JP2016108583A - Method for recovering rare earth element from noble metal smelting slag - Google Patents

Method for recovering rare earth element from noble metal smelting slag Download PDF

Info

Publication number
JP2016108583A
JP2016108583A JP2014244687A JP2014244687A JP2016108583A JP 2016108583 A JP2016108583 A JP 2016108583A JP 2014244687 A JP2014244687 A JP 2014244687A JP 2014244687 A JP2014244687 A JP 2014244687A JP 2016108583 A JP2016108583 A JP 2016108583A
Authority
JP
Japan
Prior art keywords
acid
rare earth
ions
acid leaching
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014244687A
Other languages
Japanese (ja)
Other versions
JP6392650B2 (en
Inventor
実 河崎
Minoru Kawasaki
実 河崎
希世史 弘末
Kiyoshi HIROSUE
希世史 弘末
岳人 鳥井
Takehito TORII
岳人 鳥井
山口 勉功
Benko Yamaguchi
勉功 山口
英弘 関本
Hidehiro Sekimoto
英弘 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2014244687A priority Critical patent/JP6392650B2/en
Publication of JP2016108583A publication Critical patent/JP2016108583A/en
Application granted granted Critical
Publication of JP6392650B2 publication Critical patent/JP6392650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To recover high-purity rare-earth elements from a noble metal smelting slag through a simple and inexpensive process without using an expensive organic solvent extraction method.SOLUTION: A method for recovering rare-earth elements from a noble metal smelting slag includes continuously carrying out the following processes: an inorganic acid leaching process of dissolving the noble metal smelting slag including rare-earth elements in the aqueous solution of inorganic acids excluding sulfuric acid and phosphoric acid to obtain an acid leachate including the rare-earth elements; a cementation process of adding a metallic iron to the acid leachate to precipitate heavy metals replaceable and precipitable with iron, and removing the heavy metals by solid-liquid separation; an oxidation process of adding an oxidant to the heavy metal-removed acid leachate to convert the divalent Fe ions to the trivalent Fe ions by oxidation; a neutralization process of adjusting the pH of the acid leachate after oxidation to 5 to 7 to precipitate the trivalent Fe ions and aluminum ions as hydroxides to remove by solid-liquid separation; and a recovery process of adjusting the pH of the separated acid leachate to 8 to 10 and precipitating the rare-earth elements as hydroxides to recover by solid-liquid separation.SELECTED DRAWING: Figure 1

Description

本発明は、貴金属製錬の各工程において発生した、希土類元素と重金属とを含有する貴金属製錬スラグから、有用物質である希土類元素を回収する方法に関する。   The present invention relates to a method for recovering a rare earth element, which is a useful substance, from a noble metal smelting slag containing rare earth elements and heavy metals generated in each step of noble metal smelting.

希土類元素は、近年、その特異な物理的性質を活かして、固体電解質、希土類磁石、蛍光体、研磨剤等、多様な分野で用いられている。しかし、希土類元素は、その名の示す通り、埋蔵量の少ない元素である上に、産出地自体が世界的に偏在しており、その供給に不安があるため、従来から、使用済み材料からの希土類元素の回収が強く望まれていた。   In recent years, rare earth elements have been used in various fields such as solid electrolytes, rare earth magnets, phosphors, and abrasives, taking advantage of their unique physical properties. However, as the name suggests, rare earth elements are low in reserves, and the production areas themselves are unevenly distributed around the world. Recovery of rare earth elements has been strongly desired.

使用済み材料からの希土類元素の回収方法について開示されている技術には、その使用済み材料が、希土類元素を用いた研磨剤や希土類磁石等、使用済みの材料中の希土類元素の含有量が比較的高く、かつ、同時に含まれる不純物の種類が限定される場合が多い。
例えば、特許文献1(特開2004−175652号公報)には、研磨廃液から希土類酸化物を回収する技術が、特許文献2(特開2012−237053号公報)には、希土類磁石合金を含む原料を用いる希土類元素の回収技術が、それぞれ開示されている。
The technology disclosed for the method of recovering rare earth elements from used materials is compared with the content of rare earth elements in used materials such as abrasives and rare earth magnets using rare earth elements. In many cases, the types of impurities contained at the same time are limited.
For example, Patent Document 1 (Japanese Patent Laid-Open No. 2004-175852) discloses a technique for recovering a rare earth oxide from polishing waste liquid, and Patent Document 2 (Japanese Patent Laid-Open No. 2012-237053) discloses a raw material containing a rare earth magnet alloy. Techniques for recovering rare earth elements using bis are disclosed.

一方、希土類元素の含有量および含まれる不純物の多様性の観点から比較すると、上述の使用済み材料には劣るものの、貴金属製錬の各工程において排出される精錬スラグも、相当量の希土類元素を含有するので、希土類元素の回収源として有望と考えられる。なお、貴金属製錬スラグとは、貴金属を含む基体(例えば自動車用廃ガス触媒や石油化学触媒)と還元剤とフラックスとを混合し、電気炉中で還元した際に発生する副生物であり、原料及びフラックスに由来するSi、Ca、Al、Fe等の酸化物以外に、Cu、Ni、Pb等の重金属を含有している。回収後の用途を考慮すると、貴金属製錬スラグから希土類元素を回収するに当たっては、フラックス成分以外に、これらの重金属、特にCuも分離する必要がある。   On the other hand, when compared from the viewpoint of the rare earth element content and the diversity of impurities contained therein, although it is inferior to the above-mentioned used materials, the smelting slag discharged in each process of precious metal smelting also contains a considerable amount of rare earth elements. Since it is contained, it is considered as a promising source for collecting rare earth elements. Note that the precious metal smelting slag is a by-product generated when a base containing precious metal (for example, an automobile waste gas catalyst or petrochemical catalyst), a reducing agent and a flux are mixed and reduced in an electric furnace, In addition to oxides such as Si, Ca, Al, and Fe derived from raw materials and flux, heavy metals such as Cu, Ni, and Pb are contained. Considering the use after recovery, when recovering rare earth elements from precious metal smelting slag, it is necessary to separate these heavy metals, particularly Cu, in addition to the flux components.

不純物を含むスラグからの希土類元素の回収方法としては、例えば、特許文献3(国際公開第2012/137495号パンフレット)には、溶媒抽出法を用いた、Snの製錬スラグからの希土類元素の回収方法が提案されている。しかし、溶媒抽出法は、希土類元素の精密分離には好適な方法であるが、分離に使用する有機溶媒が高価な上、火災防止のための特別な設備が必要でコストが高くなるため、希土類元素を安価に一括で回収する目的には不向きである。
なお、特許文献3に開示されている蓚酸塩沈殿形成による希土類元素の分離方法は、処理に用いる薬剤が高価であり、かつ処理液のCOD(化学的酸素要求量)が高いので、排水処理の負荷が高くなる。
また、特許文献3に記載の方法は、UやTh等の放射性物質の分離を主目的としており、CuやPb等の重金属元素の分離については何等開示がない。
As a method for recovering rare earth elements from slag containing impurities, for example, Patent Document 3 (International Publication No. 2012/137495) discloses recovery of rare earth elements from Sn smelting slag using a solvent extraction method. A method has been proposed. However, the solvent extraction method is suitable for the precise separation of rare earth elements, but the organic solvent used for the separation is expensive and requires special equipment for fire prevention, which increases the cost. It is not suitable for the purpose of collecting the elements at a low cost in a batch.
In addition, since the chemical | medical agent used for a process is expensive and the chemical | medical agent used for a process is high and the COD (chemical oxygen demand) of a process liquid is high, the separation method of the rare earth elements by the oxalate precipitation formation currently disclosed by patent document 3 is used. The load becomes high.
The method described in Patent Document 3 is mainly intended for separation of radioactive substances such as U and Th, and there is no disclosure about separation of heavy metal elements such as Cu and Pb.

