KR102175428B1 - Manufacturing method of cylindrical porous iron powder - Google Patents

Manufacturing method of cylindrical porous iron powder Download PDF

Info

Publication number
KR102175428B1
KR102175428B1 KR1020180134325A KR20180134325A KR102175428B1 KR 102175428 B1 KR102175428 B1 KR 102175428B1 KR 1020180134325 A KR1020180134325 A KR 1020180134325A KR 20180134325 A KR20180134325 A KR 20180134325A KR 102175428 B1 KR102175428 B1 KR 102175428B1
Authority
KR
South Korea
Prior art keywords
ferrous
dihydrate
shaped
powder
iron powder
Prior art date
Application number
KR1020180134325A
Other languages
Korean (ko)
Other versions
KR20200051233A (en
Inventor
한길수
엄형섭
박진균
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020180134325A priority Critical patent/KR102175428B1/en
Priority to EP19881941.9A priority patent/EP3878580A4/en
Priority to CN201980072505.XA priority patent/CN112969544A/en
Priority to US17/290,677 priority patent/US20220008992A1/en
Priority to PCT/KR2019/014795 priority patent/WO2020096293A1/en
Priority to JP2021523261A priority patent/JP2022506098A/en
Publication of KR20200051233A publication Critical patent/KR20200051233A/en
Application granted granted Critical
Publication of KR102175428B1 publication Critical patent/KR102175428B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • B22F1/0007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/04CO or CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 침상 또는 봉상의 다공질 철분말을 제조하는 방법에 관한 것으로, 구체적으로는 염화제일철 수용액을 농축하여 이수염화제일철을 제조하는 단계; 상기 이수염화제일철을 고액분리하여 이수염화제일철 분말을 제조하는 단계; 상기 이수염화제일철 분말을 산화시키는 단계; 및 상기 산화된 이수염화제일철을 환원하는 단계를 포함하는 침상 또는 봉상의 다공질 철분말 제조 방법과 상기 제조 방법에 의해 제조된 침상 또는 봉상의 다공질 철분말을 제공하는 것이다.The present invention relates to a method of manufacturing a needle-shaped or rod-shaped porous iron powder, specifically, the steps of preparing ferrous dihydrate by concentrating an aqueous ferrous chloride solution; Solid-liquid separating the ferrous dihydrate to prepare a ferrous dihydrate powder; Oxidizing the ferrous dihydrate powder; And it is to provide a needle-shaped or rod-shaped porous iron powder manufacturing method comprising the step of reducing the oxidized ferrous dihydrate and a needle-shaped or rod-shaped porous iron powder manufactured by the above manufacturing method.

Description

침상 또는 봉상 다공질 철분말 제조 방법{Manufacturing method of cylindrical porous iron powder}Manufacturing method of porous iron powder in the form of needles or rods {Manufacturing method of cylindrical porous iron powder}

본 발명은 침상 또는 봉상의 다공질 철분말을 제조하는 방법을 제공한다. 보다 구체적으로, 본 발명은 염화제일철 수용액을 사용하여 침상 또는 봉상의 다공질 철분말을 제조하는 방법을 제공한다.The present invention provides a method for producing a needle-shaped or rod-shaped porous iron powder. More specifically, the present invention provides a method for producing a needle-shaped or rod-shaped porous iron powder using an aqueous ferrous chloride solution.

종래 철분말을 제조하는 방법은 1)스폰지-철 공정(sponge-iron process: 열환원공정)과 2)수분사 공정(water-atomizing process)이 있다. 상기 스폰지-철 공정은 산화철을 환원하여 다공질의 철분말을 만드는 공정이고, 상기 수분사 공정은 고압의 물제트를 이용하여 용융철을 아토마이징(atomizing)하는 공정으로, 이 때 제조된 철분말은 다공질이 아닌 고밀도(dense)의 분말이다. 또한 이렇게 제조된 분말들은 대부분 각진 큐브 모양, 구형 또는 불균질한 형태를 가지고 있다.Conventional methods for producing iron powder include 1) a sponge-iron process (thermal reduction process) and 2) a water-atomizing process. The sponge-iron process is a process of reducing iron oxide to produce porous iron powder, and the water spraying process is a process of atomizing molten iron using a high-pressure water jet, and the iron powder produced at this time is It is a powder of high density, not porous. Also, most of the powders prepared in this way have an angular cube shape, a spherical shape, or a heterogeneous shape.

