JP6583445B2 - Method for producing high purity scandium oxide - Google Patents

Method for producing high purity scandium oxide Download PDF

Info

Publication number
JP6583445B2
JP6583445B2 JP2018010843A JP2018010843A JP6583445B2 JP 6583445 B2 JP6583445 B2 JP 6583445B2 JP 2018010843 A JP2018010843 A JP 2018010843A JP 2018010843 A JP2018010843 A JP 2018010843A JP 6583445 B2 JP6583445 B2 JP 6583445B2
Authority
JP
Japan
Prior art keywords
scandium
solution
firing
oxalate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018010843A
Other languages
Japanese (ja)
Other versions
JP2019127634A (en
Inventor
達也 檜垣
達也 檜垣
小林 宙
宙 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018010843A priority Critical patent/JP6583445B2/en
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to EP19743119.0A priority patent/EP3744686B1/en
Priority to AU2019211653A priority patent/AU2019211653B9/en
Priority to PCT/JP2019/002012 priority patent/WO2019146619A1/en
Priority to CN201980009511.0A priority patent/CN111630001B/en
Priority to CA3088357A priority patent/CA3088357C/en
Priority to US16/964,353 priority patent/US10968112B2/en
Publication of JP2019127634A publication Critical patent/JP2019127634A/en
Application granted granted Critical
Publication of JP6583445B2 publication Critical patent/JP6583445B2/en
Priority to PH12020551111A priority patent/PH12020551111A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/282Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • C01F17/13Preparation or treatment, e.g. separation or purification by using ion exchange resins, e.g. chelate resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/212Scandium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、酸化スカンジウムの製造方法に関するものであり、より詳しくは、不純物の品位を低減させた高純度な酸化スカンジウムの製造方法に関する。   The present invention relates to a method for producing scandium oxide, and more particularly to a method for producing high-purity scandium oxide with reduced impurity quality.

近年、アルミニウムとの高性能合金や燃料電池の材料として注目されているスカンジウムは、チタン精製残渣やニッケル酸化鉱石を硫酸浸出することで得られた浸出液から精製することが主流となっており、副産物としての回収が進められている。   In recent years, scandium, which has attracted attention as a high-performance alloy with aluminum and a material for fuel cells, has been mainly purified from leachate obtained by leaching titanium refining residue and nickel oxide ore with sulfuric acid. Is being collected.

このような従来のスカンジウムの回収においては、主として、不純物を分離する浄液処理を通して高純度品の生産を行っている。すなわち、スカンジウムは、上述したような主要工程における溶液(例えば浸出液等)に低濃度で存在するものであるため、イオン交換法や溶媒抽出法等の方法を多段階に実施することで徐々に濃縮させていき、溶液中の濃度を高めていくことが必要となる。これらの方法を用いて、合金に必要な品位、例えば99.9%(3N品)以上のグレードまで高純度化していくのであるが、かなりの手間がかかり、精製に要するコストが高止まりとなる一因となっている。   In such conventional scandium recovery, high-purity products are mainly produced through a liquid purification process for separating impurities. In other words, scandium is present in a low concentration in the solution (for example, leachate) in the main processes as described above, and therefore, it is gradually concentrated by carrying out a method such as an ion exchange method or a solvent extraction method in multiple stages. It is necessary to increase the concentration in the solution. Using these methods, the grade required for the alloy, for example, a grade of 99.9% (3N product) or higher is refined, but it takes a lot of work and the cost for refining remains high. It is a factor.

例えば、特許文献1には、低品位の酸化スカンジウムを硝酸で加熱溶解し、この硝酸溶液を陰イオン交換樹脂に接触させて液中に溶存する不純物を吸着させ、さらに溶液に塩酸を添加し、陰イオン交換樹脂に接触させて他の不純物を樹脂に吸着させることでスカンジウムと不純物を分離する方法が開示されている。この方法では、さらにシュウ酸又はフッ酸を添加し、得られた沈殿物を焼成することによって、高純度の酸化スカンジウムを得ることが示されている。   For example, in Patent Document 1, low-grade scandium oxide is heated and dissolved with nitric acid, the nitric acid solution is brought into contact with an anion exchange resin to adsorb impurities dissolved in the liquid, and hydrochloric acid is added to the solution. A method of separating scandium and impurities by bringing them into contact with an anion exchange resin and adsorbing other impurities on the resin is disclosed. In this method, it is shown that oxalic acid or hydrofluoric acid is further added, and the obtained precipitate is fired to obtain high-purity scandium oxide.

しかしながら、この特許文献1の方法では、スカンジウムと同量、あるいはスカンジウムよりもはるかに大量に共存する不純物を分離することから、不純物の分離に要する手間とコストがかさみ、また不純物を完全に分離しきれないという問題がある。   However, the method of Patent Document 1 separates impurities present in the same amount as scandium or in a much larger amount than scandium, which increases the labor and cost required for impurity separation, and completely separates impurities. There is a problem that I can not finish.

不純物を分離する方法として、一度精製したものを再度溶解して析出させることで精製する方法が知られており、工業的にも広く用いられている。しかしながら、酸化スカンジウムに対してこのような方法を用いようとしても、酸化スカンジウムは酸等の水溶液に対して難溶性であり、溶解するには高濃度の酸を用いる必要がある。   As a method for separating impurities, a method of refining by re-dissolving and precipitating once purified is known and widely used industrially. However, even if such a method is used for scandium oxide, scandium oxide is hardly soluble in an aqueous solution of an acid or the like, and it is necessary to use a high concentration acid to dissolve it.

さらに、酸化スカンジウムを溶解できたとしても、酸濃度が高いことから、スカンジウム濃度が1g/L〜3g/L程度の溶液しか得ることができない。また、再度シュウ酸化しようとしても、酸濃度が高いために、80%程度の実収率を得るのに12当量程度のシュウ酸を添加することが必要となり、薬剤コストが高くなるという問題が生じる。   Further, even if scandium oxide can be dissolved, only a solution having a scandium concentration of about 1 g / L to 3 g / L can be obtained because the acid concentration is high. Moreover, even if it is attempted to oxidize again, since the acid concentration is high, it is necessary to add about 12 equivalents of oxalic acid in order to obtain an actual yield of about 80%.

このように、従来の方法では、高純度の酸化スカンジウムを得る場合に、多くの手間がかかるとともにコストがかさみ、さらには高濃度の酸を取扱うことから安全性の問題が生じるという課題があった。   As described above, in the conventional method, when obtaining high-purity scandium oxide, there is a problem that it takes a lot of labor and costs, and further, there is a problem of safety due to handling a high concentration of acid. .

特開平8−232026号公報JP-A-8-232026

本発明は、このような実情に鑑みて提案されたものであり、スカンジウムを含有する溶液から、効率よく高純度の酸化スカンジウムを得る方法を提供することを目的とする。   The present invention has been proposed in view of such circumstances, and an object thereof is to provide a method for efficiently obtaining high-purity scandium oxide from a solution containing scandium.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、シュウ酸スカンジウムの結晶に対して特定の温度条件で焼成することで、酸等の水溶液に対して易溶性を示すスカンジウム化合物を得ることができることが分かり、そして、その易溶性のスカンジウム化合物を利用して再溶解液を調製し、再溶解液から生成させたシュウ酸スカンジウムに対して焼成して酸化スカンジウムを製造することで、効率よく高純度の酸化スカンジウムが得られることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to solve the above-described problems. As a result, it was found that a scandium compound having a high solubility in an aqueous solution of an acid or the like can be obtained by firing the crystal of scandium oxalate at a specific temperature condition, and the easily soluble scandium compound It was found that high-purity scandium oxide can be obtained efficiently by preparing a re-dissolved liquid using sinter, and firing scandium oxalate produced from the re-dissolved liquid to produce scandium oxide. The invention has been completed.

(1)本発明の第1の発明は、スカンジウムを含有する溶液にシュウ酸を用いてシュウ酸化処理を施し、得られたシュウ酸スカンジウムの結晶を400℃以上600℃以下の温度で焼成する第1焼成工程と、焼成により得られたスカンジウム化合物を塩酸及び硝酸から選ばれる1種以上の溶液に溶解させて溶解液を得る溶解工程と、前記溶解液にシュウ酸を用いてシュウ酸化処理を施し、シュウ酸スカンジウムの再沈殿物を生成させる再沈殿工程と、得られた前記シュウ酸スカンジウムの再沈殿物を焼成して酸化スカンジウムを得る第2焼成工程と、を有する、高純度酸化スカンジウムの製造方法である。   (1) In the first invention of the present invention, a solution containing scandium is subjected to an oxalic acid treatment using oxalic acid, and the obtained scandium oxalate crystals are fired at a temperature of 400 ° C. or higher and 600 ° C. or lower. 1 calcination step, a dissolution step in which a scandium compound obtained by calcination is dissolved in one or more kinds of solutions selected from hydrochloric acid and nitric acid to obtain a solution, and oxalic acid is used in the solution to carry out an oxidation treatment. Manufacturing a high-purity scandium oxide, comprising: a reprecipitation step for generating a reprecipitate of scandium oxalate; and a second calcining step of obtaining the scandium oxide by calcining the obtained reprecipitate of scandium oxalate. Is the method.

(2)本発明の第2の発明は、第1の発明において、前記再沈殿工程では、前記溶解液の温度を40℃以上100℃未満に調整してシュウ酸化処理を施す、高純度酸化スカンジウムの製造方法である。   (2) The second invention of the present invention is the high-purity scandium oxide according to the first invention, wherein in the reprecipitation step, the temperature of the solution is adjusted to 40 ° C. or more and less than 100 ° C. to perform an oxidation treatment. It is a manufacturing method.

(3)本発明の第3の発明は、第1又は第2の発明において、前記第2焼成工程では、焼成温度を900℃以上として焼成する、高純度酸化スカンジウムの製造方法である。   (3) The third invention of the present invention is a method for producing high-purity scandium oxide in the first or second invention, wherein in the second baking step, the baking temperature is 900 ° C. or higher.

(4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記スカンジウムを含有する溶液は、スカンジウムを含有する溶液に対してイオン交換処理及び/又は溶媒抽出処理を施して得られたものである、高純度酸化スカンジウムの製造方法である。   (4) According to a fourth aspect of the present invention, in any one of the first to third aspects, the solution containing scandium is subjected to an ion exchange treatment and / or a solvent extraction treatment on the solution containing scandium. This is a method for producing high-purity scandium oxide, which is obtained by application.

