JPH09157769A - Method for recovering compound containing reutilizable rare-earth element - Google Patents

Method for recovering compound containing reutilizable rare-earth element

Info

Publication number
JPH09157769A
JPH09157769A JP23885596A JP23885596A JPH09157769A JP H09157769 A JPH09157769 A JP H09157769A JP 23885596 A JP23885596 A JP 23885596A JP 23885596 A JP23885596 A JP 23885596A JP H09157769 A JPH09157769 A JP H09157769A
Authority
JP
Japan
Prior art keywords
rare earth
oxide
alloy
rare
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23885596A
Other languages
Japanese (ja)
Other versions
JP3777226B2 (en
Inventor
Akira Asada
晃 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP23885596A priority Critical patent/JP3777226B2/en
Publication of JPH09157769A publication Critical patent/JPH09157769A/en
Application granted granted Critical
Publication of JP3777226B2 publication Critical patent/JP3777226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering a compd. contg. reutilizable rare- earth element such as rare-earth oxide, rare-earth fluoride or rare-earth metal inexpensively, efficiently and effectively in terms of safety from the rare-earth metal-contg. scrap alloy such as the scrap alloy, defective product, slag, etc., generated when a product is produced from a rare-earth metal-contg. alloy. SOLUTION: The rare-earth metal-contg. scrap alloy is hydrogenated at the least to crush the scrap alloy, and the crushed scrap alloy is heated to obtain the oxide. The oxide is brought into contact with an acid soln. to exude the rare-earth element as its ion, the soln. contg. the rare-earth element ion is filtered to obtain a filtrate, and a precipitate contg. the rare-earth element is deposited from the filtrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、希土類金属含有合
金スクラップから、希土類酸化物、希土類フッ化物又は
希土類金属等の再利用可能な希土類含有化合物の回収方
法に関する。
TECHNICAL FIELD The present invention relates to a method for recovering reusable rare earth-containing compounds such as rare earth oxides, rare earth fluorides or rare earth metals from rare earth metal-containing alloy scraps.

【0002】[0002]

【従来の技術】近年、希土類金属を含有する種々の合金
が開発され、多様な用途に用いられている。例えば高性
能永久磁石として、希土類金属約30重量%、鉄約65
重量%、ホウ素約2重量%及びその他の成分を含有する
希土類金属−鉄系合金が利用されている。このような永
久磁石の製造にあたっては、製品重量の約10〜30重
量%に当たる合金屑及び不良品、並びにスラグ等の合金
スクラップが発生する。これら合金スクラップには約3
0重量%の希土類金属が含まれている。また、例えばニ
ッケル水素2次電池電極として、希土類金属約30重量
%、ニッケル約65重量%、コバルト3.5重量%及び
その他の成分を含有する希土類金属−ニッケル系合金が
使用されている。このような2次電池電極の製造時に
も、製品重量の約3〜10重量%に当たる合金スクラッ
プが発生する。この合金スクラップには約30重量%の
希土類金属が含まれている。
2. Description of the Related Art In recent years, various alloys containing rare earth metals have been developed and used for various purposes. For example, as a high-performance permanent magnet, about 30% by weight rare earth metal, about 65 iron
Rare earth metal-iron based alloys have been utilized which contain wt.%, About 2 wt.% Boron and other components. In manufacturing such a permanent magnet, alloy scraps and defective products corresponding to about 10 to 30% by weight of the product weight, and alloy scrap such as slag are generated. About 3 for these alloy scraps
It contains 0% by weight of rare earth metals. Further, for example, as a nickel-hydrogen secondary battery electrode, a rare earth metal-nickel alloy containing about 30% by weight of rare earth metal, about 65% by weight of nickel, 3.5% by weight of cobalt and other components is used. Even when such a secondary battery electrode is manufactured, alloy scrap corresponding to about 3 to 10% by weight of the product weight is generated. This alloy scrap contains about 30% by weight of rare earth metals.

【0003】このような合金スクラップに含まれる希土
類金属は資源として希少であり、高価且つ有価である。
しかしながら、従来塊状等の形態を有する合金スクラッ
プを、発火の危険性を鑑みずに粉砕できたとしても粉砕
された合金スクラップは酸化が進行していて、磁石合金
粉、水素合金粉等とした場合、所定の性能が望めず、そ
のまま再使用することは不可能である。このため希土類
金属を回収することは、性能上、経済性及び安全性の点
から困難であると考えられており、有効な回収方法につ
いては検討されていない。従って合金スクラップに関し
ては安全対策を施した上で産業廃棄物として廃棄してい
るのが現状である。
The rare earth metal contained in such alloy scrap is a scarce resource and is expensive and valuable.
However, even if the conventional alloy scrap having a lump shape or the like can be crushed without considering the risk of ignition, the crushed alloy scrap is undergoing oxidation and is used as a magnet alloy powder, a hydrogen alloy powder, or the like. However, it is impossible to re-use as it is because the desired performance cannot be expected. Therefore, it is considered difficult to recover the rare earth metal from the viewpoint of performance, economy and safety, and an effective recovery method has not been studied. Therefore, alloy scrap is currently disposed of as industrial waste after taking safety measures.

