JP5146658B2 - Recovery method of rare earth elements - Google Patents
Recovery method of rare earth elements Download PDFInfo
- Publication number
- JP5146658B2 JP5146658B2 JP2008097809A JP2008097809A JP5146658B2 JP 5146658 B2 JP5146658 B2 JP 5146658B2 JP 2008097809 A JP2008097809 A JP 2008097809A JP 2008097809 A JP2008097809 A JP 2008097809A JP 5146658 B2 JP5146658 B2 JP 5146658B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- oxide
- earth element
- solution
- recovery method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は希土類磁石合金を含む原料、例えば希土類系磁石の加工時に発生する研削粉、粉砕時や成形時に発生する廃棄粉から希土類元素を回収する方法に関する。 The present invention relates to a method for recovering a rare earth element from a raw material containing a rare earth magnet alloy, such as grinding powder generated during processing of a rare earth magnet, and waste powder generated during pulverization or molding.
近年、希土類磁石はHDD用やエアコン用、携帯電話等に使用される各種モーターやセンサー等に広く使用されるようになっている。 In recent years, rare earth magnets are widely used in various motors and sensors used in HDDs, air conditioners, mobile phones and the like.
一方、原料である希土類元素はその産出国が限られ、資源的な問題から価格が高騰している。そこで磁石の生産時に発生する磁石粉末や屑及び不良スクラップから有価物を回収リサイクルすることが強く求められている。 On the other hand, rare earth elements, which are raw materials, are limited in their country of origin and prices are rising due to resource issues. Therefore, there is a strong demand to collect and recycle valuable materials from magnet powder and scraps and defective scrap generated during the production of magnets.
希土類を回収する方法として、特開昭62−83433号公報(特許文献1)には希土類元素−鉄含有合金を加熱して空気酸化した後、強酸を用いた酸溶出法により、希土類元素塩を生成して濾液中に溶解し、濾別して分離する方法が開示されている。この方法は鉄を酸に難溶性の酸化物とし、酸の使用量を低減させる点で有利である。しかし、この方法の酸化条件では金属Feが残留し、強酸溶解時に水素が多く発生し、安全上の問題があること、品質上も鉄の含有量が多くなること、更にまた希土類元素の溶出率が低い問題がある。 As a method for recovering rare earth elements, Japanese Patent Application Laid-Open No. 62-83433 (Patent Document 1) discloses a rare earth element salt prepared by heating a rare earth element-iron-containing alloy by air oxidation and then using an acid elution method using a strong acid. A method is disclosed in which it is produced, dissolved in the filtrate, and separated by filtration. This method is advantageous in that iron is an oxide that is hardly soluble in an acid and the amount of acid used is reduced. However, under the oxidation conditions of this method, metal Fe remains and a large amount of hydrogen is generated when dissolving a strong acid, which is a safety problem, the iron content is high in quality, and the elution rate of rare earth elements There is a low problem.
特開平01−183415号公報(特許文献2)には、希土類磁石のスクラップ等を酸(HCl)に溶解して不溶残渣を分離除去すると共に、酸化剤(HNO3)を添加し、蓚酸溶液を加え、かつ所定pHに調整して希土類元素を蓚酸塩として沈殿させることが開示されている。しかし、この方法では酸溶解時に水素ガスが発生し、危険であり、スクラップのほぼ全量を溶解するために多量の酸を使用する問題がある。 In Japanese Patent Laid-Open No. 01-183415 (Patent Document 2), scraps of rare earth magnets and the like are dissolved in acid (HCl) to separate and remove insoluble residues, and an oxidizing agent (HNO 3 ) is added to prepare an oxalic acid solution. In addition, it is disclosed that the rare earth element is precipitated as oxalate by adjusting to a predetermined pH. However, this method is dangerous because hydrogen gas is generated when the acid is dissolved, and there is a problem that a large amount of acid is used to dissolve almost the entire amount of scrap.
特開平05−287405号公報(特許文献3)には、スラリーを酸化剤の存在下、pH3〜5に酸で維持して希土類元素を選択的に浸出し、得られた浸出液に炭酸アルカリあるいは炭酸水素アルカリを添加し、希土類元素を水に難溶性の塩として分離する方法が開示されている。しかし、この方法では水素ガス発生や酸使用量の増加、希土類炭酸塩への鉄の混入の問題がある。 In Japanese Patent Application Laid-Open No. 05-287405 (Patent Document 3), a slurry is maintained with an acid at a pH of 3 to 5 in the presence of an oxidizing agent to selectively leach rare earth elements, and the resulting leachate contains alkali carbonate or carbonic acid. A method is disclosed in which a hydrogen alkali is added to separate a rare earth element as a sparingly soluble salt in water. However, this method has problems such as generation of hydrogen gas, increase in the amount of acid used, and mixing of iron into the rare earth carbonate.
特開平09−217132号公報(特許文献4)には、スラリーに空気を流通させながら、硝酸希釈溶液を添加してpH5以上に保持し、希土類とコバルトとを含む金属を50℃以下で溶解させて希土類含有硝酸塩溶液とし、鉄を含む不溶解元素化合物と濾別分離する方法及びこの希土類含有硝酸塩溶液にフッ素化合物又は蓚酸を添加して希土類フッ化物又は希土類蓚酸塩を沈殿させ、コバルト含有硝酸溶液と濾別分離する方法が開示されている。しかし、この方法では高価で排水規制のある硝酸を使用することや有毒なNO2ガス発生の危険性がある。 In Japanese Patent Application Laid-Open No. 09-217132 (Patent Document 4), while circulating air in a slurry, a dilute nitric acid solution is added to maintain the pH at 5 or higher, and a metal containing rare earth and cobalt is dissolved at 50 ° C. or lower. A method of separating by filtration from an insoluble element compound containing iron, and adding a fluorine compound or oxalic acid to the rare earth-containing nitrate solution to precipitate a rare earth fluoride or rare earth oxalate, and a cobalt-containing nitric acid solution And a method of separating by filtration. However, in this method, there is a risk of using nitric acid, which is expensive and has regulated drainage, and generating toxic NO 2 gas.
特開2007−231379号公報(特許文献5)には、レアアースマグネット屑を濃度1.5mol/L以上3.0mol/L以下の硫酸溶液に供給し、屑中のレアアースを溶解させ、不溶解成分を除去した後、レアアースより分子量が小さいイオン性物質を添加して晶析し、レアアース硫酸塩を析出させて回収する方法が開示されている。 Japanese Patent Application Laid-Open No. 2007-231379 (Patent Document 5) supplies rare earth magnet scraps to a sulfuric acid solution having a concentration of 1.5 mol / L or more and 3.0 mol / L or less, dissolves rare earths in the scraps, and insoluble components. A method is disclosed in which an ionic substance having a molecular weight smaller than that of rare earth is added and then crystallized to precipitate and collect rare earth sulfate.