상기 스폰지-철 공정에서 사용되는 산화철은 철광석 또는 제철공정 중 발생한 분말, 철판 제조 공정 중 표면 산세 후 발생하는 산세후액을 이용하여 제조된 산화철 등을 원료로 사용할 수 있으며, 상기 스폰지-철 공정으로 제조된 다공질의 철분말은 넓은 비표면적, 높은 반응성 및 강한 환원성의 특징을 가지고 있어, 자기윤활 베어링(self-lubricating bearings) 소재; 토양, 지하수, 산업 폐수 정화용 소재(촉매, 환원제 등); 용접봉 코팅소재; 주머니 난로 소재; 산소제거제; 철화합물 제조를 위한 원소재; 세멘테이션(cementation)을 위한 추출제 등과 같은 곳에서 사용될 수 있다.The iron oxide used in the sponge-iron process can be used as a raw material, such as iron ore or powder generated during the iron making process, iron oxide, etc., manufactured by using the after-pickling liquid generated after surface pickling during the iron plate manufacturing process, and the sponge-iron process The porous iron powder is characterized by a large specific surface area, high reactivity and strong reducibility, and is a material for self-lubricating bearings; Soil, groundwater, industrial wastewater purification materials (catalysts, reducing agents, etc.); Welding rod coating material; Pocket stove material; Oxygen scavenger; Raw materials for the production of iron compounds; It can be used in places such as extractants for cementation.

한편, 미국공개특허 제2016-0096739호는 염화제일철 수용액을 통해 철분말을 제조하는 공정을 사용하고 있으나, 염화제일철 수용액으로부터 침상 또는 봉상의 다공질 철분말을 제조하는 방법이 개발될 경우, 철 분말을 사용하는 분야에서 더욱 유용하게 사용할 수 있을 것으로 기대된다.On the other hand, U.S. Patent Publication No. 2016-0096739 uses a process of manufacturing iron powder through an aqueous ferrous chloride solution, but when a method for manufacturing a needle-shaped or rod-shaped porous iron powder from an aqueous ferrous chloride solution is developed, iron powder is used. It is expected to be more useful in the field of use.

본 발명의 일 견지는 침상 또는 봉상 형태의 특징 및 다공질의 특징을 모두 갖는 철분말을 제조하기 위한 제조방법을 제공하는 것이다.One aspect of the present invention is to provide a manufacturing method for producing iron powder having both a needle-shaped or rod-shaped characteristic and a porous characteristic.

본 발명의 다른 견지는 본 발명의 제조방법에 의해 제조된 철분말을 제공하는 것이다.Another aspect of the present invention is to provide iron powder prepared by the method of the present invention.

본 발명의 한 측면에 의하면 염화제일철 수용액을 농축하여 이수염화제일철을 제조하는 단계; 상기 이수염화제일철을 고액분리하여 이수염화제일철 분말을 제조하는 단계; 상기 이수염화제일철 분말을 산화시키는 단계; 및 상기 산화된 이수염화제일철을 환원하는 단계를 포함하는 침상 또는 봉상의 다공질 철분말 제조 방법이 제공된다.According to an aspect of the present invention, the step of preparing ferrous dihydrate by concentrating an aqueous ferrous chloride solution; Solid-liquid separating the ferrous dihydrate to prepare a ferrous dihydrate powder; Oxidizing the ferrous dihydrate powder; And there is provided a method for producing a needle-shaped or rod-shaped porous iron powder comprising the step of reducing the oxidized ferrous dihydrate.

본 발명의 다른 측면에 의하면 상기 제조방법에 의해 제조된 침상 또는 봉상의 다공질 철분말이 제공된다.According to another aspect of the present invention, there is provided a needle-shaped or rod-shaped porous iron powder manufactured by the above manufacturing method.

본 발명의 공정에 의하면 염화철 수용액으로부터 철분말의 대량 생산이 가능하며, 이렇게 제조된 철분말은 다공질의 침상 또는 봉상의 형상을 가지고 있어 기존의 다공질 철분말 적용 분야에 사용될 수 있음은 물론 봉상 분말의 특성에 기초한 충진율 향상, 작업성 향상, 물성 향상 등을 획득할 수 있다.According to the process of the present invention, it is possible to mass-produce iron powder from an aqueous solution of iron chloride, and the iron powder thus prepared has a porous needle shape or a rod shape, so that it can be used in the field of application of the existing porous iron powder. It is possible to obtain improved filling rate, improved workability, and improved physical properties based on characteristics.

도 1은 본 발명의 침상 또는 봉상의 다공질 철분말을 제조하는 방법의 개략적인 흐름도를 나타낸다.
도 2는 본 발명의 실시예에 따른 염화제일철 수용액의 농축 시 나타나는 이수염화제일철 및 사수염화제일철 결정을 SEM으로 촬영한 이미지를 나타낸다.
도 3은 본 발명의 실시예에 따른 염화제일철 수용액의 농축으로 획득한 이수염화제일철에 배소공정을 수행한 뒤 획득한 산화철 분말을 SEM으로 촬영한 이미지를 나타낸다.
도 4는 본 발명의 실시예에 따른 산화철 분말에 환원반응을 수행한 뒤 획득한 환원철 분말을 SEM으로 촬영한 이미지를 나타낸다.
1 shows a schematic flow diagram of a method of manufacturing a needle-shaped or rod-shaped porous iron powder of the present invention.
FIG. 2 shows an SEM image of ferrous dihydrate and ferrous tetrahydrate crystals that appear when the ferrous chloride aqueous solution is concentrated according to an embodiment of the present invention.
FIG. 3 is an SEM image of iron oxide powder obtained after performing a roasting process on ferrous dihydrate obtained by concentrating an aqueous ferrous chloride solution according to an embodiment of the present invention.
4 shows an image taken by SEM of the reduced iron powder obtained after performing a reduction reaction on the iron oxide powder according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.