【0004】ところで、希土類金属含有合金から希土類
元素を分離する方法として、従来強酸溶解法が知られて
いる。この強酸溶解法によれば、まず希土類金属合金の
全量を塩酸、硝酸、硫酸等の強酸で完全に溶解した後
に、水酸化ナトリウム、水酸化カリウム、水酸化アンモ
ニウム等のアルカリにより溶液のpHを調節し、溶液中
の鉄、ニッケル、コバルト等を沈殿させ、濾別する。続
いて濾液にシュウ酸、重炭酸アンモニウム、炭酸ソーダ
等を添加して希土類元素を沈殿させ、この沈殿物を濾
別、乾燥、焼成して希土類酸化物を得ている。従ってこ
のような分離方法であれば、塊状等の形態を有する合金
スクラップからでも、希土類元素等の回収が可能である
と考えられる。しかしながら、上述の強酸溶解法では、
希土類金属含有合金の全量を完全に強酸で溶解させるた
め、極めて多量の酸が必要であり、その後さらに鉄、ニ
ッケル、コバルト等を沈殿分離させるために多量のアル
カリも必要である。この方法を合金スクラップに適用す
ると、回収コストが非常に高価となり、さらに分離した
鉄、ニッケル等の水酸化物を後処理するための特別な施
設等も必要であって、経済性等の点から合金スクラップ
を廃棄した方が有利である。
By the way, as a method for separating a rare earth element from an alloy containing a rare earth metal, a strong acid dissolution method has been conventionally known. According to this strong acid dissolution method, first, the entire amount of the rare earth metal alloy is completely dissolved with a strong acid such as hydrochloric acid, nitric acid or sulfuric acid, and then the pH of the solution is adjusted with an alkali such as sodium hydroxide, potassium hydroxide or ammonium hydroxide. Then, iron, nickel, cobalt, etc. in the solution are precipitated and filtered. Then, oxalic acid, ammonium bicarbonate, sodium carbonate, etc. are added to the filtrate to precipitate a rare earth element, and the precipitate is filtered, dried and fired to obtain a rare earth oxide. Therefore, with such a separation method, it is considered possible to recover rare earth elements and the like even from alloy scrap having a lump form or the like. However, in the above strong acid dissolution method,
An extremely large amount of acid is required to completely dissolve the entire amount of the rare earth metal-containing alloy with a strong acid, and then a large amount of alkali is also required to precipitate and separate iron, nickel, cobalt and the like. If this method is applied to alloy scrap, the recovery cost becomes very expensive, and a special facility etc. for post-treatment of separated hydroxides of iron, nickel, etc. is also required, which is economical. It is advantageous to discard the alloy scrap.

【0005】別の希土類元素の分離法として、特公平5
−14777号公報には、粉体の希土類金属−鉄合金を
空気酸化して、鉄等の成分を酸難溶性の酸化物とした
後、塩酸、硝酸、硫酸等の強酸を用いた強酸浸出法によ
り、希土類金属を溶解し、鉄等の酸化物を沈殿濾別し、
濾液にシュウ酸等の酸を添加して希土類含有沈殿物を生
成させ、この沈殿物を濾別、乾燥、焼成して希土類酸化
物を得る方法が開示されている。この強酸浸出法は、粉
末状の合金に対して適用するため、前述の強酸溶解法よ
り酸等の使用量を極めて少なくできるという利点があ
る。しかし、合金粉末の粒度分布にばらつきがあると空
気酸化が均一に進行せず、強酸浸出時の希土類元素溶出
率が低下するという問題が生じる。従ってこのような強
酸浸出法を、塊状等の形態を有する合金スクラップに適
用することは考えられていない。特に塊状の希土類金属
含有合金を粉体化する場合、通常の粉砕機、例えばボー
ルミル、ジェットミル等を使用して大気中で粉砕する
と、装置内で発火し、火災が発生する危険性がある。た
とえ大がかりな気密雰囲気装置中で粉砕しても、取り出
し時に爆発する危険性が伴い、工業的に実施するのは困
難である。
As another method for separating rare earth elements, Japanese Patent Publication No.
No. 14777, a powdered rare earth metal-iron alloy is air-oxidized to make components such as iron hardly-acid-soluble oxides, and then a strong acid leaching method using strong acids such as hydrochloric acid, nitric acid and sulfuric acid. Dissolves rare earth metals, precipitates oxides such as iron by filtration,
A method is disclosed in which an acid such as oxalic acid is added to the filtrate to form a rare earth-containing precipitate, and the precipitate is filtered, dried and calcined to obtain a rare earth oxide. Since this strong acid leaching method is applied to a powdery alloy, it has an advantage that the amount of acid or the like used can be extremely reduced as compared with the above strong acid dissolution method. However, if the particle size distribution of the alloy powder varies, the air oxidation does not proceed uniformly, which causes a problem that the elution rate of rare earth elements during leaching with strong acid decreases. Therefore, it has not been considered to apply such a strong acid leaching method to alloy scrap having a lump form or the like. In particular, when pulverizing a massive alloy containing rare earth metal and pulverizing it in the atmosphere using a normal pulverizer such as a ball mill or a jet mill, there is a risk of ignition in the device and a fire. Even if it is crushed in a large-scale airtight atmosphere apparatus, there is a risk of explosion when taken out, and it is difficult to carry out industrially.

【0006】このように、希土類金属含有合金スクラッ
プから再利用可能な希土類含有化合物を工業的規模で回
収するには、経済性、安全性に関する問題が残されてお
り、廃棄しているのが現状である。しかしながら、近年
エレクトロニクス分野等の利用拡大に伴い、永久磁石及
びニッケル水素二次電池等の希土類金属含有合金の需要
が拡大しており、その製造工程において発生する合金ス
クラップの量も増加が見込まれる。従って資源の有効利
用等の観点から、合金スクラップに含まれる希土類金属
等を回収する技術の開発が望まれつつある。
As described above, in order to recover the reusable rare earth-containing compound from the rare earth metal-containing alloy scrap on an industrial scale, there are problems regarding economy and safety, and the current situation is to discard it. Is. However, the demand for rare earth metal-containing alloys such as permanent magnets and nickel-hydrogen secondary batteries has expanded with the expansion of the use in the electronics field in recent years, and the amount of alloy scrap generated during the manufacturing process is also expected to increase. Therefore, from the viewpoint of effective use of resources, development of a technique for recovering rare earth metals contained in alloy scrap is being demanded.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、希土
類金属含有合金から製品を製造する際に生じる合金屑、
不良品、及びスラグ等の希土類金属含有合金スクラップ
から、低コスト且つ効率的に、希土類酸化物、希土類フ
ッ化物又は希土類金属等の再利用可能な希土類含有化合
物を回収する回収方法を提供することにある。本発明の
別の目的は、安全面においても有効な、希土類金属含有
合金スクラップからの再利用可能な希土類含有化合物の
回収方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to produce an alloy scrap produced when a product is manufactured from an alloy containing a rare earth metal,
To provide a recovery method for recovering reusable rare earth-containing compounds such as rare earth oxides, rare earth fluorides or rare earth metals from defective products and rare earth metal-containing alloy scraps such as slag at low cost and efficiently. is there. Another object of the present invention is to provide a method of recovering a reusable rare earth-containing compound from a rare earth metal-containing alloy scrap, which is also effective in terms of safety.