本発明によれば、スカンジウムを含有する溶液から、効率よく高純度の酸化スカンジウムを得ることができる。   According to the present invention, highly pure scandium oxide can be efficiently obtained from a solution containing scandium.

酸化スカンジウムの製造方法の流れの一例を示す工程図である。It is process drawing which shows an example of the flow of the manufacturing method of a scandium oxide.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X〜Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。   Hereinafter, a specific embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention. In this specification, the notation “X to Y” (X and Y are arbitrary numerical values) means “X or more and Y or less”.

≪1.概要≫
本実施の形態に係る酸化スカンジウムの製造方法は、スカンジウムを含有する溶液にシュウ酸を用いてシュウ酸化処理を施し、得られたシュウ酸スカンジウムの結晶から酸化スカンジウムを得る方法である。そして、この製造方法では、スカンジウムを含有する溶液からシュウ酸処理により得られるシュウ酸スカンジウムを、2段階で焼成することで、不純物の少ない高純度な酸化スカンジウムを得ることを特徴とするものである。
<< 1. Overview >>
The method for producing scandium oxide according to the present embodiment is a method for obtaining scandium oxide from crystals of scandium oxalate obtained by subjecting a solution containing scandium to oxalic acid treatment using oxalic acid. In this production method, scandium oxalate obtained by oxalic acid treatment from a solution containing scandium is calcined in two stages to obtain high-purity scandium oxide with few impurities. .

具体的に、本実施の形態に係る酸化スカンジウムの製造方法は、スカンジウムを含有する溶液にシュウ酸を用いてシュウ酸化処理を施し、得られたシュウ酸スカンジウムの結晶を所定の温度で焼成する第1焼成工程と、焼成により得られたスカンジウム化合物を塩酸及び硝酸から選ばれる1種以上の溶液に溶解させて溶解液を得る溶解工程と、溶解液にシュウ酸を用いてシュウ酸化処理を施し、シュウ酸スカンジウムの再沈殿物を生成させる再沈殿工程と、得られたシュウ酸スカンジウムの再沈殿物を焼成して酸化スカンジウムを得る第2焼成工程と、を有する。   Specifically, in the method for producing scandium oxide according to the present embodiment, a solution containing scandium is subjected to oxalic acid treatment using oxalic acid, and the obtained scandium oxalate crystals are fired at a predetermined temperature. 1 calcination step, a dissolution step of dissolving a scandium compound obtained by calcination in one or more solutions selected from hydrochloric acid and nitric acid to obtain a solution, and an oxalic acid treatment for the solution using oxalic acid, A reprecipitation step of generating a reprecipitate of scandium oxalate; and a second calcining step of calcining the obtained scandium oxalate reprecipitate to obtain scandium oxide.

このような方法では、第1焼成工程において、シュウ酸スカンジウムの結晶に対して特定の温度条件で焼成することで、酸等の水溶液に対して易溶性を示すスカンジウム化合物を得ることができる。そして、そのようにして得られた易溶性のスカンジウム化合物を利用し、具体的には、塩酸及び硝酸から選ばれる1種以上の溶液に溶解させて溶解液(再溶解液)を得て、その再溶解液からシュウ酸スカンジウムの再沈殿物を生成させ、その再沈殿物に対して所定の温度条件で焼成処理を施すことで、効率的に不純物を分離除去した高純度な酸化スカンジウムを得ることができる。   In such a method, in the first firing step, a scandium compound that is readily soluble in an aqueous solution of an acid or the like can be obtained by firing the crystals of scandium oxalate under specific temperature conditions. Then, using the easily soluble scandium compound thus obtained, specifically, it is dissolved in one or more solutions selected from hydrochloric acid and nitric acid to obtain a solution (re-solution), By producing a re-precipitate of scandium oxalate from the re-dissolved solution and subjecting the re-precipitate to a firing treatment at a predetermined temperature condition, high-purity scandium oxide from which impurities are efficiently separated and removed can be obtained. Can do.

ここで、原料となる、スカンジウムを含有する溶液(以下、「スカンジウム含有溶液」ともいう)としては、ニッケル酸化鉱石に対する高圧酸浸出(HPAL)処理により得られた浸出液を硫化処理してニッケルを分離した後の硫化後液に対し、イオン交換処理及び/又は溶媒抽出処理によって不純物を分離して、スカンジウムを濃縮させた溶液(硫酸酸性溶液)を用いることができる。   Here, as a raw material solution containing scandium (hereinafter, also referred to as “scandium-containing solution”), nickel is separated by sulfiding the leachate obtained by high-pressure acid leaching (HPAL) treatment of nickel oxide ore. A solution (sulfuric acid acidic solution) obtained by separating impurities by ion exchange treatment and / or solvent extraction treatment and then concentrating scandium can be used for the post-sulfurized solution.

ニッケル酸化鉱石のHPALプロセスを経て得られた硫化後液等のスカンジウム含有溶液に対するイオン交換処理としては、特に限定されない。例えば、キレート樹脂として、イミノジ酢酸を官能基とする樹脂を用いた処理が挙げられる。具体的な処理工程として、例えば硫化後液を処理対象とする場合には、硫化後液をキレート樹脂に接触させてスカンジウムをキレート樹脂に吸着させる吸着工程と、そのキレート樹脂に硫酸を接触させてキレート樹脂に吸着したアルミニウムを除去するアルミニウム除去工程と、アルミニウム除去工程を経たキレート樹脂に硫酸を接触させてスカンジウム溶離液を得るスカンジウム溶離工程と、スカンジウム溶離工程を経たキレート樹脂に硫酸を接触させて吸着工程にてキレート樹脂に吸着したクロムを除去するクロム除去工程と、を有するものを例示できる。   The ion exchange treatment for the scandium-containing solution such as the post-sulfurization solution obtained through the HPAL process of nickel oxide ore is not particularly limited. For example, a treatment using a resin having iminodiacetic acid as a functional group may be used as the chelate resin. As a specific processing step, for example, when a post-sulfurized solution is to be treated, an adsorption step of contacting the post-sulfurized solution with the chelate resin to adsorb scandium to the chelate resin, and contacting the chelate resin with sulfuric acid. An aluminum removal process for removing aluminum adsorbed on the chelate resin, a scandium elution process for obtaining a scandium eluate by contacting sulfuric acid with the chelate resin that has undergone the aluminum removal process, and a sulfuric acid being brought into contact with the chelate resin that has undergone the scandium elution process. And a chromium removal step of removing chromium adsorbed on the chelate resin in the adsorption step.

また、溶媒抽出処理についても特に限定されず、上述したようなイオン交換処理を経て得られたスカンジウム溶離液に対して、アミン系抽出剤、リン酸系抽出剤等を使用した溶媒抽出処理を行うことができる。例えば、スカンジウム溶離液と抽出剤とを混合して、不純物を抽出した抽出後有機溶媒とスカンジウムを含む抽残液とに分離する抽出工程と、抽出後有機溶媒に塩酸溶液又は硫酸溶液を混合して抽出後有機溶媒に微量含まれるスカンジウムを分離するスクラビング工程と、洗浄後有機溶媒に逆抽出始液を混合して洗浄後有機溶媒から不純物を逆抽出し、逆抽出液を得る逆抽出工程と、を有するものを例示できる。   Also, the solvent extraction treatment is not particularly limited, and a solvent extraction treatment using an amine-based extractant, a phosphate-based extractant, or the like is performed on the scandium eluent obtained through the ion exchange treatment as described above. be able to. For example, an extraction process in which scandium eluent and an extractant are mixed to separate impurities into an extracted organic solvent and extracted residue containing scandium, and after extraction, a hydrochloric acid solution or a sulfuric acid solution is mixed with the organic solvent. A scrubbing process for separating scandium contained in a trace amount in the organic solvent after extraction, and a back extraction process for mixing the back-extraction starting solution in the organic solvent after washing and back-extracting impurities from the organic solvent after washing to obtain a back-extraction liquid; Can be exemplified.

このように、イオン交換処理や溶媒抽出処理を施して得られたスカンジウム含有溶液では、不純物成分が低減されてスカンジウムが溶液中で濃縮されていることから、そのスカンジウム含有溶液を原料として得られる酸化スカンジウムは、スカンジウム品位がより一層に高いものとなる。   As described above, in the scandium-containing solution obtained by performing the ion exchange treatment or the solvent extraction treatment, since the impurity component is reduced and the scandium is concentrated in the solution, the oxidation obtained using the scandium-containing solution as a raw material. Scandium has an even higher scandium quality.

≪2.酸化スカンジウムの製造方法の各工程について≫
図1は、酸化スカンジウムの製造方法の流れの一例を示す工程図である。図1に示すように、この製造方法は、スカンジウム含有溶液に対してシュウ酸化処理を施すシュウ酸化工程S11と、得られたシュウ酸スカンジウムの結晶に対して所定の温度で焼成する第1焼成工程S12と、焼成物であるスカンジウム化合物を鉱酸に溶解させて溶解液を得る溶解工程S13と、溶解液に対してシュウ酸化処理を施してシュウ酸スカンジウムの結晶の再沈殿物を得る再沈殿工程S14と、シュウ酸スカンジウムの再沈殿物を焼成して酸化スカンジウムを得る第2焼成工程と、を有する。
≪2. About each process of the manufacturing method of scandium oxide >>
FIG. 1 is a process diagram showing an example of the flow of a method for producing scandium oxide. As shown in FIG. 1, this manufacturing method includes an oxidation step S11 for performing an oxidation treatment on a scandium-containing solution, and a first baking step for baking the obtained scandium oxalate crystals at a predetermined temperature. S12, a dissolution step S13 for obtaining a solution by dissolving a scandium compound as a fired product in a mineral acid, and a reprecipitation step for obtaining a reprecipitate of scandium oxalate crystals by subjecting the solution to an oxalic oxidation treatment S14 and a second firing step of firing the scandium oxalate reprecipitate to obtain scandium oxide.

[シュウ酸化工程]
シュウ酸化工程S11は、スカンジウム含有溶液に対してシュウ酸化処理を施す工程である。具体的に、シュウ酸化工程S11では、スカンジウム含有溶液に対してシュウ酸を用いてスカンジウムをシュウ酸塩(シュウ酸スカンジウム)とする反応を生じさせる。
[Oxidation process]
The oxidation step S11 is a step of applying an oxidation treatment to the scandium-containing solution. Specifically, in the oxalic oxidation step S11, the scandium-containing solution is caused to react with oxalic acid (scandium oxalate) using oxalic acid.

このようにスカンジウムをシュウ酸塩とすることによって、濾過性等のハンドリング性を向上させることができ、スカンジウムを効率的に回収することができる。また、このシュウ酸化処理により、溶液中の不純物と分離することができる。   Thus, by using scandium as an oxalate, handling properties such as filterability can be improved, and scandium can be efficiently recovered. Moreover, the impurities in the solution can be separated by this oxidation treatment.

スカンジウム含有溶液としては、特に限定されないが、好ましくはスカンジウム濃度が5g/L〜10g/Lとなるように、より好ましくは5g/L程度の濃度となるように調整し、硫酸等の酸を用いてpHを0程度に調整したものを用いる。   The scandium-containing solution is not particularly limited, but is preferably adjusted so that the scandium concentration is 5 g / L to 10 g / L, more preferably about 5 g / L, and an acid such as sulfuric acid is used. The pH is adjusted to about 0.

シュウ酸化処理の方法としては、スカンジウム含有溶液に対してシュウ酸を添加して、スカンジウム含有溶液中のスカンジウムに基づいてシュウ酸スカンジウムの固体結晶を析出生成させる方法を用いることができる。このとき、使用するシュウ酸としては、固体であっても溶液であってもよい。なお、このシュウ酸化処理の方法において、スカンジウム含有溶液中に不純物成分として2価鉄イオンが含まれる場合には、シュウ酸鉄(II)の沈殿生成を防止するために、シュウ酸化処理に先立ち、酸化剤を添加して酸化還元電位(ORP,参照電極:銀/塩化銀)を500mV〜600mV程度の範囲に制御して酸化処理を施すことが好ましい。   As a method for the oxalic oxidation treatment, a method in which oxalic acid is added to a scandium-containing solution and a solid crystal of scandium oxalate is precipitated based on the scandium in the scandium-containing solution can be used. At this time, the oxalic acid used may be a solid or a solution. In this method of oxalic oxidation treatment, when divalent iron ions are contained as an impurity component in the scandium-containing solution, in order to prevent precipitation of iron (II) oxalate, prior to the oxalic oxidation treatment, It is preferable to add an oxidizing agent and control the oxidation-reduction potential (ORP, reference electrode: silver / silver chloride) within a range of about 500 mV to 600 mV to carry out the oxidation treatment.

あるいは、シュウ酸化処理の方法として、スカンジウム含有溶液を、反応容器に満たしたシュウ酸溶液の中に徐々に添加して、シュウ酸スカンジウムの固体結晶を析出生成させる方法(いわゆる逆添加法)を用いることができる。このとき、シュウ酸化処理に先立ち、スカンジウム含有溶液のpHを−0.5以上1以下の範囲に調整することが好ましい。このようなシュウ酸化処理方法によれば、シュウ酸鉄(II)等の沈殿生成を防止することができ、また高価な酸化剤等を用いることなく、より高純度のスカンジウムを回収することができる。   Alternatively, as a method of the oxalic oxidation treatment, a method (so-called reverse addition method) in which a scandium-containing solution is gradually added into an oxalic acid solution filled in a reaction vessel to precipitate and produce scandium oxalate crystals. be able to. At this time, it is preferable to adjust the pH of the scandium-containing solution to a range of −0.5 or more and 1 or less prior to the oxidation treatment. According to such an oxidation treatment method, precipitation of iron (II) oxalate and the like can be prevented, and higher-purity scandium can be recovered without using an expensive oxidizing agent or the like. .

シュウ酸化処理に際しては、処理対象であるスカンジウム含有溶液の温度を、10℃以上30℃以下の範囲に調整することが好ましく、15℃以上25℃以下の範囲に調整することがより好ましい。   In the oxidation treatment, the temperature of the scandium-containing solution to be treated is preferably adjusted to a range of 10 ° C. or higher and 30 ° C. or lower, and more preferably adjusted to a range of 15 ° C. or higher and 25 ° C. or lower.

また、処理に用いるシュウ酸としては、スカンジウム含有溶液中のスカンジウムをシュウ酸塩として析出させるのに必要な当量の1.05倍〜1.2倍の範囲の量を使用することが好ましい。使用量が必要な当量の1.05倍未満であると、スカンジウムを有効に全量回収できなくなる可能性がある。一方で、使用量が必要な当量の1.2倍を超えると、シュウ酸スカンジウムの溶解度が増加することでスカンジウムが再溶解して回収率が低下し、また過剰なシュウ酸を分解するために次亜塩素ソーダのような酸化剤の使用量が増加するため好ましくない。   Further, as the oxalic acid used for the treatment, it is preferable to use an amount in the range of 1.05 to 1.2 times the equivalent necessary for precipitating scandium in the scandium-containing solution as an oxalate. If the amount used is less than 1.05 times the required equivalent, there is a possibility that the entire amount of scandium cannot be recovered effectively. On the other hand, if the amount used exceeds 1.2 times the required equivalent, the solubility of scandium oxalate increases, so that scandium is redissolved and the recovery rate decreases, and excessive oxalic acid is decomposed. This is not preferable because the amount of the oxidizing agent such as hypochlorous soda increases.

このようなシュウ酸化処理により得られたシュウ酸スカンジウムの結晶は、濾過・洗浄処理を行うことによって回収することができる。   The crystals of scandium oxalate obtained by such oxalic oxidation treatment can be recovered by filtration and washing treatment.

[第1焼成工程]
第1焼成工程S12は、シュウ酸化工程S11で得られたシュウ酸スカンジウムの結晶に対して所定の温度で焼成する工程である。このような所定の温度での焼成処理により、焼成物であるスカンジウム化合物を得ることができる。
[First firing step]
The first baking step S12 is a step of baking the scandium oxalate crystals obtained in the oxidation step S11 at a predetermined temperature. By such a firing treatment at a predetermined temperature, a scandium compound that is a fired product can be obtained.

そして、本実施の形態では、この第1焼成工程S12において、焼成温度を400℃以上600℃以下の範囲として焼成を行うことを特徴としている。これにより、酸等の水溶液に対して易溶性を示すスカンジウム化合物を焼成物として得ることができる。   And in this Embodiment, in this 1st baking process S12, baking is performed by setting the baking temperature as the range of 400 degreeC or more and 600 degrees C or less. Thereby, the scandium compound which shows easy solubility with respect to aqueous solutions, such as an acid, can be obtained as a baked product.

本発明者は、シュウ酸スカンジウムの結晶に対して、従来よりも低温領域である400℃以上600℃以下の範囲の条件で焼成処理を施すことによって、酸等の水溶液に対して易溶性のスカンジウム化合物が得られることを見出した。なお、従来、シュウ酸スカンジウムを焼成して酸化スカンジウムを得るためには、焼成温度を900℃以上、好ましくは1100℃程度とすることが必要であった。   The present inventor has performed a scan treatment on scandium oxalate crystals under conditions in the range of 400 ° C. or more and 600 ° C. or less, which is a lower temperature region than conventional ones, thereby easily dissolving scandium in an aqueous solution such as an acid. It was found that a compound was obtained. Conventionally, in order to obtain scandium oxide by baking scandium oxalate, it was necessary to set the baking temperature to 900 ° C. or higher, preferably about 1100 ° C.

しかも、このようにして得られる易溶性のスカンジウム化合物は、焼成処理前のシュウ酸スカンジウムの結晶の重量に対する減量率が、53%以上65%以下、好ましくは55%以上65%以下、より好ましくは55%以上60%以下の範囲となる。なお、減量率とは、焼成による重量の減少割合をいい、焼成前後の重量際に基づいて下記式[1]で表すことができる。
減量率(%)=(1−焼成後物量/焼成前物量)×100 ・・・[1]
Moreover, the readily soluble scandium compound thus obtained has a weight loss ratio of 53% or more and 65% or less, preferably 55% or more and 65% or less, more preferably, with respect to the weight of scandium oxalate crystals before the firing treatment. It becomes the range of 55% or more and 60% or less. The weight loss rate refers to the rate of weight reduction due to firing, and can be represented by the following formula [1] based on the weight before and after firing.
Weight loss rate (%) = (1−amount after firing / amount before firing) × 100 [1]

ここで、シュウ酸スカンジウム(Sc12;分子量353.92)を焼成することで酸化スカンジウム(Sc;分子量137.92)を得る場合、焼成前後の減量率としては、理論的には(1−137.92/353.92)×100=61%になる。しかしながら、本発明者は、400℃以上600℃以下の範囲の条件で焼成処理を施すことで得られる易溶性のスカンジウム化合物においては、減量率が55%以上65%以下の範囲で幅があるものとなることから、難溶性のシュウ酸スカンジウムを加熱して難溶性の酸化スカンジウムに分解される際に、易溶性の形態を呈する領域があることを見出した。 Here, when scandium oxide (Sc 2 O 3 ; molecular weight 137.92) is obtained by firing scandium oxalate (Sc 2 C 6 O 12 ; molecular weight 353.92), the weight loss rate before and after firing is theoretically Specifically, (1-1137.92 / 353.92) × 100 = 61%. However, the present inventor has a range in which the weight loss rate is 55% or more and 65% or less in the easily soluble scandium compound obtained by performing the baking treatment in the range of 400 ° C. or more and 600 ° C. or less. Therefore, it was found that there is a region exhibiting a readily soluble form when the hardly soluble scandium oxalate is heated to be decomposed into the hardly soluble scandium oxide.

つまり、この易溶性を示すスカンジウム化合物は、原料であるシュウ酸スカンジウムの結晶が、焼成により完全に分解してその全量が酸化スカンジウムになったものではなく、部分的にシュウ酸スカンジウムが残留したり、あるいは分解で生成したCOやCO等が残留した状態にある化合物であると考えられる。実際に、400℃以上600℃以下の範囲の温度条件で焼成して得られる易溶性のスカンジウム化合物は、従来の高温で焼成して得られる酸化スカンジウムに比べて、炭素(C)が多く含まれている。 In other words, this easily soluble scandium compound is not the one in which the raw material scandium oxalate crystals are completely decomposed by firing and the total amount becomes scandium oxide, and scandium oxalate partially remains. Alternatively, it is considered to be a compound in which CO 2 , CO, etc. produced by decomposition remain. Actually, a readily soluble scandium compound obtained by firing under a temperature condition in the range of 400 ° C. or more and 600 ° C. or less contains more carbon (C) than the conventional scandium oxide obtained by firing at a high temperature. ing.

また、この易溶性を示すスカンジウム化合物は、X線回折分析を行っても、とりわけより易溶性を示す下限の温度側では、特有の回折ピークを示さず、その化合物の形態を特定することが困難である。そのため、易溶性の領域にある化合物を、単に『スカンジウム化合物』と総称する。具体的に、400℃以上600℃以下の範囲の温度条件で焼成して得られる易溶性のスカンジウム化合物では、シュウ酸スカンジウムのピークも観察されず、酸化スカンジウムのピークに相当するピーク強度も11000カウント以下となる。このことから、400℃以上600℃以下の温度で焼成して得られるスカンジウム化合物では、結晶化度が低くなり、易溶性の性質を有するものになると考えられる。   In addition, even when X-ray diffraction analysis is performed, this scandium compound exhibiting high solubility does not exhibit a specific diffraction peak, particularly on the lower temperature side indicating higher solubility, and it is difficult to specify the form of the compound. It is. For this reason, compounds in the readily soluble region are simply referred to as “scandium compounds”. Specifically, in a readily soluble scandium compound obtained by firing under a temperature condition in the range of 400 ° C. to 600 ° C., no scandium oxalate peak is observed, and the peak intensity corresponding to the scandium oxide peak is also 11000 counts. It becomes as follows. From this, it is considered that a scandium compound obtained by firing at a temperature of 400 ° C. or higher and 600 ° C. or lower has a low crystallinity and has an easily soluble property.

さらに、この易溶性を示すスカンジウム化合物は、BET比表面積が70m/g以上の微細なものであるという性質を有する。特に、焼成温度を400℃として得られたスカンジウム化合物では、250m/g以上となる。このように、400℃以上600℃以下の温度条件で焼成して得られたスカンジウム化合物では、比表面積が大きくなり、その結果として、酸溶液に対する溶解に際しての酸溶液との接触面積が多くなり、易溶性を示すようになると考えられる。スカンジウム化合物の比表面積としては、100m/g以上であることがより好ましく、200m/g以上であることがさらに好ましく、250m/g以上であることが特に好ましい。 Further, this easily soluble scandium compound has a property that it has a fine BET specific surface area of 70 m 2 / g or more. In particular, the scandium compound obtained at a firing temperature of 400 ° C. is 250 m 2 / g or more. Thus, in the scandium compound obtained by firing at a temperature condition of 400 ° C. or more and 600 ° C. or less, the specific surface area increases, and as a result, the contact area with the acid solution at the time of dissolution in the acid solution increases, It is thought that it becomes easily soluble. The specific surface area of the scandium compound, more preferably 100 m 2 / g or more, more preferably 200 meters 2 / g or more, particularly preferably 250 meters 2 / g or more.

そして、このように易溶性のスカンジウム化合物を生じさせるための条件が、400℃以上600℃以下の範囲の温度条件で焼成することであり、より好ましくは、400℃以上500℃以下の範囲の温度条件で焼成することである。また、換言すると、このような易溶性のスカンジウム化合物は、焼成による減量率が53%以上65%以下、好ましくは55%以上65%以下、より好ましくは55%以上60%以下の範囲となるような条件で焼成することによって得られる。   And the conditions for producing the easily soluble scandium compound in this way are firing at a temperature condition in the range of 400 ° C. or more and 600 ° C. or less, more preferably in the range of 400 ° C. or more and 500 ° C. or less. It is firing under conditions. In other words, such a readily soluble scandium compound has a weight loss rate by firing of 53% to 65%, preferably 55% to 65%, more preferably 55% to 60%. Can be obtained by firing under various conditions.

具体的に、第1焼成工程S12における焼成処理では、シュウ酸化処理により得られたシュウ酸スカンジウムの結晶を水で洗浄し、乾燥させた後に、所定の炉を用いて焼成する。炉としては、特に限定されないが、管状炉等が挙げられ、また工業的には、ロータリーキルン等の連続炉を用いることで乾燥と焼成とを同じ装置で連続して行うことができるため好ましい。   Specifically, in the firing treatment in the first firing step S12, the scandium oxalate crystals obtained by the oxidation treatment are washed with water and dried, and then fired using a predetermined furnace. Although it does not specifically limit as a furnace, A tubular furnace etc. are mentioned, In order to be able to perform drying and baking continuously with the same apparatus by using continuous furnaces, such as a rotary kiln, it is preferable industrially.

また、400℃以上600℃以下の焼成温度で焼成するときの保持時間としては、特に限定されないが、0.5時間以上12時間以下であることが好ましく、1時間以上12時間以下であることがより好ましく、1時間以上6時間以下であることが特に好ましい。保持時間が0.5時間未満であると、十分に焼成が進行せず、難溶性のシュウ酸スカンジウムの多くが残存してしまう可能性がある。一方で、保持時間が12時間を超えると、得られるスカンジウム化合物の易溶性の性質が、ほとんど変わらないか、むしろ徐々に低下することがあり、また熱エネルギーが増大するため処理コストが高くなる。   The holding time when firing at a firing temperature of 400 ° C. or higher and 600 ° C. or lower is not particularly limited, but is preferably 0.5 hours or longer and 12 hours or shorter, and is preferably 1 hour or longer and 12 hours or shorter. More preferably, it is 1 hour or more and 6 hours or less. If the holding time is less than 0.5 hours, the firing does not proceed sufficiently, and there is a possibility that much of the poorly soluble scandium oxalate remains. On the other hand, when the holding time exceeds 12 hours, the readily soluble property of the obtained scandium compound is hardly changed or may be gradually lowered, and the heat energy is increased, so that the processing cost is increased.

[溶解工程]
溶解工程S13は、第1焼成工程S12での焼成処理により得られた焼成物であるスカンジウム化合物を、鉱酸である塩酸及び硝酸から選ばれる1種以上の溶液に全溶解させて溶解液を得る工程である。
[Dissolution process]
In the dissolution step S13, the scandium compound, which is a fired product obtained by the firing treatment in the first firing step S12, is completely dissolved in one or more solutions selected from hydrochloric acid and nitric acid that are mineral acids to obtain a solution. It is a process.

上述したように、第1焼成工程S12において焼成温度を400℃以上600以下の範囲として焼成を行うことで、酸等の水溶液に対して易溶性を示すスカンジウム化合物を得ることができる。したがって、溶解工程S13では、このようにして得られた易溶性のスカンジウム化合物を塩酸及び硝酸から選ばれる1種以上の溶液に溶解させることで、スカンジウムを液中に溶出させた、いわゆる再溶解液であって、スカンジウムが濃縮された溶液を得ることができる。   As described above, by performing firing at a firing temperature in the range of 400 ° C. or more and 600 or less in the first firing step S12, a scandium compound that is easily soluble in an aqueous solution of an acid or the like can be obtained. Therefore, in the dissolution step S13, a so-called re-dissolved solution in which scandium is eluted in the solution by dissolving the readily soluble scandium compound thus obtained in one or more solutions selected from hydrochloric acid and nitric acid. Thus, a solution enriched in scandium can be obtained.

このように、本実施の形態に係る酸化スカンジウムの製造方法では、得られたスカンジウム化合物の易溶性の性質を利用して再溶解液を調製し、この再溶解液に基づいて後工程において再度シュウ酸スカンジウムの結晶を得て、その結晶を焼成して酸化スカンジウムとすることで、不純物元素を効率的に分離除去することができる。これにより、不純物品位が低減された高純度の酸化スカンジウムを製造することができる。   As described above, in the method for producing scandium oxide according to the present embodiment, a re-dissolved solution is prepared by using the readily soluble property of the obtained scandium compound, and the re-dissolved solution is used again in the subsequent process based on the re-dissolved solution. By obtaining crystals of scandium acid and firing the crystals to form scandium oxide, the impurity element can be efficiently separated and removed. Thereby, high purity scandium oxide with reduced impurity quality can be produced.

溶解工程S13における溶解処理としては、特に限定されず、スカンジウム化合物に対して純水を加え、さらにそこに塩酸及び硝酸から選ばれる1種以上の溶液を添加していき、撹拌することによって行うことができる。また、溶解処理における温度条件としても、40℃以上80℃以下程度の範囲に調整して行うことができる。   The dissolution treatment in the dissolution step S13 is not particularly limited, and is performed by adding pure water to the scandium compound, further adding one or more solutions selected from hydrochloric acid and nitric acid thereto, and stirring. Can do. Moreover, also as temperature conditions in a melt | dissolution process, it can adjust and adjust in the range of about 40 to 80 degreeC.

また、溶解に用いる塩酸及び硝酸から選ばれる1種以上の溶液としては、そのpH条件は特に限定されず、例えばpH0〜2程度に調整したものを用いればよい。これらの酸溶液に溶解させるスカンジウム化合物は、上述したように酸等の水溶液に対して易溶性を示すものであることから、pH0〜2程度の条件でも容易に溶解させることが可能となり、高濃度化する等に必要な薬剤コストを有効に抑えることができる。なお、酸溶液として、上述した塩酸や硝酸以外にも、同じ鉱酸である硫酸を用いることもできる。ただし、本発明者の実験により、メカニズムは定かではないが、塩酸を用いて溶解させることで、硫酸を用いた場合よりもより一層に高純度なシュウ酸スカンジウムが得られることが分かった。   Moreover, as for 1 or more types of solutions chosen from hydrochloric acid and nitric acid used for melt | dissolution, the pH conditions are not specifically limited, For example, what was adjusted to about pH 0-2 should just be used. Since the scandium compound dissolved in these acid solutions is readily soluble in aqueous solutions such as acids as described above, it can be easily dissolved even under conditions of pH 0 to 2 and has a high concentration. It is possible to effectively reduce the cost of medicines required for conversion to the market. In addition to the hydrochloric acid and nitric acid mentioned above, sulfuric acid which is the same mineral acid can also be used as the acid solution. However, although the mechanism is not clear by the experiment of the present inventors, it was found that scandium oxalate having higher purity than that obtained using sulfuric acid can be obtained by dissolving with hydrochloric acid.

なお、溶解工程S13で得られる再溶解液としては、例えば、スカンジウム濃度を50g/L程度にまで高めて任意の値に調整することができ、これにより、液量の削減や、延いては設備容量の減少を図ることができる。   As the redissolved solution obtained in the dissolving step S13, for example, the scandium concentration can be increased to about 50 g / L and can be adjusted to an arbitrary value. The capacity can be reduced.

[再沈殿工程]
再沈殿工程S14は、溶解工程S13においてスカンジウム化合物を再溶解して得られた溶解液(再溶解液)を用い、再度、シュウ酸化処理を施すことによって、シュウ酸スカンジウムの結晶の再沈殿物を得る工程である。
[Reprecipitation process]
In the reprecipitation step S14, a reprecipitate of scandium oxalate crystals is obtained by subjecting the solution (redissolution solution) obtained by redissolving the scandium compound in the dissolution step S13 to oxalate treatment again. It is a process to obtain.

すなわち、再沈殿工程S14では、再溶解液を原料として2回目のシュウ酸化を行う。このように、易溶性のスカンジウム化合物を再溶解し、その再溶解液からシュウ酸スカンジウムの結晶を再度生成させる方法によれば、その2回目のシュウ酸化により得られるシュウ酸スカンジウムの結晶に共存する不純物量を著しく低減させることができる。   That is, in the reprecipitation step S14, the second oxidation is performed using the re-dissolved solution as a raw material. Thus, according to the method of re-dissolving the easily soluble scandium compound and regenerating the scandium oxalate crystal from the redissolved solution, it coexists with the scandium oxalate crystal obtained by the second oxalic acid oxidation. The amount of impurities can be significantly reduced.

再沈殿工程S14におけるシュウ酸化処理の方法としては、シュウ酸化工程S11にて行った処理と同様にして行うことができる。例えば、再溶解液のスカンジウム濃度が5g/L〜10g/Lとなるように、より好ましくは5g/L程度の濃度となるように調整し、さらに塩酸や硝酸等の鉱酸を用いてpHを0程度に調整したものを用いてシュウ酸化処理する。   The method for the oxidation treatment in the reprecipitation step S14 can be performed in the same manner as the treatment performed in the oxidation step S11. For example, the redissolved solution is adjusted so that the scandium concentration is 5 g / L to 10 g / L, more preferably about 5 g / L, and the pH is adjusted using a mineral acid such as hydrochloric acid or nitric acid. Oxidation treatment is performed using a material adjusted to about zero.

また、この2回目のシュウ酸化処理では、シュウ酸化処理において添加するシュウ酸の量を、スカンジウムに対して3.0当量以内に抑えても高い実収率でスカンジウムをシュウ酸スカンジウムとすることができ、シュウ酸の使用コストを低減することができる。   Moreover, in this second oxalic acid treatment, even if the amount of oxalic acid added in the oxalic acid oxidation treatment is kept within 3.0 equivalents relative to scandium, scandium can be converted into scandium oxalate with a high actual yield. The use cost of oxalic acid can be reduced.

ここで、シュウ酸化処理においては、反応時における溶液(再溶解液)の液温を40℃以上とすることで、常温(25℃)で反応を生じさせた場合と比べて、得られるシュウ酸スカンジウムの粒子を粗大化させることができ、次の焼成工程(第2焼成工程)で焼成炉に装入する際の取り扱いが容易となる。ただし、単に粗大化しただけでは、不純物が粒子の隙間に巻き込まれて品位が低下する懸念がある。   Here, in the oxidation treatment, the oxalic acid obtained in comparison with the case where the reaction is caused at normal temperature (25 ° C.) by setting the solution temperature (re-dissolved solution) at the time of reaction to 40 ° C. or higher. The scandium particles can be coarsened, and handling at the time of charging into the firing furnace in the next firing step (second firing step) becomes easy. However, there is a concern that the quality is deteriorated simply by coarsening the impurities in the gaps between the particles.

しかしながら、上述したように本実施の形態においては、易溶性のスカンジウム化合物を再溶解し、その再溶解液からシュウ酸スカンジウムの結晶を再度生成させていることから、2回目のシュウ酸スカンジウムの結晶に共存する不純物を著しく低減させることができるため、有効に粒子を粗大化させることができる。このことから、ハンドリング性も効果的に高めることができる。   However, as described above, in the present embodiment, the easily soluble scandium compound is redissolved, and the scandium oxalate crystal is generated again from the redissolved solution. Since the impurities coexisting with each other can be remarkably reduced, the particles can be effectively coarsened. From this, handling property can also be effectively improved.

なお、100℃以上の液温条件としても、粗大化への影響は少なく、エネルギーも余計にかかるため、シュウ酸化処理における温度条件としては、40℃以上100℃未満の範囲とすることが好ましく、40℃以上60℃以下の範囲とすることがより好ましい。   In addition, even as the liquid temperature condition of 100 ° C. or higher, since the influence on the coarsening is small and energy is excessive, the temperature condition in the oxidation treatment is preferably in the range of 40 ° C. or higher and lower than 100 ° C., More preferably, the temperature is in the range of 40 ° C. or more and 60 ° C. or less.

[第2焼成工程]
第2焼成工程S15は、再沈殿工程S14で得られたシュウ酸スカンジウムの再沈殿物を所定の温度で焼成する工程である。すなわち、第2焼成工程S15では、再溶解液から得られたシュウ酸スカンジウムの結晶を焼成する2回目の焼成処理を行い、この焼成処理により酸化スカンジウムを得る。
[Second firing step]
The second firing step S15 is a step of firing the scandium oxalate reprecipitate obtained in the reprecipitation step S14 at a predetermined temperature. That is, in the second baking step S15, a second baking process for baking the crystals of scandium oxalate obtained from the re-dissolved solution is performed, and scandium oxide is obtained by this baking process.

第2焼成工程S15における焼成処理では、焼成温度の条件を900℃以上とすることが好ましく、1000℃以上とすることがより好ましく、1100℃程度とすることが特に好ましい。このように、第2焼成工程S15では、シュウ酸スカンジウムの結晶に対して900℃以上の高温の条件で焼成を行うことで、明確に酸化スカンジウムの形態を有する化合物を焼成物として生じさせる。また、このように高温条件で焼成することで、シュウ酸に由来する炭素(C)が残留することを防ぐことができる。   In the firing treatment in the second firing step S15, the firing temperature condition is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, and particularly preferably about 1100 ° C. Thus, in 2nd baking process S15, the compound which has the form of a scandium oxide clearly as a baked material is baked on 900 degreeC or more conditions with respect to the crystal of scandium oxalate. Moreover, it can prevent that carbon (C) derived from oxalic acid remains by baking in such a high temperature condition.

そして、このように、易溶性のスカンジウム化合物を再溶解し、その再溶解液から再度シュウ酸スカンジウムの結晶を生成させ、そのシュウ酸スカンジウムの結晶を焼成していることから、不純物品位を低減させた高純度な酸化スカンジウムを得ることができる。   In this way, the easily soluble scandium compound is redissolved, and the scandium oxalate crystal is generated again from the redissolved solution, and the scandium oxalate crystal is fired, thereby reducing the impurity quality. High purity scandium oxide can be obtained.

第2焼成工程S15における焼成処理の方法としては、第1焼成工程S12における処理と同様に、得られたシュウ酸スカンジウムの結晶を水で洗浄し、乾燥させた後に、管状炉や連続炉等を用いて焼成する。   As a method for the firing treatment in the second firing step S15, the obtained scandium oxalate crystals are washed with water and dried in the same manner as in the first firing step S12. Used and fired.

また、900℃以上の高温の焼成温度で焼成するときの保持時間としては、特に限定されないが、0.5時間以上12時間以下であることが好ましく、1時間以上12時間以下であることがより好ましく、1時間以上6時間以下であることが特に好ましい。保持時間が0.5時間未満であると、十分に焼成が進行せず、酸化スカンジウムの形態の焼成物が有効に得られない可能性がある。一方で、保持時間が12時間を超えると、熱エネルギーが増大するため処理コストが高くなる。   The holding time when firing at a high firing temperature of 900 ° C. or higher is not particularly limited, but is preferably 0.5 hours or longer and 12 hours or shorter, and more preferably 1 hour or longer and 12 hours or shorter. Preferably, it is 1 hour or more and 6 hours or less. If the holding time is less than 0.5 hours, the firing does not proceed sufficiently, and a fired product in the form of scandium oxide may not be obtained effectively. On the other hand, if the holding time exceeds 12 hours, the heat energy increases and the processing cost increases.

以下、本発明の実施例を示して、本発明についてより具体的に説明する。なお、本発明は以下の実施例に何ら限定されない。   Hereinafter, the present invention will be described more specifically with reference to examples of the present invention. The present invention is not limited to the following examples.

[実施例1]
<スカンジウム含有溶液の生成>
(ニッケル酸化鉱石の湿式製錬プロセス)
オートクレーブを用いてニッケル酸化鉱石を硫酸で浸出し、得られた浸出液に消石灰を添加して中和した。次いで、得られた中和後液に硫化剤を添加して硫化反応を生じさせ、ニッケルやコバルト等を硫化物として分離し、スカンジウムを含有する硫化後液を得た。
[Example 1]
<Generation of scandium-containing solution>
(Nickel ore hydrometallurgical process)
Nickel oxide ore was leached with sulfuric acid using an autoclave and neutralized by adding slaked lime to the obtained leachate. Subsequently, a sulfiding agent was added to the obtained post-neutralization solution to cause a sulfidation reaction, and nickel, cobalt, and the like were separated as sulfides to obtain a post-sulfurization solution containing scandium.

(イオン交換処理、中和処理)
次に、得られた硫化後液に対してキレート樹脂を用いたイオン交換処理に付し、溶液中の不純物を分離するとともに、キレート樹脂から溶離したスカンジウムを含む溶離液(スカンジウム溶離液)を得た。その後、スカンジウム溶離液に対して中和剤を添加して、水酸化スカンジウムの沈殿物を生成させた。
(Ion exchange treatment, neutralization treatment)
Next, the obtained post-sulfurized solution is subjected to an ion exchange treatment using a chelate resin to separate impurities in the solution and to obtain an eluent (scandium eluent) containing scandium eluted from the chelate resin. It was. Thereafter, a neutralizing agent was added to the scandium eluent to form a scandium hydroxide precipitate.

(溶媒抽出処理)
次に、水酸化スカンジウムの沈殿物に硫酸を添加して再度溶解して溶解液(スカンジウム溶解液)とし、このスカンジウム溶解液に対してアミン系抽出剤を用いた溶媒抽出処理に付し、抽残液として硫酸スカンジウム溶液(スカンジウム含有溶液)を得た。
(Solvent extraction process)
Next, sulfuric acid is added to the scandium hydroxide precipitate and dissolved again to obtain a solution (scandium solution). The scandium solution is subjected to a solvent extraction process using an amine-based extractant and extracted. A scandium sulfate solution (scandium-containing solution) was obtained as the remaining liquid.

<シュウ酸化工程>
得られた硫酸スカンジウム溶液を、スカンジウム濃度が5g/L程度となるまで水を加えて希釈し、硫酸でpHが0になるように調整した。そして、この調整後の溶液をシュウ酸化始液とし、合計65リットルを準備した。
<Oxidation process>
The obtained scandium sulfate solution was diluted by adding water until the scandium concentration was about 5 g / L, and the pH was adjusted to 0 with sulfuric acid. And the solution after this adjustment was made into the oxidation starter, and a total of 65 liters was prepared.

次に、始液中のスカンジウムに対して2.7当量のシュウ酸を反応させるため、シュウ酸を100g/Lの濃度で溶解した溶液を合計27リットル準備した。そして、そのシュウ酸溶液を反応容器に収容し、そのシュウ酸溶液の中に始液を270ml/minの流量で添加した。始液を全量添加した後、1時間かけて撹拌した。なお、反応温度を25℃とし、滞留時間を5時間、添加時間を4時間とする条件とした。下記表1に、シュウ酸化(1回目のシュウ酸化)の処理条件をまとめて示す。   Next, in order to make 2.7 equivalents of oxalic acid react with scandium in the starting solution, a total of 27 liters of a solution in which oxalic acid was dissolved at a concentration of 100 g / L was prepared. Then, the oxalic acid solution was placed in a reaction vessel, and the starting solution was added into the oxalic acid solution at a flow rate of 270 ml / min. The whole amount of the starting solution was added and stirred for 1 hour. The reaction temperature was 25 ° C., the residence time was 5 hours, and the addition time was 4 hours. Table 1 below collectively shows the processing conditions for the oxidation of oxalate (the first oxidization of oxalate).

Figure 0006583445
Figure 0006583445

撹拌終了後、全量濾過を行ってシュウ酸スカンジウムの結晶を分離し、分離した結晶50gに対して純水1リットルを使用するレパルプ洗浄を3回繰り返した。   After the stirring, the whole amount was filtered to separate scandium oxalate crystals, and repulp washing using 1 liter of pure water was repeated 3 times for 50 g of the separated crystals.

<第1焼成工程>
次に、シュウ酸化処理により得られたシュウ酸スカンジウムの結晶の一部を分取し、これを炉に入れて1100℃の温度で2時間かけて焼成し、得られた焼成物を分析した。なお、下記表5に、焼成温度1100℃として得られた焼成物の分析結果を示す(表5中の「1回目の焼成処理後の酸化スカンジウム」)。
<First firing step>
Next, a part of scandium oxalate crystals obtained by the oxalic oxidation treatment was fractionated, put in a furnace and baked at a temperature of 1100 ° C. for 2 hours, and the obtained baked products were analyzed. Table 5 below shows the analysis results of the fired product obtained at a firing temperature of 1100 ° C. (“Scandium oxide after first firing treatment in Table 5”).

一方、残りのシュウ酸スカンジウム結晶から500gを分取し、これを炉に入れて400℃の温度で2時間かけて焼成し、約215gの焼成物を得た。そして、その焼成物の一部を分析した。下記表2に、焼成温度400℃での焼成条件をまとめて示す。   On the other hand, 500 g was collected from the remaining scandium oxalate crystals and placed in a furnace and baked at a temperature of 400 ° C. for 2 hours to obtain about 215 g of a fired product. A part of the fired product was analyzed. Table 2 below collectively shows firing conditions at a firing temperature of 400 ° C.

Figure 0006583445
Figure 0006583445

<再溶解工程>
次に、焼成温度400℃で焼成して得られた焼成物の残りから150gを採取し、それに純水を加えて混合しながら60℃に加熱し、さらに塩酸を添加してpHを1に調整した。この操作により、150gのシュウ酸スカンジウムの結晶の95%以上が溶解したスカンジウム溶解液を得た。下記表3に、溶解処理の条件をまとめて示す。
<Remelting process>
Next, 150 g is collected from the remainder of the fired product obtained by firing at a firing temperature of 400 ° C., heated to 60 ° C. while adding pure water thereto and mixing, and further adjusted to pH 1 by adding hydrochloric acid. did. By this operation, a scandium solution in which 95% or more of 150 g of scandium oxalate crystals were dissolved was obtained. Table 3 below summarizes the conditions for the dissolution treatment.

Figure 0006583445
Figure 0006583445

なお、得られたスカンジウム溶解液をスカンジウム濃度が5g/Lになるように希釈し、塩酸を添加してpHを0に調整した液を再溶解液とし、3.5リットル準備した。   The obtained scandium solution was diluted so that the scandium concentration was 5 g / L, and a solution prepared by adding hydrochloric acid to adjust the pH to 0 was used as a redissolved solution, and 3.5 liters were prepared.

<再沈殿工程>
次に、再溶解液中のスカンジウムに対して2.7当量のシュウ酸を反応させるため、シュウ酸を100g/Lの濃度で溶解した溶液を1.45リットル準備した。そして、そのシュウ酸溶液を反応容器に収容し、そのシュウ酸溶液の中に再溶解液を添加した。再溶解液を全量添加した後、1時間撹拌状態を保持した。なお、反応温度を25℃とし、滞留時間を2時間、添加時間を1時間とする条件とした。下記表4に、シュウ酸化(2回目のシュウ酸化)の処理条件をまとめて示す。
<Reprecipitation process>
Next, in order to make 2.7 equivalents of oxalic acid react with scandium in the redissolved solution, 1.45 liters of a solution in which oxalic acid was dissolved at a concentration of 100 g / L was prepared. And the oxalic acid solution was accommodated in the reaction container, and the redissolved solution was added in the oxalic acid solution. After the total amount of the re-dissolved solution was added, the stirring state was maintained for 1 hour. The reaction temperature was 25 ° C., the residence time was 2 hours, and the addition time was 1 hour. Table 4 below collectively shows the processing conditions for the oxidation (second oxidation).

Figure 0006583445
Figure 0006583445

撹拌終了後、全量濾過を行ってシュウ酸スカンジウムの結晶を分離し、分離した結晶66gに対して純水2リットルを使用するレパルプ洗浄を2回繰り返した。   After the stirring, the whole amount was filtered to separate scandium oxalate crystals, and repulp washing using 2 liters of pure water was repeated twice for 66 g of the separated crystals.

<第2焼成工程>
次に、洗浄後のシュウ酸スカンジウムの結晶を炉に入れて2回目の焼成を、焼成温度900℃で2時間かけて行い、酸化スカンジウムを生成させた。そして、炉から取り出した酸化スカンジウムを分析した。
<Second firing step>
Next, the washed scandium oxalate crystals were placed in a furnace, and the second firing was performed at a firing temperature of 900 ° C. for 2 hours to generate scandium oxide. And the scandium oxide taken out from the furnace was analyzed.

酸化スカンジウムの分析は、以下のようにして行った。すなわち、スカンジウム(Sc)については、他の69成分の不純物をICP及びICP質量分析(ICP−MS)装置を用いて分析し、これらの不純物量を差し引いた残りがスカンジウムとみなして評価した。なお、1回目の焼成処理(1100℃)後の酸化スカンジウムの分析も、同様にして行った。   Scandium oxide was analyzed as follows. That is, for scandium (Sc), other 69 component impurities were analyzed using an ICP and ICP mass spectrometer (ICP-MS), and the remainder after subtracting these impurity amounts was regarded as scandium for evaluation. The analysis of scandium oxide after the first baking treatment (1100 ° C.) was performed in the same manner.

下記表5に、得られた酸化スカンジウムの分析結果を示す(表5中の「2回目の焼成処理後の酸化スカンジウム」)。   The analysis results of the obtained scandium oxide are shown in Table 5 below ("Scandium oxide after the second baking treatment" in Table 5).

Figure 0006583445
Figure 0006583445

表5に示されるように、シュウ酸化処理により得られたシュウ酸スカンジウムを400℃で焼成し、得られたスカンジウム化合物を塩酸に再溶解して、その再溶解液から再度シュウ酸スカンジウムの結晶を生成させ、そのシュウ酸スカンジウムを900℃で焼成して得られた酸化スカンジウムでは、1回目の焼成処理(1100℃)後の酸化スカンジウムに比べて、不純物品位が低減されて、高純度なものとなった。   As shown in Table 5, the scandium oxalate obtained by the oxalic oxidation treatment was calcined at 400 ° C., the obtained scandium compound was redissolved in hydrochloric acid, and the scandium oxalate crystals were re-dissolved from the redissolved solution. The scandium oxide obtained by firing and firing the scandium oxalate at 900 ° C. has reduced impurity quality and high purity compared to scandium oxide after the first firing treatment (1100 ° C.). became.

[実施例2]
<スカンジウム含有溶液の生成>
(ニッケル酸化鉱石の湿式製錬プロセス)
オートクレーブを用いてニッケル酸化鉱石を硫酸で浸出し、得られた浸出液に消石灰を添加して中和した。次いで、得られた中和後液に硫化剤を添加して硫化反応を生じさせ、ニッケルやコバルト等を硫化物として分離し、スカンジウムを含有する硫化後液を得た。
[Example 2]
<Generation of scandium-containing solution>
(Nickel ore hydrometallurgical process)
Nickel oxide ore was leached with sulfuric acid using an autoclave and neutralized by adding slaked lime to the obtained leachate. Subsequently, a sulfiding agent was added to the obtained post-neutralization solution to cause a sulfidation reaction, and nickel, cobalt, and the like were separated as sulfides to obtain a post-sulfurization solution containing scandium.

