JP2010163657A - Process for recovering rare earth element - Google Patents
Process for recovering rare earth element Download PDFInfo
- Publication number
- JP2010163657A JP2010163657A JP2009006712A JP2009006712A JP2010163657A JP 2010163657 A JP2010163657 A JP 2010163657A JP 2009006712 A JP2009006712 A JP 2009006712A JP 2009006712 A JP2009006712 A JP 2009006712A JP 2010163657 A JP2010163657 A JP 2010163657A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- iron
- earth element
- slurry
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 44
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 132
- 229910052742 iron Inorganic materials 0.000 claims abstract description 55
- 239000002002 slurry Substances 0.000 claims abstract description 53
- 238000002386 leaching Methods 0.000 claims abstract description 50
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 34
- 239000007787 solid Substances 0.000 claims abstract description 34
- 239000000243 solution Substances 0.000 claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 28
- 239000000956 alloy Substances 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910001868 water Inorganic materials 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims description 30
- 239000007800 oxidant agent Substances 0.000 claims description 20
- 239000007864 aqueous solution Substances 0.000 claims description 19
- 238000000926 separation method Methods 0.000 claims description 16
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 15
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 239000002253 acid Substances 0.000 abstract description 66
- 238000007664 blowing Methods 0.000 abstract description 18
- 238000001914 filtration Methods 0.000 abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 abstract description 9
- 239000000706 filtrate Substances 0.000 abstract description 6
- 150000003839 salts Chemical class 0.000 abstract description 6
- 239000012670 alkaline solution Substances 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract 1
- 239000003513 alkali Substances 0.000 description 42
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 33
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 238000011084 recovery Methods 0.000 description 14
- 229910052796 boron Inorganic materials 0.000 description 12
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 238000007796 conventional method Methods 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000010802 sludge Substances 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 6
- -1 iron ions Chemical class 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910001172 neodymium magnet Inorganic materials 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 4
- 229910052777 Praseodymium Inorganic materials 0.000 description 4
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical compound [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 239000012065 filter cake Substances 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 150000002506 iron compounds Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000020477 pH reduction Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 229910002588 FeOOH Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- CZNCTWNLEIFMDX-UHFFFAOYSA-N [Fe].O=O Chemical compound [Fe].O=O CZNCTWNLEIFMDX-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910006299 γ-FeOOH Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、希土類元素−鉄系合金から希土類元素を回収する方法に関する。本発明の方法は、副生する鉄残渣の量が少なく、かつその処理が容易である。 The present invention relates to a method for recovering a rare earth element from a rare earth element-iron alloy. The method of the present invention has a small amount of by-product iron residues and is easy to process.
希土類元素−鉄系合金、具体的にはNd−Fe−B系合金、を用いた磁石(ネオジム磁石とも呼ばれる)は、量産されている永久磁石の中で著しく優れた磁気性能を示すことから、特に電子機器類用に大きく市場が拡大している。 Magnets using rare earth elements-iron alloys, specifically Nd-Fe-B alloys (also called neodymium magnets) exhibit remarkably excellent magnetic performance among mass-produced permanent magnets. In particular, the market is greatly expanding for electronic devices.
この磁石の製造過程では、希土類元素−鉄系合金の多量の工程屑が発生する。この工程屑から有用成分、特に高価な希土類元素を回収するために、酸化剤の存在下、pHを3〜5に制御しながら酸で希土類元素を選択的に浸出する方法が特開平5−287405号公報(特許文献1)に提案されている。希土類金属を液中に浸出させ、鉄は不溶性の3価鉄化合物として、溶液状態の希土類元素から、鉄残渣として分離される。希土類元素の溶液である浸出液からは、例えば炭酸塩などの不溶性沈殿として希土類元素を回収することができる。 In the manufacturing process of this magnet, a large amount of process scraps of rare earth element-iron alloys are generated. In order to recover useful components, particularly expensive rare earth elements, from this process waste, a method of selectively leaching rare earth elements with an acid while controlling the pH to 3 to 5 in the presence of an oxidizing agent is disclosed in JP-A-5-287405. (Patent Document 1). Rare earth metal is leached into the liquid, and iron is separated as an iron residue from the rare earth element in solution as an insoluble trivalent iron compound. From the leachate which is a rare earth element solution, the rare earth element can be recovered as an insoluble precipitate such as carbonate.
鉄が溶解して生ずる2価鉄イオンは、希土類元素が溶解状態にある中性〜酸性条件下では沈殿させることができないため、鉄を不溶性化合物として沈殿させ、希土類元素と分離するには、酸化して3価鉄化合物に変える必要がある。特許文献1では、鉄は酸化剤と反応してオキシ水酸化鉄(FeOOH)になる。従って、希土類元素を含有する浸出液から分離された鉄残渣はオキシ水酸化鉄を主成分とする。しかし、この鉄残渣は、多量の水分を含んだ微粒もしくはゲル状であって、取り扱いに問題がある。希土類元素を経済的に回収するには、副生する鉄残渣が処理の容易なものであることが重要である。
Since divalent iron ions generated by the dissolution of iron cannot be precipitated under neutral to acidic conditions in which the rare earth element is in a dissolved state, the iron is precipitated as an insoluble compound and separated from the rare earth element by oxidation. Therefore, it is necessary to change to a trivalent iron compound. In
処理原料となる希土類元素−鉄系合金は50%を超える高い割合で鉄を含有することから、残渣の発生量は多量となる。例えば、特許文献1の実施例1には、処理する合金粉の量が3.0Kg、塩酸による浸出処理後に回収された残渣量は7.8Kgと記載されている。実施例2、3でも同様に処理合金の2倍以上の量の残渣が発生している。
Since the rare earth element-iron-based alloy serving as the processing raw material contains iron at a high rate exceeding 50%, the amount of residue generated is large. For example, Example 1 of
こうして発生した多量の鉄残渣は、製鉄原料などとして使用されることが望ましいが、水分を多量に含み、べたつきのあるオキシ水酸化鉄を主成分とする鉄残渣では、固液分離やハンドリング、乾燥処理、さらに製鉄原料化時の燃料原単位悪化など、問題が多い。 The large amount of iron residue generated in this way is preferably used as a raw material for iron making. However, in the case of iron residues that contain a large amount of moisture and are mainly composed of sticky iron oxyhydroxide, solid-liquid separation, handling, and drying There are many problems such as processing, and further deterioration of fuel intensity at the time of making steel.
また、特許文献1に記載の方法では、希土類元素の中でもDyのように浸出されにくい元素の回収率が、Ndのように相対的に浸出され易い元素の回収率よりいくらか低くなり、希土類元素全体の回収率もいくらか低下する。DyはNdより高価であるので、Dyも高いできるだけ多く回収することが経済的には有利である。
Further, in the method described in
本発明は、希土類元素−鉄系合金から有用な希土類元素を回収すると共に、副生する鉄残渣についても、その発生量を低減し、かつ取り扱いが容易なものとすることによって、希土類元素−鉄系合金から希土類元素を効率よく経済的に回収できる方法を提供することを目的とする。 The present invention recovers useful rare earth elements from rare earth element-iron-based alloys and reduces the generation amount of iron residues as a by-product and makes them easy to handle. It is an object of the present invention to provide a method for efficiently and economically recovering rare earth elements from an alloy.
本発明の別の目的は、希土類元素の酸による浸出時の液pHや液温の制約が少なく、従来法に比べて浸出速度を高めることができ、かつDyのような比較的浸出されにくい希土類元素も高い回収率で回収できる、希土類元素−鉄系合金から希土類元素を回収する方法を提供することである。 Another object of the present invention is that there are few restrictions on the liquid pH and liquid temperature during the leaching of rare earth elements with an acid, the leaching rate can be increased as compared with conventional methods, and a rare earth such as Dy that is relatively difficult to leach out. It is to provide a method for recovering rare earth elements from rare earth element-iron alloys, which can recover elements at a high recovery rate.