【0008】[0008]

【課題を解決するための手段】本発明によれば、(a)希
土類金属含有合金スクラップを少なくとも水素化処理す
ることによって、該合金スクラップを粉砕する工程、
(b)粉砕した合金スクラップを加熱して酸化物を得る工
程、(c)該酸化物を酸溶液に接触させて希土類元素をイ
オンとして浸出させ、該希土類イオンを含む溶液を濾別
して濾液を得る工程、および(d)該濾液から希土類元素
を含む沈澱物を生成させる工程を含む再利用可能な希土
類含有化合物の回収方法が提供される。
According to the present invention, (a) a step of crushing a rare earth metal-containing alloy scrap by at least hydrotreating the alloy scrap,
(b) a step of heating the crushed alloy scrap to obtain an oxide, (c) contacting the oxide with an acid solution to leach the rare earth element as an ion, and filtering the solution containing the rare earth ion to obtain a filtrate There is provided a method for recovering a reusable rare earth-containing compound, which comprises the steps of: (d) forming a precipitate containing a rare earth element from the filtrate.

【0009】[0009]

【発明の実施の形態】以下本発明を更に詳細に説明す
る。本発明の回収方法においては、例えばランタン、セ
リウム、プラセオジム、ネオジム、サマリウム、ガドリ
ニウム、ジスプロシウム、エルビウム、イットリウム等
の希土類金属、これらの酸化物である希土類酸化物又は
これらのフッ化物である希土類フッ化物等の再利用可能
な希土類含有化合物を回収する。本発明の回収方法によ
り再利用可能な希土類含有化合物を回収する合金スクラ
ップは、上記希土類金属の他に、通常鉄やニッケル等を
含有しており、更には場合によってコバルト、ホウ素、
マンガン、アルミニウム等を含んでいる塊状等の形態を
有するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the recovery method of the present invention, for example, rare earth metals such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium, erbium, and yttrium, rare earth oxides of these oxides or rare earth fluorides of these fluorides. And the like to recover a reusable rare earth-containing compound. Alloy scrap for recovering a reusable rare earth-containing compound by the recovery method of the present invention, in addition to the rare earth metal, usually contains iron, nickel, etc., and further cobalt, boron in some cases,
It has a form such as a lump containing manganese, aluminum and the like.

【0010】本発明の回収方法では、まず(a)希土類金
属含有合金スクラップを少なくとも水素化処理すること
によって、該合金スクラップを粉砕する工程を行う。該
合金スクラップの水素化処理による粉砕は、例えば水素
圧雰囲気下において合金スクラップを加熱等することに
より行うことができる。具体的には、真空高周波加熱炉
等の雰囲気加熱炉に合金スクラップを装填し、10-3
orr以上に真空引きした後、水素ガスを導入して1〜
5気圧の水素圧雰囲気下とし、常温以上、好ましくは1
00〜800℃、特に好ましくは200〜500℃の温
度で、1〜10時間、好ましくは3〜5時間処理して、
合金スクラップに水素を吸収させる方法等により行うこ
とができる。このように希土類金属含有合金スクラップ
に水素を吸収させると、20〜25%の急激な体積膨張
を起こすため、希土類金属含有合金結晶に微細なクラッ
クが入り、均一に粉砕することができる。充分な速度で
合金に水素を吸収させ、急激な体積膨張を生じさせるた
めには、水素圧は1気圧以上、温度は常温以上が望まし
い。
In the recovery method of the present invention, first, (a) a step of crushing the rare earth metal-containing alloy scrap is performed by at least hydrotreating the alloy scrap. The crushing of the alloy scrap by the hydrogenation treatment can be performed by heating the alloy scrap in a hydrogen pressure atmosphere, for example. Specifically, the alloy scrap is loaded into an atmosphere heating furnace such as a vacuum high-frequency heating furnace and the temperature is set to 10 −3 T.
After evacuating above orr, introduce hydrogen gas and
A hydrogen pressure atmosphere of 5 atm is used, and the temperature is higher than room temperature, preferably 1
Treatment at a temperature of 00 to 800 ° C., particularly preferably 200 to 500 ° C., for 1 to 10 hours, preferably 3 to 5 hours,
It can be performed by a method of absorbing hydrogen in alloy scrap. When hydrogen is absorbed in the rare earth metal-containing alloy scrap as described above, a rapid volume expansion of 20 to 25% occurs, so that fine cracks are formed in the rare earth metal-containing alloy crystal and the alloy crystal can be uniformly crushed. In order to allow the alloy to absorb hydrogen at a sufficient rate to cause a rapid volume expansion, it is desirable that the hydrogen pressure be 1 atm or higher and the temperature be normal temperature or higher.