溶媒抽出法を用いない希土類元素の回収方法としては、例えば、特許文献4(特開2013−104098号公報)に、水溶液中において、希土類元素の硫酸塩複塩沈殿生成することにより、希土類元素を回収する技術が開示されている。
しかし、この方法の場合、希土類元素の硫酸塩複塩沈殿生成の溶解度積との関係で、処理液の陰イオン濃度を予め4〜10mol/Lという高濃度にしておく必要があり、処理に用いる薬剤のコストが非常に高くなり、かつ、この方法では、沈殿形成に硫酸塩イオンを用いるため、Caを含有する貴金属製錬スラグの場合、難溶性の硫酸Ca(石膏)が生成するので、貴金属製錬スラグからの希土類元素の回収には不向きである。
As a method for recovering a rare earth element without using a solvent extraction method, for example, Patent Document 4 (Japanese Patent Application Laid-Open No. 2013-104098) discloses that a rare earth element is produced by precipitation of a sulfate double salt of a rare earth element in an aqueous solution. Techniques for recovery are disclosed.
However, in the case of this method, it is necessary to set the anion concentration of the treatment liquid to a high concentration of 4 to 10 mol / L in advance in relation to the solubility product of the rare earth element sulfate double salt precipitation, and this is used for the treatment. In this method, since the cost of the chemical becomes very high and sulfate ions are used for precipitation formation, in the case of noble metal smelting slag containing Ca, poorly soluble Ca sulfate (gypsum) is produced. It is not suitable for the recovery of rare earth elements from smelting slag.

鉱滓からの希土類元素の回収方法の例としては、特許文献5(国際公開第2013/085052号パンフレット)にAl製錬のボーキサイト残渣を用いる方法が開示されているが、この方法は、上記残渣に含まれる、酸に難溶性のペロブスカイト結晶を溶解するために、酸による浸出を高温高圧で行うという特殊な方法であり、かつ、特許文献5においては、重金属元素の分離に関する考慮は、何等されていない。   As an example of a method for recovering rare earth elements from iron ore, Patent Document 5 (International Publication No. 2013/085052 pamphlet) discloses a method using an Al smelting bauxite residue. In order to dissolve the perovskite crystal that is hardly soluble in acid, it is a special method in which leaching with an acid is performed at high temperature and pressure, and in Patent Document 5, no consideration is given to the separation of heavy metal elements. Absent.

特開2004−175652号公報Japanese Patent Laid-Open No. 2004-175552 特開2012−237053号公報JP 2012-237053 A 国際公開第2012/137495号パンフレットInternational Publication No. 2012/137495 Pamphlet 特開2013−104098号公報JP 2013-1004098 A 国際公開第2013/085052号パンフレットInternational Publication No. 2013/085052 Pamphlet

本発明は、上述した各先行技術の問題点に鑑み、高価な有機溶媒抽出法を用いることなく、簡易かつ安価な工程により、貴金属製錬スラグ中に大量に共存するフラックス由来の成分および重金属成分を分離・除去し、高純度の希土類元素を回収することを目的とする。   In view of the problems of the prior arts described above, the present invention provides a flux-derived component and a heavy metal component that coexist in a large amount in a precious metal smelting slag without using an expensive organic solvent extraction method and by a simple and inexpensive process. The purpose is to collect and remove high-purity rare earth elements.

上記課題を解決するために、本発明においては、以下の希土類元素回収方法が提供される。
第1の方法においては、希土類元素を含む貴金属製錬スラグを硫酸とリン酸を除く無機酸の水溶液中で溶解し、貴金属製錬スラグに含まれる酸可溶成分を浸出した後酸不溶性の固体を固液分離することにより、希土類元素を含む酸浸出液を得る無機酸浸出工程と、前記酸浸出液に金属状態の鉄を添加して、Cu等の鉄と置換析出可能な重金属イオンを金属状態で析出させ、析出した金属を固液分離により除去するセメンテーション工程と、重金属を除去した酸浸出液に酸化剤を添加して酸浸出液中の2価のFeイオンを酸化して3価のFeイオンとする酸化処理工程と、酸化処理後の酸浸出液のpHを5〜7に調整して3価のFeイオンおよびアルミニウムイオンを水酸化物として析出させ、固液分離により除去する中和処理工程、および、AlおよびFeの水酸化物を除去した酸浸出液のpHを8〜10に調整し、希土類元素を水酸化物として析出させ、希土類元素の水酸化物を固液分離により回収する回収工程とを連続して行う。回収した希土類元素の水酸化物は公知の手段により洗浄した後、乾燥または焼成することにより希土類元素の水酸化物または酸化物を得る、貴金属製錬スラグからの希土類元素回収方法が提供される。
第2の方法として、上記の第1の方法における酸化処理工程と中和処理工程を、最初にAlの水酸化物を分離した後、引き続いて2価のFeイオンを酸化して3価のFeイオンとし、3価のFeの水酸化物を分離する二段階の処理としても構わない。
なお、これらの回収方法においては、酸化剤として酸素を含む気体、例えば空気を使用することが好ましい。
In order to solve the above problems, the present invention provides the following rare earth element recovery method.
In the first method, a precious metal smelting slag containing rare earth elements is dissolved in an aqueous solution of an inorganic acid excluding sulfuric acid and phosphoric acid, and an acid-soluble component contained in the precious metal smelting slag is leached and then an acid-insoluble solid. Inorganic acid leaching step for obtaining an acid leaching solution containing rare earth elements by solid-liquid separation, adding iron in a metallic state to the acid leaching solution, and heavy metal ions capable of substitution precipitation with iron such as Cu in the metallic state A cementation step in which the precipitated metal is removed by solid-liquid separation; and an oxidant is added to the acid leaching solution from which heavy metals have been removed to oxidize divalent Fe ions in the acid leaching solution to form trivalent Fe ions. An oxidation treatment step, a neutralization treatment step of adjusting the pH of the acid leaching solution after the oxidation treatment to 5 to 7 to precipitate trivalent Fe ions and aluminum ions as hydroxides, and removing them by solid-liquid separation, and , The pH of the acid leaching solution from which the hydroxides of l and Fe have been removed is adjusted to 8 to 10, the rare earth element is precipitated as a hydroxide, and the recovery step of recovering the rare earth element hydroxide by solid-liquid separation is continued. And do it. There is provided a method for recovering rare earth elements from precious metal smelting slag, wherein the recovered rare earth element hydroxides are washed by a known means, and then dried or fired to obtain rare earth element hydroxides or oxides.
As a second method, the oxidation treatment step and the neutralization treatment step in the first method described above are carried out by first separating the Al hydroxide and then oxidizing the divalent Fe ions to obtain the trivalent Fe. A two-stage treatment for separating ions and trivalent Fe hydroxide may be performed.
In these recovery methods, it is preferable to use a gas containing oxygen, such as air, as the oxidant.

第3の方法においては、希土類元素を含む貴金属製錬スラグを硫酸とリン酸を除く無機酸の水溶液中で溶解し、貴金属製錬スラグに含まれる酸可溶成分を浸出した後固液分離することにより、希土類元素を含む酸浸出液を得る無機酸浸出工程と、重金属を除去した酸浸出液のpHを5〜7に調整し、FeイオンおよびAlイオンを水酸化物として析出させ、固液分離により除去する中和処理工程および分離工程と、AlおよびFeの水酸化物を除去した酸浸出液にアンモニウム塩またはアンモニア水を添加してCuを可溶性の銅−アンミン錯体とする錯化処理工程と、酸浸出液のpHを8〜10に調整し、希土類元素を水酸化物として析出させ、希土類元素の水酸化物を固液分離により回収する回収工程とを連続して行い、回収した希土類元素の水酸化物を洗浄した後、乾燥または焼成することにより希土類元素の水酸化物または酸化物を得る、貴金属製錬スラグからの希土類元素回収方法が提供される。
これらの回収方法において、無機酸として塩酸および硝酸の1種または2種を使用することが好ましい。
なお、本発明の希土類元素回収方法は、スズ精錬スラグ等の鉱石の製錬スラグからの希土類元素回収に用いることも可能である。
In the third method, the precious metal smelting slag containing rare earth elements is dissolved in an aqueous solution of an inorganic acid excluding sulfuric acid and phosphoric acid, and the acid-soluble component contained in the precious metal smelting slag is leached, followed by solid-liquid separation. The inorganic acid leaching step for obtaining an acid leaching solution containing a rare earth element, and adjusting the pH of the acid leaching solution from which heavy metals have been removed to 5 to 7, causing Fe ions and Al ions to precipitate as hydroxides, and solid-liquid separation A neutralization treatment step and a separation step to be removed; a complexation treatment step in which an ammonium salt or aqueous ammonia is added to the acid leaching solution from which Al and Fe hydroxides have been removed to form Cu as a soluble copper-ammine complex; The pH of the leachate is adjusted to 8 to 10, the rare earth element is precipitated as a hydroxide, and the recovery step of recovering the rare earth element hydroxide by solid-liquid separation is continuously performed. After the hydroxide wash, give a hydroxide or oxide of a rare earth element by drying or calcining a rare earth element method for recovering a precious metal smelting slag is provided.
In these recovery methods, it is preferable to use one or two of hydrochloric acid and nitric acid as the inorganic acid.
The rare earth element recovery method of the present invention can also be used for recovery of rare earth elements from ore smelting slag such as tin refining slag.