本発明によれば、希土類元素−鉄系合金を最初に空気を吹込みながら(即ち、酸化剤の存在下で)アルカリ水溶液中で加熱した後に、得られた固形分に対して酸浸出処理を行うことにより、オキシ酸化鉄ではなく四酸化三鉄を主成分とする、取り扱いの容易な鉄残渣が副生し、かつDyの回収率が向上し、上記課題をすべて解決することができる。 According to the present invention, the rare earth element-iron-based alloy is first heated in an alkaline aqueous solution while blowing air (that is, in the presence of an oxidizing agent), and then the resulting solid is subjected to an acid leaching treatment. By carrying out, an iron residue which is easy to handle and contains triiron tetroxide instead of iron oxyoxide as a by-product is produced as a by-product, and the recovery rate of Dy is improved, and all of the above problems can be solved.
本発明は、下記工程を含むことを特徴とする、希土類元素−鉄系合金から希土類元素を回収する方法である:
(a)アルカリ水溶液中の希土類元素−鉄系合金スラリーを酸化剤の存在下で加熱し、
(b)工程(a)で得られたスラリーを固液分離して固形物を回収し、
(c)工程(b)で回収された固形物の水中でのスラリーを、好ましくは酸化剤の存在下で、酸性化して希土類元素を液中に浸出し、そして
(d)工程(c)で得られたスラリーを固液分離して、希土類元素を含む溶液と四酸化三鉄を主成分とする残渣とに分離する。
The present invention is a method for recovering a rare earth element from a rare earth element-iron-based alloy characterized by including the following steps:
(A) heating a rare earth element-iron alloy slurry in an alkaline aqueous solution in the presence of an oxidizing agent;
(B) The slurry obtained in step (a) is subjected to solid-liquid separation to recover a solid,
(C) acidifying the slurry of the solid recovered in step (b) in water, preferably in the presence of an oxidizing agent, to leach the rare earth element into the liquid; and (d) in step (c) The obtained slurry is subjected to solid-liquid separation to be separated into a solution containing a rare earth element and a residue mainly composed of triiron tetroxide.
アルカリ処理工程(a)では、希土類元素−鉄系合金を、空気吹込みといった酸化剤(例、分子状酸素)の存在下、加熱しながらアルカリ水溶液で処理することにより、希土類元素は水酸化物に、鉄は四酸化三鉄に酸化される。しかし、いずれも固体のままである。 In the alkali treatment step (a), the rare earth element is converted into a hydroxide by treating the rare earth element-iron-based alloy with an alkaline aqueous solution while heating in the presence of an oxidizing agent such as air blowing (eg, molecular oxygen). In addition, iron is oxidized to triiron tetroxide. However, both remain solid.
酸浸出工程(c)では、工程(b)で回収された希土類元素水酸化物と四酸化三鉄とからなる固形物を、水にスラリー化し、このスラリーに、好ましくは空気吹込みによって酸化剤を存在させながら、酸を添加して酸性化することにより、希土類元素は可溶性の塩に変化して液中に浸出され、一方、鉄は不溶性の四酸化三鉄のままでる。その後、工程(d)でスラリーを固液分離すると、鉄を実質的に含まない、希土類元素の溶液が得られる。その後、この溶液から、公知の方法で、シュウ酸塩、炭酸塩、水酸化物などとして希土類元素を回収することができる。一方、鉄は、四酸化三鉄を主成分とする、べたつきのない取り扱い性のよい残渣として回収できるので、製鉄原料化などの後処理がきわめて容易になる。 In the acid leaching step (c), the solid material consisting of the rare earth element hydroxide and triiron tetroxide recovered in the step (b) is slurried in water, and the oxidant is preferably blown into the slurry by blowing air. In the presence of acid, the acid is added and acidified to turn the rare earth element into a soluble salt that is leached into the liquid while iron remains insoluble triiron tetroxide. Thereafter, when the slurry is subjected to solid-liquid separation in step (d), a rare earth element solution substantially free of iron is obtained. Thereafter, rare earth elements such as oxalate, carbonate, hydroxide and the like can be recovered from this solution by a known method. On the other hand, iron can be recovered as a non-sticky, easy-to-handle residue containing triiron tetroxide as a main component, so that post-treatment such as conversion to a steelmaking raw material becomes extremely easy.
工程(a)で使用するアルカリ水溶液は、2回目以後の操業では、工程(b)で固形物を回収した後に残った溶液をアルカリ水溶液として再利用することができ、そのようにすることが好ましい。 The alkaline aqueous solution used in the step (a) can be reused as the alkaline aqueous solution in the operation after the second time, so that the solution remaining after collecting the solid in the step (b) can be reused. .
本発明によれば、希土類元素−鉄系合金から酸による浸出によって希土類元素を回収する際に、酸浸出より前に、酸化剤の存在下(例、空気の吹込み)においてアルカリで処理することによって、ホウ素は溶解し、合金中の鉄は安定した四酸化三鉄に酸化される。そのため、酸浸出工程後に、希土類元素を含有する浸出液と分離した後に得られる鉄残渣も、四酸化三鉄を主成分とするものとなる。この鉄残渣は、べたつきがなく、製鉄原料などとしての活用が容易である上、副生量が特許文献1に記載の方法に比べて著しく少なくなる。
According to the present invention, when the rare earth element is recovered from the rare earth element-iron-based alloy by leaching with an acid, it is treated with an alkali in the presence of an oxidizing agent (eg, air blowing) before the acid leaching. The boron dissolves and the iron in the alloy is oxidized to stable ferric tetroxide. Therefore, after the acid leaching step, the iron residue obtained after separation from the leaching solution containing the rare earth element is also composed mainly of triiron tetroxide. This iron residue has no stickiness and can be easily used as a raw material for iron making, and the amount of by-product is significantly less than that of the method described in
さらに、酸浸出工程の時間短縮が可能である上、使用する酸の種類や処理する原料によっては酸浸出時に取り扱いを困難にする多量の泡発生が起こることが抑制され、処理操作が容易となる。また、希土類元素中のDyの回収率が向上し、Ndなどにかなり近い割合で回収できる。そして、アルカリ処理によって希土類元素−鉄系合金中のホウ素の大半を希土類元素や鉄から分離することができ、工程(d)で回収された希土類元素溶液や鉄系残渣中へのホウ素の混入を少なくすることができる。 Furthermore, it is possible to shorten the time of the acid leaching process, and depending on the type of acid used and the raw material to be treated, the generation of a large amount of bubbles that makes handling difficult at the time of acid leaching is suppressed, and the treatment operation becomes easy. . In addition, the recovery rate of Dy in the rare earth elements is improved, and it can be recovered at a rate substantially close to Nd. Then, most of the boron in the rare earth element-iron-based alloy can be separated from the rare earth element and iron by alkali treatment, and the incorporation of boron into the rare earth element solution and iron residue recovered in step (d). Can be reduced.
本発明による希土類元素−鉄系合金からの希土類元素回収方法は、下記の工程を含む:
(a)アルカリ水溶液中の希土類元素−鉄系合金スラリーを酸化剤の存在下で加熱するアルカリ処理工程、
(b)工程(a)で得られたスラリーを固液分離して固形物を回収する回収工程、
(c)工程(b)で回収された固形物の水中でのスラリーを、好ましくは酸化剤の存在下で酸性化して希土類元素を液中に浸出する酸浸出工程、そして
(d)工程(c)で得られたスラリーを固液分離して、希土類元素を含む溶液と四酸化三鉄を主成分とする残渣とに分離する分離工程。
The rare earth element recovery method from the rare earth element-iron alloy according to the present invention includes the following steps:
(A) an alkali treatment step of heating a rare earth element-iron-based alloy slurry in an alkaline aqueous solution in the presence of an oxidizing agent;
(B) a recovery step for solid-liquid separation of the slurry obtained in step (a) to recover a solid,
(C) an acid leaching step of acidifying the slurry of the solids recovered in step (b) in water, preferably in the presence of an oxidizing agent to leach rare earth elements into the liquid; and (d) step (c) And separating the slurry obtained in step 1) into a solution containing a rare earth element and a residue mainly composed of triiron tetroxide.