【0011】この(a)工程においては、合金スクラップ
の大きさ等の条件によって水素化処理を行った後に脱水
素化処理を行ったり、これらの水素化処理と脱水素化処
理とを繰り返し行うこともできる。この水素化処理と脱
水素化処理との回数を制御することにより、適当な粒径
の粉体を得ることができる。例えば、粉砕すべき合金ス
クラップが大型である場合には、水素化処理と脱水素化
処理とを好ましくは2〜3回繰り返すことにより適当な
粒径の均一な粉体を得ることができる。これらの処理を
繰り返す場合の最終は水素化処理とし、得られた合金粉
体中に水素が存在する状態とするのが好ましい。この
(a)工程により粉砕した合金スクラップの平均粒径は、
200〜2000μmとするのが好ましい。
In the step (a), dehydrogenation treatment is performed after hydrogenation treatment is performed according to conditions such as the size of alloy scrap, or these hydrogenation treatment and dehydrogenation treatment are repeated. You can also By controlling the number of times of this hydrogenation treatment and dehydrogenation treatment, it is possible to obtain a powder having an appropriate particle size. For example, when the alloy scrap to be crushed is large, it is possible to obtain a uniform powder having an appropriate particle size by repeating the hydrogenation treatment and the dehydrogenation treatment preferably 2 to 3 times. When these treatments are repeated, the final hydrogenation treatment is preferably carried out so that hydrogen is present in the obtained alloy powder. this
The average particle size of the alloy scrap crushed in step (a) is
The thickness is preferably 200 to 2000 μm.

【0012】本発明の回収方法では、次に(b)粉砕した
合金スクラップを加熱して酸化物を得る工程を行う。該
加熱は、例えば前記(a)工程で水素粉砕した合金スクラ
ップを雰囲気加熱炉内で50℃以下程度に冷却し、炉内
の水素ガスをアルゴン、窒素等の不活性気体と置換し
て、常圧に戻してから合金粉体を取り出し、取り出した
合金粉体を大気中で電気炉等の加熱炉に装填し、加熱し
て空気酸化させる方法等によって行うことができる。該
加熱は、200〜700℃、特に300〜600℃で、
0.5〜2時間、特に約1時間程度の条件で行うのが好
ましい。また、合金粉体を容易に酸化物とするには、例
えば前記(a)工程の水素化処理によって、合金中に水素
を吸収させた状態、即ち合金中に水素が存在する状態で
この加熱を行うことが好ましい。水素含有状態で加熱す
れば、水素が燃焼し、高活性の水蒸気が発生し、合金粉
体中の希土類金属が酸易溶性の酸化物となり、鉄やニッ
ケル等の希土類金属以外の金属が酸難溶性の酸化物とな
る。従って、次の(c)工程において、合金粉体中の鉄や
ニッケル等の希土類元素以外の金属の溶出を低下させる
ことができる。また、次の(c)工程における希土類元素
以外の金属が浸出すると水素が発生して危険であるの
で、水素発生を防止するために、合金粉体を充分酸化さ
せるには、加熱温度は200℃以上であるのが望まし
い。また、エネルギーを過剰に消費することなく、後の
(c)工程における希土類元素の酸溶液への浸出を充分に
行うために、加熱温度は700℃以下が望ましい。
In the recovery method of the present invention, next, (b) a step of heating the crushed alloy scrap to obtain an oxide is carried out. The heating is performed, for example, by cooling the alloy scrap pulverized with hydrogen in the step (a) to about 50 ° C. or less in an atmosphere heating furnace, replacing the hydrogen gas in the furnace with an inert gas such as argon or nitrogen, and The method can be carried out by, for example, a method in which the alloy powder is taken out after the pressure is returned to the pressure, and the taken out alloy powder is loaded into a heating furnace such as an electric furnace in the air and heated to be air-oxidized. The heating is 200 to 700 ° C., particularly 300 to 600 ° C.,
It is preferably carried out under the conditions of 0.5 to 2 hours, particularly about 1 hour. Further, in order to easily convert the alloy powder into an oxide, for example, by the hydrogenation treatment in the step (a), this heating is performed in a state where hydrogen is absorbed in the alloy, that is, in a state where hydrogen is present in the alloy. It is preferable to carry out. When heated in a hydrogen-containing state, hydrogen burns, highly active steam is generated, the rare earth metal in the alloy powder becomes an acid-soluble oxide, and metals other than rare earth metals such as iron and nickel are resistant to acid. It becomes a soluble oxide. Therefore, in the next step (c), elution of metals other than rare earth elements such as iron and nickel in the alloy powder can be reduced. Further, if a metal other than the rare earth element is leached in the next step (c), hydrogen is generated, which is dangerous. Therefore, in order to prevent hydrogen generation, in order to sufficiently oxidize the alloy powder, the heating temperature is 200 ° C. The above is desirable. Also, without consuming excessive energy,
In order to sufficiently perform the leaching of the rare earth element into the acid solution in the step (c), the heating temperature is preferably 700 ° C or lower.

【0013】本発明の回収方法では、(c)前記(b)工程で
得られた酸化物を酸溶液に接触させて希土類元素をイオ
ンとして浸出させ、該希土類イオンを含む溶液を濾別し
て濾液を得る工程を行う。前記希土類元素をイオンとし
て浸出させるには、例えば前記酸化物に、塩酸、硝酸、
硫酸等の酸溶液を添加して接触させる方法等により行う
ことができる。具体的には、(b)工程で得られた酸化物
を50℃以下程度に冷却した後撹拌槽に投入して、水を
加えてスラリー化し、このスラリーを撹拌しながら好ま
しくは濃度2〜5N(規定)に希釈した硝酸等の酸溶液
を添加して希土類元素をイオンとして浸出させることに
より行うことができる。前記酸化物が焼固まっている場
合には、前記冷却後、ディスクミル等により50〜20
0メッシュ、好ましくは80〜120メッシュに粉砕し
た後にスラリー化するのが好ましい。酸溶液の添加量
は、合金スクラップ中に存在する希土類元素量に相当す
る化学当量分をあらかじめ計算して、希土類イオンの浸
出速度に合わせて制御添加すれば良い。好ましくは、希
土類元素以外の金属の溶出を防ぐために酸溶液を添加し
たスラリーの最終pHが3未満とならないように制御し
て酸溶液を添加することが望ましい。希土類イオンを含
む溶液の濾別は、酸化した鉄、ニッケル等の不溶解性沈
殿物を公知の濾過方法により分離除去することにより行
うことができる。この濾液、即ち、希土類イオンを含む
溶液は、純度の高い希土類イオンのみを含む溶液である
ことが好ましいが、濾過時に分離し得なかった鉄やニッ
ケル等を含んでいてもよい。
In the recovery method of the present invention, (c) the oxide obtained in step (b) is brought into contact with an acid solution to leach the rare earth element as an ion, and the solution containing the rare earth ion is filtered to obtain a filtrate. Perform the step of obtaining. For leaching the rare earth element as ions, for example, hydrochloric acid, nitric acid,
It can be carried out by a method of adding an acid solution such as sulfuric acid and bringing them into contact with each other. Specifically, after cooling the oxide obtained in the step (b) to about 50 ° C. or lower, it is put into a stirring tank, water is added to form a slurry, and the slurry preferably has a concentration of 2 to 5 N while stirring. It can be carried out by adding an acid solution such as nitric acid diluted to (normal) and leaching the rare earth element as ions. When the oxide is solidified by baking, after cooling, it is heated to 50 to 20 by a disk mill or the like.
It is preferable to grind it to 0 mesh, preferably 80 to 120 mesh and then slurry it. The addition amount of the acid solution may be calculated in advance by a chemical equivalent amount corresponding to the amount of the rare earth element present in the alloy scrap, and controlled and added according to the leaching rate of the rare earth ion. Preferably, in order to prevent the elution of metals other than rare earth elements, it is desirable to add the acid solution while controlling the final pH of the slurry to which the acid solution has been added so as not to fall below 3. The filtration of the solution containing rare earth ions can be performed by separating and removing insoluble precipitates of oxidized iron, nickel, etc. by a known filtration method. This filtrate, that is, the solution containing rare earth ions is preferably a solution containing only rare earth ions of high purity, but may contain iron, nickel, or the like that could not be separated during filtration.

【0014】本発明の回収方法では、次に(d)前記(c)工
程で得られた濾液から希土類元素を含む沈澱物を生成さ
せる工程を行う。濾液から希土類元素を含む沈澱物を生
成させるには、例えば濾液にシュウ酸、重炭酸アンモニ
ウム(炭酸水素アンモニウム)、炭酸ソーダ(炭酸ナト
リウム)、フッ酸、フッ化アンモニウム等の沈澱剤を添
加することにより行うことができる。この際、沈澱剤の
添加量は、濾液中に存在する希土類イオンを完全に沈殿
させるのに充分な化学当量の1.2〜1.5倍の量が好
ましい。沈澱物の回収は、公知の濾別方法で行うことが
できる。合金スクラップ中にコバルト、ホウ素、マンガ
ン、アルミニウム等の希土類金属、鉄及びニッケル以外
の金属が含有されている場合、これらの金属は前記沈澱
物を濾別した後の濾液中に残存するため、この濾別によ
り分離除去することができる。
In the recovery method of the present invention, next, (d) a step of producing a precipitate containing a rare earth element from the filtrate obtained in the step (c) is performed. To form a precipitate containing rare earth elements from the filtrate, for example, add a precipitant such as oxalic acid, ammonium bicarbonate (ammonium hydrogen carbonate), sodium carbonate (sodium carbonate), hydrofluoric acid, or ammonium fluoride to the filtrate. Can be done by. At this time, the amount of the precipitant added is preferably 1.2 to 1.5 times the chemical equivalent, which is sufficient to completely precipitate the rare earth ions present in the filtrate. The precipitate can be collected by a known filtration method. When alloy scrap contains rare earth metals such as cobalt, boron, manganese, and aluminum, and metals other than iron and nickel, these metals remain in the filtrate after the precipitate is filtered off. It can be separated and removed by filtration.

【0015】前記フッ酸、フッ化アンモニウム又はこれ
らの混合物等のフッ化物沈澱剤を添加した場合には、沈
澱物として希土類フッ化物を生成させることができる。
この沈澱物は、濾過した後、好ましくは無水物とするた
めに、500〜900℃、特に700〜800℃で乾燥
させて回収することができる。回収した希土類フッ化物
は、再利用可能な希土類含有化合物であって、例えば、
通常の溶融塩フッ化物浴電解法で用いる溶融塩浴の主成
分として利用することができる。
When a fluoride precipitant such as hydrofluoric acid, ammonium fluoride or a mixture thereof is added, a rare earth fluoride can be produced as a precipitate.
This precipitate can be recovered by filtration and then dried at 500 to 900 ° C., particularly 700 to 800 ° C., in order to obtain an anhydrous product. The recovered rare earth fluoride is a reusable rare earth-containing compound, for example,
It can be used as a main component of a molten salt bath used in a usual molten salt fluoride bath electrolysis method.