以上、本発明の回収方法を用いることにより、不純物として重金属元素を含有する貴金属製錬スラグから、安価な工程により、高純度の希土類元素を回収することが可能となった。   As described above, by using the recovery method of the present invention, it has become possible to recover a high-purity rare earth element from a noble metal smelting slag containing a heavy metal element as an impurity by an inexpensive process.

本発明の希土類元素回収方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the rare earth element collection | recovery method of this invention. 本発明の希土類元素回収方法の他の実施形態を示すフローチャートである。It is a flowchart which shows other embodiment of the rare earth element recovery method of this invention. 本発明の希土類元素回収方法の他の実施形態を示すフローチャートである。It is a flowchart which shows other embodiment of the rare earth element recovery method of this invention.

図1は、本発明の希土類元素回収方法の第一の実施形態を示すフローチャートである。この実施形態においては、酸浸出液中に浸出したCu等の、Feより貴な元素の不純物は、金属Feと置換し、金属状態で析出させた後、固液分離により、酸浸出液から分離・除去する。
図2は、本発明の希土類元素回収方法の第二の実施形態を示すフローチャートである。この実施形態においても、酸浸出液中に浸出したCu等の、Feより貴な元素の不純物は、金属Feと置換し、金属状態で析出させた後、固液分離により、酸浸出液から分離・除去する。
図3は、本発明の希土類元素回収方法の第三の実施形態を示すフローチャートである。この実施形態においては、不純物のCuは、可溶性のCu−アンミン錯体とすることにより、最終的に酸浸出液中に残存させることにより、希土類元素から分離する。Pbについては、水酸化物として析出させるか、もしくはFeの水酸化物に吸着させることにより、酸浸出液から分離・除去する。
以下、図1から図3のフローチャートに基づき、本発明の希土類元素回収方法の詳細について説明する。
FIG. 1 is a flowchart showing a first embodiment of the rare earth element recovery method of the present invention. In this embodiment, impurities such as Cu that have been leached into the acid leaching solution are replaced with metal Fe, precipitated in a metallic state, and then separated and removed from the acid leaching solution by solid-liquid separation. To do.
FIG. 2 is a flowchart showing a second embodiment of the rare earth element recovery method of the present invention. In this embodiment as well, impurities such as Cu leached into the acid leaching solution are replaced with metal Fe and precipitated in a metallic state, and then separated and removed from the acid leaching solution by solid-liquid separation. To do.
FIG. 3 is a flowchart showing a third embodiment of the rare earth element recovery method of the present invention. In this embodiment, the impurity Cu is separated from the rare earth element by finally being left in the acid leaching solution by forming a soluble Cu-ammine complex. Pb is separated and removed from the acid leaching solution by being precipitated as a hydroxide or adsorbed on an Fe hydroxide.
Details of the rare earth element recovery method of the present invention will be described below with reference to the flowcharts of FIGS.

[無機酸浸出工程]
本発明において、希土類元素の回収源として、貴金属製錬スラグを用いる。本発明において、貴金属製錬スラグの粒径は特に規定するものではないが、無機酸水溶液中による浸出の速度を考慮すると、0.3mm以下、好ましくは0.15mm以下が好ましい。無機酸水溶液の温度は20〜70℃が好ましい。スラグの粒径を調整するためには、スラグの凝固時に水砕するか、凝固後のスラグを機械的に粉砕すると良い。
[Inorganic acid leaching process]
In the present invention, noble metal smelting slag is used as a rare earth element recovery source. In the present invention, the particle size of the precious metal smelting slag is not particularly specified, but considering the leaching rate in the aqueous inorganic acid solution, it is preferably 0.3 mm or less, preferably 0.15 mm or less. The temperature of the inorganic acid aqueous solution is preferably 20 to 70 ° C. In order to adjust the particle size of the slag, it is preferable to perform water granulation when the slag is solidified or to mechanically crush the solidified slag.

貴金属製錬スラグからの酸可溶成分の浸出には、無機酸を用いることが好ましい。有機酸を用いても酸可溶成分を浸出させることが可能であるが、その場合、排液中に有機物が含まれ、COD値が高くなり、排水処理コストの増大を招くため、好ましくない。
無機酸浸出工程に用いる酸としては、塩酸、硝酸、過塩素酸等、いかなる無機酸を用いても良いが、硫酸とリン酸は好ましくない。貴金属製錬スラグには、フラックス由来のCaとAlが多量に含まれており、浸出液に硫酸を用いると、硫酸塩イオンがCaと反応し、難溶性の硫酸Ca(石膏)が形成されるため、スラグ表面が難溶性の石膏で覆われ、酸可溶性成分の浸出を阻害する様になる。また、浸出したCaは硫酸塩イオンと反応して石膏の沈殿を形成し、浸出液の均一撹拌の障害になるとともに、固液分離の手段として濾過を用いた場合、濾過性を損ねる。浸出液にリン酸を用いると、この場合は、難溶性のリン酸Alが形成されるので、硫酸における硫酸Caと同様な現象が生起する。
入手の容易さと価格とを考慮すると、無機酸浸出工程に用いる酸としては、塩酸または硝酸およびそれらの混合液を用いることが好ましい。
なお、無機酸浸出工程における酸浸出反応、および、後述する中和処理工程並びに回収処理工程における水酸化物の析出反応の際には、反応促進の観点から、処理液を機械的に撹拌することが好ましい。
An inorganic acid is preferably used for the leaching of the acid-soluble component from the noble metal smelting slag. Even if an organic acid is used, it is possible to leach out an acid-soluble component. However, in that case, an organic substance is contained in the drainage liquid, the COD value is increased, and the wastewater treatment cost is increased, which is not preferable.
As the acid used in the inorganic acid leaching step, any inorganic acid such as hydrochloric acid, nitric acid, perchloric acid or the like may be used, but sulfuric acid and phosphoric acid are not preferable. Precious metal smelting slag contains a large amount of flux-derived Ca and Al, and when sulfuric acid is used in the leachate, sulfate ions react with Ca to form insoluble Ca sulfate (gypsum). The slag surface is covered with poorly soluble gypsum, which inhibits the leaching of acid-soluble components. Further, the leached Ca reacts with sulfate ions to form a gypsum precipitate, which hinders uniform stirring of the leachate and impairs filterability when filtration is used as a means for solid-liquid separation. When phosphoric acid is used for the leaching solution, in this case, hardly soluble Al phosphate is formed, and thus a phenomenon similar to Ca sulfate in sulfuric acid occurs.
Considering availability and price, it is preferable to use hydrochloric acid or nitric acid and a mixture thereof as the acid used in the inorganic acid leaching step.
In the acid leaching reaction in the inorganic acid leaching step, and in the hydroxide precipitation reaction in the neutralization treatment step and recovery treatment step described later, the treatment liquid is mechanically stirred from the viewpoint of promoting the reaction. Is preferred.