アルカリ処理工程(a)及び酸浸出工程(c)が主要工程である。
本発明で処理対象となる磁石屑などの希土類元素−鉄系合金の廃棄物は、燃焼を避けるために一般に水没状態(スラッジとして)で保管される。従って、そのスラッジをそのまま、あるいは濾過などによって水分を不完全に除去した湿ケーキを本発明に従って処理すればよい。
The alkali treatment step (a) and the acid leaching step (c) are the main steps.
In order to avoid combustion, wastes of rare earth element-iron alloys such as magnet scraps to be treated in the present invention are generally stored in a submerged state (as sludge). Therefore, the wet cake from which the water has been removed incompletely by the sludge as it is or by filtration may be treated according to the present invention.
アルカリ処理工程(a)では、希土類元素−鉄系合金をアルカリ水溶液に混合したスラリーを、酸化剤の存在下で加熱することによって、アルカリ及び酸素と反応させる。このアルカリ処理により、希土類元素は水酸化物に、鉄は四酸化三鉄に変化するが、いずれも固体のままである。 In the alkali treatment step (a), a slurry obtained by mixing a rare earth element-iron alloy in an alkaline aqueous solution is heated in the presence of an oxidizing agent to react with alkali and oxygen. By this alkali treatment, the rare earth element is changed to hydroxide and iron is changed to triiron tetroxide, but both remain solid.
希土類元素−鉄系合金に約1質量%程度含まれるホウ素の少なくとも一部は、このアルカリ処理においてアルカリ水溶液中にホウ酸アルカリ金属塩として溶出し、希土類元素及び鉄から分離される。 At least a part of boron contained in the rare earth element-iron-based alloy in an amount of about 1% by mass is eluted as an alkali metal borate in the alkaline aqueous solution in this alkali treatment and separated from the rare earth element and iron.
好ましい酸化剤は空気であり、酸化剤の空気をスラリー中に吹込みながらアルカリ処理を行うことが、経済面および夾雑物の持ち込みがない点で好ましい。しかし、化学薬品の酸化剤を使用することも可能である。 A preferable oxidizing agent is air, and it is preferable to carry out the alkali treatment while blowing the oxidizing agent air into the slurry from the viewpoint of economy and no introduction of impurities. However, it is also possible to use chemical oxidants.
アルカリ処理工程(a)は、例えば、希土類元素−鉄系合金と水とのスラリーに空気を吹き込みながら所定の加熱温度への昇温を開始し、続けてアルカリを添加することにより実施することができる。別の方法として、後述するように、アルカリ水溶液と希土類元素−鉄系合金とを混合し、この混合物を加熱することによって実施することもできる。加熱温度は50℃以上とすることが好ましく、反応促進の観点からは60〜90℃がより望ましい。 The alkali treatment step (a) can be performed, for example, by starting to raise the temperature to a predetermined heating temperature while blowing air into a slurry of a rare earth element-iron alloy and water, and subsequently adding alkali. it can. As another method, as described later, an alkaline aqueous solution and a rare earth element-iron-based alloy can be mixed and the mixture can be heated. The heating temperature is preferably 50 ° C. or higher, and more preferably 60 to 90 ° C. from the viewpoint of promoting the reaction.
アルカリは、価格などから水酸化ナトリウムが望ましいが、水酸化カリウムなどの他のアルカリ金属水酸化物も使用可能である。アルカリの添加量は、原料合金中の元素の合計モル数に対して1〜3倍程度の量とすることが好ましく、特に好ましくは2倍前後の量である。液pHは12以上となる。アルカリの添加は、初回の希土類元素−鉄系合金のアルカリ処理には必要であるが、後述するように、このアルカリ処理において、反応に消費されたアルカリは分子状酸素と反応して再生されるので、二回目以降の希土類元素−鉄系合金のアルカリ処理では、アルカリ処理後の工程(b)で固液分離により得られた溶液を、工程(a)におけるアルカリ水溶液として使用することにより、アルカリ(例、水酸化ナトリウム)の添加は実質的に必要ないか、大幅に削減できる。 The alkali is preferably sodium hydroxide from the viewpoint of price, but other alkali metal hydroxides such as potassium hydroxide can also be used. The amount of alkali added is preferably about 1 to 3 times, and particularly preferably about 2 times the total number of moles of elements in the raw material alloy. The liquid pH is 12 or more. The addition of alkali is necessary for the first alkali treatment of the rare earth element-iron alloy, but as will be described later, in this alkali treatment, the alkali consumed in the reaction reacts with molecular oxygen and is regenerated. Therefore, in the alkali treatment of the rare earth element-iron-based alloy for the second and subsequent times, the solution obtained by solid-liquid separation in the step (b) after the alkali treatment is used as an alkaline aqueous solution in the step (a). The addition of (eg, sodium hydroxide) is substantially unnecessary or can be significantly reduced.
希土類元素−鉄系合金と水とのスラリーに水酸化ナトリウムを添加すると、水素が発生し、スラリーは黒く変色する。少なくとも水素の発生が止まるまでは、アルカリ処理を続ける。水素の発生が止まった後も、30分〜3時間程度は処理を続けることが好ましい。酸化剤として空気を吹き込む場合には、水素の発生は肉眼で識別しにくいが、ときどき空気の吹込みを停止するか、適当な化学的手段によって、水素ガスの発生や終了を検出することができる。 When sodium hydroxide is added to a slurry of rare earth element-iron alloy and water, hydrogen is generated and the slurry turns black. The alkali treatment is continued at least until the generation of hydrogen stops. Even after the generation of hydrogen stops, the treatment is preferably continued for about 30 minutes to 3 hours. When air is blown as an oxidant, the generation of hydrogen is difficult to identify with the naked eye, but sometimes the generation or termination of hydrogen gas can be detected by stopping the blowing of air or by appropriate chemical means. .
アルカリ処理後に、例えば、濾過により固液分離を行って、固体と溶液とに分離する。分離された固形分を乾燥してX線回折装置で調べた結果を図1に示す。固形分の主要成分は、希土類元素水酸化物と四酸化三鉄であった。これらはいずれも難溶性化合物であり、液pHが12以上であれば、鉄と希土類元素は実質的に全量が固形物として回収される。 After the alkali treatment, for example, solid-liquid separation is performed by filtration to separate into a solid and a solution. The separated solid content was dried and examined with an X-ray diffractometer as shown in FIG. The main components of the solid content were rare earth element hydroxide and triiron tetroxide. These are all hardly soluble compounds, and if the liquid pH is 12 or more, substantially all of iron and rare earth elements are recovered as solids.
推測される化学反応は、希土類元素については下記の(1)式である。鉄の場合は、下記の(2)式に従って鉄の価数が2価である次亜鉄酸塩が生成し、それが吹き込まれた空気中の分子状酸素と反応して、(3)式に従って酸化され、四酸化三鉄が生成するのではないかと推測される。このとき、次亜鉄酸ナトリウムから水酸化ナトリウムが生成するため、反応で消費された水酸化ナトリウムは全量が再生される。そのため、固液分離で得られた濾液を、次回のアルカリ処理工程に使用できる。 The presumed chemical reaction is the following formula (1) for rare earth elements. In the case of iron, hypoferrite with an iron valence of 2 is produced according to the following formula (2), which reacts with molecular oxygen in the blown air, and formula (3) It is presumed that triiron tetroxide will be produced. At this time, since sodium hydroxide is produced from sodium hypoferrite, the entire amount of sodium hydroxide consumed in the reaction is regenerated. Therefore, the filtrate obtained by solid-liquid separation can be used for the next alkali treatment process.
