-27 2007-06-27 Chemical Vapour Metal Refining Process for producing nickel carbonyl, nickel powder and use thereof
EP1591178A1 (en) * 2004-04-27 2005-11-02 Falconbridge Limited Production of active nickel powder and transformation thereof into nickel carbonyl
WO2005102569A1 (en) * 2004-04-27 2005-11-03 Falconbridge Limited Production of active nickel powder and transformation thereof into nickel carbonyl
JP2006176830A (en) * 2004-12-22 2006-07-06 Taiyo Nippon Sanso Corp Method for concentrating/recovering metal nickel from powder comprising nickel element
US20100307291A1 (en) * 2007-12-10 2010-12-09 Philippus Jacobus Mostert Reduction of metal chloride
US8377166B2 (en) * 2007-12-10 2013-02-19 Prior Engineering Services Ag Reduction of metal chloride

Similar Documents

Publication Publication Date Title
AU2005293876B2 (en) Method for the production of valve metal powders
JP3963649B2 (en) Method for producing tungsten carbide by vapor-phase carburization
JPS58171506A (en) Manufacture of fine metallic nickel powder
US2761776A (en) Process for the manufacture of particulate metallic niobium
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
US4039325A (en) Vacuum smelting process for producing ferromolybdenum
RU2089350C1 (en) Method of production of tantalum powder
US3073695A (en) Method for producing iron powder having low carbon and oxygen contents
JP6559134B2 (en) Chrome metal powder
US3979209A (en) Ductile tungsten-nickel alloy and method for making same
US3660031A (en) Method for preparing boron suboxide
Basu et al. The controlled reduction of copper tungstate in H 2 O/H 2 mixtures
US2730441A (en) Process of reducing iron formate
US6090179A (en) Process for manufacturing of metallic power
US3152886A (en) Preparation of metals and alloys of molybdenum, nickel, cobalt, and tungsten
US5135567A (en) Method for producing metal powders from liquid phase containing metal ions
JP2022506098A (en) Method for producing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder produced thereby.
JPH04321505A (en) Production of aluminum nitride
JPS6139373B2 (en)
JPS5957904A (en) Production of ultrafine particle of metallic nitride
US3036938A (en) Method of purifying and spherifying copper powder
JPS6132244B2 (en)
US2791497A (en) Method of producing light metal powders
JPH0232321B2 (en)
JPS59153801A (en) Calcium base metal and its production