본 발명은 침상 또는 봉상 형태의 특징 및 다공질의 특징을 모두 갖는 철분말을 제조하기 위한 제조방법 및 상기 제조방법에 의해 제조된 철분말을 제공하는 것이다. The present invention provides a manufacturing method for manufacturing iron powder having both a needle-shaped or rod-shaped characteristic and a porous characteristic, and an iron powder manufactured by the above manufacturing method.

구체적으로 본 발명의 침상 또는 봉상의 다공질 철분말 제조방법은 염화제일철 수용액을 농축하여 이수염화제일철을 제조하는 단계; 상기 이수염화제일철을 고액분리하여 이수염화제일철 분말을 제조하는 단계; 상기 이수염화제일철 분말을 산화시키는 단계; 및 상기 산화된 이수염화제일철을 환원하는 단계를 포함하는 침상 또는 봉상의 다공질 철분말 제조 방법을 제공한다.Specifically, the method for producing a needle-shaped or rod-shaped porous iron powder of the present invention includes the steps of preparing ferrous dihydrate by concentrating an aqueous ferrous chloride solution; Solid-liquid separating the ferrous dihydrate to prepare a ferrous dihydrate powder; Oxidizing the ferrous dihydrate powder; And it provides a needle-shaped or rod-shaped porous iron powder manufacturing method comprising the step of reducing the oxidized ferrous dihydrate.

상기 염화제일철 수용액의 원료는 철판제조 공정 중 표면에 있는 산화물 제거를 위한 산세공정 후 발생하는 후액, 기타 공정 중 발생하는 후액 또는 철을 염산에 녹인 수용액일 수 있으며, 상기 염화제일철 수용액은 포화 또는 과포화되지 않은 수용액인 것이 바람직하다.The raw material of the ferrous chloride aqueous solution may be a thick liquid generated after a pickling process for removing oxides on the surface during the iron plate manufacturing process, a thick liquid generated during other processes, or an aqueous solution in which iron is dissolved in hydrochloric acid, and the ferrous chloride aqueous solution is saturated or supersaturated. It is preferable that it is not an aqueous solution.

상기 염화제일철 수용액의 농도는 20 내지 625 g/L, 바람직하게는 250 내지 600g/L이다. 상기 농도가 20g/L 미만인 경우 수용액 내에 염화제일철의 양이 적어 농축 시 수분을 증발시키는 에너지가 과도하게 소모되고 또한 석출되는 이수염화제일철의 양이 적은 문제가 있으며, 625g/L를 초과하는 경우 염화제일철 수용액이 포화 또는 과포화되어 이송 중 침전이 발생되는 문제가 있다.The concentration of the aqueous ferrous chloride solution is 20 to 625 g/L, preferably 250 to 600 g/L. If the concentration is less than 20 g/L, there is a problem that the amount of ferrous chloride in the aqueous solution is small, so that the energy to evaporate moisture is excessively consumed during concentration, and the amount of precipitated ferrous dihydrate is small, and when it exceeds 625 g/L, chlorination There is a problem in that the ferrous aqueous solution is saturated or supersaturated, causing precipitation during transport.

상기 이수염화제일철을 제조하는 단계는 염화제일철 수용액을 농축하여 과포화된 이수염화제일철을 석출하고, 이때 농축은 예를 들어 증발 농축에 의해 수행될 수 있다. In the step of preparing the ferrous dihydrate, the ferrous chloride aqueous solution is concentrated to precipitate supersaturated ferrous dihydrate, and the concentration may be performed, for example, by evaporation and concentration.

한편, 상기 이수염화제일철 분말을 제조하는 단계에서 수행되는 고액분리는 예를 들어 원심분리기를 이용하여 상기 석출된 이수염화제일철을 분리할 수 있으나 이에 제한되는 것은 아니며, 여과 등 당해 기술 분야에서 고액 분리를 위해 사용될 수 있는 어떠한 방법으로써 수행될 수 있다. Meanwhile, the solid-liquid separation performed in the step of preparing the ferrous dihydrate powder may be performed by separating the precipitated ferrous dihydrate using, for example, a centrifuge, but is not limited thereto, and solid-liquid separation in the technical field such as filtration It can be done in any way that can be used for.

상기 이수염화제일철을 제조하는 단계가 증발 농축에 의해 수행되는 경우 농축 과정의 온도가 조절되어야 하며, 이때 증발 농축은 예를 들어 72 내지 125℃온도에서 수행하는 것이 바람직하며, 바람직하게는 75 내지 95℃ 온도에서 수행된다. 72℃ 미만의 온도로 수행되는 경우 사수염화제일철이 석출될 수 있으며, 상기 사수염화제일철은 각형의 다면체 형태로 석출되는 문제가 있고, 125℃를 초과하는 온도에서는 일수염화철이 발생할 뿐만 아니라 에너지가 과도하게 소모되는 문제가 있다. 상기 각형의 다면체 형태로 석출되는 사수염화제일철을 SEM으로 촬영한 이미지를 도 2의 좌측에 나타내었다. When the step of preparing the ferrous dihydrate is performed by evaporation and concentration, the temperature of the concentration process must be controlled, and at this time, evaporative concentration is preferably performed at a temperature of 72 to 125°C, preferably 75 to 95. It is carried out at °C temperature. When performed at a temperature of less than 72°C, ferrous tetrahydrate may be precipitated, and the ferrous tetrahydrate may precipitate in the form of a polygonal polyhedron, and at a temperature exceeding 125°C, not only iron monohydrate occurs, but also excessive energy. There is a problem of being consumed. An SEM image of the ferric tetrahydrochloride precipitated in the form of a polygonal polyhedron is shown on the left side of FIG. 2.

상기 이수염화제일철 분말을 산화시키는 단계는 산소분위기에서 열분해 반응을 시키는 배소공정에 의해 수행될 수 있다. 상기 배소공정에서 이수염화제일철과 산소의 반응은 다음과 같다. The step of oxidizing the ferrous dihydrate powder may be performed by a roasting process in which a pyrolysis reaction is performed in an oxygen atmosphere. In the roasting process, the reaction of ferrous dihydrate and oxygen is as follows.

2(FeCl2.H2O)+1/2O2 → Fe2O3+4HCl(g)2(FeCl 2 .H 2 O)+1/2O 2 → Fe 2 O 3 +4HCl(g)

이 때, 상기와 같은 반응으로 Fe2O3 뿐만 아니라 드물게 Fe3O4 또는 FeO 산화물이 생성될 수 있다.In this case, not only Fe 2 O 3 but also Fe 3 O 4 or FeO oxide may be generated by the above reaction.

또한, 상기 배소공정은 제한되지는 않으나, 유동로, 로터리킬른(rotary kiln), 벨트(belt)로, 드롭 튜브(drop tube)로 등의 반응로를 사용할 수 있으며, 반응 중 분말에 외력이 작용하여 분말이 파쇄되는 것을 최소화하여 봉상의 형태를 유지하는 것이 필요하다. In addition, the roasting process is not limited, but a reaction furnace such as a flow furnace, a rotary kiln, a belt furnace, and a drop tube furnace may be used, and an external force acts on the powder during the reaction. Therefore, it is necessary to minimize the crushing of the powder and maintain the shape of the rod.

나아가, 상기 배소공정의 반응은 200 내지 1300℃ 온도에서 수행할 수 있다. 200℃ 미만에서는 산화철이 생성되지 않으며 1300℃초과에서는 산화철 소결이 발생하여 원하는 모습의 산화철을 획득하기 어렵기 때문이다. 바람직하게는 500 내지 800℃ 온도에서 수행할 수 있다.Furthermore, the reaction of the roasting process is 200 It can be carried out at a temperature of to 1300 ℃. This is because iron oxide is not generated below 200°C, and iron oxide sintering occurs above 1300°C, making it difficult to obtain iron oxide in a desired shape. Preferably it can be carried out at a temperature of 500 to 800 ℃.

상기 배소공정을 통해 생성된 산화철의 형상을 구분하기 위하여 분급을 실시할 수 있다. 나아가, 상기 공정 중 발생하는 염산의 경우 습식포집을 하여 염산 수용액을 만들어 염화제일철 수용액을 만들 때 사용할 수 있다.Classification may be performed to distinguish the shape of the iron oxide produced through the roasting process. Furthermore, in the case of hydrochloric acid generated during the above process, it can be used when wet-collecting to prepare an aqueous hydrochloric acid solution to prepare an aqueous ferrous chloride solution.

상기 산화된 이수염화제일철을 환원하는 단계는 상기 산화된 이수염화제일철을 고온의 환원성 분위기에서 환원반응을 통해 수행될 수 있다. 이 때, 상기 환원성 분위기는 예를 들어 수소, 일산화탄소 또는 이들의 혼합가스 분위기일 수 있으며, 분해 등의 반응을 통해 수소, 일산화탄소 또는 이들의 혼합가스를 만들 수 있는 화합물을 환원제로 사용할 수 있다. 상기 환원반응은 예를 들어 다음과 같다.The step of reducing the oxidized ferrous dihydrate may be carried out through a reduction reaction of the oxidized ferrous dihydrate in a high-temperature reducing atmosphere. In this case, the reducing atmosphere may be, for example, hydrogen, carbon monoxide, or a mixed gas atmosphere thereof, and a compound capable of producing hydrogen, carbon monoxide or a mixed gas thereof through a reaction such as decomposition may be used as a reducing agent. The reduction reaction is, for example, as follows.

Fe2O3 + 3H2(g) or 3CO(g) → 2Fe + 3H2O(g) or 3CO2(g)Fe 2 O 3 + 3H 2 (g) or 3CO(g) → 2Fe + 3H 2 O(g) or 3CO 2 (g)

이 때, 상기 산화단계에서 드물게 생성된 Fe3O4 또는 FeO 산화물은 다음과 반응을 통해 환원반응이 일어난다.In this case, the Fe 3 O 4 or FeO oxide rarely generated in the oxidation step undergoes a reduction reaction through the following reaction.

FeO + H2(g) or CO(g) → Fe + H2O(g) or CO2(g)FeO + H 2 (g) or CO(g) → Fe + H 2 O(g) or CO 2 (g)

Fe3O4 + 4H2(g) or 4CO(g) → 3Fe + 4H2O(g) or 4CO2(g)Fe 3 O 4 + 4H 2 (g) or 4CO(g) → 3Fe + 4H 2 O(g) or 4CO 2 (g)

또한, 상기 환원반응은 제한되지는 않으나, 유동로, 로터리킬른(rotary kiln), 벨트(belt)로, 드롭 튜브(drop tube)로 등의 반응로를 사용할 수 있으며, 반응 중 분말에 외력이 작용하여 분말이 파쇄되는 것을 최소화하여 봉상의 형태를 유지하는 것이 필요하다. In addition, the reduction reaction is not limited, but a reaction furnace such as a flow furnace, a rotary kiln, a belt furnace, and a drop tube furnace may be used, and an external force acts on the powder during the reaction. Therefore, it is necessary to minimize the crushing of the powder and maintain the shape of the rod.

나아가, 상기 환원반응은 400 내지 1300℃ 온도에서 수행할 수 있다. 400℃ 미만에서는 반응속도가 느려 생산성이 떨어지며, 1300℃초과에서는 생성된 환원철의 소결이 과도하게 발생하거나 환원철 미세조직이 조대화되어 다공질의 조직이 사라지는 문제가 발생하기 때문이다. 상기 환원성 분위기가 수소분위기인 경우 상기 환원반응은 바람직하게 600 내지 800℃온도에서 수행할 수 있으며, 상기 환원성 분위기가 일산화탄소분위기인 경우 상기 환원반응은 바람직하게 700 내지 1000℃ 온도에서 수행할 수 있다.Furthermore, the reduction reaction is 400 It can be carried out at a temperature of to 1300 ℃. Below 400℃, the reaction speed is slow, so productivity decreases. Above 1300℃, the resulting reduced iron sintering occurs excessively or the reduced iron microstructure becomes coarse. This is because there is a problem that the porous tissue disappears. When the reducing atmosphere is a hydrogen atmosphere, the reduction reaction may be preferably performed at a temperature of 600 to 800°C, and when the reducing atmosphere is a carbon monoxide atmosphere, the reduction reaction may be performed at a temperature of preferably 700 to 1000°C.

상기 환원반응을 통해 생성된 환원철의 형상을 구분하기 위하여 분급을 실시할 수 있다. 나아가, 제조된 환원철의 경우 반응성이 좋아 재산화가 일어날 수 있기 때문에 불활성 분위기에서 분말을 수집하여야 한다.Classification may be performed to distinguish the shape of the reduced iron generated through the reduction reaction. Furthermore, in the case of the prepared reduced iron, the reactivity may occur due to good reactivity, so the powder must be collected in an inert atmosphere.

본 발명의 제조 방법에 의해 제조된 침상 또는 봉상의 다공질 철분말의 비표면적은 0.3~3 m2/g이고, 바람직하게는 0.5 내지 2.5m2/g이다. 철분말의 비표면적이 0.3m2/g 미만인 경우 반응성이 낮은 문제가 있고, 3m2/g를 초과하는 경우 대기 상태에서 쉽게 산화 또는 발화가 일어나 공정 중 취급이 어려운 문제가 있다.The specific surface area of the needle-shaped or rod-shaped porous iron powder prepared by the production method of the present invention is 0.3 to 3 m 2 /g, preferably 0.5 to 2.5 m 2 /g. When the specific surface area of the iron powder is less than 0.3m 2 /g, there is a problem of low reactivity, and when it exceeds 3m 2 /g, it is easily oxidized or ignited in the atmosphere, making it difficult to handle during the process.

이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples are only examples to aid understanding of the present invention, and the scope of the present invention is not limited thereto.

실시예Example

니켈 습식제련공정에서 발생하는 염화제일철(FeCl2) 수용액을 이용하여 침상 또는 봉상의 철분말을 제조하였다. 예시적인 공정을 도 1에 나타내었으며, 구체적인 공정은 다음과 같다.Needle-shaped or rod-shaped iron powder was prepared using an aqueous solution of ferrous chloride (FeCl 2 ) generated in the nickel hydrometallurgical process. An exemplary process is shown in FIG. 1, and a specific process is as follows.

염화제일철 수용액(농도는 220g/L)을 농축하여 과포화된 이수염화제일철(FeCl2·2H2O)을 석출하였다. 석출된 이수염화제일철을 원심분리기 방법으로 고액분리시켜 이수염화제일철 분말을 분리하였다. 이때, 수용액 농축은 80℃ 온도에서 수행되었다.The aqueous ferrous chloride solution (concentration is 220 g/L) was concentrated to precipitate supersaturated ferrous dihydrate (FeCl 2 ·2H 2 O). The precipitated ferrous dihydrate was solid-liquid separated by a centrifuge method to separate ferrous dihydrate powder. At this time, the aqueous solution was concentrated at a temperature of 80°C.

상기 단계에서 제조된 이수염화제일철의 결정을 SEM으로 촬영한 이미지를 도 2에 나타내었다.An image of the crystal of ferrous dihydrate prepared in the above step by SEM is shown in FIG. 2.

다음으로, 상기 이수염화제일철 분말을 로터리킬른에 투입하여, 산소가 포함된 고온의 분위기에서 열분해 반응을 통해 배소시켰다. 이로 인해 침상 또는 봉상의 산화철이 제조된다. Next, the ferrous dihydrate powder was added to a rotary kiln and roasted through a pyrolysis reaction in a high temperature atmosphere containing oxygen. This produces needle-shaped or rod-shaped iron oxide.

상기 배소공정은 700℃에서 90분동안 수행되었으며, 생산된 침상 또는 봉상의 산화철의 형상을 구분하기 위하여 분급을 실시하였다. 또한, 상기 Fe2O3뿐만 아니라 드물게 Fe3O4 또는 FeO 산화물도 생성될 수 있다. 한편, 상기 로터리킬른에서 함께 생산된 HCl은 스크러버(scrubber)로 포집하여 니켈 제련공정에 재사용하였다.The roasting process was performed at 700° C. for 90 minutes, and classification was performed to distinguish the shape of the produced needle-shaped or rod-shaped iron oxide. In addition, not only the Fe 2 O 3 but also Fe 3 O 4 or FeO oxide may be generated in rare cases. Meanwhile, the HCl produced together in the rotary kiln was collected with a scrubber and reused in the nickel smelting process.

상기와 같은 공정을 통해 생산된 산화된 철 분말을 SEM으로 촬영한 이미지를 도 3에 나타내었다.3 shows an image of the oxidized iron powder produced through the above process by SEM.

다음으로, 상기 침상 또는 봉상의 산화철을 메쉬 벨트(mesh belt)로 주입하여 고온의 기체환원분위기에서 환원반응을 통해 환원철 분말을 제조하였다. 이 때, 기체환원분위기는 수소 또는 일산화탄소 분위기이다. Next, the needle-shaped or rod-shaped iron oxide was injected into a mesh belt to prepare reduced iron powder through a reduction reaction in a high-temperature gas reduction atmosphere. At this time, the gas reduction atmosphere is hydrogen or carbon monoxide atmosphere.

상기 환원반응은 750℃에서 60분 동안 수행되었으며, 생산된 침상 또는 봉상의 산화철의 형상을 구분하기 위하여 분급을 실시하여, 침상 또는 봉상의 환원철 분말과 미세한 환원철 분말로 구분하였다.The reduction reaction was performed at 750° C. for 60 minutes, and classification was performed to distinguish the shape of the produced needle-shaped or rod-shaped iron oxide, and divided into needle-shaped or rod-shaped reduced iron powder and fine reduced iron powder.

생성된 침상 또는 봉상의 환원철 분말은 길이가 약 500 μm이고 기대 비율(aspect ratio)이 약 5가 되는 분말로 비표면적이 약 2.3 m2/g 이었다. 이 때, 제조된 환원철의 경우 반응성이 좋아 재산화가 일어날 수 있기 때문에 불활성 분위기에서 분말을 수집하여야 한다.The resulting needle-shaped or rod-shaped reduced iron powder was a powder having a length of about 500 μm and an aspect ratio of about 5, and a specific surface area of about 2.3 m 2 /g. In this case, since the prepared reduced iron has good reactivity and can cause reoxidation, the powder must be collected in an inert atmosphere.

상기와 같은 공정을 통해 생산된 환원된 철 분말을 SEM으로 촬영한 이미지를 도 4에 나타내었다.Fig. 4 shows an image of the reduced iron powder produced through the above process by SEM.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations are possible without departing from the technical spirit of the present invention described in the claims. It will be obvious to those of ordinary skill in the field.

Claims (10)

염화제일철 수용액을 72 내지 125℃의 온도에서 농축하여 이수염화제일철을 제조하는 단계;
상기 이수염화제일철을 고액분리하여 이수염화제일철 분말을 제조하는 단계;
상기 이수염화제일철 분말을 산화시키는 단계; 및
상기 산화된 이수염화제일철을 환원하는 단계를 포함하는 침상 또는 봉상의 다공질 철분말 제조 방법.
Preparing ferrous dihydrate by concentrating an aqueous ferrous chloride solution at a temperature of 72 to 125°C;
Solid-liquid separating the ferrous dihydrate to prepare a ferrous dihydrate powder;
Oxidizing the ferrous dihydrate powder; And
Needle-shaped or rod-shaped porous iron powder manufacturing method comprising the step of reducing the oxidized ferrous dihydrate.
제1항에 있어서, 상기 염화제일철 수용액의 농도는 20 내지 625g/L인, 침상 또는 봉상의 다공질 철분말 제조 방법.
The method of claim 1, wherein the concentration of the aqueous ferrous chloride solution is 20 to 625 g/L.
제1항에 있어서, 상기 염화제일철 수용액의 농축은 증발농축에 의해 수행되는, 침상 또는 봉상의 다공질 철분말 제조 방법.
The method of claim 1, wherein the concentration of the ferrous chloride aqueous solution is performed by evaporation and concentration.
제1항에 있어서, 상기 이수염화제일철 분말을 산화시키는 단계는 산소분위기의 200 내지 1300℃ 온도에서 배소에 의해 수행되는, 침상 또는 봉상의 다공질 철분말 제조 방법.
According to claim 1, The step of oxidizing the ferrous dihydrate powder is carried out by roasting at a temperature of 200 to 1300 °C in an oxygen atmosphere, needle-shaped or rod-shaped porous iron powder manufacturing method.
제1항에 있어서, 상기 이수염화제일철 분말을 환원하는 단계는 환원성 분위기 하의 400 내지 1300℃ 온도에서 수행하는, 침상 또는 봉상의 다공질 철분말 제조 방법.
The method of claim 1, wherein the reducing the ferrous dihydrate powder is performed at a temperature of 400 to 1300°C under a reducing atmosphere.
제5항에 있어서, 상기 환원성 분위기는 수소, 일산화탄소 또는 이들의 혼합가스 분위기인, 침상 또는 봉상의 다공질 철분말 제조 방법.
The method according to claim 5, wherein the reducing atmosphere is hydrogen, carbon monoxide, or a mixed gas atmosphere thereof.
제6항에 있어서, 상기 이수염화제일철 분말을 환원하는 단계는 수소 분위기인 경우 600 내지 800℃의 온도에서 수행되는, 침상 또는 봉상의 다공질 철분말 제조 방법.
The method of claim 6, wherein the reducing the ferrous dihydrate powder is performed at a temperature of 600 to 800°C in a hydrogen atmosphere.
제6항에 있어서, 상기 이수염화제일철 분말을 환원하는 단계는 일산화탄소 분위기인 경우 700 내지 1000℃의 온도에서 수행되는, 침상 또는 봉상의 다공질 철분말 제조 방법.
The method of claim 6, wherein the reducing the ferrous dihydrate powder is performed at a temperature of 700 to 1000°C in a carbon monoxide atmosphere.
제1항 내지 제8항 중 어느 한 항의 제조방법에 의해 제조된 침상 또는 봉상의 다공질 철분말.
A needle-shaped or rod-shaped porous iron powder manufactured by the manufacturing method of any one of claims 1 to 8.
제9항에 있어서, 상기 철분말은 비표면적이 0.3 내지 3m2/g인, 침상 또는 봉상의 다공질 철분말.
The method of claim 9, wherein the iron powder has a specific surface area of 0.3 to 3m 2 /g, needle-shaped or rod-shaped porous iron powder.
KR1020180134325A 2018-11-05 2018-11-05 Manufacturing method of cylindrical porous iron powder KR102175428B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020180134325A KR102175428B1 (en) 2018-11-05 2018-11-05 Manufacturing method of cylindrical porous iron powder
EP19881941.9A EP3878580A4 (en) 2018-11-05 2019-11-04 Method for manufacturing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder manufactured thereby
CN201980072505.XA CN112969544A (en) 2018-11-05 2019-11-04 Method for preparing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder prepared by same
US17/290,677 US20220008992A1 (en) 2018-11-05 2019-11-04 Method for manufacturing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder manufactured thereby
PCT/KR2019/014795 WO2020096293A1 (en) 2018-11-05 2019-11-04 Method for manufacturing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder manufactured thereby
JP2021523261A JP2022506098A (en) 2018-11-05 2019-11-04 Method for producing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder produced thereby.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180134325A KR102175428B1 (en) 2018-11-05 2018-11-05 Manufacturing method of cylindrical porous iron powder

Publications (2)

Publication Number Publication Date
KR20200051233A KR20200051233A (en) 2020-05-13
KR102175428B1 true KR102175428B1 (en) 2020-11-06

Family

ID=70612034

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180134325A KR102175428B1 (en) 2018-11-05 2018-11-05 Manufacturing method of cylindrical porous iron powder

Country Status (6)

Country Link
US (1) US20220008992A1 (en)
EP (1) EP3878580A4 (en)
JP (1) JP2022506098A (en)
KR (1) KR102175428B1 (en)
CN (1) CN112969544A (en)
WO (1) WO2020096293A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102477414B1 (en) * 2022-06-08 2022-12-15 김준현 Multi-functional mortar composition and method for repairing and reinforcing concrete and steel structure using the same and inorganic coating agent for protecting surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798731B1 (en) * 2015-12-24 2017-11-17 주식회사 포스코 Method for manufacturing iron oxide

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB662051A (en) * 1948-01-06 1951-11-28 Davide Primavesi Improved chemical process for producing powdered iron
DE2907255A1 (en) * 1979-02-24 1980-09-04 Basf Ag METHOD FOR PRODUCING NEEDLE-SHAPED FERROMAGNETIC IRON PARTICLES
US4464196A (en) * 1983-08-24 1984-08-07 Hercules Incorporated Acicular ferromagnetic metal particles
KR950006268B1 (en) * 1993-07-16 1995-06-13 김미라 Making method of powder metal
KR0157067B1 (en) * 1993-08-26 1999-03-30 스마 요시츠기 Rolling element
FR2794672B1 (en) * 1999-06-10 2001-09-07 Asb Aerospatiale Batteries PROCESS FOR THE PREPARATION OF METAL POWDERS, METAL POWDERS THUS PREPARED AND COMPACTS INCLUDING SUCH POWDERS
JP2005145757A (en) * 2003-11-14 2005-06-09 Nisshin Steel Co Ltd Method for manufacturing iron oxide powder
SE0303187D0 (en) * 2003-11-26 2003-11-26 Hoeganaes Ab Food additive
CN101898800A (en) * 2010-02-03 2010-12-01 深圳市东江环保股份有限公司 Method for preparing iron oxide red by using ferrous chloride
US20160096739A1 (en) 2014-09-29 2016-04-07 Innova Powders, Inc. Iron powder product with high specific surface area
TWI570245B (en) * 2015-11-19 2017-02-11 Taiwan Powder Technologies Co Ltd A method for preparing a porous spherical iron-based alloy powder by a reduction reaction, the powder and the powder are prepared Sintered body
KR101924274B1 (en) * 2017-01-11 2018-11-30 국방과학연구소 Manufacturing method using two-step reduction for iron metal powders and iron metal powders by the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798731B1 (en) * 2015-12-24 2017-11-17 주식회사 포스코 Method for manufacturing iron oxide

Also Published As

Publication number Publication date
EP3878580A1 (en) 2021-09-15
US20220008992A1 (en) 2022-01-13
EP3878580A4 (en) 2021-12-29
KR20200051233A (en) 2020-05-13
WO2020096293A1 (en) 2020-05-14
CN112969544A (en) 2021-06-15
JP2022506098A (en) 2022-01-17

Similar Documents

Publication Publication Date Title
Peng A literature review on leaching and recovery of vanadium
He et al. Hazard-free treatment of electrolytic manganese residue and recovery of manganese using low temperature roasting-water washing process
JP5652503B2 (en) Scandium recovery method
CN105129839A (en) Method for producing micron-grade zinc oxide with high fluorine and chlorine crude zinc oxide as raw material
Peng et al. Vanadium properties, toxicity, mineral sources and extraction methods: a review
JP7384904B2 (en) Method for producing fine metal powder from metal compounds
JP2016108583A (en) Method for recovering rare earth element from noble metal smelting slag
CN103370428A (en) Method for enrichment-recovering ferronickel from raw material containing nickel, method for recovering nickel from enriched ferronickel, and method for recycling solution containing iron produced from same
CN113195412A (en) Pure iron-containing compound
KR102175428B1 (en) Manufacturing method of cylindrical porous iron powder
KR20160077399A (en) Method for Producing Ferro Nickel
Ling et al. Selective removal of arsenic from crude antimony trioxide by leaching with nitric acid
Yao et al. Clean process for vanadium extraction from vanadium-bearing converter slag
KR20150050630A (en) Method for producing high purity manganese oxide from byproduct of manganese steel alloy smelting furnace and electric furnace and high purity manganese oxide produced thereby
EP3098199A1 (en) Process for the direct production of tungsten carbide powders of various grain sizes starting from scheelite
JP6769437B2 (en) A useful method for separating light rare earth elements and heavy rare earth elements
JP2006144102A (en) Method for recovering nickel and/or cobalt sulfide
US2665981A (en) Metallic powders
JP5052963B2 (en) Method for producing molten zinc
KR101778399B1 (en) Method for recovering scattered iron oxide dust from nickel extraction process
JP2016013941A (en) Method for producing rhenium sulfide, method for producing aqueous perrhenic acid solution, method for producing potassium perrhenate, method for producing ammonium perrhenate, and method for producing rhenium metal
KR101798731B1 (en) Method for manufacturing iron oxide
Sekimoto et al. New separation technique of titanium and iron for titanium ore upgrading
KR101585777B1 (en) Method for multi-step reduction of low grade nickel ore and concentration method in nickel recovery from low grade nickel ore using the same
US20230183827A1 (en) Methods of metal extraction

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant