JPS6283433A - Method for separating rare earth element from alloy containing rare earth element - Google Patents

Method for separating rare earth element from alloy containing rare earth element

Info

Publication number
JPS6283433A
JPS6283433A JP22287085A JP22287085A JPS6283433A JP S6283433 A JPS6283433 A JP S6283433A JP 22287085 A JP22287085 A JP 22287085A JP 22287085 A JP22287085 A JP 22287085A JP S6283433 A JPS6283433 A JP S6283433A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
iron
acid
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22287085A
Other languages
Japanese (ja)
Other versions
JPH0514777B2 (en
Inventor
Hiroaki Fujii
藤井 博章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP22287085A priority Critical patent/JPS6283433A/en
Publication of JPS6283433A publication Critical patent/JPS6283433A/en
Publication of JPH0514777B2 publication Critical patent/JPH0514777B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To separate rare earth element with a good recovering ratio and a low cost, by heating alloy contg. rare earth element and iron to oxidize it with air, then forming rare earth element salt by strong acid leaching and dissolving it. CONSTITUTION:Alloy contg. rare earth element and iron is heated at about 200-700 deg.C for about 0.5-2.0hr to convert iron in alloy to iron oxide resistant to dissolution in acid. The alloy is milled to about 50-200 mesh after cooling, dipped in strong acid 9about 2-5 N concon.) such as hydrochloric acid, laid as it is at room temp. for about 1hr to leach out rare earth element. Next, insoluble iron oxide is filtered, oxalic acid, sodium carbonate, etc., are added to residual filtrate to precipitate rare element. The ppt. is filtered and separated, then dried and calcined at almost 800-1,000 deg.C to obtain rare earth element oxide. In this way, quantities of acid and alkali required to extraction can markedly by decreased and rare earth element is separated with a high yield ratio.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は希土類元素及び鉄を含有する合金から希土類元
素を分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for separating rare earth elements from alloys containing rare earth elements and iron.

〈従来技術〉 近年、高性能永久磁石として希土類元素−鉄系合金が開
発され、実用化されるに至っている。このような希土類
元素−鉄系合金の成分例としては、例えば希土類元素約
30重置%、鉄約65重量%、ホウ素約2重猷%及びそ
の他の成分である。磁石の製造にあたっては、製品重量
の約20重量%〜40重猷%の合金屑が発生し、合金H
の約30重量%は、資源としても稀少で、高価であり、
かつ有価な希土類元素である。従って、合金屑中の希土
類元素の回収は、資源の有効利用の観点からも、経済性
の観点からも必須である。
<Prior Art> In recent years, rare earth element-iron alloys have been developed as high-performance permanent magnets and have come into practical use. Examples of the components of such a rare earth element-iron alloy include about 30% by weight of rare earth elements, about 65% by weight of iron, about 2% by weight of boron, and other components. In the production of magnets, alloy waste is generated which is about 20% to 40% by weight of the product, and alloy H
Approximately 30% by weight of is a rare and expensive resource,
It is also a valuable rare earth element. Therefore, recovery of rare earth elements in alloy scrap is essential from the viewpoint of effective utilization of resources as well as from the viewpoint of economic efficiency.

従来公知の希土類元素分離法によれば、まず希土類元素
−鉄含有合金を塩酸、硝酸、硫酸等の強酸で完全に溶解
した後に、水酸化ナトリウム、水酸化カリウム、水酸化
アンモニウム等のアルカリによりpHを調整し、合金中
の鉄を水酸化鉄の形で沈澱させ、戸別・分離する。残っ
たP液に蓚酸。
According to the conventionally known rare earth element separation method, a rare earth element-iron containing alloy is first completely dissolved with a strong acid such as hydrochloric acid, nitric acid, or sulfuric acid, and then the pH is adjusted with an alkali such as sodium hydroxide, potassium hydroxide, or ammonium hydroxide. The iron in the alloy is precipitated in the form of iron hydroxide, which is then separated into individual units. Add oxalic acid to the remaining P solution.

重炭酸アンモン、炭酸ソーダ等を添加して希土類元素を
沈澱させ、この沈澱を戸別・乾燥・焼成して希土類元素
の酸化物を得るというものである。
Ammonium bicarbonate, soda carbonate, etc. are added to precipitate rare earth elements, and the precipitates are separated, dried, and fired to obtain rare earth element oxides.

〈発明が解決しようとする問題点〉 しかし、上述の公知の方法では希土類元素−鉄含有合金
の全量を完全に強酸で溶解するから極めて多量の酸が必
要である。更に、多量の鉄水酸化物を沈澱させるために
多量のアルカリも必要であ−2= リ、生成した多酸の鉄水酸化物の戸別も困難である。従
って、公知の方法では工業的規模の実施ができない。
<Problems to be Solved by the Invention> However, in the above-mentioned known method, an extremely large amount of acid is required because the entire amount of the rare earth element-iron-containing alloy is completely dissolved with strong acid. Furthermore, in order to precipitate a large amount of iron hydroxide, a large amount of alkali is also required, and it is difficult to separate the produced polyacid iron hydroxide from house to house. Therefore, the known methods cannot be implemented on an industrial scale.

〈発明の目的〉 従って、本発明の[1的は、多電の酸及びアルカリの使
用、並びに水酸化鉄の処理が不要であって、経済的な、
希土類元素−鉄含有合金から希土類元素を分離する方法
を提供することである。
<Object of the Invention> Therefore, the present invention [1] is an economical method that does not require the use of polyelectrolytic acids and alkalis and the treatment of iron hydroxide.
It is an object of the present invention to provide a method for separating rare earth elements from rare earth element-iron containing alloys.

本発明の別の目的は、工業的規模での実施が非常に容易
な、希土類元素−鉄含有合金から希土類元素を分離する
方法を提供することである。
Another object of the invention is to provide a method for separating rare earth elements from rare earth element-iron containing alloys which is very easy to implement on an industrial scale.

本発明のその他の11的は以トの記載より明らかとなろ
う。
Other eleven aspects of the present invention will become apparent from the following description.

〈問題点を解決する手段〉 本発明によれば、希−に類元素−鉄含有合金を加熱して
空気酸化した後、強酸を用いた酸浸出法により、希土類
元素塩を生成してろ液中に溶解し。
<Means for Solving the Problems> According to the present invention, after a rare element-iron containing alloy is heated and oxidized in air, a rare earth element salt is generated by an acid leaching method using a strong acid and is added to the filtrate. Dissolved in.

炉別して分離すること髪特徴とする希土類元素含有合金
から希土類を分離する方法が提供される。
A method for separating rare earths from rare earth element-containing alloys is provided.

〈発明の説明〉 3一 本発明において、希土類元素を分離・回収しようとする
希土類元素−鉄含有合金中の希土類元素としては、例え
ばネオジム(Nd)、プラセオジム(Pr)、セリウム
(Ce)、ジスポロシウム(1’)y)、ガドリニウム
(Gd)、イツトリウム(Y)、その他の希土類元素で
あり、その他の成分として鉄が含有される。更に、コバ
ルト(Co)、ホウ素(B)、アルミニウム(AQ)等
を含有していてもよい。
<Description of the Invention> 31 In the present invention, rare earth elements in the rare earth element-iron containing alloy from which rare earth elements are to be separated and recovered include, for example, neodymium (Nd), praseodymium (Pr), cerium (Ce), and dysporosium. (1')y), gadolinium (Gd), yttrium (Y), and other rare earth elements, and iron is contained as another component. Furthermore, it may contain cobalt (Co), boron (B), aluminum (AQ), etc.

本発明においては、最初に希土類元素−鉄含有合金を電
気炉等で温度200℃〜700°C1好ましくは330
0℃〜600℃に、0.5〜2.0時間、好ましくは約
1時間加熱するのが望ましい。
In the present invention, a rare earth element-iron-containing alloy is first heated in an electric furnace or the like at a temperature of 200°C to 700°C, preferably 330°C.
It is desirable to heat to 0°C to 600°C for 0.5 to 2.0 hours, preferably about 1 hour.