しかし、この方法では危険性の高い硫酸を使用し、酸化物を得るために硫酸塩を高温で焼成する必要があり、有害なSO2ガスの発生や酸化物中へのSの混入の問題がある。 However, this method uses a highly dangerous sulfuric acid, and it is necessary to calcinate the sulfate at a high temperature in order to obtain an oxide. There is a problem of generation of harmful SO 2 gas and mixing of S into the oxide. is there.
本発明は従来の回収方法の問題点を解決し、経済性、安全性に優れた希土類元素の回収方法を提供することを課題とする。 An object of the present invention is to solve the problems of conventional recovery methods and to provide a method for recovering rare earth elements excellent in economy and safety.
本発明者らは、上記課題の解決に向けて鋭意検討を行った結果、希土類磁石合金、特に磁石スラッジ等の希土類−鉄合金の廃棄粉末を800℃以上に加熱して酸化し、次いで水にこの酸化物を加えてスラリーとし、加熱、特に70℃以上に保持しながら濃塩酸を好ましくは酸化物の全量溶解に必要な理論量(当量)の0.20〜0.70倍量を10分〜5時間で添加し、所定温度に保持した後、好ましくはpHが2.0〜6.0になるようにアルカリ溶液を添加して、Feを水酸化鉄として沈殿させ、溶液と固形物を分離すること、更に必要により分離して得られた希土類元素含有溶液を溶媒抽出によって、軽希土類元素と重希土類元素又は各希土類元素に分離することで、高純度の磁石原料用希土類元素を経済的かつ安全に回収し得ることを知見し、本発明をなすに至った。 As a result of intensive investigations aimed at solving the above problems, the present inventors heated rare earth magnet alloys, particularly rare earth-iron alloy waste powders such as magnet sludge, to oxidize by heating to 800 ° C. or higher, and then into water. This oxide is added to form a slurry, and heated, particularly while maintaining the temperature at 70 ° C. or higher, concentrated hydrochloric acid is preferably 0.20 to 0.70 times the theoretical amount (equivalent) required for dissolving the total amount of oxide for 10 minutes. After adding for 5 hours and keeping at a predetermined temperature, preferably an alkaline solution is added so that the pH is 2.0 to 6.0, and Fe is precipitated as iron hydroxide, and the solution and solid matter are Separating, and if necessary, separating rare earth element-containing solution obtained by solvent separation into light rare earth element and heavy rare earth element or each rare earth element And being able to be collected safely And finding, the present invention has been accomplished.
従って、本発明は、下記希土類元素の回収方法を提供する。
請求項1:
(A)希土類磁石合金を含む原料を酸化性雰囲気中で800℃以上に加熱し、前記合金成分の酸化物とする工程、
(B)該酸化物と水を混合してスラリーとし、加熱しながら、塩酸を添加する工程、
(C)得られた溶液を加熱しながらアルカリを加える工程、
(D)未溶解及び沈殿した固体と希土類元素を含む溶液を分離する工程
を含むことを特徴とする希土類元素の回収方法。
請求項2:
工程(B)及び(C)の加熱温度がそれぞれ70℃以上である請求項1記載の回収方法。
請求項3:
工程(C)のアルカリ調整のpHが2.0〜6.0である請求項1又は2記載の回収方法。
請求項4:
工程(C)と工程(D)との間の工程として、酸化剤を加えて溶液中の2価の鉄イオンを3価に酸化する工程を含む請求項1乃至3のいずれか1項記載の回収方法。
請求項5:
酸化剤が次亜塩素酸ナトリウムである請求項4記載の回収方法。
請求項6:
工程(A)で得られた酸化物が、空気中900℃で1時間加熱した時の質量増加が0.15%以下である請求項1乃至5のいずれか1項記載の回収方法。
請求項7:
工程(B)の酸化物と水の混合比(質量比)が、水:酸化物=0.5〜5:1である請求項1乃至6のいずれか1項記載の回収方法。
請求項8:
工程(B)の塩酸の濃度が10〜35質量%、塩酸の添加量が酸化物の全量を溶解させるのに必要な理論量(当量)の0.20〜0.70倍、添加時間が10分〜5時間である請求項1乃至7のいずれか1項記載の回収方法。
請求項9:
工程(C)のアルカリが10〜50質量%のNaOH溶液である請求項1乃至8のいずれか1項記載の回収方法。
請求項10:
工程(D)で得られた希土類元素を含む溶液から溶媒抽出法により軽希土類元素と重希土類元素又は各希土類元素に分離回収する請求項1乃至9のいずれか1項記載の回収方法。
請求項11:
溶媒抽出に用いる抽出剤が、2−エチルヘキシルリン酸モノ−2−エチルヘキシルエステル又はジ−2−エチルヘキシルリン酸である請求項10記載の回収方法。
請求項12:
希土類磁石合金を含む原料が、希土類系磁石の廃棄粉である請求項1乃至11のいずれか1項記載の回収方法。
Accordingly, the present invention provides the following rare earth element recovery method.
Claim 1:
(A) heating a raw material containing a rare earth magnet alloy to 800 ° C. or higher in an oxidizing atmosphere to form an oxide of the alloy component;
(B) a step of mixing the oxide and water to form a slurry, and adding hydrochloric acid while heating;
(C) adding an alkali while heating the resulting solution;
(D) A method for recovering a rare earth element, comprising a step of separating an undissolved and precipitated solid and a solution containing the rare earth element.
Claim 2 :
Step (B) and recovery process of claim 1 Symbol placement heating temperature (C) is 70 ° C. or higher, respectively.
Claim 3 :
The method according to claim 1 or 2 , wherein the pH for alkali adjustment in the step (C) is 2.0 to 6.0.
Claim 4 :
As a step between steps (C) and step (D), oxidizing agent added a solution of divalent of claims 1 to 3 comprising the step of oxidizing the iron ions to trivalent according to any one of Collection method.
Claim 5 :
The recovery method according to claim 4 , wherein the oxidizing agent is sodium hypochlorite.
Claim 6 :
The recovery method according to any one of claims 1 to 5 , wherein the oxide obtained in the step (A) has a mass increase of 0.15% or less when heated in air at 900 ° C for 1 hour.
Claim 7 :
The collection method according to any one of claims 1 to 6 , wherein a mixing ratio (mass ratio) of the oxide and water in the step (B) is water: oxide = 0.5 to 5: 1.
Claim 8 :
The concentration of hydrochloric acid in step (B) is 10 to 35% by mass, the amount of hydrochloric acid added is 0.20 to 0.70 times the theoretical amount (equivalent) required to dissolve the total amount of oxide, and the addition time is 10 The recovery method according to any one of claims 1 to 7 , wherein the recovery time is from min to 5 hours.
Claim 9 :
The recovery method according to any one of claims 1 to 8 , wherein the alkali in the step (C) is a 10 to 50 mass% NaOH solution.
Claim 10 :
The recovery method according to any one of claims 1 to 9 , wherein the solution containing the rare earth element obtained in the step (D) is separated and recovered into a light rare earth element and a heavy rare earth element or each rare earth element by a solvent extraction method.
Claim 11 :
The recovery method according to claim 10 , wherein the extractant used for solvent extraction is 2-ethylhexyl phosphate mono-2-ethylhexyl ester or di-2-ethylhexyl phosphate.
Claim 12 :
The recovery method according to any one of claims 1 to 11 , wherein the raw material containing the rare earth magnet alloy is waste powder of a rare earth magnet.
本発明によって、安価な塩酸が使用でき、かつ塩酸量の低減が可能となり、水素ガス発生の危険性を減少することができ、また希土類元素の回収率の向上がはかられ、経済性、安全性に優れた希土類元素の回収方法が提供される。 According to the present invention, inexpensive hydrochloric acid can be used, the amount of hydrochloric acid can be reduced, the risk of hydrogen gas generation can be reduced, and the recovery rate of rare earth elements can be improved. A method for recovering rare earth elements having excellent properties is provided.
本発明では、回収方法に用いる原料として、希土類合金からなる磁石等の製造工程で発生する鉄を含有する粉末、特に廃棄粉を主に用いる。粉末としては、粉砕工程、成形工程、加工工程などで発生する廃棄粉末スラッジがある。また、塊状の不良スクラップをスタンプミル、ジョークラッシャー、ブラウンミル、ジェットミル等の粗粉砕・微粉砕の機械粉砕により粉末化したものを用いることもできる。 In the present invention, as a raw material used in the recovery method, a powder containing iron generated in a manufacturing process of a magnet made of a rare earth alloy or the like, particularly a waste powder, is mainly used. Examples of the powder include waste powder sludge generated in a pulverization process, a molding process, a processing process, and the like. In addition, a lump of defective scrap that has been pulverized by coarse pulverization / fine pulverization mechanical pulverization such as a stamp mill, jaw crusher, brown mill, and jet mill can also be used.
まず、工程(A)で希土類磁石合金を含む原料、特に希土類−Fe−B系磁石の廃棄粉末スラッジを酸化雰囲気中で加熱、特に800℃以上の温度に加熱し、酸化する。 First, in step (A), the raw material containing the rare earth magnet alloy, particularly the waste powder sludge of the rare earth-Fe-B magnet is heated in an oxidizing atmosphere, particularly heated to a temperature of 800 ° C. or higher and oxidized.
廃棄粉末スラッジとしては、磁石を加工したときに発生する研削粉、切削粉、研磨粉等があり、必要によって通常は水等の液体を用いる湿式で加工されるため、水を30〜40%(質量%)程度含むスラッジとなっている。また、磁石用合金の粉砕時に発生する規格外の廃棄粉末や成形時の不良粉末等も使用することができ、これらは通常、粒径が1mm以下、好ましくは0.5mm以下の粉末とすることによって使用できる。粒径が1mmを超えると酸化に長時間を要するため、細かいほうが望ましい。 As waste powder sludge, there are grinding powder, cutting powder, polishing powder, etc. that are generated when a magnet is processed, and it is usually processed by a wet method using a liquid such as water if necessary. Sludge containing about mass%). In addition, non-standard waste powder generated at the time of pulverizing the magnet alloy, defective powder at the time of molding, etc. can be used, and these are usually powders having a particle size of 1 mm or less, preferably 0.5 mm or less. Can be used by. If the particle size exceeds 1 mm, it takes a long time to oxidize.
なお、本発明では、希土類−Fe−N系やSm−Co系等の磁石スラッジが混入していても回収できる。 In the present invention, even if magnet sludge such as rare earth-Fe-N or Sm-Co is mixed, it can be recovered.
これらの粉末は、乾燥状態で容易に着火・燃焼し酸化するものの、燃焼させただけでは未だ酸化が不十分で、金属Feが数%〜20%(質量%)程度残留している。この残留金属Feを酸化させるには、800℃以上の温度で15分以上酸化雰囲気中で加熱することが有効であることが判明した。 Although these powders are easily ignited, burned and oxidized in a dry state, they are still insufficiently oxidized by being burned, and metal Fe remains on the order of several to 20% (mass%). In order to oxidize this residual metal Fe, it has been found effective to heat in an oxidizing atmosphere at a temperature of 800 ° C. or higher for 15 minutes or longer.
好ましい酸化条件は、空気中でスラッジの温度が800℃以上1200℃以下、更に好ましくは850℃以上1100℃以下であり、保持時間は温度が高いほど短時間でよいが、好ましくは30分以上、更に好ましくは1時間以上が必要である。なお、通常3時間以下の保持時間が好ましい。但し、酸化雰囲気中に不活性ガスを含んでも構わない。加熱温度が低いと金属Feの酸化が不十分となり、塩酸溶解時に水素ガスの発生や2価のFeが生じる。また温度が高すぎると加熱エネルギーの無駄や粉末が焼き固まる問題が生じる。時間が短いと未酸化のFeが多量に残留する。こうして酸化した酸化物粉末はX線回折による同定の結果、R−Fe−B磁石の場合、Fe2O3、RFeO3(Rは希土類元素)、CoFe2O4の存在が確認された。Bは同定されていないが、RBO3として存在しているものと思われる。 Preferred oxidation conditions are a sludge temperature in air of 800 ° C. or higher and 1200 ° C. or lower, more preferably 850 ° C. or higher and 1100 ° C. or lower. The higher the temperature, the shorter the time, but preferably 30 minutes or longer, More preferably, one hour or more is required. Usually, a holding time of 3 hours or less is preferable. However, an inert gas may be included in the oxidizing atmosphere. When the heating temperature is low, oxidation of metal Fe becomes insufficient, and hydrogen gas is generated and divalent Fe is generated when hydrochloric acid is dissolved. On the other hand, if the temperature is too high, there will be a problem of wasting heating energy and the powder becoming baked. If the time is short, a large amount of unoxidized Fe remains. As a result of identification by X-ray diffraction, the oxide powder thus oxidized was confirmed to contain Fe 2 O 3 , RFeO 3 (R is a rare earth element), and CoFe 2 O 4 in the case of an R—Fe—B magnet. B has not been identified, but appears to exist as RBO 3 .
酸化装置は、通常の箱型電気炉、トンネルキルンやロータリーキルン等が使用できる。また、酸化は二段階以上で行ってもよい。即ち、一度燃焼させて安定化した燃焼粉(金属Feが残留)を上述した温度、時間の酸化条件下で再度酸化することもできる。 As the oxidizer, an ordinary box-type electric furnace, tunnel kiln, rotary kiln or the like can be used. The oxidation may be performed in two or more stages. That is, combustion powder once stabilized after burning (metal Fe remains) can be oxidized again under the above-described temperature and time oxidation conditions.
未酸化の金属Feの量は、粉末X線回折によるFeのピーク強度の測定や粉末を再度加熱した時の質量増加の測定により見積もることができる。本発明に使用する酸化粉としては、X線回折でFeのピークが見られないことや900℃で1時間加熱したときの質量増加量が0.15%以下、好ましくは0.10%以下であることが望ましい。酸化が不十分であると水素の発生が多くなる上に、金属Feは2価として溶出し、後工程(C)でのpH調整で水酸化鉄として沈殿しなくなる。この場合、沈殿させるには酸化剤の使用量が増加し、望ましくない。 The amount of unoxidized metallic Fe can be estimated by measuring the peak intensity of Fe by powder X-ray diffraction or measuring the increase in mass when the powder is heated again. As the oxide powder used in the present invention, the peak of Fe is not observed by X-ray diffraction, and the mass increase when heated at 900 ° C. for 1 hour is 0.15% or less, preferably 0.10% or less. It is desirable to be. Insufficient oxidation increases the generation of hydrogen, and metal Fe elutes as divalent and does not precipitate as iron hydroxide by pH adjustment in the subsequent step (C). In this case, the amount of oxidizing agent used is increased for precipitation, which is not desirable.
次いで工程(B)では、水:酸化粉=0.5〜5:1(質量比)のスラリーを撹拌しながら、70℃以上、好ましくは80℃以上100℃未満に加熱し、酸化粉当量の0.20〜0.70倍量の塩酸を10分〜5時間で添加する。その後、上記温度に好ましくは10分〜2時間保持する。この工程(B)では、酸化粉中のFe2O3は未溶解のまま残留し、希土類化合物が優先的に溶解する。 Next, in the step (B), while stirring the slurry of water: oxidized powder = 0.5-5: 1 (mass ratio), it is heated to 70 ° C. or higher, preferably 80 ° C. or higher and lower than 100 ° C. Add 0.20 to 0.70 volumes of hydrochloric acid in 10 minutes to 5 hours. Thereafter, the temperature is preferably maintained for 10 minutes to 2 hours. In this step (B), Fe 2 O 3 in the oxide powder remains undissolved and the rare earth compound is preferentially dissolved.
塩酸の濃度は特に限定的ではないが、希土類元素の選択的溶出を妨げないようにするために10質量%以上が好ましい。更に好ましくは30質量%以上がよい。その上限は、通常35質量%以下である。 The concentration of hydrochloric acid is not particularly limited, but is preferably 10% by mass or more so as not to prevent the selective elution of rare earth elements. More preferably, it is 30% by mass or more. The upper limit is usually 35% by mass or less.
塩酸の添加量は、酸化物の全量を溶解させるのに必要な理論量(当量)の0.20〜0.70倍までが、溶出率の低下を防止でき、中和剤の使用量も経済的である。 The amount of hydrochloric acid added can be 0.20 to 0.70 times the theoretical amount (equivalent) required to dissolve the total amount of oxide, but the elution rate can be prevented from decreasing, and the amount of neutralizing agent used is economical. Is.
塩酸の添加時間は、希土類元素の選択的溶出を進行させるためにも10分以上5時間以下が好ましい。 The addition time of hydrochloric acid is preferably 10 minutes or more and 5 hours or less in order to promote selective elution of rare earth elements.
保持時間は、Feの溶出を少なくするために10分〜2時間程度が好ましい。 The holding time is preferably about 10 minutes to 2 hours in order to reduce Fe elution.
加熱はスチーム加熱が好ましいが、投げ込みヒーター等の他の加熱手段を用いることもできる。 The heating is preferably steam heating, but other heating means such as a throwing heater can also be used.
温度が低すぎると希土類元素の溶出が不十分となる上に、酸化鉄の溶出が増加し、希土類元素の選択的溶出が行えなくなる。 If the temperature is too low, the elution of rare earth elements will be insufficient, and the elution of iron oxide will increase, making it impossible to selectively elute rare earth elements.
次いで、工程(C)では、温度を保持したままアルカリを添加し、pHを2.0〜6.0、好ましくは2.0〜4.0に調整する。アルカリとしてはNaOH、アンモニア、KOH等が使用できるが、経済性及び廃液処理の点でNaOHが好ましい。 Next, in step (C), an alkali is added while maintaining the temperature, and the pH is adjusted to 2.0 to 6.0, preferably 2.0 to 4.0. As the alkali, NaOH, ammonia, KOH or the like can be used, but NaOH is preferable in terms of economy and waste liquid treatment.
これにより、溶液中に存在する一部溶出したFeは水酸化物として沈殿し、固体として溶液から除去される。 Thereby, the partly eluted Fe present in the solution is precipitated as a hydroxide and removed from the solution as a solid.
pH調整後も溶液中に残留するFeイオンは少量の未酸化の金属Feが溶出したものであり、2価のイオンとして存在する。酸化剤を添加して、2価のFeイオンを3価のイオンに酸化することにより、容易に水酸化物が沈殿となり、最終的に99%以上のFeを析出、除去することができる。 Fe ions remaining in the solution even after pH adjustment are those in which a small amount of unoxidized metallic Fe is eluted and exist as divalent ions. By adding an oxidizing agent to oxidize divalent Fe ions to trivalent ions, the hydroxide easily precipitates, and finally 99% or more of Fe can be precipitated and removed.
酸化剤としては、次亜塩素酸ナトリウム、過塩素酸等の他、空気や酸素を溶液中にバブリングすることによっても酸化できるが、次亜塩素酸ナトリウムが経済性と瞬時に酸化が行われる点で好ましい。 As an oxidizing agent, sodium hypochlorite, perchloric acid, etc. can be oxidized by bubbling air or oxygen into the solution, but sodium hypochlorite is economically and instantly oxidized. Is preferable.
酸化剤の量は2価のFeイオンを3価に酸化できる量を添加すればよく、酸化物中に残留する金属Feの量によるが、3価への酸化を確実にするために2価のFeイオンを3価に酸化する必要量より10〜20質量%過剰量が好ましい。 The amount of the oxidizing agent may be an amount that can oxidize divalent Fe ions to trivalent, and depends on the amount of metal Fe remaining in the oxide. An excess amount of 10 to 20% by mass is preferable to a necessary amount for oxidizing Fe ions to trivalent.
NaOH溶液の濃度は限定的ではないが、濃すぎる溶液では添加量の制御をより厳密にする必要が生じ、薄すぎる溶液では液の体積が増え経済的ではない。NaOH溶液の濃度は10〜50質量%、好ましくは20〜30質量%である。 The concentration of the NaOH solution is not limited. However, when the solution is too thick, it is necessary to control the addition amount more strictly. When the solution is too thin, the volume of the solution increases and it is not economical. The concentration of the NaOH solution is 10 to 50% by mass, preferably 20 to 30% by mass.
また、本発明の回収方法によりCoは80質量%以上が溶解し、希土類元素の回収後に中和処理等によって水酸化Coとして回収することができ、Bは蒸発濃縮回収、又は排水処理設備で処理される。 Moreover, 80% by mass or more of Co is dissolved by the recovery method of the present invention, and can be recovered as Co hydroxide by neutralization after recovery of rare earth elements, and B is processed by evaporative concentration recovery or wastewater treatment equipment. Is done.
次いで、工程(D)では、酸化鉄が主体の固体と希土類元素が溶出した溶液を、フィルタープレス、遠心分離機、ヌッチェによる吸引濾過等通常の方法で分離する。 Next, in the step (D), the solution in which the solid mainly composed of iron oxide and the rare earth element are eluted is separated by a usual method such as suction filtration using a filter press, a centrifuge, or a Nutsche.
得られた溶液には磁石成分であるNd、Pr、Dy、Tb等の希土類元素が含まれる。高特性磁石の製造では軽希土及び重希土からなる2種以上の磁石合金粉を混合し、粒界に重希土リッチの相を析出させて特性の向上を図ることが行われている。従って混合希土としてではなく、各希土類元素に分離することが望ましい。 The obtained solution contains rare earth elements such as Nd, Pr, Dy, and Tb, which are magnet components. In the production of high-performance magnets, two or more types of magnet alloy powders composed of light rare earth and heavy rare earth are mixed, and a heavy rare earth rich phase is precipitated at the grain boundary to improve the characteristics. . Therefore, it is desirable to separate each rare earth element, not as a mixed rare earth.
そこで、上記溶液から軽希土類元素(Nd、Pr)と重希土類元素(Dy、Tb)又は各希土類元素に分離するために溶媒抽出法による分離工程を追加することもできる。溶媒抽出法においてはFeが混入すると希土類元素の精製に悪影響を及ぼすため、前工程で極力除去しておくことが望ましく、本発明の方法によりFeを影響のない程度に低減することができる。また必要によっては工程(D)の前に脱Feの工程を追加することができる。 Therefore, in order to separate light rare earth elements (Nd, Pr) and heavy rare earth elements (Dy, Tb) or each rare earth element from the above solution, a separation step by a solvent extraction method can be added. In the solvent extraction method, when Fe is mixed, the purification of the rare earth element is adversely affected. Therefore, it is desirable to remove as much as possible in the previous step, and the method of the present invention can reduce Fe to the extent that it is not affected. If necessary, a step of removing Fe can be added before step (D).
溶媒抽出に用いる抽出剤としては、PC−88A(2−エチルヘキシルリン酸モノ−2−エチルヘキシルエステル)又はD2EHPA(ジ−2−エチルヘキシルリン酸)が用いられる。 As an extracting agent used for solvent extraction, PC-88A (2-ethylhexyl phosphate mono-2-ethylhexyl ester) or D2EHPA (di-2-ethylhexyl phosphate) is used.
分離した希土類元素は、沈殿剤、例えば蓚酸を添加して蓚酸塩として回収され、800〜1000℃に加熱することによって酸化物とされる。この酸化物を出発原料として、溶融塩電解法や金属熱還元法によって希土類金属が製造され、再度磁石用原料として使用される。 The separated rare earth element is recovered as an oxalate by adding a precipitant, for example, oxalic acid, and is converted into an oxide by heating to 800 to 1000 ° C. Using this oxide as a starting material, a rare earth metal is produced by a molten salt electrolysis method or a metal thermal reduction method and used again as a magnet material.
以上、本発明について詳述したが、本発明の特徴とするところは、(1)工程(A)で加熱により金属Feの酸化をはかること、(2)工程(B)で加熱したスラリーにし塩酸を添加し、希土類元素を選択的に溶出させること、(3)工程(C)でpH調整により、一部溶出したFeを水酸化物として沈殿させること、(4)工程(D)で固体と分離して得られた希土類元素含有溶液から溶媒抽出法により軽希土類元素と重希土類元素又は各希土類元素に分離することにある。 Although the present invention has been described in detail above, the present invention is characterized in that (1) oxidation of metal Fe is performed by heating in step (A), and (2) the slurry heated in step (B) is converted into hydrochloric acid. And selectively eluting rare earth elements, (3) precipitating partly eluted Fe as hydroxide by adjusting the pH in step (C), and (4) solid in step (D). A rare earth element-containing solution obtained by separation is separated into a light rare earth element and a heavy rare earth element or each rare earth element by a solvent extraction method.
以下、実施例によってその効果を明らかにする。なお、本発明はこの実施例によってその範囲を制約されるものではない。下記例で、特にことわらない限り、%は質量%を示す。 Hereinafter, the effect will be clarified by examples. The scope of the present invention is not limited by this embodiment. In the following examples, “%” means “% by mass” unless otherwise specified.
[実施例1〜8、参考例1、2]
磁石スラッジとして、合金加工工程で発生した平均粒径20μmの研削粉(含水率35%、乾燥粉中のNd 16%、Pr 0.5%、Dy 3%、Tb 0.1%、Fe 41%、Co 2%、B 1%、その他の金属元素 1%、残 酸素他の非金属元素)を使用した。
このスラッジをロータリーキルン(加熱温度600℃)により乾燥、燃焼酸化させた。加熱域へ移動の途中、水が蒸発した後、約300℃近くに昇温した時に、炎をあげて燃焼するのが観察された。炎の温度は放射温度計で測定した結果、700〜800℃であった。また炎の発生は加熱域の入口部分のみであり、燃えた後は赤熱粉となってロータリーキルン内を移動した。加熱域の滞留時間は30分であった。
得られた酸化粉の粉末X線回折の結果、Fe2O3、FeRO3(Rは上記希土類元素を表す。)、CoFe2O4の他に、Feのピークも確認された。また、この酸化粉を電気炉内で空気中900℃で1時間加熱した時の重量変化(酸化増量)を測定した結果、9.2%の質量増加を示し、酸化が不十分であることが判った。
そこで、このスラッジ0.5kgを石英製容器に入れ、箱型電気炉中で700〜1250℃の温度、15〜60分の時間を換えて再度酸化した。
温度が800℃、時間15分以上の条件で、粉末X線回折のFeのピークが消失していた。
また、この条件で酸化した酸化粉の加熱質量増加(900℃×1時間)は0.15%以下であった。
各酸化粉試料300gをビーカー中で水300gと混合してスラリーとした。これをホットプレート上で90℃に加熱し、35%の濃塩酸410g(当量の0.40倍量)を15分で添加し、このまま60分間保持した。この液のpHは≦1であった。
[Examples 1 to 8, Reference Examples 1 and 2 ]
As magnetic sludge, grinding powder having an average particle diameter of 20 μm generated in the alloy processing step (water content 35%, Nd 16% in dry powder, Pr 0.5%, Dy 3%, Tb 0.1%, Fe 41% , Co 2%, B 1%, other metal elements 1%, residual oxygen and other non-metal elements).
This sludge was dried and combusted and oxidized by a rotary kiln (heating temperature 600 ° C.). During the movement to the heating zone, it was observed that when water was evaporated and then the temperature was raised to about 300 ° C., it burned with flames. The flame temperature was 700-800 ° C. as a result of measurement with a radiation thermometer. Moreover, the flame was generated only at the entrance of the heating zone, and after burning, it turned into red hot powder and moved through the rotary kiln. The residence time in the heating zone was 30 minutes.
As a result of powder X-ray diffraction of the obtained oxide powder, an Fe peak was also confirmed in addition to Fe 2 O 3 , FeRO 3 (R represents the rare earth element), and CoFe 2 O 4 . Moreover, as a result of measuring the weight change (oxidation increase) when this oxide powder was heated in air at 900 ° C. for 1 hour in an electric furnace, it showed a mass increase of 9.2% and oxidation was insufficient. understood.
Therefore, 0.5 kg of this sludge was put in a quartz container, and oxidized again in a box-type electric furnace at a temperature of 700 to 1250 ° C. for 15 to 60 minutes.
Under the conditions where the temperature was 800 ° C. and the time was 15 minutes or longer, the Fe peak of powder X-ray diffraction disappeared.
Moreover, the heating mass increase (900 degreeC x 1 hour) of the oxide powder oxidized on these conditions was 0.15% or less.
300 g of each oxidized powder sample was mixed with 300 g of water in a beaker to form a slurry. This was heated to 90 ° C. on a hot plate, and 410 g of 35% concentrated hydrochloric acid (0.40 times the equivalent amount) was added in 15 minutes, and held there for 60 minutes. The pH of this solution was ≦ 1.
次いで、25%NaOH溶液を添加し、pHを3に調整した。冷却後、これをヌッチエにより5C濾紙で濾過して固体と溶液を分離した。更に固体を水3Lで洗浄し、固体に付着する溶液を洗い出した。
溶液、洗浄液中の希土類元素及びFe、CoをICP法(SII製SPS3100)で測定し、希土類元素、Coの溶液への溶出率、Feについては溶液中の残留率を求めた。溶出率、残留率は、(回収した溶液及び洗浄液中の各元素の質量/使用した酸化粉中の各元素の質量)×100%として算出した。使用した酸化物中のNd(Dy、Co)量に対して、どれだけのNd(Dy、Co)が溶出しているか、またFeについてはFe水酸化物として沈殿させてもどれだけのFeが溶液中に残っているかの%である。
希土類元素、Coの溶出率は高いほど好ましく、Feの残留率は低いほど好ましい。
結果を表1に示す。加熱温度800℃未満では希土類元素の溶出率が若干増えるものの、Feの残留率が増えることがわかる。また温度が高くなるほど焼結による固まりが生じ、塩酸への溶出性が低下した。
A 25% NaOH solution was then added to adjust the pH to 3. After cooling, this was filtered through 5C filter paper with Nutsie to separate the solid and the solution. Further, the solid was washed with 3 L of water, and the solution adhering to the solid was washed out.
The rare earth elements, Fe, and Co in the solution and the cleaning liquid were measured by ICP method (SPS3100 manufactured by SII), and the dissolution rate of the rare earth elements and Co in the solution and the residual ratio in the solution were obtained for Fe. The elution rate and the residual rate were calculated as (mass of each element in the collected solution and cleaning liquid / mass of each element in the used oxide powder) × 100%. How much Nd (Dy, Co) is eluted with respect to the amount of Nd (Dy, Co) in the oxide used, and how much Fe is in solution even if Fe is precipitated as Fe hydroxide % Of what remains inside.
The higher the elution rate of rare earth elements and Co, the better, and the lower the residual rate of Fe, the better.
The results are shown in Table 1. It can be seen that when the heating temperature is less than 800 ° C., the elution rate of rare earth elements slightly increases, but the residual ratio of Fe increases. Moreover, the higher the temperature, the more solidified by sintering, and the elution into hydrochloric acid decreased.
[実施例9〜14]
実施例1〜7の研削粉スラッジを箱型電気炉で900℃に加熱し、30分間保持して酸化した。X線回折の結果、Feのピークは見られず、また900℃で1時間再酸化した時の質量増加は0.05%であった。この研削粉スラッジの酸化粉を用い、スラリーの温度を変えた以外は実施例1〜7と同様にして溶出試験を行った。結果を表2に示す。
温度が80℃未満では希土類元素の溶出が少なく、Feの溶出が多くなることがわかる。
[Examples 9 to 14 ]
The grinding powder sludges of Examples 1 to 7 were heated to 900 ° C. in a box-type electric furnace and held for 30 minutes for oxidation. As a result of X-ray diffraction, no Fe peak was observed, and the mass increase upon reoxidation at 900 ° C. for 1 hour was 0.05%. An elution test was conducted in the same manner as in Examples 1 to 7 except that the oxidized powder of this grinding powder sludge was used and the temperature of the slurry was changed. The results are shown in Table 2.
It can be seen that when the temperature is less than 80 ° C., the elution of rare earth elements is small and the elution of Fe is increased.
[実施例15〜20]
水と酸化粉の割合を変えた以外は実施例10と同様にして溶出試験を行った。結果を表3に示す。実施例15ではスラリー粘度が高く、撹拌が十分に行なえなかった。
[Examples 15 to 20 ]
An elution test was conducted in the same manner as in Example 10 except that the ratio of water and oxidized powder was changed. The results are shown in Table 3. In Example 15 , the slurry viscosity was high, and the stirring could not be performed sufficiently.
[実施例21〜27]
塩酸の量を変えた以外は実施例10と同様にして溶出試験を行った。結果を表4に示す。塩酸量が当量の0.20倍未満では希土類元素の溶出率が低下した。塩酸量及び中和に必要なアルカリ量を少なくするためには、0.70倍以下が望ましい。
[Examples 21 to 27 ]
The elution test was conducted in the same manner as in Example 10 except that the amount of hydrochloric acid was changed. The results are shown in Table 4. When the amount of hydrochloric acid was less than 0.20 times the equivalent, the elution rate of rare earth elements decreased. In order to reduce the amount of hydrochloric acid and the amount of alkali necessary for neutralization, 0.70 times or less is desirable.
[実施例28〜34]
NaOH溶液を添加した時のpHを変えた以外は実施例10と同様にして溶出試験を行った。結果を表5に示す。pHが2未満では鉄が全て析出せずに溶液内に残留し、pHが6を超えると希土類元素の水酸化物が析出し、溶出率が悪くなる。
[Examples 28 to 34 ]
The dissolution test was conducted in the same manner as in Example 10 except that the pH when the NaOH solution was added was changed. The results are shown in Table 5. If the pH is less than 2, all of iron remains in the solution without being precipitated, and if the pH exceeds 6, the rare earth element hydroxide is precipitated and the elution rate is deteriorated.
[実施例35]
実施例1において、Feの残留率を更に下げるために、25%NaOH溶液を添加した後、温度を保持したまま10%次亜塩素酸ナトリウム溶液20mlを溶液に加え、溶出している2価のFeを3価に変えた。以降、実施例1と同様にしてICP法でNd、Dy、Coの溶出率、Feの残留率を求めた。その結果、溶出率は変わらず、Feの残留率は<0.1%に低下し、Feが除去されていた。
[Example 35 ]
In Example 1, in order to further reduce the residual ratio of Fe, after adding a 25% NaOH solution, 20 ml of a 10% sodium hypochlorite solution was added to the solution while maintaining the temperature, and the eluted divalent divalent solution was added. Fe was changed to trivalent. Thereafter, in the same manner as in Example 1, the elution rate of Nd, Dy, and Co and the residual rate of Fe were determined by the ICP method. As a result, the elution rate did not change, the Fe residual rate decreased to <0.1%, and Fe was removed.
[実施例36]
実施例10の溶液を用いて、溶媒抽出法により希土類元素の分離を行った。溶液中の希土類元素の濃度はNd:0.1mol/L、Pr:0.02mol/L、Dy:0.1mol/L、Tb:0.003mol/Lであった。
抽出剤としてPC88Aを使用し、8段のミキサーセトラーにより軽希土類元素(Nd、Pr)と重希土類元素(Dy、Tb)に分離した。更に重希土類元素について抽出剤PC88Aを用いてDyとTbに分離した。
これらを含む各溶液から蓚酸を用いて、それぞれ(Nd、Pr)蓚酸塩、Dy蓚酸塩、Tb蓚酸塩を沈殿、濾別し、蓚酸塩を950℃で焼成してそれぞれの希土類酸化物を得た。純度はそれぞれ99.9%以上であり、Feは<0.1%であった。これらの酸化物を出発原料として溶融塩電解法により(Nd、Pr)金属を、Ca還元法によりDy金属、Tb金属を製造した。これらの金属は磁石合金の原料として十分に使用可能であった。
[Example 36 ]
Using the solution of Example 10 , rare earth elements were separated by a solvent extraction method. The concentrations of rare earth elements in the solution were Nd: 0.1 mol / L, Pr: 0.02 mol / L, Dy: 0.1 mol / L, Tb: 0.003 mol / L.
PC88A was used as an extractant, and light rare earth elements (Nd, Pr) and heavy rare earth elements (Dy, Tb) were separated by an 8-stage mixer settler. Further, the heavy rare earth element was separated into Dy and Tb using the extractant PC88A.
(Nd, Pr) oxalate, Dy oxalate, and Tb oxalate are precipitated from each solution containing these using oxalic acid, filtered, and oxalate is fired at 950 ° C. to obtain each rare earth oxide. It was. Each purity was 99.9% or more, and Fe was <0.1%. Using these oxides as starting materials, (Nd, Pr) metal was produced by the molten salt electrolysis method, and Dy metal and Tb metal were produced by the Ca reduction method. These metals were sufficiently usable as raw materials for magnet alloys.
Claims (12)
(B)該酸化物と水を混合してスラリーとし、加熱しながら、塩酸を添加する工程、
(C)得られた溶液を加熱しながらアルカリを加える工程、
(D)未溶解及び沈殿した固体と希土類元素を含む溶液を分離する工程
を含むことを特徴とする希土類元素の回収方法。 (A) heating a raw material containing a rare earth magnet alloy to 800 ° C. or higher in an oxidizing atmosphere to form an oxide of the alloy component;
(B) a step of mixing the oxide and water to form a slurry, and adding hydrochloric acid while heating;
(C) adding an alkali while heating the resulting solution;
(D) A method for recovering a rare earth element, comprising a step of separating an undissolved and precipitated solid and a solution containing the rare earth element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008097809A JP5146658B2 (en) | 2008-04-04 | 2008-04-04 | Recovery method of rare earth elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008097809A JP5146658B2 (en) | 2008-04-04 | 2008-04-04 | Recovery method of rare earth elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009249674A JP2009249674A (en) | 2009-10-29 |
JP5146658B2 true JP5146658B2 (en) | 2013-02-20 |
Family
ID=41310646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008097809A Active JP5146658B2 (en) | 2008-04-04 | 2008-04-04 | Recovery method of rare earth elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5146658B2 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5713287B2 (en) * | 2011-04-11 | 2015-05-07 | 独立行政法人物質・材料研究機構 | Extraction method of rare earth elements |
JP5741323B2 (en) * | 2011-04-28 | 2015-07-01 | 日立金属株式会社 | Recovery method of rare earth elements |
EP3141621A1 (en) * | 2011-05-04 | 2017-03-15 | Orbite Aluminae Inc. | Processes for recovering rare earth elements from various ores |
JP5740227B2 (en) * | 2011-06-30 | 2015-06-24 | 株式会社東芝 | Rare metal production method |
US9322082B2 (en) | 2011-07-29 | 2016-04-26 | Hitachi Metals, Ltd. | Method for recovering rare earth element |
WO2013103099A1 (en) | 2012-01-06 | 2013-07-11 | 日立金属株式会社 | Method for separating and recovering rare-earth element |
KR101414967B1 (en) * | 2012-03-22 | 2014-07-04 | 한국생산기술연구원 | Nd Extraction Metod From Rare Earth element |
JP6052586B2 (en) * | 2012-09-03 | 2016-12-27 | 国立大学法人島根大学 | Neodymium recovery method |
FR2997095B1 (en) | 2012-10-24 | 2014-11-28 | Commissariat Energie Atomique | METHOD FOR ISOLATING RARE EARTHS AND / OR APPROPRIATE METAL ELEMENT (S) CONTAINED IN THE MAGNETIC PHASE OF PERMANENT MAGNETS. |
KR101459734B1 (en) | 2012-12-21 | 2014-11-10 | 주식회사 포스코 | Method of separating cerium from rare earth compounds |
CN104884649B (en) | 2012-12-26 | 2018-05-29 | 日立金属株式会社 | The recovery method of rare earth element |
WO2014115876A1 (en) | 2013-01-28 | 2014-07-31 | 日立金属株式会社 | Heavy rare earth element recovery method |
CN105073245B (en) | 2013-03-25 | 2017-07-11 | 独立行政法人产业技术总合研究所 | The sorbing material and its recovery method of rare earth element |
US10023938B2 (en) | 2013-05-31 | 2018-07-17 | Hitachi Metals, Ltd. | Method for recovering rare earth element |
KR101420117B1 (en) * | 2014-01-29 | 2014-07-17 | 한국지질자원연구원 | Leaching method of rare-earth metals using hydrochloric acid from manganese nodule |
JP6502182B2 (en) * | 2014-06-04 | 2019-04-17 | 国立大学法人横浜国立大学 | Method of recovering rare earth element and recovery device of rare earth element |
RU2572927C1 (en) * | 2014-09-09 | 2016-01-20 | Лидия Алексеевна Воропанова | Extraction of iron (iii) ions from aqueous solutions using tributyl phosphate |
RU2581316C1 (en) * | 2014-10-27 | 2016-04-20 | Лидия Алексеевна Воропанова | Method for selective extraction of iron (iii) and zinc (ii) from aqueous solutions with tributyl phosphate |
CN105000642B (en) * | 2015-06-30 | 2017-05-17 | 北京沃特尔水技术股份有限公司 | Treatment method of silicon-containing wastewater generated in molecular sieve preparation processes |
RU2607284C1 (en) * | 2015-08-17 | 2017-01-10 | Лидия Алексеевна Воропанова | Method of extracting ions from aqueous solutions |
JP6478113B2 (en) * | 2015-09-23 | 2019-03-06 | 三菱マテリアル株式会社 | Recovery method of rare earth elements |
RU2622204C1 (en) * | 2016-03-30 | 2017-06-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" | Method of extraction of cadmium and zinc from natural and wastewater |
RU2631440C1 (en) * | 2016-12-01 | 2017-09-22 | Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) | Method of extracting silver from chloride solutions |
JP7001903B2 (en) | 2017-10-20 | 2022-01-20 | 国立研究開発法人産業技術総合研究所 | How to recover rare earth elements |
RU2683405C1 (en) * | 2018-07-10 | 2019-03-28 | Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) | Method of producing solution of ferric chloride |
JP7044082B2 (en) * | 2019-02-05 | 2022-03-30 | 信越化学工業株式会社 | Method for producing acidic slurry and method for recovering rare earth elements |
EP3715482A1 (en) * | 2019-03-29 | 2020-09-30 | Tata Consultancy Services Limited | Method and system for separation of rare earth elements from secondary sources |
RU2698083C1 (en) * | 2019-04-03 | 2019-08-21 | Лидия Алексеевна Воропанова | Method for selective extraction of iron (iii) and manganese (ii) from aqueous solutions |
RU2702886C1 (en) * | 2019-05-15 | 2019-10-11 | Лидия Алексеевна Воропанова | Method for selective extraction of zinc (ii) and copper (ii) from aqueous solutions |
RU2702182C1 (en) * | 2019-05-15 | 2019-10-04 | Лидия Алексеевна Воропанова | Method for selective extraction of zinc (ii) and manganese (ii) from aqueous solutions |
RU2702185C1 (en) * | 2019-05-15 | 2019-10-04 | Лидия Алексеевна Воропанова | Method for selective extraction of iron (iii) and copper (ii) from aqueous solutions |
CN114921668B (en) * | 2022-06-30 | 2024-06-11 | 包头稀土研究院 | Method for reducing rare earth content in rare earth iron boron waste hydrochloric acid eutectoid iron slag |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5493672A (en) * | 1977-12-31 | 1979-07-24 | Daihachi Chem Ind | Method of separating rare earth metals each other by solvent extraction |
JPS6283433A (en) * | 1985-10-08 | 1987-04-16 | Santoku Kinzoku Kogyo Kk | Method for separating rare earth element from alloy containing rare earth element |
JP2756794B2 (en) * | 1988-09-16 | 1998-05-25 | 日本重化学工業株式会社 | Rare earth element separation method |
JPH0772312B2 (en) * | 1991-05-17 | 1995-08-02 | 住友金属鉱山株式会社 | Rare earth element recovery method |
JP3777226B2 (en) * | 1995-09-27 | 2006-05-24 | 株式会社三徳 | Method for recovering reusable rare earth-containing compounds |
JP4730903B2 (en) * | 2006-03-01 | 2011-07-20 | 三井金属鉱業株式会社 | Method for recovering raw materials for cerium-based abrasives |
-
2008
- 2008-04-04 JP JP2008097809A patent/JP5146658B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009249674A (en) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5146658B2 (en) | Recovery method of rare earth elements | |
JP6392650B2 (en) | Rare earth element recovery method from precious metal smelting slag | |
EP0790321B1 (en) | Method for recovering reusable elements from rare earth-iron alloy scrap containing cobalt | |
KR101935826B1 (en) | Method for the separation of Nd and Dy by use of REE-sulfate double salt precipitation | |
WO2015016086A1 (en) | Method for recovering zinc from electric-furnace steelmaking dust and device for recovering zinc from electric-furnace steelmaking dust | |
EP2450312A1 (en) | Recovery of tungsten from waste material by ammonium leaching | |
CN102719674A (en) | Method for extracting rare earth from oxidized neodymium iron boron waste | |
KR102094398B1 (en) | Method of recycling chlorine bypass dust generated in cement manufacturing process | |
WO2013128830A1 (en) | Metal recovery process | |
CN109666801A (en) | A kind of method of recovering rare earth element in high silicon low content neodymium iron boron waste material | |
JP2009203486A (en) | Method for recovering ruthenium from scrap containing ruthenium | |
KR101186170B1 (en) | The method of withdrawing zinc oxide from waste powder of steel making | |
JP2011184735A (en) | Method for leaching rare earth element | |
JP6478113B2 (en) | Recovery method of rare earth elements | |
JP5678231B2 (en) | Separation of rare earth elements from waste optical glass | |
JP5596590B2 (en) | Method for separating and recovering metal elements from rare earth magnet alloy materials | |
Wang et al. | Study on factors of vanadium extraction from low-grade vanadium slag with high silicon content by roasting | |
EP1639144B1 (en) | Method for recovering at least one metallic element like cesium from ore | |
JP6769437B2 (en) | A useful method for separating light rare earth elements and heavy rare earth elements | |
JP2000144275A (en) | Method for recovering rare earth element | |
CN104805292A (en) | Method for separating and recovering valuable components from rare earth praseodymium-neodymium fused salt electrolysis waste | |
JP2011089176A (en) | Method for refining molybdenum | |
JP2015187291A (en) | Method for collecting rare earth element | |
JP2019026871A (en) | Manufacturing method of rare earth fluoride | |
JP7044082B2 (en) | Method for producing acidic slurry and method for recovering rare earth elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5146658 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |