JP2022506098A - Method for producing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder produced thereby. - Google Patents

Method for producing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder produced thereby. Download PDF

Info

Publication number
JP2022506098A
JP2022506098A JP2021523261A JP2021523261A JP2022506098A JP 2022506098 A JP2022506098 A JP 2022506098A JP 2021523261 A JP2021523261 A JP 2021523261A JP 2021523261 A JP2021523261 A JP 2021523261A JP 2022506098 A JP2022506098 A JP 2022506098A
Authority
JP
Japan
Prior art keywords
shaped
rod
ferrous chloride
needle
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021523261A
Other languages
Japanese (ja)
Inventor
ギル-ス ハン、
ヒュン-サブ オム、
ジン-ギュン パク、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2022506098A publication Critical patent/JP2022506098A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/04CO or CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、針状または棒状の多孔質鉄粉末を製造する方法に関するもので、具体的には、塩化第一鉄水溶液を濃縮して塩化第一鉄二水和物を製造する段階と、上記塩化第一鉄二水和物を固液分離して塩化第一鉄二水和物粉末を製造する段階と、上記塩化第一鉄二水和物粉末を酸化させる段階と、上記酸化された塩化第一鉄二水和物を還元する段階とを含む針状または棒状の多孔質鉄粉末の製造方法と、上記製造方法により製造された針状または棒状の多孔質鉄粉末を提供するものである。The present invention relates to a method for producing needle-shaped or rod-shaped porous iron powder, specifically, a step of concentrating a ferrous chloride aqueous solution to produce ferrous chloride dihydrate, and the above-mentioned chloride. The stage of solid-liquid separation of ferrous ferrous hydrate to produce ferrous chloride dihydrate powder, the stage of oxidizing the ferrous chloride dihydrate powder, and the stage of oxidizing ferrous chloride dihydrate. The present invention provides a method for producing a needle-shaped or rod-shaped porous iron powder including a step of reducing a Japanese product, and a needle-shaped or rod-shaped porous iron powder produced by the above-mentioned production method.

Description

本発明は、針状または棒状の多孔質鉄粉末を製造する方法及びこれにより製造された針状または棒状の多孔質鉄粉末を提供する。より具体的に、本発明は、塩化第一鉄水溶液を用いて針状または棒状の多孔質鉄粉末を製造する方法及びこれにより製造された針状または棒状の多孔質鉄粉末を提供する。 The present invention provides a method for producing a needle-shaped or rod-shaped porous iron powder and a needle-shaped or rod-shaped porous iron powder produced thereby. More specifically, the present invention provides a method for producing a needle-shaped or rod-shaped porous iron powder using an aqueous solution of ferrous chloride, and a needle-shaped or rod-shaped porous iron powder produced thereby.

従来における鉄粉末を製造する方法は、1)スポンジ-鉄工程(sponge-iron process:熱還元工程)と水噴射工程(water-atomizing process)がある。上記スポンジ-鉄工程は、酸化鉄を還元して多孔質の鉄粉末を作る工程であり、上記水噴射工程は、高圧の水ジェットを利用して溶融鉄をアトマイジング(atomizing)する工程であり、このときに製造された鉄粉末は多孔質ではなく高密度(dense)の粉末である。また、このように製造された粉末の多くは、角張ったキューブ模様、球形または不均質な形態を有している。 Conventional methods for producing iron powder include 1) a sponge-iron process (heat reduction step) and a water injection step (water-atoming process). The sponge-iron step is a step of reducing iron oxide to form a porous iron powder, and the water injection step is a step of atomizing molten iron using a high-pressure water jet. The iron powder produced at this time is not porous but dense powder. Also, many of the powders thus produced have an angular cube pattern, spherical or heterogeneous morphology.

上記スポンジ-鉄工程で用いられる酸化鉄は、鉄鉱石または製鉄工程中に発生した粉末、鉄板製造工程中に表面酸洗後に発生する酸洗後液を用いて製造された酸化鉄などを原料として用いることができ、上記スポンジ-鉄工程で製造された多孔質の鉄粉末は、広い比表面積、高い反応性及び強い還元性の特徴を有しており、自己潤滑ベアリング(self-lubricating bearings)素材;土壌、地下水、産業廃水浄化用素材(触媒、還元剤など);溶接棒コーティング素材;使い捨てカイロの素材;酸素除去剤;鉄化合物の製造のための原素材;セメンテイション(cementation)のための抽出剤などのような場面で用いられることができる。 The iron oxide used in the sponge-iron process is made from iron ore or powder generated during the iron making process, iron oxide produced using a post-pickling solution generated after surface pickling during the iron plate manufacturing process, and the like. Can be used, the porous iron powder produced in the sponge-iron process has the characteristics of wide specific surface area, high reactivity and strong reducing property, and is a self-lubricating bearing material. Materials for purification of soil, groundwater, industrial wastewater (catalysts, reducing agents, etc.); Welding rod coating materials; Materials for disposable cairo; Oxygen removers; Raw materials for the production of iron compounds; For cementation It can be used in situations such as extractants.

一方、特許文献1は、塩化第一鉄水溶液を通じて鉄粉末を製造する工程を使用しているが、塩化第一鉄水溶液から針状または棒状の多孔質鉄粉末を製造する方法が開発される場合、鉄粉末を用いる分野でさらに有用に使用可能なことが期待される。 On the other hand, Patent Document 1 uses a step of producing iron powder through a ferrous chloride aqueous solution, but when a method for producing needle-shaped or rod-shaped porous iron powder is developed from the ferrous chloride aqueous solution. , It is expected that it can be used more usefully in the field of using iron powder.

米国公開特許第2016-0096739号明細書U.S. Publication No. 2016-096739

本発明の一側面は、針状または棒状形態の特徴及び多孔質の特徴をいずれも有する鉄粉末を製造するための製造方法を提供するものである。
本発明の他側面は、上記本発明の製造方法により製造された鉄粉末を提供するものである。
One aspect of the present invention provides a production method for producing an iron powder having both needle-like or rod-like characteristics and porous characteristics.
Another aspect of the present invention provides iron powder produced by the above-mentioned production method of the present invention.

本発明の一側面によると、塩化第一鉄水溶液を濃縮して塩化第一鉄二水和物を製造する段階と、上記塩化第一鉄二水和物を固液分離して塩化第一鉄二水和物粉末を製造する段階と、上記塩化第一鉄二水和物粉末を酸化させる段階と、上記酸化された塩化第一鉄二水和物を還元する段階とを含む針状または棒状の多孔質鉄粉末の製造方法が提供される。 According to one aspect of the present invention, the step of concentrating the ferrous chloride aqueous solution to produce ferrous chloride dihydrate and the solid-liquid separation of the ferrous chloride dihydrate to dihydrate ferrous chloride. Needle-shaped or rod-shaped porous iron powder including a step of producing a product powder, a step of oxidizing the ferrous chloride dihydrate powder, and a step of reducing the oxidized ferrous chloride dihydrate. Manufacturing method is provided.

本発明の他側面によると、上記製造方法により製造された針状または棒状の多孔質鉄粉末が提供される。 According to another aspect of the present invention, there is provided a needle-shaped or rod-shaped porous iron powder produced by the above-mentioned production method.

本発明の工程によると、塩化鉄水溶液から鉄粉末の大量生産が可能であり、このように製造された鉄粉末は、多孔質の針状または棒状の形状を有しており、既存の多孔質鉄粉末の適用分野に使用可能なことは言うまでもなく、棒状粉末の特性に基づいた充填率の向上、作業性の向上、物性の向上などを獲得することができる。 According to the process of the present invention, it is possible to mass-produce iron powder from an aqueous iron chloride solution, and the iron powder thus produced has a porous needle-like or rod-like shape, and is existing porous. Needless to say, it can be used in the field of application of iron powder, and it is possible to obtain improvement of filling rate, improvement of workability, improvement of physical properties, etc. based on the characteristics of the rod-shaped powder.

本発明の針状または棒状の多孔質鉄粉末を製造する方法の概略的なフローチャートを示す。A schematic flowchart of a method for producing a needle-shaped or rod-shaped porous iron powder of the present invention is shown. 本発明の実施形態による塩化第一鉄水溶液の濃縮時に表れる塩化第一鉄二水和物及び塩化第一鉄四水和物の結晶をSEMで撮影したイメージを示す。An image of the crystals of ferrous chloride dihydrate and ferrous chloride tetrahydrate appearing when the ferrous chloride aqueous solution is concentrated according to the embodiment of the present invention is shown by SEM. 本発明の実施形態による塩化第一鉄水溶液の濃縮で獲得した塩化第一鉄二水和物に焙焼工程を行った後、獲得した酸化鉄粉末をSEMで撮影したイメージを示す。An image of the iron oxide powder obtained by roasting the ferrous chloride dihydrate obtained by concentrating the ferrous chloride aqueous solution according to the embodiment of the present invention and taking a picture with SEM is shown. 本発明の実施形態による酸化鉄粉末に還元反応を行った後、獲得した還元鉄粉末をSEMで撮影したイメージを示す。An image of the obtained reduced iron powder taken by SEM after performing a reduction reaction on the iron oxide powder according to the embodiment of the present invention is shown.