2Re+6H2O→2Re(OH)3+3H2 ・・・ (1)
Fe+2NaOH+2H2O→Na2[Fe(OH)4]+H2 ・・・ (2)
6Na2[Fe(OH)4]+O2→2Fe3O4+12NaOH+6H2O ・・・ (3)
上記式中、ReはNd等の希土類元素を表す。
2Re + 6H 2 O → 2Re (OH) 3 + 3H 2 (1)
Fe + 2NaOH + 2H 2 O → Na 2 [Fe (OH) 4 ] + H 2 (2)
6Na 2 [Fe (OH) 4 ] + O 2 → 2Fe 3 O 4 + 12NaOH + 6H 2 O (3)
In the above formula, Re represents a rare earth element such as Nd.
固液分離工程(b)は、通常は濾過により行われるが、遠心分離などの他の方法も採用可能である。分離された固形物は、好ましくは水洗により付着したアルカリ分を除去した後、工程(c)で酸浸出処理を受ける。一方、濾液(これはアルカリ水溶液である)の少なくとも一部は、次回以降の工程(a)においてアルカリ水溶液として再利用することが好ましい。それにより、廃液処理が不要になるか、その負担が著しく軽減される。 The solid-liquid separation step (b) is usually performed by filtration, but other methods such as centrifugation can also be employed. The separated solid is preferably subjected to acid leaching treatment in step (c) after removing the adhering alkalinity by washing with water. On the other hand, at least a part of the filtrate (which is an alkaline aqueous solution) is preferably reused as the alkaline aqueous solution in the subsequent step (a). This eliminates the need for waste liquid treatment or significantly reduces the burden.
工程(b)で回収されたアルカリ水溶液は、ホウ素を含有する。ホウ素を含有する回収アルカリ処理液をアルカリ処理工程(a)に再循環しても、ホウ素の含有はアルカリ処理への悪影響はほとんどない。しかし、再循環を繰り返すうちに液中のホウ素含有量が高くなるので、アルカリ処理工程で使用するアルカリ水溶液中のホウ素含有量がほぼ一定に保持されるように、再循環するアルカリ水溶液の一部を水及び/又は新しいアルカリ水溶液で置換することが好ましい。水で置換した場合には、不足するアルカリを、次回のアルカリ処理工程において補給する。当業者には自明であるように、アルカリ水溶液の再利用を繰り返すことにより、不純物濃度が許容できない水準まで増大した場合には、アルカリ水溶液を全面的に更新してもよい。即ち、初回と同様に、希土類元素を水でスラリー化し、昇温してアルカリを添加していく。 The alkaline aqueous solution recovered in step (b) contains boron. Even if the recovered alkaline treatment liquid containing boron is recycled to the alkaline treatment step (a), the inclusion of boron has little adverse effect on the alkaline treatment. However, since the boron content in the liquid increases as the recirculation is repeated, a part of the alkaline aqueous solution that is recirculated so that the boron content in the alkaline aqueous solution used in the alkali treatment step is kept almost constant. Is preferably replaced with water and / or a new aqueous alkaline solution. When the water is replaced, the insufficient alkali is replenished in the next alkali treatment step. As will be apparent to those skilled in the art, the alkaline aqueous solution may be completely renewed if the impurity concentration increases to an unacceptable level by repeated reuse of the alkaline aqueous solution. That is, as in the first time, the rare earth element is slurried with water, and the temperature is increased to add the alkali.
酸浸出工程(c)では、工程(b)で回収された固形物(これは前述したように、主に希土類元素水酸化物と四酸化三鉄とからなる)を水にスラリー化し、このスラリーに酸を添加して酸性化する。それにより、希土類元素(水酸化物)は酸に溶解して可溶性の塩となり、液中に浸出される。一方、鉄分(四酸化三鉄)は、後述するような特定の条件を除けば、酸とは反応せず、固体状態のまま変化しない。こうして、希土類元素と鉄との分離が可能となる。 In the acid leaching step (c), the solid recovered in the step (b) (which is mainly composed of rare earth element hydroxide and triiron tetroxide as described above) is slurried in water. Acidify with acid. Thereby, the rare earth element (hydroxide) dissolves in the acid to form a soluble salt and is leached into the liquid. On the other hand, iron (triiron tetroxide) does not react with the acid and does not change in a solid state except for specific conditions as described later. In this way, the rare earth element and iron can be separated.
アルカリ処理工程において希土類元素−鉄系合金中の希土類元素と鉄が完全に酸化されていれば、酸浸出工程では酸化の必要性がない。従って、本発明では、従来法とは異なり、酸化剤を存在させなくても、希土類元素の酸浸出は進行する。しかし、アルカリ処理工程で酸化されなかった希土類元素や鉄が残っている可能性を考慮して、希土類元素の回収率を高め、かつ鉄を不溶性の3価鉄化合物として確実に沈殿させるため、酸浸出工程の少なくとも最後の部分は、酸化剤、例えば、空気により供給される分子状酸素、の存在下で行うことが好ましい。酸浸出工程の全体を、空気を吹込みながら実施してもよい。 If the rare earth element and iron in the rare earth element-iron alloy are completely oxidized in the alkali treatment process, there is no need for oxidation in the acid leaching process. Therefore, in the present invention, unlike the conventional method, acid leaching of rare earth elements proceeds without the presence of an oxidizing agent. However, considering the possibility that rare earth elements and iron that have not been oxidized in the alkali treatment step remain, the recovery rate of rare earth elements is increased, and iron is reliably precipitated as an insoluble trivalent iron compound. At least the last part of the leaching process is preferably carried out in the presence of an oxidant, for example molecular oxygen supplied by air. The entire acid leaching process may be performed while blowing air.
酸浸出工程(c)において、まず、工程(b)の固液分離で得られた固形物を水と混合してスラリーにする。このスラリーに酸を添加して、スラリーを酸性化する。酸浸出に使用する酸の種類は、希土類水酸化物を溶解でき、四酸化三鉄を溶解しないものなら特に制限されないが、安価で希土類元素濃度を上げることができる塩酸を使用することが望ましい。水酸化鉄とは異なり、四酸化三鉄は酸中で安定であり、pHが2より低くなるような過剰の塩酸と濃硝酸以外には溶解しないため、比較的短時間で酸を添加できる。液中のpHが3を下回っても問題ないが、塩酸の場合、pHは2以上とすることが好ましい。 In the acid leaching step (c), first, the solid obtained by the solid-liquid separation in the step (b) is mixed with water to form a slurry. Acid is added to the slurry to acidify the slurry. The type of acid used for acid leaching is not particularly limited as long as it can dissolve rare earth hydroxide and does not dissolve triiron tetroxide, but it is desirable to use hydrochloric acid that is inexpensive and can increase the concentration of rare earth elements. Unlike iron hydroxide, ferric tetroxide is stable in acid and does not dissolve except for excess hydrochloric acid and concentrated nitric acid whose pH is lower than 2. Therefore, acid can be added in a relatively short time. There is no problem even if the pH in the liquid is less than 3, but in the case of hydrochloric acid, the pH is preferably 2 or more.
塩酸による希土類元素の浸出は、次の(4)式に従う。希土類元素はアルカリ処理によって水酸化物に酸化されているため、容易に塩化物に変化する。
Re(OH)3+3HCl→ReCl3+3H2O ・・・ (4)
(ReはNd等の希土類元素を表す)
酸浸出工程において、スラリーのpHが3より低い値になるまで酸を加えて酸性化した場合には、酸添加が完了した後、希土類溶液中への鉄の混入を排除するため、pHを3以上に調整して、酸浸出を続けることが望ましい。この時のpHは、より好ましくは3〜5の範囲内、特に好ましくは3〜4の範囲内である。このpH調整は、希土類元素や鉄残渣への金属汚染を防止するため、アンモニアで行うことが好ましい。アンモニアガスも使用可能であるが、アンモニア水の使用が簡便である。水酸化ナトリウムのようなアルカリ金属水酸化物を用いてpHを上げることも可能である。但し、例えば、酸性化用の酸として硫酸を使用した場合にはアルカリ金属水酸化物は複塩化による沈殿生成の可能性がある。そのような沈殿生成の可能性がある酸と塩基の組み合わせの使用は好ましくない。
The leaching of rare earth elements with hydrochloric acid follows the following equation (4). Since rare earth elements are oxidized to hydroxides by alkali treatment, they are easily converted into chlorides.
Re (OH) 3 + 3HCl → ReCl 3 + 3H 2 O (4)
(Re represents a rare earth element such as Nd)
In the acid leaching process, when acid is added until the pH of the slurry is lower than 3, the acid is added, and after the addition of the acid is completed, the pH is set to 3 in order to eliminate the mixing of iron into the rare earth solution. It is desirable to continue the acid leaching with the above adjustment. The pH at this time is more preferably in the range of 3 to 5, particularly preferably in the range of 3 to 4. This pH adjustment is preferably performed with ammonia in order to prevent metal contamination of rare earth elements and iron residues. Ammonia gas can also be used, but the use of ammonia water is simple. It is also possible to raise the pH using an alkali metal hydroxide such as sodium hydroxide. However, for example, when sulfuric acid is used as the acid for acidification, the alkali metal hydroxide may be precipitated by double chlorination. The use of acid and base combinations with the potential for such precipitation is not preferred.
酸浸出を促進するため、スラリーを加熱して、処理時間を短縮することができる。処理時間を短縮するための加熱温度は、90℃以下であれば特に制限されない。例えば、50〜90℃の範囲とすることができるが、40℃程度の加熱でも処理促進効果はいくらか得られる。 In order to promote acid leaching, the slurry can be heated to reduce processing time. The heating temperature for shortening the treatment time is not particularly limited as long as it is 90 ° C. or less. For example, the temperature can be in the range of 50 to 90 ° C, but some effect of promoting treatment can be obtained even by heating at about 40 ° C.
本発明の方法では、アルカリ処理工程(a)において希土類元素や鉄が既に酸化されているため、酸の添加による水素の発生はあってもごくわずかである。従って、酸の添加速度は特に制限されない。しかし、局部的な酸濃度増大による四酸化三鉄の溶解を避けるため酸は徐々に加えることが好ましい。酸の添加終了後も、浸出が実質的に完了するまで(液中に希土類元素の増大が見られなくなるまで)、酸浸出工程を続ける。 In the method of the present invention, since rare earth elements and iron are already oxidized in the alkali treatment step (a), the generation of hydrogen due to the addition of acid is negligible. Therefore, the acid addition rate is not particularly limited. However, it is preferable to add the acid gradually in order to avoid dissolution of ferric tetroxide due to local increase in acid concentration. After the addition of the acid, the acid leaching process is continued until leaching is substantially completed (until no increase of rare earth elements is observed in the liquid).
酸浸出は、鉄を確実に沈殿させるため、少なくとも酸浸出の最後は、スラリーに空気を吹込みながら実施することが好ましい。例えば、pHが3未満になるように酸性化してから、pHを3以上に上げて酸浸出を続ける場合、空気の吹込みは、酸の添加の最初から実施してもよく、或いはpHを3以上に上げた後だけに実施してもよい。又、pHを上げた後の、例えば、最後の1時間といった、鉄の沈殿に必要な最後の一定時間だけに空気を吹き込んでもよい。 The acid leaching is preferably performed while blowing air into the slurry at least at the end of the acid leaching in order to reliably precipitate iron. For example, if acidification is performed so that the pH is less than 3 and then acid leaching is continued by raising the pH to 3 or more, air blowing may be performed from the beginning of the acid addition, or the pH may be reduced to 3 You may implement only after raising it above. Alternatively, air may be blown only for the last certain time required for iron precipitation, for example, the last hour after raising the pH.
本発明者らの実験では、従来法のようにアルカリ処理せずに希土類元素−鉄系合金をいきなり酸性化して酸浸出処理をすると、空気の吹込みと水素発生のため、起泡が制御不能なほどに激しく起こり、それが消えにくい。そのため、酸を非常にゆっくりしか添加できず、処理時間が非常に長くかかる。一方、本発明の方法では、酸浸出工程では水素はほとんど発生せず、酸浸出処理の操業が容易である。アルカリ処理工程では水素が発生するが、従来法の酸浸出時に発生する泡に比べて、起泡が穏やかで、次第に消えていく。その理由は不明である。 In the experiments of the present inventors, when the rare earth element-iron alloy is suddenly acidified and acid leaching treatment is performed without alkali treatment as in the conventional method, foaming is uncontrollable due to air blowing and hydrogen generation. It happens so hard that it is hard to disappear. Therefore, the acid can be added only very slowly, and the processing time is very long. On the other hand, in the method of the present invention, hydrogen is hardly generated in the acid leaching step, and the operation of the acid leaching treatment is easy. Hydrogen is generated in the alkali treatment process, but the foaming is gentle and gradually disappears compared to the foam generated during acid leaching in the conventional method. The reason is unknown.
また、本発明の方法では、一旦pHが3を下回るように酸性化でき、従来法より強い条件で酸浸出を行うことができるため、希土類元素の中で浸出しにくいDyも、NdやPrと同程度の高い割合で回収することができる。 Further, in the method of the present invention, acidification can be performed so that the pH is once lower than 3, and acid leaching can be performed under conditions stronger than those of the conventional method. Therefore, Dy that is difficult to leach out of rare earth elements is also Nd and Pr. It can be recovered at the same high rate.
工程(c)で得られたスラリーは、工程(d)において、濾過などの適当な固液分離によって、希土類元素の塩が溶解している溶液と、四酸化三鉄を主成分とする鉄残渣からなる固形物とに分離される。 The slurry obtained in the step (c) is prepared by separating the solution of the rare earth element salt and the iron residue mainly composed of triiron tetroxide by appropriate solid-liquid separation such as filtration in the step (d). Into solids consisting of
回収された希土類元素の塩(例、塩酸塩)の溶液からは、公知の方法で、例えばシュウ酸塩、炭酸塩、水酸化物などの不溶性塩に変化させることにより、希土類元素を回収することができる。回収された希土類元素の化合物は、公知の精錬法により金属に還元して、希土類金属として再利用することができる。 From a solution of the recovered rare earth element salt (eg, hydrochloride), the rare earth element is recovered by changing to an insoluble salt such as oxalate, carbonate, hydroxide, etc. by a known method. Can do. The recovered rare earth compound can be reduced to a metal by a known refining method and reused as a rare earth metal.
一方、溶液から分離された鉄残渣は、四酸化三鉄を主成分とし、べたつきのない取り扱い性のよい固形物であり、製鉄原料などとして容易に有効利用できる。
本発明の方法では、鉄と希土類元素との分離効率が向上するため、希土類元素の溶液中の鉄やホウ素濃度が低く、一方、鉄残渣もホウ素や希土類元素の含有量が低くなる。また、上述したように、酸への浸出率が低くなりがちなDyもNdに近い割合で回収することができる。
On the other hand, the iron residue separated from the solution is a solid material having tritium tetroxide as a main component and having no stickiness and good handleability, and can be easily and effectively used as a raw material for iron making.
In the method of the present invention, since the separation efficiency between iron and rare earth elements is improved, the concentration of iron and boron in the rare earth element solution is low, while the iron residue also has a low content of boron and rare earth elements. Further, as described above, Dy, which tends to have a low leaching rate with acid, can be recovered at a rate close to Nd.
以下の実施例において、%は特に指定しない限り、質量%である。
(実施例1)
Nd−Fe−B系合金スラッジ150gに600mLの水を加えてスラリー化した。スラッジの水分は30%であり、従って原料の合金量は105gであった。スラッジ中の合金の粒径は、平均径が15μm、最大径が0.7mm、合金の成分は質量%で、希土類(Nd,Pr,Dy)が30%、鉄が54%であった。
In the following examples,% is% by mass unless otherwise specified.
Example 1
600 mL of water was added to 150 g of Nd—Fe—B alloy sludge to form a slurry. The water content of the sludge was 30%. Therefore, the alloy amount of the raw material was 105 g. The average particle size of the alloy in the sludge was 15 μm, the maximum diameter was 0.7 mm, the alloy component was mass%, the rare earth (Nd, Pr, Dy) was 30%, and the iron was 54%.
このスラリーに、4L/minで空気を吹き込みながら、70℃までの昇温を開始し、同時に水酸化ナトリウムを48g添加した。水酸化ナトリウムの添加と昇温を開始してしばらくすると、水素の発生が見られ、合金は黒く変色した。昇温完了後、空気の吹き込みを継続しながら、追加の水酸化ナトリウム45gをさらに加えた。水酸化ナトリウムの合計添加量93gは、原料合金中の金属元素のモル量の1.95倍に相当する。空気の吹込みと70℃での加熱を6時間続けた後、スラリーを濾過し、濾過ケーキを4Lの水で水洗して、黒い固形物を回収した。濾液は、次回のアルカリ処理用に保存した。 While air was blown into the slurry at 4 L / min, the temperature was raised to 70 ° C., and 48 g of sodium hydroxide was added at the same time. After a while from the start of the addition of sodium hydroxide and the temperature increase, hydrogen generation was observed and the alloy turned black. After completion of the temperature increase, an additional 45 g of sodium hydroxide was further added while continuing to blow air. A total addition amount of 93 g of sodium hydroxide corresponds to 1.95 times the molar amount of the metal element in the raw material alloy. After blowing air and heating at 70 ° C. for 6 hours, the slurry was filtered, and the filter cake was washed with 4 L of water to recover a black solid. The filtrate was stored for the next alkali treatment.
固形物の1/4をXRD調査用として採取した。その測定結果を図1に示す。固形物は希土類元素の水酸化物と四酸化三鉄であった。
残り3/4の固形物は、500mLの水を加えてスラリーにした。このスラリーに4L/minで空気を吹き込みながら、70℃までの昇温を開始した。昇温完了後、スラリーをこの温度に保持しながら、濃塩酸を水で二倍に希釈した塩酸の添加を開始した。131分で塩酸の添加は完了し、スラリーのpHは2.5となった。塩酸の使用量は51.2gであった。
1/4 of the solid was collected for XRD investigation. The measurement results are shown in FIG. The solids were rare earth hydroxide and triiron tetroxide.
The remaining 3/4 of the solid was slurried by adding 500 mL of water. While air was blown into the slurry at 4 L / min, the temperature was raised to 70 ° C. After completion of the temperature increase, addition of hydrochloric acid in which concentrated hydrochloric acid was diluted twice with water was started while maintaining the slurry at this temperature. The addition of hydrochloric acid was completed in 131 minutes and the pH of the slurry was 2.5. The amount of hydrochloric acid used was 51.2 g.
塩酸の添加終了後、続けて25%アンモニア水4.3g添加し、空気の吹込みと70℃の加熱をさらに152分続け、酸浸出処理を終了した。この処理終了時のスラリーpHは3.7であった。 After completion of the addition of hydrochloric acid, 4.3 g of 25% aqueous ammonia was continuously added, air blowing and heating at 70 ° C. were continued for further 152 minutes, and the acid leaching treatment was completed. The slurry pH at the end of this treatment was 3.7.
酸浸出処理の済んだスラリーをブフナーロートと濾紙を用いて濾過し、希土類元素が溶解している溶液と鉄残渣をそれぞれ回収した。濾過は非常に容易で、濾過ケーキはべたつきがなく水切れもよかった。 The slurry after the acid leaching treatment was filtered using a Buchner funnel and filter paper, and a solution in which the rare earth element was dissolved and an iron residue were recovered. Filtration was very easy and the filter cake was not sticky and drained.
回収した溶液中の元素歩留りを求めると、Feは0%、Prは98.2%、Ndは99.9%、Dyは97.6%、Bは6.6%であった。回収された固形物は、水切れ後の湿ケーキ(水分量は45.6%)の状態で111.0gであり、乾燥後にX線回折装置(XRD)で調べたところ、その主成分は四酸化三鉄であった(図2)。この鉄残渣の乾燥後の元素分析結果を表1に示す。 When the element yield in the collected solution was determined, Fe was 0%, Pr was 98.2%, Nd was 99.9%, Dy was 97.6%, and B was 6.6%. The recovered solid was 111.0 g in the state of a wet cake (water content: 45.6%) after running out of water, and its main component was tetraoxide when examined by an X-ray diffractometer (XRD) after drying. It was triiron (Fig. 2). Table 1 shows the results of elemental analysis of the iron residue after drying.
(実施例2)
本例は、前回のアルカリ処理工程での濾液を再利用する場合を例示する。
実施例1と同じNd−Fe−B系合金スラッジ150gに、実施例1のアルカリ処理後の濾過で回収された濾液を加えて、スラリー化した。このスラリーに4L/minで空気を吹き込みながら、70℃までの昇温を開始した。昇温開始からしばらくして、水素発生が認められた。昇温完了後も空気の吹き込みを継続し、6時間加熱を続けて、アルカリ処理を終了した。
(Example 2)
This example illustrates the case where the filtrate in the previous alkali treatment process is reused.
The filtrate collected by filtration after alkali treatment in Example 1 was added to 150 g of the same Nd—Fe—B alloy sludge as in Example 1 to make a slurry. While air was blown into the slurry at 4 L / min, the temperature was raised to 70 ° C. Hydrogen generation was observed after a while from the start of heating. Air blowing was continued even after completion of the temperature increase, and heating was continued for 6 hours to complete the alkali treatment.
その後、スラリーを濾過し、濾過ケーキを4Lの水で水洗し、黒い固形物を回収した。固形物の1/4をXRD調査用として採取し、測定結果を図1に示した。固形物は希土類元素の水酸化物と四酸化三鉄であった。 Thereafter, the slurry was filtered, and the filter cake was washed with 4 L of water to recover a black solid. 1/4 of the solid was collected for XRD investigation, and the measurement results are shown in FIG. The solids were rare earth hydroxide and triiron tetroxide.
残りの3/4の固形物に500mLの水を加えてスラリーにした。このスラリーに4L/minで空気を吹き込みながら、70℃までの昇温を開始した。昇温完了後、濃塩酸を水で二倍に希釈した塩酸の添加を開始した。128分で添加は完了し、スラリーのpHは2.50となった。塩酸使用量は52.3gであった。続けて25%アンモニア水を5.3g添加し、70℃の加熱と空気の吹込みをさらに185分続けて、酸浸出処理を終了した。この終了時のスラリーのpHは3.6であった。 500 mL of water was added to the remaining 3/4 solids to make a slurry. While air was blown into the slurry at 4 L / min, the temperature was raised to 70 ° C. After completion of the temperature increase, addition of hydrochloric acid obtained by diluting concentrated hydrochloric acid twice with water was started. The addition was complete in 128 minutes and the pH of the slurry was 2.50. The amount of hydrochloric acid used was 52.3 g. Subsequently, 5.3 g of 25% ammonia water was added, and heating at 70 ° C. and blowing of air were continued for 185 minutes to complete the acid leaching treatment. The pH of the slurry at the end of this was 3.6.
スラリーを濾過し、希土類元素が溶解している液と鉄残渣を回収した。回収した溶液中の元素歩留りを求めると、Feは0%、Prは97.2%、Ndは99.7%、Dyは95.4%、Bは12.3%であった。回収した鉄残渣の量は121.5gで、その水分量は49.4%であった。乾燥後の鉄残差をX線回折装置で調べたところ、その主成分は四酸化三鉄であった(図2)。 The slurry was filtered to recover the liquid in which the rare earth element was dissolved and the iron residue. The element yield in the collected solution was determined to be 0% for Fe, 97.2% for Pr, 99.7% for Nd, 95.4% for Dy, and 12.3% for B. The amount of iron residue recovered was 121.5 g, and the water content was 49.4%. When the residual iron after drying was examined with an X-ray diffractometer, its main component was triiron tetroxide (FIG. 2).
(比較例1)
本例は、従来法に準じて、アルカリ処理を行わずに、希土類元素−鉄系合金を直接酸で浸出する場合を例示する。
(Comparative Example 1)
This example illustrates a case where a rare earth element-iron alloy is directly leached with an acid without performing an alkali treatment according to a conventional method.
実施例1と同じNd−Fe−B系合金スラッジ112.5gに、1000mLの水を加えてスラリー化した。スラッジ量は、実施例1、2の酸浸出工程で使用した量に合わせるため、実施例1および2の使用量の3/4にした。このスラリーに4L/minで空気を吹き込みながら、40℃までの昇温を開始した。昇温完了後、実施例1、2で使用したのと同じ塩酸の添加を開始した。約8時間後に、70℃まで昇温させ、921分で添加を終えた。スラリーのpHは1.99、塩酸使用量は58.6gであった。この時の起泡が激しく、泡が容器からあふれそうになるため、塩酸の添加速度を遅くせざるをえなかった。 To 112.5 g of the same Nd—Fe—B alloy sludge as in Example 1, 1000 mL of water was added to make a slurry. The amount of sludge was set to 3/4 of the amount used in Examples 1 and 2 in order to match the amount used in the acid leaching process in Examples 1 and 2. While air was blown into this slurry at 4 L / min, the temperature was raised to 40 ° C. After completion of the temperature increase, the same addition of hydrochloric acid as used in Examples 1 and 2 was started. After about 8 hours, the temperature was raised to 70 ° C., and the addition was completed in 921 minutes. The pH of the slurry was 1.99, and the amount of hydrochloric acid used was 58.6 g. At this time, the foaming was intense and the foam was likely to overflow from the container, so the addition rate of hydrochloric acid had to be slowed down.
続けて、25%アンモニア水を4.1g添加し、70℃の加熱と空気吹込みを212分続けた後、酸浸出処理を終了した。終了時のスラリーのpHは3.6であった。スラリーを濾過し、希土類元素が溶解している液と鉄残渣を回収した。鉄残渣は濾過性が悪く、実施例1、2より大きな濾紙を使用して濾過面積を増大させても、濾過に実施例1、2の数倍の時間がかかり、ケーキ回収もべとつきのために手間取った。 Subsequently, 4.1 g of 25% aqueous ammonia was added, heating at 70 ° C. and air blowing were continued for 212 minutes, and then the acid leaching treatment was completed. The pH of the slurry at the end was 3.6. The slurry was filtered to recover the liquid in which the rare earth element was dissolved and the iron residue. The iron residue has poor filterability, and even if the filter area is increased by using a larger filter paper than in Examples 1 and 2, filtration takes several times longer than in Examples 1 and 2, and cake recovery is also due to stickiness. It took time.
回収した溶液中の元素歩留りを求めると、Feは0%、Prは97.0%、Ndは98.8%、Dyは89.1%、Bは93.4%であった。回収した鉄残渣量は226.1g(水分量67.8%)で、X線回折装置で調べたところ、主成分はγ−FeOOHであった(図2)。この鉄残渣の乾燥後の元素分析結果を表1に示す。 The element yield in the collected solution was determined to be 0% for Fe, 97.0% for Pr, 98.8% for Nd, 89.1% for Dy, and 93.4% for B. The amount of iron residue recovered was 226.1 g (water content 67.8%). When examined with an X-ray diffractometer, the main component was γ-FeOOH (FIG. 2). Table 1 shows the results of elemental analysis of the iron residue after drying.
表1からわかるように、実施例1で得られた鉄残渣は、鉄含有量が高く、Bをほとんど含んでおらず、希土類元素の含有量もいくらか低くなった。これに対し、従来法に従って比較例1の方法で回収された鉄残渣は、鉄含有量が低く、B含有量と希土類元素の含有量が高く、鉄分と希土類元素との分離効率が実施例に比べて劣っていることがわかる。 As can be seen from Table 1, the iron residue obtained in Example 1 had a high iron content, hardly contained B, and the content of rare earth elements was somewhat low. In contrast, the iron residue recovered by the method of Comparative Example 1 according to the conventional method has a low iron content, a high B content and a rare earth element content, and the separation efficiency between iron and rare earth elements is an example. It turns out that it is inferior compared.
実施例1、2と比較例1で酸浸出後に回収された希土類元素溶液からの鉄および各希土類元素の回収歩留りをまとめて表2に示す。 Table 2 summarizes the recovery yields of iron and each rare earth element from the rare earth element solutions recovered after acid leaching in Examples 1 and 2 and Comparative Example 1.
表2からわかるように、鉄は回収溶液には残っておらず、実質的に全量が固体の残渣として回収された。希土類元素の回収率に関して、従来法に従った比較例1では、酸による浸出を相対的に受けにくいDyの回収歩留りが低くなる。これに対し、実施例1、2では、Dyも、NdやPrに匹敵する高い歩留りで回収できたことがわかる。Bは、実施例1、2ではほとんどがアルカリ処理中に溶液中に溶解したため、回収された希土類元素溶液はBを少量しか含有しなかった。一方、比較例1では、Bはほとんどが酸浸出後に回収された希土類元素溶液中に含まれた。 As can be seen from Table 2, iron did not remain in the recovered solution, and substantially all was recovered as a solid residue. Regarding the recovery rate of rare earth elements, in Comparative Example 1 according to the conventional method, the recovery yield of Dy that is relatively less susceptible to acid leaching is low. On the other hand, in Examples 1 and 2, it can be seen that Dy could also be recovered with a high yield comparable to Nd and Pr. Since most of B was dissolved in the solution during the alkali treatment in Examples 1 and 2, the recovered rare earth element solution contained only a small amount of B. On the other hand, in Comparative Example 1, most of B was contained in the rare earth element solution recovered after acid leaching.
以上のように、本発明の方法によれば、鉄と希土類元素との分離効率が向上して、希土類元素を従来に比べて高い歩留りで回収できることがわかる。
それに加えて、鉄残渣の濾過性がよく、取り扱いの容易な鉄残渣が従来法に比べて少ない量で得られる。一方、従来法に従って比較例1では、鉄残渣の水分量が多く、その主成分が、鉄1原子当たりの分子量が大きいオキシ水酸化鉄であることから、その発生量も多くなる。また、濾過性が悪いため、大量になるほど、鉄残渣の回収に手間がかかる。
As described above, according to the method of the present invention, it can be seen that the separation efficiency of iron and rare earth elements is improved, and the rare earth elements can be recovered at a higher yield than conventional.
In addition, the iron residue has good filterability and can be easily handled in a smaller amount than conventional methods. On the other hand, in Comparative Example 1 according to the conventional method, the amount of water of the iron residue is large, and the main component is iron oxyhydroxide having a large molecular weight per atom of iron, so the amount of generation is also large. Moreover, since filterability is bad, it takes time to collect the iron residue as the amount increases.
処理時間を比較すると、実施例1、2では、アルカリ処理の6時間を含めても700分以下であり、酸浸出は300分前後で終了した。これに対し、比較例1では、酸抽出だけに1100分以上を要した。従って、アルカリ処理工程が加わっても、本発明の方法によれば処理時間が短縮できる。 Comparing the treatment time, in Examples 1 and 2, it was 700 minutes or less including 6 hours of the alkali treatment, and the acid leaching was completed in about 300 minutes. On the other hand, in Comparative Example 1, it took 1100 minutes or more only for acid extraction. Therefore, even if an alkali treatment step is added, the treatment time can be shortened according to the method of the present invention.
Claims (4)
(a)アルカリ水溶液中の希土類元素−鉄系合金スラリーを酸化剤の存在下で加熱し、
(b)工程(a)で得られたスラリーを固液分離して固形物を回収し、
(c)工程(b)で回収された固形物の水中でのスラリーを酸性化して希土類元素を液中に浸出し、そして
(d)工程(c)で得られたスラリーを固液分離して、希土類元素を含む溶液と四酸化三鉄を主成分とする残渣とに分離する。 A method for recovering a rare earth element from a rare earth element-iron-based alloy comprising the following steps:
(A) heating a rare earth element-iron alloy slurry in an alkaline aqueous solution in the presence of an oxidizing agent;
(B) The slurry obtained in step (a) is subjected to solid-liquid separation to recover a solid,
(C) acidifying the slurry of the solid matter recovered in step (b) in water to leaching the rare earth element in the liquid; and (d) separating the slurry obtained in step (c) into solid and liquid. Then, the solution is separated into a solution containing rare earth elements and a residue mainly composed of triiron tetroxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006712A JP5262736B2 (en) | 2009-01-15 | 2009-01-15 | Recovery method of rare earth elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006712A JP5262736B2 (en) | 2009-01-15 | 2009-01-15 | Recovery method of rare earth elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010163657A true JP2010163657A (en) | 2010-07-29 |
JP5262736B2 JP5262736B2 (en) | 2013-08-14 |
Family
ID=42580049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009006712A Active JP5262736B2 (en) | 2009-01-15 | 2009-01-15 | Recovery method of rare earth elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5262736B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013014793A (en) * | 2011-06-30 | 2013-01-24 | Toshiba Corp | Method of producing rare metal |
CN103343233A (en) * | 2013-07-19 | 2013-10-09 | 北京工业大学 | Method for recovering neodymium and iron from neodymium iron boron oil sludge |
WO2015051585A1 (en) * | 2013-10-09 | 2015-04-16 | 中国科学院长春应用化学研究所 | Wet-method in atmospheric oxidation method for cerium in rare earth hydroxide |
WO2019163284A1 (en) * | 2018-02-20 | 2019-08-29 | 住友金属鉱山株式会社 | Method for recovering scandium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6260834A (en) * | 1985-09-10 | 1987-03-17 | ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク | Treatment of rare earth metal ore |
JPS6283433A (en) * | 1985-10-08 | 1987-04-16 | Santoku Kinzoku Kogyo Kk | Method for separating rare earth element from alloy containing rare earth element |
JPS62187112A (en) * | 1986-02-13 | 1987-08-15 | Santoku Kinzoku Kogyo Kk | Method for recovering rare earth element from rare earth element-iron type magnet material |
JPH02166239A (en) * | 1988-10-11 | 1990-06-26 | General Motors Corp <Gm> | Method for decalcification of rare earth |
JPH05287405A (en) * | 1991-05-17 | 1993-11-02 | Sumitomo Metal Mining Co Ltd | Method for recovering rear earth element |
JPH09157769A (en) * | 1995-09-27 | 1997-06-17 | Santoku Kinzoku Kogyo Kk | Method for recovering compound containing reutilizable rare-earth element |
JPH09217132A (en) * | 1996-02-13 | 1997-08-19 | Santoku Kinzoku Kogyo Kk | Method for recovering useful element from rare earth-iron alloy |
-
2009
- 2009-01-15 JP JP2009006712A patent/JP5262736B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6260834A (en) * | 1985-09-10 | 1987-03-17 | ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク | Treatment of rare earth metal ore |
JPS6283433A (en) * | 1985-10-08 | 1987-04-16 | Santoku Kinzoku Kogyo Kk | Method for separating rare earth element from alloy containing rare earth element |
JPS62187112A (en) * | 1986-02-13 | 1987-08-15 | Santoku Kinzoku Kogyo Kk | Method for recovering rare earth element from rare earth element-iron type magnet material |
JPH02166239A (en) * | 1988-10-11 | 1990-06-26 | General Motors Corp <Gm> | Method for decalcification of rare earth |
JPH05287405A (en) * | 1991-05-17 | 1993-11-02 | Sumitomo Metal Mining Co Ltd | Method for recovering rear earth element |
JPH09157769A (en) * | 1995-09-27 | 1997-06-17 | Santoku Kinzoku Kogyo Kk | Method for recovering compound containing reutilizable rare-earth element |
JPH09217132A (en) * | 1996-02-13 | 1997-08-19 | Santoku Kinzoku Kogyo Kk | Method for recovering useful element from rare earth-iron alloy |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013014793A (en) * | 2011-06-30 | 2013-01-24 | Toshiba Corp | Method of producing rare metal |
CN103343233A (en) * | 2013-07-19 | 2013-10-09 | 北京工业大学 | Method for recovering neodymium and iron from neodymium iron boron oil sludge |
CN103343233B (en) * | 2013-07-19 | 2015-10-28 | 北京工业大学 | A kind of neodymium iron boron greasy filth reclaims the method for neodymium iron |
WO2015051585A1 (en) * | 2013-10-09 | 2015-04-16 | 中国科学院长春应用化学研究所 | Wet-method in atmospheric oxidation method for cerium in rare earth hydroxide |
WO2019163284A1 (en) * | 2018-02-20 | 2019-08-29 | 住友金属鉱山株式会社 | Method for recovering scandium |
JP2019143196A (en) * | 2018-02-20 | 2019-08-29 | 住友金属鉱山株式会社 | Method for recovering scandium |
Also Published As
Publication number | Publication date |
---|---|
JP5262736B2 (en) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI683466B (en) | Lithium ion battery waste disposal method | |
JP6835820B2 (en) | Lithium-ion battery scrap disposal method | |
JP6835821B2 (en) | Lithium-ion battery scrap disposal method | |
JP5149163B2 (en) | Processing process of dust and residue containing zinc oxide and zinc ferrite discharged from electric furnaces and other furnaces | |
JP5791917B2 (en) | Lithium recovery method | |
KR102094398B1 (en) | Method of recycling chlorine bypass dust generated in cement manufacturing process | |
JP2015203131A (en) | Treatment method of lithium ion battery waste | |
WO2013128830A1 (en) | Metal recovery process | |
JP2008081784A (en) | Electrolyzed sediment copper treatment method | |
JP6703077B2 (en) | Lithium recovery method | |
JP2011047013A (en) | Recovery treatment method for tungsten | |
JP5262736B2 (en) | Recovery method of rare earth elements | |
JP6439530B2 (en) | Scandium recovery method | |
JP5825074B2 (en) | Rare earth metal recovery method | |
CN113667825A (en) | Ferronickel wet processing method and application thereof | |
JP2011184735A (en) | Method for leaching rare earth element | |
JP2010138490A (en) | Method of recovering zinc | |
JP4215547B2 (en) | Cobalt recovery method | |
JP2006316293A (en) | Method for removing manganese from cobalt sulfate solution | |
JP3831805B2 (en) | Treatment method for petroleum combustion ash | |
JP2011089176A (en) | Method for refining molybdenum | |
JP2011132562A (en) | METHOD FOR RECOVERING Co COMPOUND | |
JP3955934B2 (en) | Wet treatment of zinc leaching residue | |
JP2015187291A (en) | Method for collecting rare earth element | |
JP2004182533A (en) | Method of recovering cobalt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130415 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5262736 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |