JP2005145757A - Method for manufacturing iron oxide powder - Google Patents

Method for manufacturing iron oxide powder Download PDF

Info

Publication number
JP2005145757A
JP2005145757A JP2003385719A JP2003385719A JP2005145757A JP 2005145757 A JP2005145757 A JP 2005145757A JP 2003385719 A JP2003385719 A JP 2003385719A JP 2003385719 A JP2003385719 A JP 2003385719A JP 2005145757 A JP2005145757 A JP 2005145757A
Authority
JP
Japan
Prior art keywords
iron oxide
oxide powder
furnace
iron
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003385719A
Other languages
Japanese (ja)
Inventor
Tomoharu Kitani
智治 木谷
Akinori Hiraiwa
亮紀 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003385719A priority Critical patent/JP2005145757A/en
Publication of JP2005145757A publication Critical patent/JP2005145757A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can control chlorine concentration and a particle diameter in parallel corresponding to their objective values when an iron oxide powder is manufactured from a pickling waste solution at steel plate pickling. <P>SOLUTION: When the iron oxide powder is manufactured by the spray roasting of an iron chloride aqueous solution, residual chlorine concentration is controlled by adjusting the temperature in a furnace. As the particle diameter of the iron oxide powder is decided by the size of a sprayed droplet and the iron concentration in the aqueous solution, the size of the produced iron oxide powder is controlled by fixing the droplet diameter by keeping the ratio of the spray pressure to the spray quantity of the chloride aqueous solution constant and by adjusting the iron concentration in the droplet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、塩化鉄水溶液から噴霧焙焼法により粒径が整い、残留塩素濃度が調整された酸化鉄粉を製造する方法に関する。   The present invention relates to a method for producing iron oxide powder having a particle size adjusted from an aqueous iron chloride solution by spray roasting and having a residual chlorine concentration adjusted.

鋼板の酸洗に使用した酸洗廃液から塩酸を回収する際、酸を回収すると同時に、残された塩化鉄水溶液から鉄分を回収する意味で当該塩化鉄水溶液を噴霧焙焼して酸化鉄を製造している。
通常、噴霧焙焼法を適用する焙焼炉1は、通常、図1に示すように、略円筒形状の焙焼炉本体と、炉体の下部に設けられた燃焼バーナ5と、炉体の上部に設けられたスプレーノズル2とを有している。そして燃焼バーナ5で燃料4と空気が混合された後、燃焼され、焙焼炉内に燃焼ガス12が吹き込まれる。燃焼バーナ5は炉体円周の接線方向に熱風を吹き込むように配置されているために、炉内に吹き込まれた燃焼ガス12は炉の下部から上に向けて旋回して上昇し、旋回流9を生じている。一方、上部のスプレーノズル2から噴霧された塩化鉄水溶液3中の塩化鉄は、旋回流9中で水や水素と反応し、粒子状の酸化鉄とガス状の塩酸が得られる。粒子状の酸化鉄は焙焼炉の下部に落下し酸化鉄粉8として貯留され、必要に応じてロータリーバルブ7を用いて取り出される。また、ガス状の塩酸は燃焼ガス12とともに、排ガス10として炉外に排出される。なお、6は温度センサである。
When recovering hydrochloric acid from the pickling waste solution used for pickling of steel sheets, iron oxide is produced by spray roasting the iron chloride aqueous solution in the sense that iron is recovered from the remaining iron chloride aqueous solution at the same time as collecting the acid. doing.
Usually, the roasting furnace 1 to which the spray roasting method is applied is usually an approximately cylindrical roasting furnace body, a combustion burner 5 provided at the lower part of the furnace body, and a furnace body as shown in FIG. It has a spray nozzle 2 provided in the upper part. And after the fuel 4 and air are mixed with the combustion burner 5, it is burned and the combustion gas 12 is blown into the roasting furnace. Since the combustion burner 5 is arranged so as to blow hot air in the tangential direction of the furnace body circumference, the combustion gas 12 blown into the furnace swirls upward from the lower part of the furnace, 9 is produced. On the other hand, iron chloride in the iron chloride aqueous solution 3 sprayed from the upper spray nozzle 2 reacts with water and hydrogen in the swirling flow 9 to obtain particulate iron oxide and gaseous hydrochloric acid. Particulate iron oxide falls to the lower part of the roasting furnace, is stored as iron oxide powder 8, and is taken out using the rotary valve 7 as necessary. The gaseous hydrochloric acid is discharged out of the furnace as the exhaust gas 10 together with the combustion gas 12. Reference numeral 6 denotes a temperature sensor.