無機酸浸出工程に用いる酸の濃度は、例えば、pH=1以下の溶液でH+がスラグに含まれるCaOのモル量の2倍以上、且つMgOのモル量の2倍以上、且つAl23のモル量の6倍以上、とすることができる。
無機酸浸出反応に必要な時間は、出発物質である貴金属製錬スラグの結晶粒径や含有成分の比率により異なってくるが、通常は1〜2時間である。浸出反応をより完全に行うには2時間以上かけることが望ましい。
なお、無機酸浸出工程においては、浸出反応促進の観点から、反応溶液を公知の撹拌手段により撹拌することが好ましい。
The concentration of acid used in the inorganic acid leaching step, for example, pH = 1 following solutions in H + is at least twice the molar amount of CaO contained in slag, and 2 times or more the molar amount of MgO, and Al 2 O More than 6 times the molar amount of 3 .
The time required for the inorganic acid leaching reaction varies depending on the crystal grain size of the precious metal smelting slag, which is the starting material, and the ratio of the contained components, but is usually 1 to 2 hours. It is desirable to take 2 hours or more to perform the leaching reaction more completely.
In the inorganic acid leaching step, the reaction solution is preferably stirred by a known stirring means from the viewpoint of promoting the leaching reaction.

無機酸浸出工程においては、主としてSiO2が不溶解成分として固体で残存するので、固液分離手段を用いて、酸浸出液から分離・除去する。
固液分離手段としては、デカンテーション、濾過、遠心分離等、公知の固液分離手段のいかなるものを用いても構わない。
In the inorganic acid leaching step, mainly SiO 2 remains as an insoluble component in a solid state, so that it is separated and removed from the acid leaching solution using a solid-liquid separation means.
As the solid-liquid separation means, any known solid-liquid separation means such as decantation, filtration, and centrifugation may be used.

[セメンテーション工程]
セメンテーションという言葉は、炭化や膠結等、多様な意味を有するが、本明細書においては、酸化還元電位の差により、水溶液中に存在する還元電位が貴な金属イオンが、還元電位が卑な金属によって還元析出する反応を指す言葉として使用する。
本発明の第一の実施形態では、還元剤としての金属にFeを用いる。上述の無機酸浸出工程において得られた酸浸出液に、金属状のFeを入れると、Feよりも貴な還元電位を有するCuイオン、Niイオン、Pbイオン等が、Feの表面に置換析出するので、Cu、NiとPbの析出した金属Feを、公知の固液分離手段を用いて、酸浸出液から分離・除去する。
セメンテーション工程において酸浸出液に添加する金属Feの量は、酸浸出液に含まれるCuイオンおよびPbイオンの全量を置換析出させるのに必要な量であれば足りるが、置換析出反応を速やかに完結させるために、酸浸出液に含まれるCuイオン、Niイオン、Pbイオン及びFeイオンの量の和以上添加することが好ましい。
本発明においては、添加する金属Feの形状は特に規定するものではないが、置換析出反応速度増大のために、比表面積の大きなFe粉を用いることが好ましい。また、工業的な規模で本発明を実施する場合には、微小Feスクラップ片等を用いることも可能である。
セメンテーション工程における置換析出反応の温度は、本発明において特に規定するものではないが、例えば、前工程である無機酸浸出工程の終了後に、得られた酸浸出液を加熱、もしくは冷却することなく、そのままの状態で金属Feを添加しても良い。
置換析出反応の時間も、本発明においては特に規定するものではないが、長過ぎると添加した金属状のFeが化学溶解するので、好ましくない。
[Cementation process]
The term cementation has various meanings such as carbonization and agglomeration, but in this specification, due to the difference in oxidation-reduction potential, a metal ion having a noble reduction potential in an aqueous solution has a low reduction potential. It is used as a term that refers to a reaction that reduces and precipitates with a metal.
In 1st embodiment of this invention, Fe is used for the metal as a reducing agent. When metallic Fe is added to the acid leaching solution obtained in the above-described inorganic acid leaching step, Cu ions, Ni ions, Pb ions, etc. having a noble reduction potential than Fe are substituted and deposited on the surface of Fe. The metal Fe on which Cu, Ni and Pb are precipitated is separated and removed from the acid leaching solution using a known solid-liquid separation means.
The amount of metal Fe to be added to the acid leaching solution in the cementation step is sufficient if it is necessary for displacement precipitation of the total amount of Cu ions and Pb ions contained in the acid leaching solution, but the displacement precipitation reaction is completed quickly. Therefore, it is preferable to add more than the sum of the amount of Cu ions, Ni ions, Pb ions and Fe ions contained in the acid leaching solution.
In the present invention, the shape of the metal Fe to be added is not particularly limited, but it is preferable to use Fe powder having a large specific surface area in order to increase the displacement precipitation reaction rate. Moreover, when implementing this invention on an industrial scale, it is also possible to use a fine Fe scrap piece.
The temperature of the substitutional precipitation reaction in the cementation step is not particularly specified in the present invention.For example, after completion of the inorganic acid leaching step, which is the previous step, without heating or cooling the obtained acid leaching solution, Metal Fe may be added as it is.
The time for the substitutional precipitation reaction is not particularly specified in the present invention, but if it is too long, the added metallic Fe is chemically dissolved, which is not preferable.

[酸化処理工程、中和処理工程]
本発明においては、酸浸出液中に浸出したFeおよびAlは、水酸化物として析出させた後、固液分離により分離・除去する。
貴金属製錬スラグ中のFeの一部が2価の酸化物として存在し、酸浸出工程において、2価のFeイオンとして溶解すること、および、セメンテーション工程において金属Feが2価のFeイオンとして溶解するため、酸浸出液中には2価のFeイオンが存在する。中和処理の際、Feイオンは3価の方が水酸化物として沈澱し易いので、2価の鉄イオンを予め3価に酸化しておく。酸浸出液中にアルカリを添加すると、pH上昇によりAl(OH)3およびFe(OH)3が析出する。これらのプロセスは、酸浸出液のpHを調整した後に酸化反応を行っても構わない。
なお、セメンテーション工程を行わず、後述する錯化処理工程を行う場合には、2価のFeイオンの量が少ないので、酸化を行わなくても鉄イオンを除去することが可能である。この場合は、2価のFeイオンはAl(OH)3の沈澱と共沈するか、吸着するものと考えられる。
酸化剤としては、過酸化水素、過マンガン酸塩、過塩素酸塩等の水可溶性の酸化剤や酸素を用いることができる。酸素は、酸素ガス、空気、酸素含有ガス等の形態で酸浸出液に吹き込めばよい。
これは、Ceイオンを3価から4価へ酸化すると溶解度が減少し、CeがFeと共沈し回収が困難となるため、酸化剤として空気を用いることで、酸浸出液中に溶解している希土類元素イオンの急激な酸化を抑制できることによる。
2価のFeイオンの酸化反応に必要な時間は、酸浸出液に含まれる2価のFeイオンの量により変化する。酸化反応の温度は、20〜70℃が好ましい。
[Oxidation treatment process, neutralization treatment process]
In the present invention, Fe and Al leached in the acid leaching solution are precipitated and precipitated as hydroxides, and then separated and removed by solid-liquid separation.
Part of Fe in the precious metal smelting slag exists as a divalent oxide, dissolves as a divalent Fe ion in the acid leaching process, and metal Fe becomes a divalent Fe ion in the cementation process. Since it dissolves, divalent Fe ions are present in the acid leaching solution. In the neutralization treatment, since trivalent Fe ions are more likely to precipitate as hydroxides, divalent iron ions are oxidized to trivalent in advance. When an alkali is added to the acid leaching solution, Al (OH) 3 and Fe (OH) 3 are precipitated as the pH increases. In these processes, the oxidation reaction may be performed after adjusting the pH of the acid leaching solution.
In addition, when performing the complexation process mentioned later, without performing a cementation process, since there is little quantity of a bivalent Fe ion, it is possible to remove an iron ion, without performing oxidation. In this case, the divalent Fe ions are considered to coprecipitate or adsorb with the precipitation of Al (OH) 3 .
As the oxidizing agent, water-soluble oxidizing agents such as hydrogen peroxide, permanganate, perchlorate, and oxygen can be used. Oxygen may be blown into the acid leachate in the form of oxygen gas, air, oxygen-containing gas, or the like.
This is because when Ce ions are oxidized from trivalent to tetravalent, the solubility decreases, and Ce coprecipitates with Fe, making it difficult to recover. Therefore, by using air as the oxidizing agent, it is dissolved in the acid leachate. This is because rapid oxidation of rare earth element ions can be suppressed.
The time required for the oxidation reaction of divalent Fe ions varies depending on the amount of divalent Fe ions contained in the acid leaching solution. The temperature of the oxidation reaction is preferably 20 to 70 ° C.

上述のAlおよびFeの水酸化物の析出は、酸浸出液をアルカリで中和して、そのpHを5〜7に調整することにより行う。中和に使用するアルカリは、Na、K、Ca等、アルカリ金属およびアルカリ土類の水酸化物、炭酸塩等を単独または混合して用いる。酸浸出液へのアルカリの添加は、固体状態の薬品をそのまま添加しても、一度水に溶解して水溶液とした後に添加しても、いずれでも良い。なお、アンモニア水(水酸化アンモニウム)を用いる場合については、後述する。
中和による水酸化物の反応温度としては、20〜70℃が好ましい。
中和反応により析出したAlおよびFeの水酸化物は、公知の固液分離手段により、酸浸出液から分離・除去する。
Precipitation of the Al and Fe hydroxides described above is carried out by neutralizing the acid leaching solution with alkali and adjusting its pH to 5-7. As the alkali used for neutralization, Na, K, Ca and the like, alkali metals and alkaline earth hydroxides, carbonates and the like are used alone or in combination. The alkali may be added to the acid leaching solution as it is, or the solid state chemical may be added as it is, or it may be added after dissolving in water to make an aqueous solution. The case where ammonia water (ammonium hydroxide) is used will be described later.
The reaction temperature of the hydroxide by neutralization is preferably 20 to 70 ° C.
Al and Fe hydroxides precipitated by the neutralization reaction are separated and removed from the acid leaching solution by a known solid-liquid separation means.

上述の酸化処理工程および中和処理工程は、不純物のAlおよびFeを1段階のプロセスで分離・除去するものであるが、この工程を多段階で行うことも可能である。その場合、第1段階として、アルカリ添加により酸浸出液のpHを5〜7に調整することによりAlイオンと3価のFeイオンを水酸化物として析出させ、それらの水酸化物を公知の固液分離手段により分離・除去した後、第2段階として、酸浸出液に酸化剤を添加して酸浸出液中の2価のFeイオンを酸化して3価のFeイオンとし、3価のFeイオンを水酸化物として析出させた後、その水酸化物を公知の固液分離手段により分離・除去する。この回収方法を用いると、Alの水酸化物とFeの水酸化物が分別して分離でき、副産物として再利用が可能になる。   The above-described oxidation treatment step and neutralization treatment step separate and remove impurities Al and Fe in a single step process, but this step can also be performed in multiple steps. In that case, as a first step, by adjusting the pH of the acid leaching solution to 5 to 7 by adding an alkali, Al ions and trivalent Fe ions are precipitated as hydroxides, and these hydroxides are converted into known solid liquids. After separation / removal by the separation means, as a second step, an oxidant is added to the acid leaching solution to oxidize the divalent Fe ions in the acid leaching solution to form trivalent Fe ions. After precipitation as an oxide, the hydroxide is separated and removed by a known solid-liquid separation means. When this recovery method is used, the hydroxide of Al and the hydroxide of Fe can be separated and separated, and can be reused as a by-product.

[回収処理工程および乾燥工程]
AlとFeを分離・除去した酸浸出液に、さらにアルカリを添加して、pHを8以上に調整すると、最終的に希土類元素の水酸化物が析出する。pHの上限は特に規定するものではないが、コストの観点から、pH10以下が好ましい。析出した希土類元素の水酸化物を、公知の固液分離手段を用いて酸浸出液から分離・回収した後、水洗し、電気炉その他の公知の加熱手段により乾燥もしくは焼成し、回収物として希土類元素の水酸化物もしくは酸化物を得る。
なお、この段階で、酸浸出液の残液には、Ca、MgおよびNiが残存する。
[Recovery treatment process and drying process]
When an alkali is further added to the acid leaching solution from which Al and Fe have been separated and removed to adjust the pH to 8 or more, rare earth element hydroxide is finally deposited. The upper limit of the pH is not particularly specified, but is preferably 10 or less from the viewpoint of cost. The precipitated rare earth element hydroxide is separated and recovered from the acid leachate using a known solid-liquid separation means, washed with water, dried or fired by an electric furnace or other known heating means, and the collected rare earth element To obtain a hydroxide or oxide.
At this stage, Ca, Mg, and Ni remain in the remaining solution of the acid leaching solution.

[錯化処理工程]
上述の、本発明の第一および第二の実施形態においては、酸浸出液中に含まれる不純物のCuは、セメンテーションにより分離・除去したが、本発明の第三の実施形態においては、錯化剤を配位させて可溶性錯体を形成し、最終的に酸浸出液中にCuを残存させることにより、希土類元素から分離する。
錯化剤としては、入手の容易さと価格の面から、アンモニウムイオンを含有する塩化アンモニウム、炭酸アンモニウム等のアンモニウム塩またはアンモニア水(水酸化アンモニウム)を用いることが好ましい。アンモニウムイオンは通常、Cuイオンに4配位の可溶性錯体を形成するので、アンモニウムイオン量はCuイオン量の4当量以上添加する必要がある。
酸浸出液へのアンモニウムイオンの添加は、中和処理工程と同時か、中和処理工程によりFeとAlを分離・除去した後に行う。
なお、アンモニア水は酸の中和剤としても作用するので、中和処理工程および回収処理工程において、水酸化アルカリ等の中和剤の替りに、アンモニア水を用いてpH調節を行っても構わない。アンモニウムを中和剤として使用する場合には、Cuイオン量の30当量以上、好ましくは40当量添加する。
[Complexing process]
In the first and second embodiments of the present invention described above, the impurity Cu contained in the acid leaching solution is separated and removed by cementation. In the third embodiment of the present invention, complexation is performed. The agent is coordinated to form a soluble complex and is finally separated from the rare earth element by leaving Cu in the acid leaching solution.
As the complexing agent, it is preferable to use ammonium salts containing ammonium ions, ammonium salts such as ammonium carbonate, or aqueous ammonia (ammonium hydroxide) from the viewpoint of availability and cost. Since ammonium ions usually form a four-coordinate soluble complex with Cu ions, the amount of ammonium ions must be 4 equivalents or more of the amount of Cu ions.
Addition of ammonium ions to the acid leaching solution is performed simultaneously with the neutralization treatment step or after separating and removing Fe and Al by the neutralization treatment step.
Since ammonia water also acts as an acid neutralizing agent, pH adjustment may be performed using ammonia water in place of the neutralizing agent such as alkali hydroxide in the neutralization treatment step and the recovery treatment step. Absent. When ammonium is used as a neutralizing agent, it is added in an amount of 30 equivalents or more, preferably 40 equivalents, of the Cu ion amount.

[pH測定]
本発明においては、反応系のpHは、各種金属の酸浸出速度、水酸化物の形成による分離等に影響を及ぼす重要な因子である。本発明においてpHは、以下で定義される。
本明細書に記載のpHの値は、JIS Z8802に基き、ガラス電極を用い、pH標準液として、酸性域ではシュウ酸塩緩衝液(pH=1.68)およびフタル酸塩緩衝液(pH=4.01)を、中性域では中性りん酸塩緩衝液(pH=6.86)を用いて、3点校正したpH計により測定した値をいう。
また、本明細書に記載のpHは、温度補償電極により補償されたpH計の示す測定値を、反応温度条件下で直接読み取った値である。
[PH measurement]
In the present invention, the pH of the reaction system is an important factor affecting the acid leaching rate of various metals, separation due to the formation of hydroxides, and the like. In the present invention, pH is defined as follows.
The pH values described in this specification are based on JIS Z8802, using glass electrodes, and as pH standard solutions, oxalate buffer solution (pH = 1.68) and phthalate buffer solution (pH = 4.01) is a value measured with a pH meter calibrated at three points using a neutral phosphate buffer (pH = 6.86) in the neutral range.
The pH described in the present specification is a value obtained by directly reading a measured value indicated by a pH meter compensated by a temperature compensation electrode under reaction temperature conditions.

[成分分析]
製錬スラグは蛍光X分析装置、溶液はICP−AES(発光分光分析)、回収品はSEM−EDSを用いて測定した。
[Component analysis]
The smelting slag was measured using a fluorescent X analyzer, the solution was measured using ICP-AES (emission spectroscopic analysis), and the recovered product was measured using SEM-EDS.

[実施例1]
希土類元素の回収に供した貴金属製錬スラグの組成を、表1に示す。
[Example 1]
Table 1 shows the composition of the precious metal smelting slag used for the recovery of rare earth elements.

Figure 2016108583
Figure 2016108583

ディスクミルで粉砕した供試材のスラグを20g秤取り、それにpH0.05のHCl水溶液250mLを添加し、マグネットスターラーを用い450rpmで撹拌しながら、70℃で2時間酸浸出を行い、静置した後、ろ紙を用いて濾過し、酸浸出液を得た(無機酸浸出工程)。
得られた酸浸出液にFe粉(添川理化学株式会社、純度99.5%、粒径300mesh(<50μm))を0.3g加え、50℃で1時間マグネットスターラーを用い450rpmで撹拌し、静置した後、ろ紙を用いて濾過した(セメンテーション工程)。
セメンテーション後のろ液を50℃に保った状態で、空気を12時間吹き込みFeイオンを酸化させた(酸化処理工程)。
酸化後の溶液を50℃に保った状態で、アンモニア水(NH4OH水溶液 7mol/L)を加え、pH=5に調整し、Fe(OH)3及びAl23を沈殿させ、ろ紙を用いて除去した(中和処理工程および分離工程)。
中和後の溶液を50℃に保った状態で、アンモニア水(NH4OH水溶液 7mol/L)を加えpH8に調整し、希土類水酸化物を沈殿させ、沈殿物はろ紙を用いて分離・回収した(回収工程)。
この回収した沈殿物は、希土類元素を主体とする水酸化物であった。回収工程で得られた沈殿物を脱イオン水で水洗した後、電気炉中、大気雰囲気下で800℃、30分間焼成し、最終的な回収物を得た(乾燥工程)。
20 g of slag of the test material pulverized by a disk mill was weighed, 250 mL of an aqueous HCl solution of pH 0.05 was added thereto, and acid leaching was performed at 70 ° C. for 2 hours while stirring at 450 rpm using a magnetic stirrer and allowed to stand. Then, it filtered using the filter paper and obtained the acid leaching solution (inorganic acid leaching process).
To the obtained acid leaching solution, 0.3 g of Fe powder (Soekawa Riken Co., Ltd., purity 99.5%, particle size 300 mesh (<50 μm)) was added, stirred at 50 ° C. for 1 hour at 450 rpm and allowed to stand. Then, it was filtered using a filter paper (cementation step).
With the filtrate after cementation maintained at 50 ° C., air was blown for 12 hours to oxidize Fe ions (oxidation treatment step).
While maintaining the solution after oxidation at 50 ° C., aqueous ammonia (NH 4 OH aqueous solution 7 mol / L) is added, pH is adjusted to 5, and Fe (OH) 3 and Al 2 O 3 are precipitated. (Neutralization treatment step and separation step).
While maintaining the neutralized solution at 50 ° C., aqueous ammonia (NH 4 OH aqueous solution 7 mol / L) is added to adjust the pH to 8, and the rare earth hydroxide is precipitated. The precipitate is separated and collected using filter paper. (Recovery process).
The collected precipitate was a hydroxide mainly composed of rare earth elements. The precipitate obtained in the recovery step was washed with deionized water and then baked in an electric furnace at 800 ° C. for 30 minutes in an air atmosphere to obtain a final recovery product (drying step).

無機酸浸出工程、セメンテーション工程および中和処理工程後の酸浸出液、並びに、回収処理工程後の残液に含まれる各成分の質量(mg)を、表2に示す。セメンテーションを行うことにより、酸浸出液中のCuイオン濃度が、当初の1%以下に減少した。
また、焼成後の回収物の組成を、表3に示す。
本発明の回収方法により、純度が高く、かつ、重金属の不純物量の少ない希土類元素の酸化物が得られることが判った。
Table 2 shows the mass (mg) of each component contained in the acid leaching solution after the inorganic acid leaching step, the cementation step and the neutralization treatment step, and the residual solution after the recovery treatment step. By performing cementation, the Cu ion concentration in the acid leaching solution was reduced to 1% or less of the initial value.
Table 3 shows the composition of the recovered product after firing.
It has been found that by the recovery method of the present invention, an oxide of a rare earth element having a high purity and a small amount of heavy metal impurities can be obtained.

Figure 2016108583
Figure 2016108583

Figure 2016108583
Figure 2016108583

[実施例2]
実施例1と同様の表1に示す組成の貴金属製錬スラグを用い、セメンテーション操作と酸化処理を行わない手法のフローチャートを図3に示す。
[Example 2]
FIG. 3 shows a flowchart of a technique in which noble metal smelting slag having the composition shown in Table 1 as in Example 1 is used and no cementation operation and oxidation treatment are performed.

ディスクミルで粉砕した供試材のスラグを20g秤取り、それにpH0.05のHCl水溶液250mLを添加し、マグネットスターラーを用い450rpmで撹拌しながら、70℃で2時間酸浸出を行い、静置した後、ろ紙を用いて濾過し、酸浸出液を得た(無機酸浸出工程)。
酸浸出液を50℃に保った状態で、アンモニア水(NH4OH水溶液 7mol/L)を加え、pH=5に調整し、Fe(OH)3及びAl23を沈殿させ、ろ紙を用いて除去した中和処理工程および分離工程)。
中和後の溶液を50℃に保った状態で、アンモニア水(NH4OH水溶液 7mol/L)を加え(錯化処理工程)、希土類水酸化物を沈殿させ、沈殿物はろ紙を用いて分離・回収した(回収工程)。
この回収した沈殿物は、希土類元素を主体とする水酸化物であった。回収工程で得られた沈殿物を脱イオン水で水洗した後、電気炉中、大気雰囲気下で800℃、30分間焼成し、最終的な回収物を得た(乾燥工程)。
20 g of slag of the test material pulverized by a disk mill was weighed, 250 mL of an aqueous HCl solution of pH 0.05 was added thereto, and acid leaching was performed at 70 ° C. for 2 hours while stirring at 450 rpm using a magnetic stirrer and allowed to stand. Then, it filtered using the filter paper and obtained the acid leaching solution (inorganic acid leaching process).
With the acid leaching solution kept at 50 ° C., ammonia water (NH 4 OH aqueous solution 7 mol / L) was added to adjust to pH = 5 to precipitate Fe (OH) 3 and Al 2 O 3 , and using filter paper Removed neutralization treatment step and separation step).
While maintaining the neutralized solution at 50 ° C., ammonia water (NH4OH aqueous solution 7 mol / L) is added (complexation process) to precipitate rare earth hydroxide, and the precipitate is separated and collected using filter paper. (Recovery process).
The collected precipitate was a hydroxide mainly composed of rare earth elements. The precipitate obtained in the recovery step was washed with deionized water and then baked in an electric furnace at 800 ° C. for 30 minutes in an air atmosphere to obtain a final recovery product (drying step).

無機酸浸出工程、中和処理工程後の酸浸出液、並びに、回収処理工程後の残液に含まれる各成分の質量(mg)を、表4に示す。
また、焼成後の回収物の組成を、表5に示す。
本発明の回収方法において錯化処理を行うことにより、純度が高く、かつ、重金属の不純物量の少ない希土類元素の酸化物が得られることが判った。
Table 4 shows the mass (mg) of each component contained in the acid leaching solution after the inorganic acid leaching step, the neutralization treatment step, and the residual liquid after the recovery treatment step.
Table 5 shows the composition of the recovered product after firing.
It has been found that by performing the complexing treatment in the recovery method of the present invention, an oxide of a rare earth element having a high purity and a small amount of heavy metal impurities can be obtained.

Figure 2016108583
Figure 2016108583

Figure 2016108583
Figure 2016108583

Claims (5)

希土類元素を含む貴金属製錬スラグを無機酸(ただし硫酸とリン酸を除く)の水溶液中で溶解し、貴金属製錬スラグに含まれる酸可溶成分を浸出した後酸不溶性の固体を固液分離し、希土類元素を含む酸浸出液を得る無機酸浸出工程と、
前記酸浸出液に金属状態の鉄を添加して、鉄と置換析出可能な金属イオンを金属状態で析出させた後、前記析出した金属を固液分離により除去するセメンテーション工程と、
前記析出した金属を除去した酸浸出液に酸化剤を添加して酸浸出液中の2価の鉄イオンを酸化して3価の鉄イオンとする酸化処理工程と、
酸化処理後の酸浸出液のpHを5〜7に調整し、3価の鉄イオンおよびアルミニウムイオンを水酸化物として析出させる中和処理工程と、
前記析出した鉄およびアルミニウムの水酸化物を固液分離により除去する分離工程と、
前記水酸化物を除去した酸浸出液のpHを8〜10に調整し、希土類元素を水酸化物として析出させ、前記析出した希土類元素の水酸化物を固液分離により回収する回収工程と、
を含む、貴金属製錬スラグからの希土類元素回収方法。
Precious metal smelting slag containing rare earth elements is dissolved in an aqueous solution of inorganic acid (excluding sulfuric acid and phosphoric acid), and acid-soluble components contained in the precious metal smelting slag are leached, and then acid-insoluble solids are separated into solid and liquid. And an inorganic acid leaching step for obtaining an acid leaching solution containing rare earth elements,
A cementation step of adding metallic iron to the acid leaching solution, depositing metal ions capable of substitution precipitation with iron in a metallic state, and then removing the deposited metal by solid-liquid separation;
An oxidation treatment step of adding an oxidizing agent to the acid leaching solution from which the deposited metal has been removed to oxidize divalent iron ions in the acid leaching solution to form trivalent iron ions;
A neutralization treatment step of adjusting the pH of the acid leaching solution after the oxidation treatment to 5 to 7 and precipitating trivalent iron ions and aluminum ions as hydroxides;
A separation step of removing the precipitated iron and aluminum hydroxide by solid-liquid separation;
Adjusting the pH of the acid leaching solution from which the hydroxide has been removed to 8-10, precipitating the rare earth element as a hydroxide, and recovering the precipitated rare earth element hydroxide by solid-liquid separation;
A method for recovering rare earth elements from precious metal smelting slag.
希土類元素を含む貴金属製錬スラグを無機酸(ただし硫酸とリン酸を除く)の水溶液中で溶解し、貴金属製錬スラグに含まれる酸可溶成分を浸出した後酸不溶性の固体を固液分離し、希土類元素を含む酸浸出液を得る無機酸浸出工程と、
前記酸浸出液に金属状態の鉄を添加して、鉄と置換析出可能な金属イオンを金属状態で析出させた後、前記析出した金属を固液分離により除去するセメンテーション工程と、
前記析出した金属を除去した酸浸出液のpHを5〜7に調整してアルミニウムイオンを水酸化物として析出させる中和処理工程と、
前記析出したアルミニウムの水酸化物を固液分離により除去するアルミニウムの分離工程と、
前記アルミニウムの水酸化物を除去した酸浸出液に酸化剤を添加して酸浸出液中の2価の鉄イオンを酸化して3価の鉄イオンとし、3価の鉄イオンを水酸化物として析出させる酸化工程と、
前記析出した鉄の水酸化物を固液分離により除去する鉄の分離工程と、
前記鉄の水酸化物を除去した酸浸出液のpHを8〜10に調整し、希土類元素を水酸化物として析出させ、前記析出した希土類元素の水酸化物を固液分離により回収する回収工程と、
を含む、貴金属製錬スラグからの希土類元素回収方法。
Precious metal smelting slag containing rare earth elements is dissolved in an aqueous solution of inorganic acid (excluding sulfuric acid and phosphoric acid), and acid-soluble components contained in the precious metal smelting slag are leached, and then acid-insoluble solids are separated into solid and liquid. And an inorganic acid leaching step for obtaining an acid leaching solution containing rare earth elements,
A cementation step of adding metallic iron to the acid leaching solution, depositing metal ions capable of substitution precipitation with iron in a metallic state, and then removing the deposited metal by solid-liquid separation;
A neutralization treatment step of adjusting the pH of the acid leachate from which the deposited metal has been removed to 5 to 7 to precipitate aluminum ions as hydroxides;
An aluminum separation step of removing the precipitated aluminum hydroxide by solid-liquid separation;
An oxidant is added to the acid leaching solution from which the aluminum hydroxide has been removed to oxidize divalent iron ions in the acid leaching solution to form trivalent iron ions, and to deposit trivalent iron ions as hydroxides. An oxidation process;
An iron separation step of removing the precipitated iron hydroxide by solid-liquid separation;
A recovery step of adjusting the pH of the acid leachate from which the iron hydroxide has been removed to 8 to 10, precipitating the rare earth element as a hydroxide, and recovering the precipitated rare earth element hydroxide by solid-liquid separation; ,
A method for recovering rare earth elements from precious metal smelting slag.
酸化剤が空気である、請求項1または2に記載の貴金属製錬スラグからの希土類元素回収方法。   The method for recovering rare earth elements from precious metal smelting slag according to claim 1 or 2, wherein the oxidizing agent is air. 希土類元素を含む貴金属製錬スラグを無機酸(ただし硫酸とリン酸を除く)の水溶液中で溶解し、貴金属製錬スラグに含まれる酸可溶成分を浸出した後酸不溶性の固体を固液分離し、希土類元素を含む酸浸出液を得る無機酸浸出工程と、
前記酸浸出液のpHを5〜7に調整し、鉄イオンとアルミニウムイオンを水酸化物として析出させる中和処理工程と、
前記析出した鉄およびアルミニウムの水酸化物を固液分離により除去する分離工程と、
前記水酸化物を除去した酸浸出液にアンモニウム塩およびアンモニア水の1種または2種を添加して酸浸出液中の銅イオンを可溶性の銅−アンミン錯体とする錯化処理工程と、
前記錯化処理工程後の酸浸出液のpHを8〜10に調整し、希土類元素を水酸化物として析出させ、前記析出した希土類元素の水酸化物を固液分離により回収する回収工程と、
を含む、貴金属製錬スラグからの希土類元素回収方法。
Precious metal smelting slag containing rare earth elements is dissolved in an aqueous solution of inorganic acid (excluding sulfuric acid and phosphoric acid), and acid-soluble components contained in the precious metal smelting slag are leached, and then acid-insoluble solids are separated into solid and liquid. And an inorganic acid leaching step for obtaining an acid leaching solution containing rare earth elements,
Adjusting the pH of the acid leaching solution to 5 to 7, and neutralizing the iron ions and aluminum ions as hydroxides;
A separation step of removing the precipitated iron and aluminum hydroxide by solid-liquid separation;
A complexation treatment step of adding one or two ammonium salts and aqueous ammonia to the acid leaching solution from which the hydroxide has been removed to convert the copper ions in the acid leaching solution into a soluble copper-ammine complex;
Adjusting the pH of the acid leaching solution after the complexing treatment step to 8-10, precipitating the rare earth element as a hydroxide, and collecting the precipitated rare earth element hydroxide by solid-liquid separation;
A method for recovering rare earth elements from precious metal smelting slag.
無機酸が塩酸および硝酸の1種または2種である、請求項1〜4のいずれか1項に記載の貴金属製錬スラグからの希土類元素回収方法。   The method for recovering rare earth elements from precious metal smelting slag according to any one of claims 1 to 4, wherein the inorganic acid is one or two of hydrochloric acid and nitric acid.
JP2014244687A 2014-12-03 2014-12-03 Rare earth element recovery method from precious metal smelting slag Active JP6392650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014244687A JP6392650B2 (en) 2014-12-03 2014-12-03 Rare earth element recovery method from precious metal smelting slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014244687A JP6392650B2 (en) 2014-12-03 2014-12-03 Rare earth element recovery method from precious metal smelting slag

Publications (2)

Publication Number Publication Date
JP2016108583A true JP2016108583A (en) 2016-06-20
JP6392650B2 JP6392650B2 (en) 2018-09-19

Family

ID=56123092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014244687A Active JP6392650B2 (en) 2014-12-03 2014-12-03 Rare earth element recovery method from precious metal smelting slag

Country Status (1)

Country Link
JP (1) JP6392650B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163322A1 (en) * 2015-04-06 2016-10-13 旭硝子株式会社 Respective methods for producing liquid composition, solid polymer electrolyte membrane, catalyst layer, and membrane electrode assembly
CN108411110A (en) * 2018-06-04 2018-08-17 四川英创环保科技有限公司 A kind of rare earth feed liquid impurity removal process
CN111665321A (en) * 2020-06-18 2020-09-15 国家能源集团宁夏煤业有限责任公司 Method for measuring calcium and magnesium ions in solution after chlorination of gasified slag and method for mineralizing solution after chlorination of gasified slag
CN113249598A (en) * 2021-05-18 2021-08-13 江西理工大学 Method for complexing, separating and removing aluminum from rare earth feed liquid
CN114592120A (en) * 2022-04-21 2022-06-07 淄博凡纳蒂斯技术服务有限公司 Comprehensive utilization method for steel slag resource
CN115491497A (en) * 2022-09-22 2022-12-20 广东佳纳能源科技有限公司 Method for recovering valuable metal elements in iron slag and application thereof
WO2023060889A1 (en) * 2021-10-14 2023-04-20 中钢集团马鞍山矿山研究总院股份有限公司 Method for extracting fe, zn and pb from electric furnace dedusting ash and high value utilization of same
CN116622920A (en) * 2023-07-26 2023-08-22 原初科技(北京)有限公司 Method for selectively extracting calcium from steel slag and secondarily magnetically separating iron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172573A (en) * 2019-05-08 2019-08-27 株洲冶炼集团股份有限公司 A kind of antimony electrolyte extraction removes device systems and the process flow of iron

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120156116A1 (en) * 2010-12-15 2012-06-21 Basf Corporation Process For Metal Recovery From Catalyst Waste
WO2012137495A1 (en) * 2011-04-06 2012-10-11 三菱マテリアルテクノ株式会社 Method for recovering rare earth metals
WO2013085052A1 (en) * 2011-12-09 2013-06-13 日本軽金属株式会社 Rare earth element recovery method
WO2013145455A1 (en) * 2012-03-30 2013-10-03 日本軽金属株式会社 Method for recovering rare-earth element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120156116A1 (en) * 2010-12-15 2012-06-21 Basf Corporation Process For Metal Recovery From Catalyst Waste
WO2012137495A1 (en) * 2011-04-06 2012-10-11 三菱マテリアルテクノ株式会社 Method for recovering rare earth metals
WO2013085052A1 (en) * 2011-12-09 2013-06-13 日本軽金属株式会社 Rare earth element recovery method
WO2013145455A1 (en) * 2012-03-30 2013-10-03 日本軽金属株式会社 Method for recovering rare-earth element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495816B2 (en) 2015-04-06 2022-11-08 AGC Inc. Methods for producing liquid composition, polymer electrolyte membrane, catalyst layer, and membrane/electrode assembly
JPWO2016163322A1 (en) * 2015-04-06 2018-02-08 旭硝子株式会社 Method for producing liquid composition, solid polymer electrolyte membrane, catalyst layer and membrane electrode assembly
WO2016163322A1 (en) * 2015-04-06 2016-10-13 旭硝子株式会社 Respective methods for producing liquid composition, solid polymer electrolyte membrane, catalyst layer, and membrane electrode assembly
CN108411110A (en) * 2018-06-04 2018-08-17 四川英创环保科技有限公司 A kind of rare earth feed liquid impurity removal process
CN111665321B (en) * 2020-06-18 2023-04-11 国家能源集团宁夏煤业有限责任公司 Method for measuring calcium and magnesium ions in solution after chlorination of gasified slag and method for mineralizing solution after chlorination of gasified slag
CN111665321A (en) * 2020-06-18 2020-09-15 国家能源集团宁夏煤业有限责任公司 Method for measuring calcium and magnesium ions in solution after chlorination of gasified slag and method for mineralizing solution after chlorination of gasified slag
CN113249598B (en) * 2021-05-18 2022-07-29 江西理工大学 Method for complexing, separating and removing aluminum from rare earth feed liquid
CN113249598A (en) * 2021-05-18 2021-08-13 江西理工大学 Method for complexing, separating and removing aluminum from rare earth feed liquid
WO2023060889A1 (en) * 2021-10-14 2023-04-20 中钢集团马鞍山矿山研究总院股份有限公司 Method for extracting fe, zn and pb from electric furnace dedusting ash and high value utilization of same
CN114592120A (en) * 2022-04-21 2022-06-07 淄博凡纳蒂斯技术服务有限公司 Comprehensive utilization method for steel slag resource
CN114592120B (en) * 2022-04-21 2024-01-16 淄博凡纳蒂斯技术服务有限公司 Comprehensive utilization method for steel slag resource
CN115491497A (en) * 2022-09-22 2022-12-20 广东佳纳能源科技有限公司 Method for recovering valuable metal elements in iron slag and application thereof
CN115491497B (en) * 2022-09-22 2024-03-19 广东佳纳能源科技有限公司 Method for recycling valuable metal elements in iron slag and application of method
CN116622920A (en) * 2023-07-26 2023-08-22 原初科技(北京)有限公司 Method for selectively extracting calcium from steel slag and secondarily magnetically separating iron
CN116622920B (en) * 2023-07-26 2023-10-20 原初科技(北京)有限公司 Method for selectively extracting calcium from steel slag and secondarily magnetically separating iron

Also Published As

Publication number Publication date
JP6392650B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6392650B2 (en) Rare earth element recovery method from precious metal smelting slag
JP5146658B2 (en) Recovery method of rare earth elements
JP5847741B2 (en) Waste cathode material and method for recovering metal from waste battery
JP5847742B2 (en) Waste cathode material and method for recovering metal from waste battery
WO2014181721A1 (en) Method for recovering scandium
TW201739097A (en) Processing method for lithium ion battery scrap
JP6583445B2 (en) Method for producing high purity scandium oxide
Meshram et al. Recovery and recycling of cerium from primary and secondary resources-a critical review
WO2016125386A1 (en) Method for recovering scandium
WO2017010437A1 (en) Vanadium recovery method, method for producing electrolytic solution for redox flow batteries, vanadium recovery device, and device for producing electrolytic solution for redox flow batteries
CN103014352A (en) Method for smelting and extracting platinum metal from alumina-supported petrochemical catalyst
KR101353721B1 (en) Method for Recovering Ferro Nickel from Nickel Containing Raw Material
JP2017014605A (en) Recovery method of rare earth element
WO2016151959A1 (en) Method for recovering scandium
JP7246570B2 (en) Method for producing mixed metal salt
CN113195412A (en) Pure iron-containing compound
KR20230093490A (en) Disposal method of lithium ion battery waste
WO2017146034A1 (en) Method for recovering scandium
Xanthopoulos et al. Recovery of copper, zinc and lead from photovoltaic panel residue
WO2018043704A1 (en) Method for producing high-purity scandium oxide
WO2020138137A1 (en) Method for purifying vanadium oxide
JP4439804B2 (en) Cobalt recovery method
JP2010264331A (en) Separation method of arsenic
KR101545968B1 (en) Method for recovery of valuable metals from waste materials
WO2020075288A1 (en) Method and device for processing nickel oxide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6392650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250