空気中で加熱して酸化することにより、合金中の鉄を酸
難溶性の鉄酸化物に変えて、希土類元素のみを抽出する
。温度が200℃より低いと、鉄の酸化が不十分で可溶
性分が増加する。700℃より高いと必要以」−にエネ
ルギー消費が増加するので好ましくない。次いで、空気
酸化した合金を冷却した後に、50メツシユ〜200メ
ツシユ、好ましくは80メツシユ〜120メツシユに粉
砕するのが望ましい。粉砕後、強酸、例えば塩酸、硝酸
、硫酸等の濃度2〜5N(規定)水溶液、好ましくは3
N〜4N水溶液に粉砕した合金を浸漬し、室温にて約1
時間放置して、希−に類元素を浸出させる。酸濃度が2
Nより低いと溶解が不十分であり、5Nより高いと過剰
であって、不経済である。
By heating and oxidizing in air, the iron in the alloy is changed to iron oxide, which is poorly soluble in acids, and only the rare earth elements are extracted. If the temperature is lower than 200° C., oxidation of iron is insufficient and the soluble content increases. If the temperature is higher than 700°C, energy consumption will increase more than necessary, which is not preferable. The air-oxidized alloy is then cooled and then ground into 50 to 200 meshes, preferably 80 to 120 meshes. After grinding, add a strong acid such as hydrochloric acid, nitric acid, sulfuric acid, etc. to a 2-5N (normal) aqueous solution, preferably 3N.
The crushed alloy was immersed in a N to 4N aqueous solution, and the temperature was about 1 at room temperature.
Leave it for a while to leach out the rare elements. acid concentration is 2
If it is lower than 5N, the dissolution will be insufficient, and if it is higher than 5N, it will be excessive and uneconomical.

浸出後、不溶性酸化鉄を戸別し、残った炉液に蓚酸、重
炭酸アンモン、炭酸ソーダ等を添加して、希土類元素塩
を沈澱させる。多1(例えば約65重量%)の鉄が酸に
離溶刊の酸化物となっているために、酸の使用量は従来
公知の方法と比較して約174〜】/3に減少する。I
−記の希土類元素塩の沈澱を濾過して分離し、乾燥した
後、電気炉等で温度800℃〜1000℃で焼成して希
土類元素酸化物を得る。
After leaching, the insoluble iron oxide is separated and oxalic acid, ammonium bicarbonate, soda carbonate, etc. are added to the remaining furnace liquid to precipitate the rare earth element salt. Since a large proportion (for example, about 65% by weight) of iron is in the form of an oxide that is soluble in acid, the amount of acid used is reduced to about 174 to 1/3 compared to conventional methods. I
- The precipitate of the rare earth element salt is filtered and separated, dried, and then calcined in an electric furnace or the like at a temperature of 800°C to 1000°C to obtain a rare earth element oxide.

合金屑中にコバルト、ホウ素、アルミニラlい等が含有
されている場合、これらの成分は蓚酸、重炭酸アンモン
、炭酸ソーダ等で希土類元素塩を沈澱させたときに、炉
液中に含有されるので、積土類元素と分離できる。
If alloy scrap contains cobalt, boron, aluminium, etc., these components will be contained in the furnace solution when rare earth element salts are precipitated with oxalic acid, ammonium bicarbonate, soda carbonate, etc. Therefore, it can be separated from the sedimentary elements.

〈実施例〉 実施例」− 希土類元素約30重量%を含有するN d −F e−
B系の磁石層30gを各焼成温度ごとに4つずつ用意し
、磁製ボートに入れ、開放ニクロム加熱型電気炉中で1
50℃、200℃、300℃、400℃、500℃、6
00℃、700℃及び800℃の各温度で各試料を約1
時間加熱し、冷却した後に100メツシユに粉砕し、各
試料に各々5N(規定)−220mQ1.41’l−1
−27O,3N−360mQ及び2N−540mQを加
えて約1時間放置して希土類元素を酸浸出させた。次い
で、各試料中の不溶化した酸化鉄を濾紙にて炉別し、残
った炉液に蓚酸を添加して、希土類元素の蓚酸塩を沈澱
させ、濾過分離後に乾燥し、900℃にて電気炉で焼成
して、希土類酸化物を得た。その重量を測定後、酸化物
中の積土量と鉄量をJISの化学分析法に従い分析した
値と、当初の磁石層の希土類元素塩と鉄量から希土類元
素と鉄の抽出率を−6= 算出した。その結果を以下の第1〜4表に示す。
<Example> Example” - N d -F e - containing about 30% by weight of rare earth elements
Prepare four 30g B-based magnet layers for each firing temperature, place them in a porcelain boat, and heat them in an open nichrome heated electric furnace.
50℃, 200℃, 300℃, 400℃, 500℃, 6
Approximately one
After heating for an hour and cooling, pulverize into 100 meshes and apply each sample to 5N (normal)-220mQ1.41'l-1
-27O, 3N-360mQ and 2N-540mQ were added and left to stand for about 1 hour to leaching the rare earth elements with acid. Next, the insolubilized iron oxide in each sample was separated in a furnace using filter paper, and oxalic acid was added to the remaining furnace solution to precipitate the oxalates of rare earth elements. After separation by filtration, it was dried and heated in an electric furnace at 900°C. A rare earth oxide was obtained. After measuring the weight, the extraction rate of rare earth elements and iron was calculated from the values analyzed according to the JIS chemical analysis method and the amount of rare earth element salts and iron in the original magnet layer. = Calculated. The results are shown in Tables 1 to 4 below.

以−1−の結果より、加熱温度300°C〜600℃、
及び酸濃度2N〜5Nの場合、特に3N〜4Nの場合に
希土類元素抽出率が高く、かつ鉄抽出率が低いという良
好な結果が得られることが明らかである。
From the results of -1- below, the heating temperature is 300°C to 600°C,
It is clear that when the acid concentration is 2N to 5N, particularly when the acid concentration is 3N to 4N, good results are obtained in that the rare earth element extraction rate is high and the iron extraction rate is low.

実11例I N d −F e −r3系の磁石層30gを磁製ボー
トに入れ、開放型電気炉中で450°Cで1時間加熱し
て酸化させた。取出して放冷した後、乳鉢で100メツ
シユに粉砕し、これを500mQビーカーに入れ、塩酸
4Nを1. OOmQ添加した後、1時間放置した。そ
の後、濾紙で戸別した溶液に蓚酸15gを添加し希土類
元素の蓚酸塩を沈降させ、炉別して乾燥、焼成して希土
類酸化物を得た。得られた酸化物の重置は8.1g、回
収率は90%であった。また酸化物中の鉄の含有駄は0
.2%重量であった。
Example 11 30 g of a N d -F e -r3-based magnet layer was placed in a porcelain boat and heated in an open electric furnace at 450°C for 1 hour to oxidize it. After taking it out and leaving it to cool, grind it into 100 meshes in a mortar, put it in a 500mQ beaker, and add 1.5N of hydrochloric acid. After adding OOmQ, it was left to stand for 1 hour. Thereafter, 15 g of oxalic acid was added to the solution, which was separated using filter paper, to precipitate the oxalate of the rare earth element, and the mixture was separated in a furnace, dried, and fired to obtain a rare earth oxide. The amount of the obtained oxide was 8.1 g, and the recovery rate was 90%. Also, the iron content in the oxide is 0.
.. It was 2% by weight.

片I交信−■ Nd−Fe−B系の自若屑30gを2Qのビーカーに入
れ塩酸4Nを約300mQ添加して、全溶解させた。こ
の溶液に空気を3時間通して、2価の鉄を3価に酸化さ
せ、その後、攪拌しながら2N水酸化アンモニウム約5
60mQを添加し、p H4に調整した。その後、鉄水
酸化物を濾過器で枦過し、このろ液に蓚酸15gを添加
し、希土類元素の蓚酸塩を沈澱させ、炉別後焼成して希
土類酸化物を得た。
Part I Communication-■ 30g of Nd-Fe-B-based spontaneous debris was placed in a 2Q beaker, and approximately 300mQ of 4N hydrochloric acid was added to completely dissolve it. Air was passed through this solution for 3 hours to oxidize the divalent iron to trivalent iron, and then about 50% of 2N ammonium hydroxide was added with stirring.
60 mQ was added and the pH was adjusted to 4. Thereafter, the iron hydroxide was filtered through a filter, and 15 g of oxalic acid was added to the filtrate to precipitate the oxalate of the rare earth element, which was then fired in a furnace to obtain a rare earth oxide.

得られた酸化物の重量は7.2g、回収率は80%、酸
化物中の鉄の含有率は0.2%重量であった・ 〈発明の効果〉 以上のように、本発明によれば、希土類元素−鉄含有合
金から希土類元素を回収するにあたって、抽出に要する
酸及びアルカリの量を大幅に減少でき、また処理すべき
不溶性鉄の量も非常に少く、従って工業的規模での実施
が容易である。また、得られる希土類元素酸化物中の希
土類元素の回収率も高く、含有される鉄量も少ない。
The weight of the obtained oxide was 7.2 g, the recovery rate was 80%, and the iron content in the oxide was 0.2% by weight. <Effects of the Invention> As described above, the present invention achieved For example, when recovering rare earth elements from rare earth element-iron containing alloys, the amount of acids and alkalis required for extraction can be significantly reduced, and the amount of insoluble iron to be treated is also very small, thus making it possible to carry out on an industrial scale. is easy. Furthermore, the recovery rate of rare earth elements in the obtained rare earth element oxide is high, and the amount of iron contained is also small.

Claims (1)

【特許請求の範囲】[Claims] 希土類元素−鉄含有合金を加熱して空気酸化した後、強
酸を用いた酸浸出法により、希土類元素塩を生成してろ
液中に溶解し、ろ別して分離することを特徴とする希土
類元素含有合金から希土類を分離する方法。
A rare earth element-containing alloy characterized in that a rare earth element-iron containing alloy is heated and air oxidized, and then a rare earth element salt is generated by an acid leaching method using a strong acid, dissolved in the filtrate, and separated by filtration. How to separate rare earths from.
JP22287085A 1985-10-08 1985-10-08 Method for separating rare earth element from alloy containing rare earth element Granted JPS6283433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22287085A JPS6283433A (en) 1985-10-08 1985-10-08 Method for separating rare earth element from alloy containing rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22287085A JPS6283433A (en) 1985-10-08 1985-10-08 Method for separating rare earth element from alloy containing rare earth element

Publications (2)

Publication Number Publication Date
JPS6283433A true JPS6283433A (en) 1987-04-16
JPH0514777B2 JPH0514777B2 (en) 1993-02-25

Family

ID=16789177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22287085A Granted JPS6283433A (en) 1985-10-08 1985-10-08 Method for separating rare earth element from alloy containing rare earth element

Country Status (1)

Country Link
JP (1) JPS6283433A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429044A1 (en) * 1989-11-21 1991-05-29 GC GALVANO CONSULT GmbH Process for recovering metals from aqueous solutions
JPH03207825A (en) * 1990-01-10 1991-09-11 Hitachi Powdered Metals Co Ltd Method for separating and recovering rare earth elements from raw material containing rare earth elements and iron
KR100578712B1 (en) 2004-11-04 2006-05-12 한국지질자원연구원 Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching
JP2009249674A (en) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd Method for recovering rare-earth element
JP2010163657A (en) * 2009-01-15 2010-07-29 Chuo Denki Kogyo Co Ltd Process for recovering rare earth element
WO2014013929A1 (en) 2012-07-19 2014-01-23 Jx日鉱日石金属株式会社 Method for recovering rare earth from rare earth element-containing alloy
CN104313325A (en) * 2014-09-29 2015-01-28 乐山盛和稀土股份有限公司 Method for removing impurity-aluminum in CeFCO3 rare earth ore leaching process
JP2015089970A (en) * 2013-11-06 2015-05-11 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ Method for recovering rare-earth elements from waste permanent magnet oxidation scrap
CN104649888A (en) * 2014-08-27 2015-05-27 江西理工大学 Preparation method of large-particle neodymium oxalate
JP2015516507A (en) * 2012-03-19 2015-06-11 オーバイト アルミナ インコーポレイテッドOrbite Aluminae Inc. Process for recovering rare earth elements and rare metals
JP2015187291A (en) * 2014-03-26 2015-10-29 三菱マテリアル株式会社 Method for collecting rare earth element
US20170067135A1 (en) * 2015-09-03 2017-03-09 Battelle Energy Alliance, Llc. Methods for recovering metals from electronic waste, and related systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339495C (en) * 2002-03-19 2007-09-26 株式会社三德 Method for recovering useful element from rare earth - transition metal alloy scrap

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429044A1 (en) * 1989-11-21 1991-05-29 GC GALVANO CONSULT GmbH Process for recovering metals from aqueous solutions
JPH03207825A (en) * 1990-01-10 1991-09-11 Hitachi Powdered Metals Co Ltd Method for separating and recovering rare earth elements from raw material containing rare earth elements and iron
KR100578712B1 (en) 2004-11-04 2006-05-12 한국지질자원연구원 Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching
JP2009249674A (en) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd Method for recovering rare-earth element
JP2010163657A (en) * 2009-01-15 2010-07-29 Chuo Denki Kogyo Co Ltd Process for recovering rare earth element
JP2015516507A (en) * 2012-03-19 2015-06-11 オーバイト アルミナ インコーポレイテッドOrbite Aluminae Inc. Process for recovering rare earth elements and rare metals
WO2014013929A1 (en) 2012-07-19 2014-01-23 Jx日鉱日石金属株式会社 Method for recovering rare earth from rare earth element-containing alloy
US9458525B2 (en) 2013-11-06 2016-10-04 Korea Institute Of Geoscience And Mineral Resources Method of recovering rare earth elements from oxidized scrap of permanent magnet
JP2015089970A (en) * 2013-11-06 2015-05-11 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ Method for recovering rare-earth elements from waste permanent magnet oxidation scrap
JP2015187291A (en) * 2014-03-26 2015-10-29 三菱マテリアル株式会社 Method for collecting rare earth element
CN104649888A (en) * 2014-08-27 2015-05-27 江西理工大学 Preparation method of large-particle neodymium oxalate
CN104313325A (en) * 2014-09-29 2015-01-28 乐山盛和稀土股份有限公司 Method for removing impurity-aluminum in CeFCO3 rare earth ore leaching process
US20170067135A1 (en) * 2015-09-03 2017-03-09 Battelle Energy Alliance, Llc. Methods for recovering metals from electronic waste, and related systems
US9777346B2 (en) * 2015-09-03 2017-10-03 Battelle Energy Alliance, Llc Methods for recovering metals from electronic waste, and related systems
US10378081B2 (en) 2015-09-03 2019-08-13 Battelle Energy Alliance, Llc Methods for recovering metals from electronic waste, and related systems
US11035023B2 (en) 2015-09-03 2021-06-15 Battelle Energy Alliance, Llc Reactor systems for recovering metals, and related methods

Also Published As

Publication number Publication date
JPH0514777B2 (en) 1993-02-25

Similar Documents

Publication Publication Date Title
KR102441721B1 (en) Method for extraction and separation of rare earth elements
JPS6283433A (en) Method for separating rare earth element from alloy containing rare earth element
US5129945A (en) Scrap treatment method for rare earth transition metal alloys
JPS60161330A (en) Recovery of rare earth metal oxide having high purity from waste rare earth metal phosphor
CN106498169B (en) A kind of neodymium iron boron waste material recovery process
CN102719674A (en) Method for extracting rare earth from oxidized neodymium iron boron waste
CN1064109A (en) The treatment process of ores containing rare earths
JPS5997534A (en) Recovery of uranium from uranium tetrafluoride
RU2114204C1 (en) Method of recovering cerium
He et al. One-step separation and recovery of rare earth and iron from NdFeB slurry via phosphoric acid leaching
CN103436719B (en) From mixing the lutecium oxide and recovery method that reclaim Cerium aluminate lutetium scintillation crystal waste
KR100578712B1 (en) Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching
JP2765740B2 (en) Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron
JPS62187112A (en) Method for recovering rare earth element from rare earth element-iron type magnet material
JPS5967326A (en) Recovery method of valuable metal from alloy containing rare earth elements
JPH06329414A (en) Production of rare earth fluoride
JP2000144275A (en) Method for recovering rare earth element
ES2964195T3 (en) Hydrometallurgical method for the treatment of permanent magnets
US3740199A (en) Ore separation process
CN114480860B (en) Method for selectively leaching rare earth elements from red mud
JP3363646B2 (en) Rare earth metal separation method
US3102783A (en) Process for separating samarium, europium and ytterbium from other rare earths
JP2000144276A (en) Recovering method for rare earth element and cobalt
TWI852467B (en) Rare earth elements stripping additive and application thereof
JPS59110740A (en) Recovery of metal from organic phase by oxalic acid in solvent extraction method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term