以下、添付の図面を参照して、本発明の好ましい実施形態を説明する。しかし、本発明の実施形態は、いくつかの他の形態に変形されることができ、本発明の範囲が以下で説明する実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the invention can be transformed into several other embodiments, and the scope of the invention is not limited to the embodiments described below.

本発明は、針状または棒状形態の特徴及び多孔質の特徴をいずれも有する鉄粉末を製造するための製造方法及び上記製造方法により製造された鉄粉末を提供するものである。 The present invention provides a production method for producing an iron powder having both needle-like or rod-like characteristics and porous characteristics, and an iron powder produced by the above-mentioned production method.

具体的に、本発明の針状または棒状の多孔質鉄粉末の製造方法は、塩化第一鉄水溶液を濃縮して塩化第一鉄二水和物を製造する段階と、上記塩化第一鉄二水和物を固液分離して塩化第一鉄二水和物粉末を製造する段階と、上記塩化第一鉄二水和物粉末を酸化させる段階と、上記酸化された塩化第一鉄二水和物を還元する段階とを含む針状または棒状の多孔質鉄粉末の製造方法を提供する。 Specifically, the method for producing needle-shaped or rod-shaped porous iron powder of the present invention includes a step of concentrating a ferrous chloride aqueous solution to produce ferrous chloride dihydrate and the above-mentioned ferrous chloride dihydration. The step of solid-liquid separation of the substance to produce ferrous chloride dihydrate powder, the step of oxidizing the ferrous chloride dihydrate powder, and the step of reducing the oxidized ferrous chloride dihydrate. Provided is a method for producing a needle-shaped or rod-shaped porous iron powder including a step.

上記塩化第一鉄水溶液の原料は、鉄板製造工程中に表面にある酸化物を除去するための酸洗工程後に発生する後液、その他の工程中に発生する後液または鉄を塩酸に溶かした水溶液であることができ、上記塩化第一鉄水溶液は、飽和または過飽和されていない水溶液であることが好ましい。 As the raw material of the ferrous chloride aqueous solution, the post-liquid generated after the pickling step for removing the oxide on the surface during the iron plate manufacturing process, the post-liquid generated during the other steps, or iron was dissolved in hydrochloric acid. It can be an aqueous solution, and the ferrous chloride aqueous solution is preferably an aqueous solution that is saturated or not supersaturated.

上記塩化第一鉄水溶液の濃度は20~625g/L、好ましくは250~600g/Lである。上記濃度が20g/L未満の場合、水溶液内に塩化第一鉄の量が少なくて、濃縮時に水分を蒸発させるエネルギーが過度に消耗され、また析出される塩化第一鉄二水和物の量が少ないという問題があり、625g/Lを超える場合、塩化第一鉄水溶液が飽和または過飽和されて移送中に沈澱が発生するという問題がある。 The concentration of the ferrous chloride aqueous solution is 20 to 625 g / L, preferably 250 to 600 g / L. When the above concentration is less than 20 g / L, the amount of ferrous chloride in the aqueous solution is small, the energy for evaporating water during concentration is excessively consumed, and the amount of ferrous chloride dihydrate precipitated is large. There is a problem that the amount is small, and when it exceeds 625 g / L, there is a problem that the ferrous chloride aqueous solution is saturated or supersaturated and precipitation occurs during transfer.

上記塩化第一鉄二水和物を製造する段階は、塩化第一鉄水溶液を濃縮して過飽和された塩化第一鉄二水和物を析出し、このとき、濃縮は、例えば蒸発濃縮により行われることができる。 In the step of producing the ferrous chloride dihydrate, the ferrous chloride aqueous solution is concentrated to precipitate the supersaturated ferrous chloride dihydrate, and at this time, the concentration is carried out by, for example, evaporation concentration. Can be done.

一方、上記塩化第一鉄二水和物粉末を製造する段階で行われる固液分離は、例えば遠心分離機を利用して上記析出された塩化第一鉄二水和物を分離することができるが、これに制限されるものではなく、ろ過など、当該技術分野で固液分離のために使用されることができる如何なる方法で行われてよい。 On the other hand, in the solid-liquid separation performed at the stage of producing the ferrous chloride dihydrate powder, for example, the precipitated ferrous chloride dihydrate can be separated by using a centrifuge. It is not limited to this, and may be performed by any method that can be used for solid-liquid separation in the art, such as filtration.

上記塩化第一鉄二水和物を製造する段階が蒸発濃縮により行われる場合、濃縮過程の温度が調節されなければならず、このとき、蒸発濃縮は、例えば72~125℃の温度で行うことが好ましく、好ましくは75~95℃の温度で行われる。72℃未満の温度で行われる場合、塩化第一鉄四水和物が析出されるおそれがあり、上記塩化第一鉄四水和物は、角形の多面体形態で析出されるという問題があり、125℃を超える温度では、塩化鉄一水和物が発生するだけでなく、エネルギーが過度に消耗されるという問題がある。上記角形の多面体形態で析出される塩化第一鉄四水和物をSEMで撮影したイメージを図2に示した。 When the step of producing the ferrous chloride dihydrate is carried out by evaporative concentration, the temperature of the concentration process must be adjusted, and at this time, the evaporative concentration may be carried out at a temperature of, for example, 72 to 125 ° C. It is preferably carried out at a temperature of 75 to 95 ° C. If it is carried out at a temperature of less than 72 ° C., ferrous chloride tetrahydrate may be precipitated, and the ferrous chloride tetrahydrate has a problem that it is precipitated in a rectangular polyhedron form. At temperatures above 125 ° C, there is the problem that not only iron chloride monohydrate is generated, but also energy is excessively consumed. FIG. 2 shows an image of ferrous chloride tetrahydrate precipitated in the above-mentioned rectangular polyhedral form taken by SEM.

上記塩化第一鉄二水和物粉末を酸化させる段階は、酸素雰囲気下で熱分解反応をさせる焙焼工程により行われることができる。上記焙焼工程において、塩化第一鉄二水和物と酸素の反応は、以下の通りである。
2(FeClO)+1/2O → Fe+4HCl(g)
このとき、上記のような反応により、Feだけでなく、まれにFeまたはFeO酸化物が生成されることができる。
The step of oxidizing the ferrous chloride dihydrate powder can be carried out by a roasting step in which a thermal decomposition reaction is carried out in an oxygen atmosphere. In the above roasting step, the reaction between ferrous chloride dihydrate and oxygen is as follows.
2 (FeCl 2 H 2 O) + 1 / 2O 2 → Fe 2 O 3 + 4HCl (g)
At this time, not only Fe 2 O 3 but also Fe 3 O 4 or FeO oxide can be rarely produced by the reaction as described above.

また、上記焙焼工程は制限されないが、流動路、ロータリーキルン(rotary kiln)、ベルト(belt)路、ドロップチューブ(drop tube)路などの反応路を使用することができ、反応中に粉末に外力が作用して粉末が破砕されることを最小化して棒状の形態を維持する必要がある。 Further, although the roasting step is not limited, reaction paths such as a flow path, a rotary kiln, a belt path, and a drop tube path can be used, and an external force is applied to the powder during the reaction. It is necessary to maintain the rod-like morphology by minimizing the action of the powder to crush the powder.

さらに、上記焙焼工程の反応は200~1300℃の温度で行うことができる。200℃未満では、酸化鉄が生成されず、1300℃を超える場合は、酸化鉄焼結が発生して所願の形態の酸化鉄を獲得し難いからである。好ましくは、500~800℃の温度で行うことができる。 Further, the reaction of the roasting step can be carried out at a temperature of 200 to 1300 ° C. If the temperature is lower than 200 ° C., iron oxide is not produced, and if the temperature exceeds 1300 ° C., iron oxide sintering occurs and it is difficult to obtain the desired form of iron oxide. Preferably, it can be carried out at a temperature of 500 to 800 ° C.

上記焙焼工程を通じて生成された酸化鉄の形状を区分するために分級を実施することができる。さらに、上記工程中に発生する塩酸の場合、湿式捕集をして塩酸水溶液を作り塩化第一鉄水溶液を作るときに用いることができる。 Classification can be carried out to classify the shape of iron oxide produced through the roasting step. Further, in the case of hydrochloric acid generated during the above step, it can be used when wet collection is performed to prepare a hydrochloric acid aqueous solution and a ferrous chloride aqueous solution is prepared.

上記酸化された塩化第一鉄二水和物を還元する段階は、上記酸化された塩化第一鉄二水和物を高温の還元性雰囲気で還元反応を通じて行われることができる。このとき、上記還元性雰囲気は、例えば水素、一酸化炭素、またはこれらの混合ガス雰囲気であることができ、分解などの反応を通じて水素、一酸化炭素、またはこれらの混合ガスを作ることができる化合物を還元剤として用いることができる。上記還元反応は、例えば以下の通りである。
Fe+3H(g) or 3CO(g) → 2Fe+3HO(g) or 3CO(g)
このとき、上記酸化段階でまれに生成されたFeまたはFeO酸化物は、以下のような反応を通じて還元反応が起こる。
FeO+H(g) or CO(g) → Fe+HO(g) or CO(g)
Fe+4H(g) or 4CO(g) → 3Fe+4HO(g) or 4CO(g)
The step of reducing the oxidized ferrous chloride dihydrate can be carried out through a reduction reaction of the oxidized ferrous chloride dihydrate in a high temperature reducing atmosphere. At this time, the reducing atmosphere can be, for example, hydrogen, carbon monoxide, or a mixed gas atmosphere thereof, and a compound capable of producing hydrogen, carbon monoxide, or a mixed gas thereof through a reaction such as decomposition. Can be used as a reducing agent. The reduction reaction is, for example, as follows.
Fe 2 O 3 + 3H 2 (g) or 3CO (g) → 2Fe + 3H 2 O (g) or 3CO 2 (g)
At this time, the Fe 3 O 4 or FeO oxide rarely produced in the oxidation step undergoes a reduction reaction through the following reaction.
FeO + H 2 (g) or CO (g) → Fe + H 2 O (g) or CO 2 (g)
Fe 3 O 4 + 4H 2 (g) or 4CO (g) → 3Fe + 4H 2 O (g) or 4CO 2 (g)

また、上記還元反応は制限されないが、流動路、ロータリーキルン(rotary kiln)、ベルト(belt)路、ドロップチューブ(drop tube)路などの反応路を使用することができ、反応中に粉末に外力が作用して粉末が破砕されることを最小化して棒状の形態を維持する必要がある。 Further, although the reduction reaction is not limited, reaction paths such as a flow path, a rotary kiln, a belt path, and a drop tube path can be used, and an external force is applied to the powder during the reaction. It is necessary to maintain the rod-like morphology by acting to minimize the crushing of the powder.

さらに、上記還元反応は400~1300℃の温度で行うことができる。400℃未満では、反応速度が遅くて生産性が劣り、1300℃を超える場合は、生成された還元鉄の焼結が過度に発生するか還元鉄微細組織が粗大化されて多孔質の組織がなくなるという問題が発生するからである。上記還元性雰囲気が水素雰囲気の場合、上記還元反応は好ましくは600~800℃の温度で行うことができ、上記還元性雰囲気が一酸化炭素雰囲気の場合、上記還元反応は好ましくは700~1000℃温度で行うことができる。 Further, the reduction reaction can be carried out at a temperature of 400 to 1300 ° C. If it is less than 400 ° C, the reaction rate is slow and the productivity is inferior, and if it exceeds 1300 ° C, the produced reduced iron is excessively sintered or the reduced iron microstructure is coarsened and a porous structure is formed. This is because the problem of disappearing occurs. When the reducing atmosphere is a hydrogen atmosphere, the reduction reaction can be preferably carried out at a temperature of 600 to 800 ° C., and when the reducing atmosphere is a carbon monoxide atmosphere, the reduction reaction is preferably 700 to 1000 ° C. Can be done at temperature.

上記還元反応を通じて生成された還元鉄の形状を区分するために分級を実施することができる。さらに、製造された還元鉄の場合、反応性が良く再酸化が起こり得るため、不活性雰囲気で粉末を収集する必要がある。 Classification can be carried out to classify the shape of the reduced iron produced through the reduction reaction. Further, in the case of the produced reduced iron, it is necessary to collect the powder in an inert atmosphere because the reactivity is good and reoxidation can occur.

本発明の製造方法により製造された針状または棒状の多孔質鉄粉末の比表面積は0.3~3m/gであり、好ましくは0.5~2.5m/gである。鉄粉末の比表面積が0.3m/g未満の場合、反応性が低いという問題があり、3m/gを超える場合、大気状態で容易に酸化または発火が起こるため、工程中に取り扱いが難しいという問題がある。 The specific surface area of the needle-shaped or rod-shaped porous iron powder produced by the production method of the present invention is 0.3 to 3 m 2 / g, preferably 0.5 to 2.5 m 2 / g. If the specific surface area of the iron powder is less than 0.3 m 2 / g, there is a problem of low reactivity, and if it exceeds 3 m 2 / g, oxidation or ignition easily occurs in the atmospheric condition, so it should be handled during the process. There is a problem that it is difficult.

以下、具体的な実施形態を挙げて本発明をより具体的に説明する。下記の実施形態は、本発明の理解を助けるための例示に過ぎず、本発明の範囲がこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific embodiments. The following embodiments are merely examples to assist in understanding the present invention, and the scope of the present invention is not limited thereto.

ニッケル湿式製錬工程で発生する塩化第一鉄(FeCl)水溶液を用いて針状または棒状の鉄粉末を製造した。例示的な工程を図1に示し、具体的な工程は以下の通りである。 Needle-shaped or rod-shaped iron powder was produced using an aqueous solution of ferrous chloride (FeCl 2 ) generated in the nickel hydrometallurgy process. An exemplary process is shown in FIG. 1, and the specific process is as follows.

塩化第一鉄水溶液(濃度は220g/L)を濃縮して過飽和された塩化第一鉄二水和物(FeCl・2HO)を析出した。析出された塩化第一鉄二水和物を遠心分離機方法で固液分離させて塩化第一鉄二水和物粉末を分離した。このとき、水溶液の濃縮は80℃の温度で行われた。 The ferrous chloride aqueous solution (concentration: 220 g / L) was concentrated to precipitate supersaturated ferrous chloride dihydrate (FeCl 2.2H 2 O ). The precipitated ferrous chloride dihydrate was separated into solid and liquid by a centrifuge method to separate the ferrous chloride dihydrate powder. At this time, the concentration of the aqueous solution was performed at a temperature of 80 ° C.

上記段階で製造された塩化第一鉄二水和物の結晶をSEMで撮影したイメージを図2に示した。 An image of the crystals of ferrous chloride dihydrate produced in the above stage taken by SEM is shown in FIG.

次に、上記塩化第一鉄二水和物粉末をロータリーキルンに投入し、酸素が含まれた高温の雰囲気で熱分解反応を通じて焙焼させた。これにより針状または棒状の酸化鉄が製造される。 Next, the ferrous chloride dihydrate powder was put into a rotary kiln and roasted through a thermal decomposition reaction in a high temperature atmosphere containing oxygen. This produces needle-shaped or rod-shaped iron oxide.

上記焙焼工程は700℃で90分間行われ、生産された針状または棒状の酸化鉄の形状を区分するために分級を実施した。また、上記Feだけでなく、まれにFe又はFeO酸化物も生成されることができる。一方、上記ロータリーキルンで共に生産されたHClは、スクラバー(scrubber)で捕集してニッケル製錬工程に再使用した。 The roasting step was carried out at 700 ° C. for 90 minutes, and classification was carried out to classify the shape of the produced needle-shaped or rod-shaped iron oxide. Moreover, not only the above-mentioned Fe 2 O 3 but also Fe 3 O 4 or FeO oxide can be rarely produced. On the other hand, the HCl produced together in the rotary kiln was collected by a scrubber and reused in the nickel smelting process.

上記のような工程を通じて生産された酸化された鉄粉末をSEMで撮影したイメージを図3に示した。 An image of the oxidized iron powder produced through the above steps taken by SEM is shown in FIG.

次に、上記針状または棒状の酸化鉄をメッシュベルト(mesh belt)で注入して高温の気体還元雰囲気で還元反応を通じて還元鉄粉末を製造した。このとき、気体還元雰囲気は水素又は一酸化炭素雰囲気である。 Next, the needle-shaped or rod-shaped iron oxide was injected with a mesh belt to produce reduced iron powder through a reduction reaction in a high-temperature gas-reducing atmosphere. At this time, the gas reducing atmosphere is a hydrogen or carbon monoxide atmosphere.

上記還元反応は750℃で60分間行われ、生産された針状または棒状の酸化鉄の形状を区分するために分級を実施して、針状または棒状の還元鉄粉末と微細な還元鉄粉末とに区分した。 The reduction reaction was carried out at 750 ° C. for 60 minutes, and classification was carried out to distinguish the shape of the produced needle-shaped or rod-shaped iron oxide, and the needle-shaped or rod-shaped reduced iron powder and the fine reduced iron powder were obtained. It was divided into.

生成された針状または棒状の還元鉄粉末は、長さが約500μmで、アスペクト比(aspect ratio)が約5となる粉末で比表面積が約2.3m/gであった。このとき、製造された還元鉄の場合、反応性が良く再酸化が起こり得るため、不活性雰囲気で粉末を収集する必要がある。 The produced needle-shaped or rod-shaped reduced iron powder had a length of about 500 μm, an aspect ratio of about 5, and a specific surface area of about 2.3 m 2 / g. At this time, in the case of the produced reduced iron, it is necessary to collect the powder in an inert atmosphere because the reactivity is good and reoxidation may occur.

上記のような工程を通じて生産された還元された鉄粉末をSEMで撮影したイメージを図4に示した。 An image of the reduced iron powder produced through the above steps taken by SEM is shown in FIG.

以上、本発明の実施形態について詳しく説明したが、本発明の権利範囲はこれに限定されず、特許請求の範囲に記載された本発明の技術的思想から逸脱しない範囲内で多様な修正及び変形が可能であるということは、当技術分野における通常の知識を有する者には自明である。
Although the embodiments of the present invention have been described in detail above, the scope of rights of the present invention is not limited to this, and various modifications and modifications are made without departing from the technical idea of the present invention described in the claims. It is self-evident to anyone with ordinary knowledge in the art that it is possible.

Claims (10)

塩化第一鉄水溶液を濃縮して塩化第一鉄二水和物を製造する段階と、
前記塩化第一鉄二水和物を固液分離して塩化第一鉄二水和物粉末を製造する段階と、
前記塩化第一鉄二水和物粉末を酸化させる段階と、
前記酸化された塩化第一鉄二水和物を還元する段階とを含む、針状または棒状の多孔質鉄粉末の製造方法。
At the stage of concentrating the ferrous chloride aqueous solution to produce ferrous chloride dihydrate,
At the stage of solid-liquid separation of ferrous chloride dihydrate to produce ferrous chloride dihydrate powder, and
The stage of oxidizing the ferrous chloride dihydrate powder and
A method for producing a needle-shaped or rod-shaped porous iron powder, which comprises a step of reducing the oxidized ferrous chloride dihydrate.
前記塩化第一鉄水溶液の濃度は、20~625g/Lである、請求項1に記載の針状または棒状の多孔質鉄粉末の製造方法。 The method for producing a needle-shaped or rod-shaped porous iron powder according to claim 1, wherein the concentration of the ferrous chloride aqueous solution is 20 to 625 g / L. 前記塩化第一鉄水溶液の濃縮は、72~125℃の温度で蒸発濃縮により行われる、請求項1に記載の針状または棒状の多孔質鉄粉末の製造方法。 The method for producing a needle-shaped or rod-shaped porous iron powder according to claim 1, wherein the concentration of the ferrous chloride aqueous solution is carried out by evaporation concentration at a temperature of 72 to 125 ° C. 前記塩化第一鉄二水和物粉末を酸化させる段階は、酸素雰囲気下の200~1300℃の温度で焙焼により行われる、請求項1に記載の針状または棒状の多孔質鉄粉末の製造方法。 The method for producing a needle-shaped or rod-shaped porous iron powder according to claim 1, wherein the step of oxidizing the ferrous chloride dihydrate powder is carried out by roasting at a temperature of 200 to 1300 ° C. in an oxygen atmosphere. .. 前記塩化第一鉄二水和物粉末を還元する段階は、還元性雰囲気下の400~1300℃の温度で行う、請求項1に記載の針状または棒状の多孔質鉄粉末の製造方法。 The method for producing a needle-shaped or rod-shaped porous iron powder according to claim 1, wherein the step of reducing the ferrous chloride dihydrate powder is carried out at a temperature of 400 to 1300 ° C. under a reducing atmosphere. 前記還元性雰囲気は、水素、一酸化炭素、またはこれらの混合ガス雰囲気である、請求項5に記載の針状または棒状の多孔質鉄粉末の製造方法。 The method for producing a needle-shaped or rod-shaped porous iron powder according to claim 5, wherein the reducing atmosphere is hydrogen, carbon monoxide, or a mixed gas atmosphere thereof. 前記塩化第一鉄二水和物粉末を還元する段階は、水素雰囲気の場合、600~800℃の温度で行われる、請求項6に記載の針状または棒状の多孔質鉄粉末の製造方法。 The method for producing a needle-shaped or rod-shaped porous iron powder according to claim 6, wherein the step of reducing the ferrous chloride dihydrate powder is carried out at a temperature of 600 to 800 ° C. in the case of a hydrogen atmosphere. 前記塩化第一鉄二水和物粉末を還元する段階は、一酸化炭素雰囲気の場合、700~1000℃の温度で行われる、請求項6に記載の針状または棒状の多孔質鉄粉末の製造方法。 The method for producing a needle-shaped or rod-shaped porous iron powder according to claim 6, wherein the step of reducing the ferrous chloride dihydrate powder is carried out at a temperature of 700 to 1000 ° C. in the case of a carbon monoxide atmosphere. .. 請求項1乃至請求項8のいずれか一項の製造方法により製造された針状または棒状の多孔質鉄粉末。 A needle-shaped or rod-shaped porous iron powder produced by the production method according to any one of claims 1 to 8. 前記鉄粉末は、比表面積が0.3~3m/gである、請求項9に記載の針状または棒状の多孔質鉄粉末。 The needle-shaped or rod-shaped porous iron powder according to claim 9, wherein the iron powder has a specific surface area of 0.3 to 3 m 2 / g.
JP2021523261A 2018-11-05 2019-11-04 Method for producing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder produced thereby. Pending JP2022506098A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180134325A KR102175428B1 (en) 2018-11-05 2018-11-05 Manufacturing method of cylindrical porous iron powder
KR10-2018-0134325 2018-11-05
PCT/KR2019/014795 WO2020096293A1 (en) 2018-11-05 2019-11-04 Method for manufacturing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder manufactured thereby

Publications (1)

Publication Number Publication Date
JP2022506098A true JP2022506098A (en) 2022-01-17

Family

ID=70612034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021523261A Pending JP2022506098A (en) 2018-11-05 2019-11-04 Method for producing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder produced thereby.

Country Status (6)

Country Link
US (1) US20220008992A1 (en)
EP (1) EP3878580A4 (en)
JP (1) JP2022506098A (en)
KR (1) KR102175428B1 (en)
CN (1) CN112969544A (en)
WO (1) WO2020096293A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102477414B1 (en) * 2022-06-08 2022-12-15 김준현 Multi-functional mortar composition and method for repairing and reinforcing concrete and steel structure using the same and inorganic coating agent for protecting surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032003A (en) * 1999-06-10 2001-02-06 Asb Aerospatiale Batteries Method for preparing metal powder, metal powder prepared by the method and molded body containing the metal powder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB662051A (en) * 1948-01-06 1951-11-28 Davide Primavesi Improved chemical process for producing powdered iron
DE2907255A1 (en) * 1979-02-24 1980-09-04 Basf Ag METHOD FOR PRODUCING NEEDLE-SHAPED FERROMAGNETIC IRON PARTICLES
US4464196A (en) * 1983-08-24 1984-08-07 Hercules Incorporated Acicular ferromagnetic metal particles
KR950006268B1 (en) * 1993-07-16 1995-06-13 김미라 Making method of powder metal
KR0157067B1 (en) * 1993-08-26 1999-03-30 스마 요시츠기 Rolling element
JP2005145757A (en) * 2003-11-14 2005-06-09 Nisshin Steel Co Ltd Method for manufacturing iron oxide powder
SE0303187D0 (en) * 2003-11-26 2003-11-26 Hoeganaes Ab Food additive
CN101898800A (en) * 2010-02-03 2010-12-01 深圳市东江环保股份有限公司 Method for preparing iron oxide red by using ferrous chloride
US20160096739A1 (en) 2014-09-29 2016-04-07 Innova Powders, Inc. Iron powder product with high specific surface area
TWI570245B (en) * 2015-11-19 2017-02-11 Taiwan Powder Technologies Co Ltd A method for preparing a porous spherical iron-based alloy powder by a reduction reaction, the powder and the powder are prepared Sintered body
KR101798731B1 (en) * 2015-12-24 2017-11-17 주식회사 포스코 Method for manufacturing iron oxide
KR101924274B1 (en) * 2017-01-11 2018-11-30 국방과학연구소 Manufacturing method using two-step reduction for iron metal powders and iron metal powders by the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032003A (en) * 1999-06-10 2001-02-06 Asb Aerospatiale Batteries Method for preparing metal powder, metal powder prepared by the method and molded body containing the metal powder

Also Published As

Publication number Publication date
EP3878580A1 (en) 2021-09-15
US20220008992A1 (en) 2022-01-13
EP3878580A4 (en) 2021-12-29
WO2020096293A1 (en) 2020-05-14
CN112969544A (en) 2021-06-15
KR20200051233A (en) 2020-05-13
KR102175428B1 (en) 2020-11-06

Similar Documents

Publication Publication Date Title
Luidold et al. Hydrogen as a reducing agent: State-of-the-art science and technology
JP5387851B2 (en) Method for recovering valuable metals from spent catalyst
CN106756113B (en) A kind of method that arsenic sulfide slag reduction sulphur fixing roast directly produces metallic arsenic
CN101717862B (en) Production process for comprehensively recovering valuable metal of copper, cobalt and iron alloy
EP2450312A1 (en) Recovery of tungsten from waste material by ammonium leaching
KR101774319B1 (en) Manufacturemethod for titanium powder
JP7384904B2 (en) Method for producing fine metal powder from metal compounds
JP2017150063A5 (en)
JP6539922B1 (en) Method for producing nickel sulfate compound
Rui et al. Preparation of high purity vanadium nitride by magnesiothermic reduction of V2O3 followed by nitriding in N2 atmosphere
WO2016152690A1 (en) Cobalt powder production method
JP2022506098A (en) Method for producing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder produced thereby.
Ling et al. Selective removal of arsenic from crude antimony trioxide by leaching with nitric acid
Singh et al. Novel process for synthesis of nanocrystalline WC from wolframite ore
TW200533603A (en) Tantalum oxide and/or niobium oxide and method for preparation thereof
EP3098199A1 (en) Process for the direct production of tungsten carbide powders of various grain sizes starting from scheelite
KR100360559B1 (en) Process for the production of extra fine powder of Cobalt
CN112299471B (en) Method for synchronously preparing nano zinc oxide by efficiently separating zinc from zinc-containing electronic waste
US2665981A (en) Metallic powders
CA1054338A (en) Production of metal carbides and metals
WO2020157898A1 (en) Method for treating nickel-containing raw material
KR101778399B1 (en) Method for recovering scattered iron oxide dust from nickel extraction process
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
JP2010030873A (en) High purity silicon and production method thereof
JP3467546B2 (en) Recovery of niobium metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221221