(イオン交換処理、中和処理)
次に、得られた硫化後液に対してキレート樹脂を用いたイオン交換処理に付し、溶液中の不純物を分離するとともに、キレート樹脂から溶離したスカンジウムを含む溶離液(スカンジウム溶離液)を得た。その後、スカンジウム溶離液に対して中和剤を添加して、水酸化スカンジウムの沈殿物を生成させた。
(Ion exchange treatment, neutralization treatment)
Next, the obtained post-sulfurized solution is subjected to an ion exchange treatment using a chelate resin to separate impurities in the solution and to obtain an eluent (scandium eluent) containing scandium eluted from the chelate resin. It was. Thereafter, a neutralizing agent was added to the scandium eluent to form a scandium hydroxide precipitate.

(溶媒抽出処理)
次に、水酸化スカンジウムの沈殿物に硫酸を添加して再度溶解して溶解液(スカンジウム溶解液)とし、このスカンジウム溶解液に対してアミン系抽出剤を用いた溶媒抽出処理に付し、抽残液として硫酸スカンジウム溶液(スカンジウム含有溶液)を得た。
(Solvent extraction process)
Next, sulfuric acid is added to the scandium hydroxide precipitate and dissolved again to obtain a solution (scandium solution). The scandium solution is subjected to a solvent extraction process using an amine-based extractant and extracted. A scandium sulfate solution (scandium-containing solution) was obtained as the remaining liquid.

<シュウ酸化工程>
得られた硫酸スカンジウム溶液を、スカンジウム濃度が5g/L程度となるまで水を加えて希釈し、硫酸でpHが0になるように調整した。そして、この調整後の溶液をシュウ酸化始液とし、合計65リットルを準備した。
<Oxidation process>
The obtained scandium sulfate solution was diluted by adding water until the scandium concentration was about 5 g / L, and the pH was adjusted to 0 with sulfuric acid. And the solution after this adjustment was made into the oxidation starter, and a total of 65 liters was prepared.

次に、始液中のスカンジウムに対して2.7当量のシュウ酸を反応させるため、シュウ酸を100g/Lの濃度で溶解した溶液を合計27リットル準備した。そして、そのシュウ酸溶液を反応容器に収容し、そのシュウ酸溶液の中に始液を270ml/minの流量で添加した。始液を全量添加した後、1時間かけて撹拌した。なお、反応温度を25℃とし、滞留時間を5時間、添加時間を4時間とする条件とした。下記表6に、シュウ酸化(1回目のシュウ酸化)の処理条件をまとめて示す。   Next, in order to make 2.7 equivalents of oxalic acid react with scandium in the starting solution, a total of 27 liters of a solution in which oxalic acid was dissolved at a concentration of 100 g / L was prepared. Then, the oxalic acid solution was placed in a reaction vessel, and the starting solution was added into the oxalic acid solution at a flow rate of 270 ml / min. The whole amount of the starting solution was added and stirred for 1 hour. The reaction temperature was 25 ° C., the residence time was 5 hours, and the addition time was 4 hours. Table 6 below collectively shows the treatment conditions for the oxidation of oxalic acid (first time of oxidization).

Figure 0006583445
Figure 0006583445

撹拌終了後、全量濾過を行ってシュウ酸スカンジウムの結晶を分離し、分離した結晶50gに対して純水1リットルを使用するレパルプ洗浄を3回繰り返した。   After the stirring, the whole amount was filtered to separate scandium oxalate crystals, and repulp washing using 1 liter of pure water was repeated 3 times for 50 g of the separated crystals.

<第1焼成工程>
次に、シュウ酸化処理により得られたシュウ酸スカンジウムの結晶の一部を分取し、これを炉に入れて1100℃の温度で2時間かけて焼成し、得られた焼成物を分析した。なお、下記表10に、焼成温度1100℃として得られた焼成物の分析結果を示す(表10中の「1回目の焼成処理後の酸化スカンジウム」)。
<First firing step>
Next, a part of scandium oxalate crystals obtained by the oxalic oxidation treatment was fractionated, put in a furnace and baked at a temperature of 1100 ° C. for 2 hours, and the obtained baked products were analyzed. Table 10 below shows the analysis results of the fired product obtained at a firing temperature of 1100 ° C. (“Scandium oxide after first firing treatment in Table 10”).

一方、残りのシュウ酸スカンジウム結晶から500gを分取し、これを炉に入れて400℃の温度で2時間かけて焼成し、約215gの焼成物を得た。そして、その焼成物の一部を分析した。下記表7に、焼成温度400℃での焼成条件をまとめて示す。   On the other hand, 500 g was collected from the remaining scandium oxalate crystals and placed in a furnace and baked at a temperature of 400 ° C. for 2 hours to obtain about 215 g of a fired product. A part of the fired product was analyzed. Table 7 below collectively shows firing conditions at a firing temperature of 400 ° C.

Figure 0006583445
Figure 0006583445

<再溶解工程>
次に、焼成温度400℃で焼成して得られた焼成物の残りから150gを採取し、それに純水を加えて混合しながら60℃に加熱し、さらに塩酸を添加してpHを1に調整した。この操作により、150gのシュウ酸スカンジウムの結晶の95%以上が溶解したスカンジウム溶解液を得た。下記表8に、溶解処理の条件をまとめて示す。
<Remelting process>
Next, 150 g is collected from the remainder of the fired product obtained by firing at a firing temperature of 400 ° C., heated to 60 ° C. while adding pure water thereto and mixing, and further adjusted to pH 1 by adding hydrochloric acid. did. By this operation, a scandium solution in which 95% or more of 150 g of scandium oxalate crystals were dissolved was obtained. Table 8 below summarizes the conditions for the dissolution treatment.

Figure 0006583445
Figure 0006583445

なお、得られたスカンジウム溶解液をスカンジウム濃度が5g/Lになるように希釈し、塩酸を添加してpHを0に調整した液を再溶解液とし、試験条件毎に3.5リットル準備した。   The obtained scandium solution was diluted so that the scandium concentration was 5 g / L, and a solution prepared by adding hydrochloric acid to adjust the pH to 0 was used as a redissolved solution, and 3.5 liters were prepared for each test condition. .

<再沈殿工程>
次に、再溶解液中のスカンジウムに対して2.7当量のシュウ酸を反応させるため、シュウ酸を100g/Lの濃度で溶解した溶液を試験条件毎に1.45リットル準備した。そして、再溶解液を反応容器に収容し、その再溶解液の中にシュウ酸溶液を添加した。シュウ酸溶液を全量添加した後、1時間撹拌状態を保持した。なお、反応温度を25℃とし、滞留時間を2時間、添加時間を1時間とする条件とした。下記表9に、シュウ酸化(2回目のシュウ酸化)の処理条件をまとめて示す。
<Reprecipitation process>
Next, in order to make 2.7 equivalents of oxalic acid react with scandium in the redissolved solution, 1.45 liters of a solution in which oxalic acid was dissolved at a concentration of 100 g / L was prepared for each test condition. Then, the redissolved solution was accommodated in a reaction vessel, and an oxalic acid solution was added to the redissolved solution. After the whole amount of the oxalic acid solution was added, the stirring state was maintained for 1 hour. The reaction temperature was 25 ° C., the residence time was 2 hours, and the addition time was 1 hour. Table 9 below collectively shows the treatment conditions for the oxidation of oxalate (second oxidation of oxalate).

Figure 0006583445
Figure 0006583445

撹拌終了後、全量濾過を行ってシュウ酸スカンジウムの結晶を分離し、分離した結晶66gに対して純水2リットルを使用するレパルプ洗浄を3回繰り返した。   After the stirring, the whole amount was filtered to separate scandium oxalate crystals, and repulp washing using 2 liters of pure water was repeated 3 times for 66 g of the separated crystals.

なお、上記の実施例1における2回目のシュウ酸化となる再沈殿工程では、シュウ酸溶液に再溶解液を添加するいわゆる「逆添加法」を用いたが、本実施例における2回目のシュウ酸化となる再沈殿工程では、1回目のシュウ酸化で十分に高品位なシュウ酸スカンジウムが得られ、溶解工程にて塩酸により十分にシュウ酸スカンジウムを溶解させることができたため、その再溶解液にシュウ酸溶液を添加する一般的な「正添加」法を用いた。この場合であっても、高純度化が可能であることを確認することができた。   In the reprecipitation step, which is the second oxidization in Example 1, the so-called “reverse addition method” in which the redissolved solution is added to the oxalic acid solution is used, but the second oxidization in the present example is performed. In the reprecipitation step, sufficiently high-quality scandium oxalate was obtained by the first oxidization, and scandium oxalate was sufficiently dissolved by hydrochloric acid in the dissolution step. The general “positive addition” method of adding an acid solution was used. Even in this case, it was confirmed that high purity was possible.

<第2焼成工程>
次に、洗浄後のシュウ酸スカンジウムの結晶を炉に入れて2回目の焼成を、焼成温度900℃で2時間かけて行い、酸化スカンジウムを生成させた。そして、炉から取り出した酸化スカンジウムを分析した。
<Second firing step>
Next, the washed scandium oxalate crystals were placed in a furnace, and the second firing was performed at a firing temperature of 900 ° C. for 2 hours to generate scandium oxide. And the scandium oxide taken out from the furnace was analyzed.

酸化スカンジウムの分析は、以下のようにして行った。すなわち、スカンジウム(Sc)については、他の69成分の不純物をICP及びICP質量分析(ICP−MS)装置を用いて分析し、これらの不純物量を差し引いた残りがスカンジウムとみなして評価した。なお、1回目の焼成処理(1100℃)後の酸化スカンジウムの分析も、同様にして行った。   Scandium oxide was analyzed as follows. That is, for scandium (Sc), other 69 component impurities were analyzed using an ICP and ICP mass spectrometer (ICP-MS), and the remainder after subtracting these impurity amounts was regarded as scandium for evaluation. The analysis of scandium oxide after the first baking treatment (1100 ° C.) was performed in the same manner.

下記表10に、得られた酸化スカンジウムの分析結果を示す(表10中の「2回目の焼成処理後の酸化スカンジウム」)。   The analysis result of the obtained scandium oxide is shown in Table 10 below (“Scandium oxide after second baking treatment” in Table 10).

Figure 0006583445
Figure 0006583445

表10に示されるように、シュウ酸化処理により得られたシュウ酸スカンジウムを400℃で焼成し、得られたスカンジウム化合物を塩酸に再溶解して、その再溶解液から再度シュウ酸スカンジウムの結晶を生成させ、そのシュウ酸スカンジウムを900℃で焼成して得られた酸化スカンジウムでは、1回目の焼成処理(1100℃)後の酸化スカンジウムに比べて、不純物品位が低減されて、高純度なものとなった。   As shown in Table 10, the scandium oxalate obtained by the oxidation treatment was calcined at 400 ° C., the obtained scandium compound was redissolved in hydrochloric acid, and the scandium oxalate crystals were re-dissolved from the redissolved solution. The scandium oxide obtained by firing and firing the scandium oxalate at 900 ° C. has reduced impurity quality and high purity compared to scandium oxide after the first firing treatment (1100 ° C.). became.

Claims (4)

スカンジウムを含有する溶液にシュウ酸を用いてシュウ酸化処理を施し、得られたシュウ酸スカンジウムの結晶を400℃以上600℃以下の温度で焼成する第1焼成工程と、
焼成により得られたスカンジウム化合物を塩酸及び硝酸から選ばれる1種以上の溶液に溶解させて溶解液を得る溶解工程と、
前記溶解液にシュウ酸を用いてシュウ酸化処理を施し、シュウ酸スカンジウムの再沈殿物を生成させる再沈殿工程と、
得られた前記シュウ酸スカンジウムの再沈殿物を焼成して酸化スカンジウムを得る第2焼成工程と、を有する
高純度酸化スカンジウムの製造方法。
A first firing step of subjecting the scandium-containing solution to oxalic acid treatment using oxalic acid, and firing the obtained scandium oxalate crystals at a temperature of 400 ° C. to 600 ° C .;
A dissolution step of dissolving a scandium compound obtained by firing in one or more solutions selected from hydrochloric acid and nitric acid to obtain a solution;
A reprecipitation step in which oxalic acid is used to oxalate the solution to generate a reprecipitate of scandium oxalate;
A second firing step of firing the obtained re-precipitate of scandium oxalate to obtain scandium oxide, and a method for producing high-purity scandium oxide.
前記再沈殿工程では、前記溶解液の温度を40℃以上100℃未満に調整してシュウ酸化処理を施す
請求項1に記載の高純度酸化スカンジウムの製造方法。
The method for producing high-purity scandium oxide according to claim 1, wherein in the reprecipitation step, the temperature of the solution is adjusted to 40 ° C. or higher and lower than 100 ° C. to perform an oxidation treatment.
前記第2焼成工程では、焼成温度を900℃以上として焼成する
請求項1又は2に記載の高純度酸化スカンジウムの製造方法。
The method for producing high-purity scandium oxide according to claim 1 or 2, wherein in the second firing step, firing is performed at a firing temperature of 900 ° C or higher.
前記スカンジウムを含有する溶液は、スカンジウムを含有する溶液に対してイオン交換処理及び/又は溶媒抽出処理を施して得られたものである
請求項1乃至3のいずれか1項に記載の高純度酸化スカンジウムの製造方法。
The high-purity oxidation according to any one of claims 1 to 3, wherein the solution containing scandium is obtained by subjecting a solution containing scandium to an ion exchange treatment and / or a solvent extraction treatment. Scandium production method.
JP2018010843A 2018-01-25 2018-01-25 Method for producing high purity scandium oxide Active JP6583445B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018010843A JP6583445B2 (en) 2018-01-25 2018-01-25 Method for producing high purity scandium oxide
AU2019211653A AU2019211653B9 (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
PCT/JP2019/002012 WO2019146619A1 (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
CN201980009511.0A CN111630001B (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
EP19743119.0A EP3744686B1 (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
CA3088357A CA3088357C (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
US16/964,353 US10968112B2 (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
PH12020551111A PH12020551111A1 (en) 2018-01-25 2020-07-22 Method for producing high-purity scandium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010843A JP6583445B2 (en) 2018-01-25 2018-01-25 Method for producing high purity scandium oxide

Publications (2)

Publication Number Publication Date
JP2019127634A JP2019127634A (en) 2019-08-01
JP6583445B2 true JP6583445B2 (en) 2019-10-02

Family

ID=67395486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010843A Active JP6583445B2 (en) 2018-01-25 2018-01-25 Method for producing high purity scandium oxide

Country Status (8)

Country Link
US (1) US10968112B2 (en)
EP (1) EP3744686B1 (en)
JP (1) JP6583445B2 (en)
CN (1) CN111630001B (en)
AU (1) AU2019211653B9 (en)
CA (1) CA3088357C (en)
PH (1) PH12020551111A1 (en)
WO (1) WO2019146619A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380030B2 (en) * 2019-09-30 2023-11-15 住友金属鉱山株式会社 Manufacturing method of high purity scandium oxide
JP7347083B2 (en) * 2019-09-30 2023-09-20 住友金属鉱山株式会社 Manufacturing method of high purity scandium oxide
JP7347085B2 (en) * 2019-09-30 2023-09-20 住友金属鉱山株式会社 Manufacturing method of high purity scandium oxide
JP7347084B2 (en) * 2019-09-30 2023-09-20 住友金属鉱山株式会社 Manufacturing method of high purity scandium oxide
JP2022024249A (en) * 2020-07-13 2022-02-09 住友金属鉱山株式会社 Scandium recovery method
CN112708786A (en) * 2020-12-15 2021-04-27 广东先导稀材股份有限公司 Method for recycling scandium from aluminum-scandium alloy target material waste
CN113584327B (en) * 2021-06-28 2022-10-28 中国恩菲工程技术有限公司 Method for purifying scandium oxide
CN114455624A (en) * 2022-03-03 2022-05-10 中国恩菲工程技术有限公司 Scandium oxide with hexagonal prism structure and preparation method thereof
CN114890450B (en) * 2022-05-11 2024-03-26 湖南东方钪业股份有限公司 Method for preparing scandium oxide

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890830B2 (en) * 1990-11-29 1999-05-17 三菱マテリアル株式会社 Purification method of scandium oxide
RU2070596C1 (en) * 1993-05-28 1996-12-20 Научно-производственная экологическая фирма "Экотехнология" Method of scandium concentrates production
JP3303066B2 (en) 1995-02-24 2002-07-15 三菱マテリアル株式会社 How to purify scandium
JP3206432B2 (en) * 1996-06-06 2001-09-10 三菱マテリアル株式会社 Low alpha low oxygen metal scandium and method for producing the same
US20120207656A1 (en) * 2011-02-11 2012-08-16 Emc Metals Corporation System and Method for Recovery of Scandium Values From Scandium-Containing Ores
CN102863004A (en) * 2011-07-05 2013-01-09 北京有色金属研究总院 Purification and preparation method of high-purity scandium oxide
AU2013360015B2 (en) 2012-12-11 2016-10-13 Clean Teq Pty Ltd A process, method and plant for recovering scandium
WO2014110216A1 (en) * 2013-01-10 2014-07-17 Bloom Energy Corporation Methods of recovering scandium from titanium residue streams
JP5652503B2 (en) * 2013-05-10 2015-01-14 住友金属鉱山株式会社 Scandium recovery method
CN103361486B (en) * 2013-07-18 2014-10-29 攀枝花市精研科技有限公司 Method for extracting high purity scandium oxide and titanium from waste acid solution containing scandium and titanium
JP5954350B2 (en) 2014-01-31 2016-07-20 住友金属鉱山株式会社 Scandium recovery method
JP6319362B2 (en) * 2014-01-31 2018-05-09 住友金属鉱山株式会社 Scandium recovery method
CN104975192A (en) * 2014-04-09 2015-10-14 包钢集团矿山研究院(有限责任公司) Method for extracting scandium from scandium-containing material
JP6004023B2 (en) * 2015-02-02 2016-10-05 住友金属鉱山株式会社 Scandium recovery method
JP6891723B2 (en) * 2016-08-30 2021-06-18 住友金属鉱山株式会社 Method for producing scandium compound, scandium compound
JP6358299B2 (en) 2016-09-05 2018-07-18 住友金属鉱山株式会社 Method for producing high purity scandium oxide
JP6900677B2 (en) * 2017-01-11 2021-07-07 住友金属鉱山株式会社 How to make scandium oxide

Also Published As

Publication number Publication date
EP3744686B1 (en) 2023-01-04
AU2019211653B2 (en) 2021-04-22
EP3744686A1 (en) 2020-12-02
CN111630001B (en) 2021-10-01
CA3088357A1 (en) 2019-08-01
US20210032119A1 (en) 2021-02-04
JP2019127634A (en) 2019-08-01
AU2019211653B9 (en) 2021-05-20
US10968112B2 (en) 2021-04-06
AU2019211653A1 (en) 2020-07-30
EP3744686A4 (en) 2021-11-03
WO2019146619A1 (en) 2019-08-01
CA3088357C (en) 2021-03-30
PH12020551111A1 (en) 2021-05-31
CN111630001A (en) 2020-09-04

Similar Documents

Publication Publication Date Title
JP6583445B2 (en) Method for producing high purity scandium oxide
JP5652503B2 (en) Scandium recovery method
CA2938134C (en) Scandium recovery method
JP5967284B2 (en) Recovery method of high purity scandium
JP6004023B2 (en) Scandium recovery method
CN107429320B (en) Scandium recovery method
JP6798078B2 (en) Ion exchange treatment method, scandium recovery method
WO2018043704A1 (en) Method for producing high-purity scandium oxide
WO2017104629A1 (en) Method for recovering scandium
WO2018043183A1 (en) Method for recovering scandium
JP6256491B2 (en) Scandium recovery method
WO2016084830A1 (en) Method for recovering high-purity scandium
JP7347083B2 (en) Manufacturing method of high purity scandium oxide
JP7347084B2 (en) Manufacturing method of high purity scandium oxide
JP7380030B2 (en) Manufacturing method of high purity scandium oxide
JP7338179B2 (en) Method for producing high-purity scandium oxide
JP7347085B2 (en) Manufacturing method of high purity scandium oxide
JP6206358B2 (en) Scandium recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190619

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6583445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150