ところで、得られた酸化鉄粉は、磁性材料の原料等に使用されるため、残存塩素濃度が低く均一で、粒径が整っていること等が要求されている。
このため、例えば、特許文献1には、焙焼炉の最適な炉内温度をファジー推論することにより酸化鉄の品質を制御するために、原料である塩化鉄水溶液中の鉄濃度及び製品である酸化鉄の圧縮密度、平均粒径、塩素濃度を所定の周期で検出し、これらの検出値を入力変数として焙焼炉の最適胴部温度及び最適炉底温度をあいまい理論に基づいて演算し、焙焼炉内の胴部温度が該演算結果と一致するように燃焼ガス流量をカスケード制御すると共に、所定の周期で検出した焙焼炉内の胴部温度及び炉底温度を入力変数としてロータリーバルブの回転数をあいまい理論に基づいて演算し、炉底温度が該演算結果と一致するようにロータリーバルブの回転数を制御することが提案されている。
By the way, since the obtained iron oxide powder is used as a raw material of a magnetic material or the like, it is required that the residual chlorine concentration is low and uniform, and the particle diameter is uniform.
For this reason, for example, Patent Document 1 discloses the iron concentration and the product in the iron chloride aqueous solution as a raw material in order to control the quality of iron oxide by fuzzy inference of the optimum furnace temperature of the roasting furnace. Detect the compression density, average particle size, and chlorine concentration of iron oxide in a predetermined cycle, and calculate the optimum body temperature and the optimum furnace bottom temperature of the roasting furnace based on the fuzzy theory using these detected values as input variables. A cascade control of the combustion gas flow rate so that the body temperature in the roasting furnace matches the calculation result, and a rotary valve with the body temperature and the furnace bottom temperature detected in a predetermined cycle as input variables It has been proposed to calculate the rotational speed of the rotary valve based on the fuzzy theory and control the rotational speed of the rotary valve so that the furnace bottom temperature matches the result of the computation.

また、特許文献2には、得られる酸化鉄粉の粒径を比較的大きく、その粒径を制御するために、バーナからの火炎又は高温ガス流に供給方向に沿って複数の噴霧ノズルを設置し、噴霧ノズルからの噴霧量の総量の調整と、噴霧するノズルの数の調整を行うことが提案されている。
さらに、特許文献3には、粒径が小さく、かつ残留塩素濃度の低い酸化鉄粉を安定的に製造するために、焙焼炉の炉内温度を測定する温度センサを焙焼炉胴部の周方向に複数配設し、この温度センサの測定値の最小値が目標温度になるように塩化鉄水溶液の噴霧量及び/又は燃料ガス量を制御することが提案されている。
Moreover, in patent document 2, in order to control the particle size of the iron oxide powder obtained relatively large, in order to control the particle size, a plurality of spray nozzles are installed along the supply direction in the flame or high-temperature gas flow from the burner. It has been proposed to adjust the total amount of spray from the spray nozzle and adjust the number of nozzles to be sprayed.
Furthermore, Patent Document 3 discloses a temperature sensor for measuring the temperature inside the roasting furnace in order to stably produce iron oxide powder having a small particle size and a low residual chlorine concentration. It has been proposed to dispose a plurality of sensors in the circumferential direction and to control the spray amount and / or the fuel gas amount of the aqueous iron chloride solution so that the minimum value of the measured value of the temperature sensor becomes the target temperature.

特開平6−56430号公報JP-A-6-56430 特開平7−71881号公報JP-A-7-71881 特開2000−159524号公報JP 2000-159524 A

しかしながら、特許文献1に記載の方法では、炉内温度の調整により、粉体の粒径と粉体中の残存塩素濃度の両方を制御しようとしているために、互いの制御に影響がでやすくなる。また、特許文献2に記載の方法では、結果的に粉体の粒径を制御しているのみであるから、残留塩素濃度が少なく、均一な酸化鉄粉を安定的に得ることはできない。しかも、溶液の供給量,溶液の各ノズルへの分配量,及び噴霧に用いるノズルの数を種々変化させて調整しているため、制御が複雑になっている。さらに、特許文献3に記載の方法も、実際の操業にあっては、炉温と噴霧量の両方を調整することになる。噴霧量を調整しようとするときには、ノズルに負荷される噴霧圧の変更が伴うことになる。ノズル個数を一定にして噴霧するとき、噴霧圧が高くなりすぎると、配管やフランジにも負荷がかかりすぎ、破損・噴出の懸念が生じる。逆に、噴霧圧が低すぎると、ノズルからの噴霧不安定になるばかりでなく、ノズル冷却能が低下し、ノズル自身の溶融の懸念が生じる。したがって、噴霧量の調整範囲、ひいては粒径の調整範囲が狭くなってしまう。
本発明は、このような問題を解消すべく案出されたものであり、酸化鉄粉中の残存塩素濃度の制御を炉温調整で、酸化鉄粉の粒径制御を噴霧水溶液の濃度調整で行うことにより、目標とする塩素濃度と粒径に応じてパラに制御可能な酸化鉄粉の製造方法を提供することを目的とする。
However, in the method described in Patent Document 1, since both the particle diameter of the powder and the residual chlorine concentration in the powder are to be controlled by adjusting the furnace temperature, the mutual control is easily affected. . Moreover, since the method described in Patent Document 2 only controls the particle size of the powder as a result, the residual chlorine concentration is small and uniform iron oxide powder cannot be stably obtained. In addition, since the supply amount of the solution, the distribution amount of the solution to each nozzle, and the number of nozzles used for spraying are adjusted in various ways, the control is complicated. Furthermore, the method described in Patent Document 3 also adjusts both the furnace temperature and the spray amount in actual operation. When trying to adjust the spray amount, the spray pressure applied to the nozzle is changed. When spraying with a constant number of nozzles, if the spray pressure becomes too high, the pipes and flanges will be overloaded and there will be a risk of breakage or ejection. On the other hand, if the spray pressure is too low, not only the spray from the nozzle becomes unstable, but also the cooling ability of the nozzle decreases, and there is a concern that the nozzle itself melts. Accordingly, the adjustment range of the spray amount, and thus the adjustment range of the particle size, becomes narrow.
The present invention has been devised to solve such problems. The residual chlorine concentration in the iron oxide powder is controlled by adjusting the furnace temperature, and the particle size of the iron oxide powder is controlled by adjusting the concentration of the spray aqueous solution. By carrying out, it aims at providing the manufacturing method of the iron oxide powder which can be controlled paraly according to the target chlorine concentration and particle size.

本発明の酸化鉄粉の製造方法は、その目的を達成するため、塩化鉄水溶液を焙焼炉内に噴霧し、噴霧された塩化鉄水溶液を前記焙焼炉内で燃焼ガスと反応させ、酸化鉄を生成させて酸化鉄粉を製造する際に、炉内温度を調整するとともに、噴霧する塩化鉄水溶液の鉄分濃度を調整することにより製造される酸化鉄粉の塩素濃度と粒径をコントロールすることを特徴とする。   In order to achieve the object of the method for producing iron oxide powder of the present invention, an aqueous iron chloride solution is sprayed into a roasting furnace, the sprayed iron chloride aqueous solution is reacted with a combustion gas in the roasting furnace, and oxidized. When producing iron oxide powder by generating iron, the temperature inside the furnace is adjusted, and the chlorine concentration and particle size of the iron oxide powder produced are controlled by adjusting the iron concentration in the iron chloride aqueous solution to be sprayed. It is characterized by that.

塩化鉄水溶液を噴霧焙焼して酸化鉄粉を製造する方法においては、酸化鉄粉中の残留塩素濃度は炉内温度に影響される。したがって、本発明においては、炉内温度を調整して残留塩素濃度を調整している。
一方、製造される酸化鉄粉の粒径は、炉内温度や噴霧ノズルの位置等にも影響されるが、基本的には噴霧された液滴の大きさと水溶液の鉄分濃度によって決まってくる。したがって、塩化物水溶液の噴霧量を一定にし、噴霧された液滴の径が同じであっても、液滴中の鉄分濃度の大小により製造された酸化鉄粉の大きさを調整できることになる。噴霧圧を大きく変える必要がないのでノズルにかかる負担は軽減され、噴霧量も大きく変動されることがないので安定的な操業が可能となる。
In the method of producing iron oxide powder by spray roasting an aqueous iron chloride solution, the residual chlorine concentration in the iron oxide powder is affected by the furnace temperature. Therefore, in the present invention, the residual chlorine concentration is adjusted by adjusting the furnace temperature.
On the other hand, the particle size of the iron oxide powder to be produced is influenced by the temperature in the furnace, the position of the spray nozzle, etc., but is basically determined by the size of the sprayed droplets and the iron concentration of the aqueous solution. Therefore, even when the spray amount of the chloride aqueous solution is made constant and the diameter of the sprayed droplets is the same, the size of the iron oxide powder produced can be adjusted depending on the iron concentration in the droplets. Since there is no need to greatly change the spray pressure, the burden on the nozzle is reduced, and the spray amount is not greatly changed, so that stable operation is possible.

本発明に用いる装置の基本的な全体構造を、図2に基づいて説明する。
噴霧焙焼炉装置の構造は、従来から使用されている装置と基本的に差異はない。酸洗ラインLで発生した酸洗廃液は一旦廃酸タンク21に集液される。廃液は、塩酸濃縮塔22に導かれ、塩酸分Hと濃縮酸分に分離され、塩酸分Hは塩酸として回収される。一方、濃縮酸分は濃縮酸受槽23で一旦蓄えられた後、順次焙焼炉1に送られ、炉体上部に設置されたスプレーノズル2から炉内に噴霧される。そして、本発明に用いる装置にあっては、スプレーノズル2につながる供給管に水供給口24と濃度計25が付設され、濃度計25の測定データと別途指示されたデータに基づいて算定された塩化物水溶液濃度に調整するための水補給が行えるように配管されている。26は算定用のコンピュータである。
The basic overall structure of the apparatus used in the present invention will be described with reference to FIG.
The structure of the spray roasting furnace apparatus is basically the same as the apparatus conventionally used. The pickling waste liquid generated in the pickling line L is once collected in the waste acid tank 21. The waste liquid is guided to the hydrochloric acid concentration tower 22 and separated into a hydrochloric acid content H and a concentrated acid content, and the hydrochloric acid content H is recovered as hydrochloric acid. On the other hand, after the concentrated acid content is temporarily stored in the concentrated acid receiving tank 23, it is sequentially sent to the roasting furnace 1 and sprayed into the furnace from the spray nozzle 2 installed at the upper part of the furnace body. And in the apparatus used for this invention, the water supply port 24 and the concentration meter 25 were attached to the supply pipe connected to the spray nozzle 2, and it calculated based on the measurement data of the concentration meter 25 and the data instructed separately. It is piped so that water can be replenished to adjust the chloride aqueous solution concentration. Reference numeral 26 denotes a computer for calculation.

炉体には下部に燃焼バーナ5が、燃焼ガスを炉体円周の接線方向に吹き込むように配置されているとともに、温度を測定するセンサ6も設置され、この温度測定センサの測定値に基づき燃料供給量を調整・制御する機構も付設されている。この機構自体も従来のものと基本的には同じである。排出された排ガス中の酸化鉄粉を回収するために、排ガスはサイクロン29を経由され、回収された酸化鉄粉はホッパ30に貯蔵され、塩酸含有ガスは濃縮塔22を経由して塩酸吸収塔31に回送される。
さらに、炉底にロータリーバルブ7が設置されるとともに、排出された酸化鉄粉を乾燥させるロータリーキルン27及び製造された酸化鉄粉を貯蔵するホッパ28が付設されている。この点も従来の焙焼設備と差はない。
A combustion burner 5 is arranged at the lower part of the furnace body so that combustion gas is blown in a tangential direction of the circumference of the furnace body, and a sensor 6 for measuring temperature is also installed. Based on the measured value of this temperature measurement sensor A mechanism for adjusting and controlling the fuel supply amount is also provided. This mechanism itself is basically the same as the conventional one. In order to recover the iron oxide powder in the discharged exhaust gas, the exhaust gas is passed through the cyclone 29, the recovered iron oxide powder is stored in the hopper 30, and the hydrochloric acid-containing gas is passed through the concentration tower 22 to the hydrochloric acid absorption tower. It is forwarded to 31.
Further, a rotary valve 7 is installed at the bottom of the furnace, and a rotary kiln 27 for drying the discharged iron oxide powder and a hopper 28 for storing the manufactured iron oxide powder are attached. This is also no different from conventional roasting equipment.

次に本発明にしたがった焙焼方法を詳しく説明する。
上部に設置されたスプレーノズル2から所定圧で所定量の塩化鉄水溶液を炉内に噴霧する。同時に炉体下部に設置した燃焼バーナ5に燃料と空気を送給して燃焼させ、燃焼ガスを炉体円周の接線方向に吹き込む。
燃焼ガス量は噴霧量と焙焼炉温度により決定される。焙焼炉温度が一定値になるよう、燃焼ガス量の制御を行う。
炉内では、高温の燃焼ガスと上部から噴霧された塩化鉄水溶液により、下記酸化還元反応が進行する。
4FeCl2+4H2O+O2 → 2Fe23+8HCl
燃焼ガスは、上記反応のO2を供給するために、空燃比>1に設定する。また、反応温度を上げればより反応は早くなる。すなわち、炉内温度を高くすればするほど、反応は進み、酸化鉄中の塩素濃度は低くなる。ただし、一般的には炉内の耐火物、及び付属品の耐熱温度を考慮し、600〜800℃を目標温度とする。
Next, the roasting method according to the present invention will be described in detail.
A predetermined amount of iron chloride aqueous solution is sprayed into the furnace at a predetermined pressure from a spray nozzle 2 installed at the top. At the same time, fuel and air are supplied to the combustion burner 5 installed in the lower part of the furnace body and burnt, and the combustion gas is blown in the tangential direction of the furnace body circumference.
The amount of combustion gas is determined by the spray amount and the roasting furnace temperature. The amount of combustion gas is controlled so that the roasting furnace temperature becomes a constant value.
In the furnace, the following oxidation-reduction reaction proceeds by the high-temperature combustion gas and the iron chloride aqueous solution sprayed from above.
4FeCl 2 + 4H 2 O + O 2 → 2Fe 2 O 3 + 8HCl
The combustion gas is set to air-fuel ratio> 1 in order to supply O 2 of the above reaction. Also, the reaction becomes faster if the reaction temperature is raised. That is, the higher the furnace temperature, the more the reaction proceeds and the lower the chlorine concentration in the iron oxide. However, in general, the heat resistance temperature of the refractory in the furnace and accessories is taken into consideration, and the target temperature is 600 to 800 ° C.

噴霧された液滴と上昇する燃焼ガスとを反応させ、生成した塩酸ガスを燃焼ガスとともに排ガスとして炉外に排出するとともに、生成された酸化鉄粒子をロータリーバルブの作用で炉底から適宜取り出す。
炉底から取り出され、ロータリーキルンで乾燥された酸化鉄粉の成分分析を行うとともに、粒径も測定する。
酸化鉄粉中の残留塩素濃度の測定値に基づき、既存の炉内温度と残留塩素塩素と関係を参考にして、目標とする残留塩素濃度になるように、燃料送給量および空気送給量を調整して炉内温度を制御する。すなわち、残留塩素濃度は炉内温度が低いほど高くなるので、目標残留濃度よりも高い場合には、既知のデータを参考にして、その差に応じて燃料の燃焼量が多くなるように調整して、炉内温度をフィードバック制御する。
The sprayed droplets and the rising combustion gas are reacted, and the generated hydrochloric acid gas is discharged out of the furnace as the exhaust gas together with the combustion gas, and the generated iron oxide particles are appropriately taken out from the furnace bottom by the action of the rotary valve.
The component analysis of iron oxide powder taken out from the furnace bottom and dried in a rotary kiln is performed, and the particle size is also measured.
Based on the measured value of residual chlorine concentration in iron oxide powder, referring to the relationship between existing furnace temperature and residual chlorine chlorine, fuel supply amount and air supply amount so that the target residual chlorine concentration is achieved To adjust the furnace temperature. In other words, the residual chlorine concentration increases as the furnace temperature decreases, so if it is higher than the target residual concentration, adjust the fuel combustion amount to increase according to the difference with reference to known data. Feedback control of the furnace temperature.

塩化鉄水溶液を所定圧・所定量で噴霧された液滴は、一定の大きさで焙焼炉内を漂い、燃焼ガスと反応して酸化鉄の微粒子を生成する。このとき生成される酸化鉄粒子の大きさは液滴の大きさと濃度で決定される。そして、液滴の大きさが一定であるとき、酸化鉄粒子の大きさは液滴の濃度、すなわち塩化鉄水溶液の鉄分濃度で決定される。そこで、炉体から排出され、ロータリーキルンで乾燥された酸化鉄粉の粒径を測定し、その測定結果をフィードバックし、濃度計の測定データと併せて、塩化物水溶液濃度を調整するための水補給量を算出し、水補給口から水を供給する。
取り出された酸化鉄粉の粒径及び残留塩素濃度を一定時間ごとにサンプリングして測定し、その測定値に応じて、上記のように噴霧する塩化鉄水溶液の濃度及び炉内温度を調整する。
A droplet sprayed with an aqueous solution of iron chloride at a predetermined pressure and a predetermined amount drifts in the roasting furnace with a certain size, and reacts with the combustion gas to generate iron oxide fine particles. The size of the iron oxide particles generated at this time is determined by the size and concentration of the droplets. When the size of the droplet is constant, the size of the iron oxide particles is determined by the concentration of the droplet, that is, the iron concentration of the aqueous iron chloride solution. Therefore, the particle size of the iron oxide powder discharged from the furnace body and dried in the rotary kiln is measured, the measurement result is fed back, and the water supply for adjusting the concentration of chloride aqueous solution is combined with the measurement data of the densitometer Calculate the amount and supply water from the water supply port.
The particle size and residual chlorine concentration of the extracted iron oxide powder are sampled and measured at regular time intervals, and the concentration of the iron chloride aqueous solution to be sprayed and the furnace temperature are adjusted as described above according to the measured values.

本発明の方法を実際の焙焼炉に適用した例について説明する。
直径5.6m,高さ21m3であり、炉の下部にLPGガスを燃料とする最大能力1000000kcal/Hrの燃焼バーナを2基、スプレーノズルを2基有する焙焼炉に適用した。
2基のスプレーノズルから、酸洗廃液を総量で1.6m3/Hrで噴霧した。また、2
基の燃焼バーナで、75m3/HrのLPGガスを燃焼させて炉中央部の温度が650℃になるように調整した。
An example in which the method of the present invention is applied to an actual roasting furnace will be described.
This was applied to a roasting furnace having a diameter of 5.6 m and a height of 21 m 3 , and having two combustion burners with LPG gas as a fuel and a maximum capacity of 1,000,000 kcal / Hr and two spray nozzles at the bottom of the furnace.
From the two spray nozzles, the pickling waste liquid was sprayed at a total amount of 1.6 m 3 / Hr. 2
With the basic combustion burner, 75 m 3 / Hr of LPG gas was burned to adjust the temperature at the center of the furnace to 650 ° C.

濃縮塔通過後の濃縮酸比重は1.47、Fe濃度143.3g/Lのとき、ノズル噴霧圧力は0.4MPaであった。この噴霧圧力とノズル特性より想定される噴霧液滴径は150〜160μmである。このときの酸化鉄の平均粒径は0.82μm、塩素濃度は0.083%であった。
平均粒径を小さくすべく、濃縮酸へ水を補給し濃縮酸比重を1.45、Fe濃度にして132.7g/Lまで下げたところ、酸化鉄の粒径は0.78μmまで小径化した。このとき、塩素濃度,焙焼炉温度,ノズル噴霧圧に変化はなかった。
そして、水補給量の変更により、酸洗廃液の濃縮酸比重、すなわち塩化鉄水溶液の濃度を種々変えて噴霧焙焼し、得られた酸化鉄粉の粒径を測定した。測定結果を、酸洗廃液の濃縮酸比重と酸化鉄粉の粒径との関係で整理すると、図3に示すようになっていた。
When the concentrated acid specific gravity after passing through the concentration tower was 1.47 and the Fe concentration was 143.3 g / L, the nozzle spray pressure was 0.4 MPa. The spray droplet diameter assumed from the spray pressure and the nozzle characteristics is 150 to 160 μm. At this time, the average particle diameter of the iron oxide was 0.82 μm and the chlorine concentration was 0.083%.
In order to reduce the average particle size, water was added to the concentrated acid to reduce the concentrated acid specific gravity to 1.45 and the Fe concentration to 132.7 g / L. As a result, the iron oxide particle size was reduced to 0.78 μm. . At this time, there was no change in chlorine concentration, roasting furnace temperature, and nozzle spray pressure.
Then, by changing the amount of water replenished, the concentrated acid specific gravity of the pickling waste liquid, that is, the concentration of the aqueous iron chloride solution was varied and spray-roasted, and the particle size of the obtained iron oxide powder was measured. FIG. 3 shows the measurement results arranged according to the relationship between the concentrated acid specific gravity of the pickling waste liquid and the particle size of the iron oxide powder.

バラツキはあるが、濃縮酸比重と得られた酸化鉄粉の粒径は線的な関係にあることがわかる。すなわち、濃縮酸濃度の調整により酸化鉄粉の粒径をコントロールすることができることがわかる。
なお、図3にみられるバラツキは、噴霧された濃縮酸液滴の大きさのバラツキに起因するものである。スプレーノズルで所定量の液体を噴霧した場合、徐々にノズル内への異物詰まりにより、噴霧圧力は高くなる。噴霧圧力と噴霧液滴径の関係は表1にみられるように、噴霧圧が高いほど液滴径は小さくなる。このため、当初の条件変更しなくても、ノズル内での異物詰まりにより噴霧圧力が次第に高くなり、全体として製造された酸化鉄粉の粒径の大きさにバラツキが生じるものである。
Although there is variation, it can be seen that the concentrated acid specific gravity and the particle size of the obtained iron oxide powder have a linear relationship. That is, it can be seen that the particle size of the iron oxide powder can be controlled by adjusting the concentrated acid concentration.
Note that the variation seen in FIG. 3 is due to the variation in the size of the sprayed concentrated acid droplets. When a predetermined amount of liquid is sprayed with the spray nozzle, the spray pressure gradually increases due to the clogging of foreign matter inside the nozzle. As can be seen in Table 1, the relationship between the spray pressure and the spray droplet diameter is smaller as the spray pressure is higher. For this reason, even if the initial conditions are not changed, the spraying pressure gradually increases due to clogging of foreign matters in the nozzle, and the particle size of the iron oxide powder produced as a whole varies.

Figure 2005145757
Figure 2005145757

酸化鉄粉の塩素濃度のコントロールには、他の特許でも多く用いられている炉温による制御を実施する。
前述と同じ設備、同じ条件にて、酸洗廃液1.6m3/Hrで処理した。前述の通り、炉温が650℃になるように調整されており、得られた酸化鉄粉の平均粒径は0.82μm、塩素濃度は0.083%であった。
この状態より、さらに塩素濃度を低下させるべく、燃焼量を増やし、炉温を680℃に調整した。この結果、塩素濃度は0.077%まで低下したが、平均粒径は0.85μmまで大径化した。そこで、さらに濃縮酸比重を1.46、Fe濃度を133g/Lまで調整した。他の条件はそのままである。
この結果、塩素濃度は0.077%のままで、平均粒径は0.82μmにまで小径化した。
To control the chlorine concentration of the iron oxide powder, the furnace temperature, which is often used in other patents, is controlled.
It processed with the pickling waste liquid 1.6m < 3 > / Hr on the same equipment and the same conditions as the above-mentioned. As described above, the furnace temperature was adjusted to 650 ° C., and the obtained iron oxide powder had an average particle size of 0.82 μm and a chlorine concentration of 0.083%.
From this state, in order to further reduce the chlorine concentration, the combustion amount was increased and the furnace temperature was adjusted to 680 ° C. As a result, the chlorine concentration decreased to 0.077%, but the average particle size increased to 0.85 μm. Therefore, the concentrated acid specific gravity was further adjusted to 1.46, and the Fe concentration was adjusted to 133 g / L. Other conditions remain the same.
As a result, the chlorine concentration remained at 0.077% and the average particle size was reduced to 0.82 μm.

以上の説明からわかるように、酸化鉄粉中の残留塩素濃度については炉温によりコントロールすることができ、その粒径は濃縮酸の濃度によりコントロールすることができる。すなわち、両者を分離、制御することにより、塩素濃度及び粒径を別々に目標値へコントロールすることが可能となる。   As can be seen from the above description, the residual chlorine concentration in the iron oxide powder can be controlled by the furnace temperature, and the particle size can be controlled by the concentration of the concentrated acid. That is, by separating and controlling both, the chlorine concentration and the particle size can be controlled separately to the target values.

噴霧焙焼炉の構造を説明する縦断面図A longitudinal sectional view explaining the structure of a spray roasting furnace 酸洗廃液から塩酸及び酸化鉄粉を回収する態様を説明する図The figure explaining the aspect which collects hydrochloric acid and iron oxide powder from pickling waste liquid 酸洗廃液の濃縮酸比重と酸化鉄粉粒径との関係を示す図The figure which shows the relationship between the concentrated acid specific gravity of the pickling waste liquid and the iron oxide powder particle size

Claims (1)

塩化鉄水溶液を焙焼炉内に噴霧し、噴霧された塩化鉄水溶液を前記焙焼炉内で燃焼ガスと反応させ、酸化鉄を生成させて酸化鉄粉を製造する際に、炉内温度を調整するとともに、噴霧する塩化鉄水溶液の鉄分濃度を調整することにより製造される酸化鉄粉の塩素濃度と粒径をコントロールすることを特徴とする酸化鉄粉の製造方法。   When the iron chloride aqueous solution is sprayed into the roasting furnace, the sprayed iron chloride aqueous solution is reacted with the combustion gas in the roasting furnace, and iron oxide is produced to produce the iron oxide powder. A method for producing an iron oxide powder, characterized by controlling the chlorine concentration and particle size of the iron oxide powder produced by adjusting and adjusting the iron concentration of the iron chloride aqueous solution to be sprayed.
JP2003385719A 2003-11-14 2003-11-14 Method for manufacturing iron oxide powder Withdrawn JP2005145757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385719A JP2005145757A (en) 2003-11-14 2003-11-14 Method for manufacturing iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385719A JP2005145757A (en) 2003-11-14 2003-11-14 Method for manufacturing iron oxide powder

Publications (1)

Publication Number Publication Date
JP2005145757A true JP2005145757A (en) 2005-06-09

Family

ID=34693685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385719A Withdrawn JP2005145757A (en) 2003-11-14 2003-11-14 Method for manufacturing iron oxide powder

Country Status (1)

Country Link
JP (1) JP2005145757A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169125A (en) * 2015-03-13 2016-09-23 Jfeケミカル株式会社 Production method of iron oxide powder
KR101798731B1 (en) * 2015-12-24 2017-11-17 주식회사 포스코 Method for manufacturing iron oxide
WO2020096293A1 (en) * 2018-11-05 2020-05-14 주식회사 포스코 Method for manufacturing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder manufactured thereby
CN113943152A (en) * 2021-09-06 2022-01-18 横店集团东磁股份有限公司 Method for preparing permanent magnetic ferrite from high-chlorine iron oxide red and permanent magnetic ferrite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169125A (en) * 2015-03-13 2016-09-23 Jfeケミカル株式会社 Production method of iron oxide powder
KR101798731B1 (en) * 2015-12-24 2017-11-17 주식회사 포스코 Method for manufacturing iron oxide
WO2020096293A1 (en) * 2018-11-05 2020-05-14 주식회사 포스코 Method for manufacturing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder manufactured thereby
CN112969544A (en) * 2018-11-05 2021-06-15 株式会社Posco Method for preparing needle-shaped or rod-shaped porous iron powder and needle-shaped or rod-shaped porous iron powder prepared by same
CN113943152A (en) * 2021-09-06 2022-01-18 横店集团东磁股份有限公司 Method for preparing permanent magnetic ferrite from high-chlorine iron oxide red and permanent magnetic ferrite

Similar Documents

Publication Publication Date Title
CN107750320B (en) Method for controlling the operation of a combustion boiler
EP1816396B1 (en) Treatment method for combustible gas in waste melting furnace
JP2008542481A (en) System for converting coal to gas of specific composition
CN107543174B (en) The control method of garbage incinerating system and garbage incinerating system
JP2011153819A (en) Oxy-fuel combustion system with closed loop flame temperature control
CN105783025B (en) A method of wind powder distribution in the low NOx tangential firing boilers stove of monitoring
US7077069B2 (en) U-type slag-tap firing boiler and method of operating the boiler
EP3770133A1 (en) Fly ash modification method
US20140076214A1 (en) Method and plant for the treatment of materials, in particular waste materials and refuse
JP4216731B2 (en) Control system for waste treatment equipment
Hrdlicka et al. Oxyfuel combustion in a bubbling fluidized bed combustor
US8673247B2 (en) Method for operating a regenerative shaft furnace for producing lime
EP2940386B1 (en) Waste melting furnace
Scala Attrition during steam gasification of lignite char in a fluidized bed reactor
JP4992325B2 (en) Operation management method and operation management system for cement manufacturing apparatus
JP2005145757A (en) Method for manufacturing iron oxide powder
JP2020503449A (en) Gas processing apparatus and operation method using the same
CN103183460B (en) Sludge treatment device
JP2015075245A (en) Waste gasification melting furnace and waste gasification melting furnace operation method
AU600720B2 (en) Treatment of sulphate waste material
CN106021916A (en) Calculation method suitable for NOx emission of ultra-supercritical boiler
Nasir et al. Performance of enugu sub-bituminous coal in fluidized bed combustor
CN108726549A (en) A kind of transformation of crystal energy saver, Alumina Calcination System and its production method
JP5410633B1 (en) Drying apparatus and drying method using the drying apparatus
JP6525759B2 (en) Coke dry fire extinguisher

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206