【0016】本発明の回収方法では、(e)前記(d)工程に
おいて、シュウ酸、重炭酸アンモニウム、炭酸ソーダ又
はこれらの混合物等のフッ化物沈澱剤以外の沈澱剤を添
加して生成させた希土類元素を含む沈澱物を焼成し、希
土類酸化物を生成させる工程を行うこともできる。前記
焼成は、(d)工程において生成した沈殿物を公知の方法
で濾別した後、好ましくは800〜1000℃で1〜1
0時間乾燥焼成することにより行うことができる。前記
(e)工程で生成される希土類酸化物は、鉄やニッケル等
の希土類元素以外の金属を含んでいてもよく、再利用の
目的及び方法に応じて再利用可能な希土類含有化合物と
して使用できる。例えば、特に溶融塩フッ化物浴電解希
土類金属製造用原料として再利用するのに最適であり、
この場合、良好な電流効率で溶融塩電解法処理を行うた
めには、鉄やニッケル等の金属の含有量は10重量%未
満、特に5重量%未満が好ましい。また、原料の合金ス
クラップ中に含まれる希土類金属のうち、80重量%〜
98重量%を希土類酸化物として回収することが好まし
い。
In the recovery method of the present invention, (e) the step (d) is performed by adding a precipitating agent other than the fluoride precipitating agent such as oxalic acid, ammonium bicarbonate, sodium carbonate, or a mixture thereof. It is also possible to perform a step of firing a precipitate containing a rare earth element to generate a rare earth oxide. In the calcination, the precipitate formed in the step (d) is filtered by a known method, and preferably at 800 to 1000 ° C. for 1 to 1
It can be performed by drying and baking for 0 hours. Said
The rare earth oxide produced in the step (e) may contain a metal other than rare earth elements such as iron and nickel, and can be used as a reusable rare earth-containing compound depending on the purpose and method of reuse. For example, it is most suitable for reuse as a raw material for producing a molten salt fluoride bath electrolytic rare earth metal,
In this case, in order to perform the molten salt electrolysis method treatment with good current efficiency, the content of metals such as iron and nickel is preferably less than 10% by weight, particularly preferably less than 5% by weight. Further, of the rare earth metals contained in the raw material alloy scrap, 80% by weight to
It is preferable to recover 98% by weight as a rare earth oxide.

【0017】本発明の回収方法では、(f)前記(e)工程で
回収した希土類酸化物を、精錬し、希土類金属を生成さ
せる工程を行うこともできる。前記希土類酸化物の精錬
は、溶融塩フッ化物浴電解法等の公知の方法で行うこと
ができる。具体的には、好ましくはフッ化リチウム25
〜35重量%、フッ化バリウム10〜25重量%、及び
フッ化ネオジム等の希土類フッ化物40〜65重量%を
含有する混合塩等の成分からなる浴中に、得られた希土
類酸化物を投入しながら、通常750〜1000℃、好
ましくは800〜950℃の温度で溶融しながら電解す
る方法等により行うことができる。前記混合塩浴中の希
土類フッ化物としては、前記(d)工程で回収された希土
類フッ化物を用いることができる。このような精錬によ
り最終的に、原料の合金スクラップに含まれる希土類金
属を回収することができる。前記(f)工程により回収さ
れる希土類金属は、鉄やニッケル等の希土類元素以外の
金属を含んでいてもよく、再利用の目的及び方法に応じ
て再利用可能な希土類含有化合物として使用できる。こ
の際、回収される希土類金属は、原料の合金スクラップ
中に含まれる希土類金属のうち、80重量%〜95重量
%が回収されるのが好ましい。
In the recovery method of the present invention, the step of (f) refining the rare earth oxide recovered in the step (e) to produce a rare earth metal can be performed. The refining of the rare earth oxide can be performed by a known method such as a molten salt fluoride bath electrolysis method. Specifically, preferably lithium fluoride 25
~ 35 wt%, barium fluoride 10-25 wt%, and a rare-earth fluoride such as neodymium fluoride 40-65 wt%, the obtained rare earth oxide is put into a bath composed of a component such as a mixed salt. However, it can be carried out by a method of electrolyzing while melting at a temperature of usually 750 to 1000 ° C, preferably 800 to 950 ° C. As the rare earth fluoride in the mixed salt bath, the rare earth fluoride recovered in the step (d) can be used. By such refining, the rare earth metal contained in the raw material alloy scrap can be finally recovered. The rare earth metal recovered in the step (f) may contain a metal other than the rare earth element such as iron and nickel, and can be used as a reusable rare earth-containing compound depending on the purpose and method of reuse. At this time, the rare earth metal to be recovered is preferably 80% by weight to 95% by weight of the rare earth metal contained in the raw material alloy scrap.

【0018】[0018]

【発明の効果】本発明の再利用可能な希土類含有化合物
の回収方法では、従来産業廃棄物として廃棄していた希
土類金属含有合金スクラップを、発火の危険性なく容易
に粉砕して安全に希土類酸化物、希土類フッ化物又は希
土類金属等として回収することができる。また、鉄やニ
ッケル等の希土類元素以外の金属の酸溶液への浸出を極
力抑えることができるため、必要な酸の量を、従来の強
酸溶解法よりも大幅に減少させることができ、経済的に
も有利であり、且つ性能上においても問題のない希土類
酸化物、希土類フッ化物又は希土類金属等の再利用可能
な希土類含有化合物を工業的にも有効な方法として回収
できる。
Industrial Applicability In the method for recovering a reusable rare earth-containing compound of the present invention, rare earth metal-containing alloy scrap, which has been conventionally discarded as industrial waste, can be easily crushed without risk of ignition to safely perform rare earth oxidation. It can be recovered as a substance, a rare earth fluoride, a rare earth metal, or the like. Further, since the leaching of metals other than rare earth elements such as iron and nickel into the acid solution can be suppressed as much as possible, the required amount of acid can be greatly reduced compared to the conventional strong acid dissolution method, which is economical. Also, a reusable rare earth-containing compound such as a rare earth oxide, a rare earth fluoride or a rare earth metal, which is advantageous in terms of performance and has no problem in performance, can be recovered as an industrially effective method.

【0019】[0019]

【実施例】以下、実施例及び比較例により詳細に説明す
るが、本発明はこれらに限定されるものではない。実施例1〜6 希土類金属約25重量%及び鉄約73重量%を含有する
ネオジム−鉄−ホウ素系磁石屑300gを真空加熱容器
に装填し、真空引きした後、水素ガスを充填して3気圧
の水素圧雰囲気下とし、100℃の温度で2時間加熱し
て、磁石屑に水素を飽和するまで吸収させることにより
水素粉砕した。得られた合金粉体を常温まで冷却した
後、容器内の水素ガスをアルゴンガスと置換し、常圧に
戻してから合金粉体を取り出した。得られた合金粉体の
粒度分布を、商品名「MICROTRAC PARTICLE-SIZE ANALYZE
R」(Leeds & Northrup 社製)で測定した結果を図1に示
す。この合金粉体30gをそれぞれ6つの磁製ボートに
入れ、開放型ニクロム加熱型電気炉中でそれぞれ200
℃(実施例1)、300℃(実施例2)、400℃(実
施例3)、500℃(実施例4)、600℃(実施例
5)、及び700℃(実施例6)の各温度で1時間加熱
空気酸化した。各試料を常温まで冷却した後、乳鉢で1
00メッシュに粉砕し、撹拌機付きビーカーに移し、水
100mlを加えてスラリー化した。pHが3未満にな
らないように制御しながら各スラリーに3N硝酸63m
lを1時間かけて滴下し、さらに1時間撹拌続行後、沈
殿した酸化鉄分を濾別除去して希土類イオン含有溶液を
得た。得られた溶液に2Nシュウ酸液47mlを添加し
て希土類イオンをシュウ酸塩として沈殿させた後、この
沈殿物を濾別分離し、1000℃で1時間焼成し、希土
類酸化物を得た。
EXAMPLES The present invention will be described in detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Examples 1 to 6 300 g of neodymium-iron-boron-based magnet scrap containing about 25% by weight of rare earth metal and about 73% by weight of iron was charged in a vacuum heating container, evacuated, and filled with hydrogen gas to 3 atm. Under a hydrogen pressure atmosphere, and heated at a temperature of 100 ° C. for 2 hours so that the magnet scraps absorb hydrogen until saturated to pulverize hydrogen. After cooling the obtained alloy powder to room temperature, the hydrogen gas in the container was replaced with argon gas and the pressure was returned to normal pressure, and then the alloy powder was taken out. The particle size distribution of the obtained alloy powder is indicated by the trade name "MICROTRAC PARTICLE-SIZE ANALYZE
The result measured by "R" (made by Leeds & Northrup) is shown in FIG. 30 g of this alloy powder was placed in each of 6 porcelain boats, and 200 g of each was placed in an open type nichrome heating type electric furnace.
C. (Example 1), 300.degree. C. (Example 2), 400.degree. C. (Example 3), 500.degree. C. (Example 4), 600.degree. C. (Example 5), and 700.degree. C. (Example 6) It was heated and air-oxidized for 1 hour. After cooling each sample to room temperature, 1 in a mortar
It was crushed to 00 mesh, transferred to a beaker equipped with a stirrer, and 100 ml of water was added to make a slurry. 63m of 3N nitric acid was added to each slurry while controlling the pH so as not to fall below 3.
1 was added dropwise over 1 hour, and the stirring was continued for 1 hour, and then the precipitated iron oxide was filtered off to obtain a rare earth ion-containing solution. After adding 47 ml of 2N oxalic acid solution to the obtained solution to precipitate rare earth ions as oxalate, the precipitate was separated by filtration and calcined at 1000 ° C. for 1 hour to obtain a rare earth oxide.

【0020】得られた希土類酸化物の重量を測定した
後、該酸化物中に含まれる希土類元素の量をJIS M
8404の化学分析法に従って分析した。得られた値と
当初の磁石屑中の希土類金属量とから、希土類金属の回
収率を算出した。結果を表1に示す。さらに、酸浸出法
による処理時の鉄の溶出度を測定するために、希土類シ
ュウ酸塩を濾別分離した後の濾液に2N水酸化ナトリウ
ム96mlを添加して、濾液中に存在する鉄イオンを水
酸化鉄として沈殿させ、沈殿物を濾過、焼成して、酸化
鉄を得た。得られた酸化鉄の量と当初の磁石屑中の鉄量
とから鉄の溶出率を算出した。結果を表1に示す。
After measuring the weight of the obtained rare earth oxide, the amount of the rare earth element contained in the oxide is determined according to JIS M.
It was analyzed according to the chemical analysis method of 8404. The rare earth metal recovery rate was calculated from the obtained value and the initial amount of rare earth metal in the magnet scraps. Table 1 shows the results. Further, in order to measure the elution degree of iron during the treatment by the acid leaching method, 96 ml of 2N sodium hydroxide was added to the filtrate after separating the rare earth oxalate by filtration to remove the iron ions present in the filtrate. It was precipitated as iron hydroxide, and the precipitate was filtered and calcined to obtain iron oxide. The elution rate of iron was calculated from the obtained amount of iron oxide and the initial amount of iron in the magnet scrap. Table 1 shows the results.

【0021】実施例7〜12 水素粉砕時の加熱温度を300℃とした以外は、実施例
1〜6と同様に希土類酸化物及び酸化鉄を回収し、希土
類酸化物の重量、該酸化物中に含まれる希土類元素の
量、並びに得られた酸化鉄の量を実施例1〜6と同様に
測定し、希土類金属の回収率及び鉄の溶出率を算出し
た。結果を表1に示す。
Examples 7 to 12 Rare earth oxides and iron oxides were recovered in the same manner as in Examples 1 to 6 except that the heating temperature during hydrogen pulverization was 300 ° C. The amount of the rare earth element contained in and the amount of the obtained iron oxide were measured in the same manner as in Examples 1 to 6, and the recovery rate of the rare earth metal and the elution rate of iron were calculated. Table 1 shows the results.

【0022】実施例13〜18 水素粉砕時の加熱温度を500℃とした以外は、実施例
1〜6と同様に希土類酸化物及び酸化鉄を回収し、希土
類酸化物の重量、該酸化物中に含まれる希土類元素の
量、並びに得られた酸化鉄の量を実施例1〜6と同様に
測定し、希土類金属の回収率及び鉄の溶出率を算出し
た。結果を表1に示す。
Examples 13 to 18 Rare earth oxides and iron oxides were recovered in the same manner as in Examples 1 to 6 except that the heating temperature during hydrogen pulverization was 500 ° C. The amount of the rare earth element contained in and the amount of the obtained iron oxide were measured in the same manner as in Examples 1 to 6, and the recovery rate of the rare earth metal and the elution rate of iron were calculated. Table 1 shows the results.

【0023】比較例1 実施例1〜6で使用したものと同じ磁石屑30gを水素
粉砕せずに直接磁製ボートに入れ、開放型ニクロム加熱
型電気炉中、600℃で2時間加熱酸化した。試料を常
温まで冷却した後、乳鉢で100メッシュ未満に粉砕
し、実施例1〜6と同様に希土類酸化物及び酸化鉄を得
た。得られた希土類酸化物の重量、該酸化物中に含まれ
る希土類元素の量、並びに得られた酸化鉄の量を実施例
1〜6と同様に測定し、希土類金属の回収率及び鉄の溶
出率を算出した。結果を表1に示す。
Comparative Example 1 30 g of the same magnet waste as used in Examples 1 to 6 was directly put into a porcelain boat without crushing with hydrogen and heated and oxidized at 600 ° C. for 2 hours in an open nichrome heating type electric furnace. . After cooling the sample to room temperature, it was ground to less than 100 mesh in a mortar to obtain a rare earth oxide and iron oxide in the same manner as in Examples 1-6. The weight of the obtained rare earth oxide, the amount of the rare earth element contained in the oxide, and the amount of the obtained iron oxide were measured in the same manner as in Examples 1 to 6, and the recovery rate of the rare earth metal and the elution of iron were measured. The rate was calculated. Table 1 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例19 希土類金属約25重量%及び鉄約73重量%を含有する
ネオジム−鉄−ホウ素系磁石屑300gを真空加熱容器
に充填し、真空引きした後、水素ガスを充填して3気圧
の水素圧雰囲気下として、300℃の温度で2時間加熱
して、磁石屑に水素を飽和させるまで吸収させることに
より水素粉砕した。得られた合金粉体を常温まで冷却し
た後、容器内の水素ガスをアルゴンガスと置換し、常圧
に戻してから合金粉体を取り出した。この合金粉体30
gを磁性ボートに入れ、開放型ニクロム加熱型電気炉中
で500℃の温度で1時間加熱空気酸化した。試料を常
温まで冷却した後、乳鉢で100メッシュに粉砕し、撹
拌機付きビーカーに移し、水100mlを加えてスラリ
ー化した。pHが3未満にならないように制御しながら
各スラリーに3N硝酸63mlを1時間かけて滴下し、
更に1時間撹拌続行後、沈澱した酸化鉄分を濾別除去し
て希土類イオン含有溶液を得た。得られた溶液に2Nフ
ッ酸溶液117mlを添加し、フッ化物を生成させた。
次いでpH3までアンモニア水を添加後、1時間撹拌熟
成させて、希土類フッ化物を沈澱させた。この沈澱物を
濾別し、700℃で1時間乾燥し、希土類フッ化物9.
32gを得た。
Example 19 300 g of neodymium-iron-boron magnet scrap containing about 25% by weight of rare earth metal and about 73% by weight of iron was charged in a vacuum heating vessel, evacuated, and then filled with hydrogen gas to obtain 3 The mixture was heated under a hydrogen pressure atmosphere of atmospheric pressure at a temperature of 300 ° C. for 2 hours, and hydrogen was pulverized by allowing the magnet scraps to absorb hydrogen until saturated. After cooling the obtained alloy powder to room temperature, the hydrogen gas in the container was replaced with argon gas and the pressure was returned to normal pressure, and then the alloy powder was taken out. This alloy powder 30
g was put in a magnetic boat and heated and air-oxidized at a temperature of 500 ° C. for 1 hour in an open nichrome heating type electric furnace. After cooling the sample to room temperature, it was ground to 100 mesh in a mortar, transferred to a beaker equipped with a stirrer, and 100 ml of water was added to make a slurry. 63 ml of 3N nitric acid was added dropwise to each slurry over 1 hour while controlling the pH so as not to fall below 3.
After the stirring was continued for further 1 hour, the precipitated iron oxide was removed by filtration to obtain a rare earth ion-containing solution. 117 ml of a 2N hydrofluoric acid solution was added to the resulting solution to generate a fluoride.
Then, ammonia water was added to pH 3 and the mixture was aged with stirring for 1 hour to precipitate a rare earth fluoride. The precipitate was filtered off and dried at 700 ° C. for 1 hour to give a rare earth fluoride 9.
32 g were obtained.

【0026】この希土類フッ化物中に含まれる希土類元
素の量をJIS M8404の化学分析法で分析し、得
られた値と当初の磁石屑中の希土類金属量とから希土類
金属の回収率を算出したところ、回収率は89%であっ
た。この希土類フッ化物中に存在する不純物の鉄を分析
したところ、存在量は0.15%であった。一方、酸浸
出法による処理時の鉄の溶出度を測定するために、希土
類フッ化物を濾別分離した後の濾液に、2N水酸化ナト
リウム96mlを添加して、濾液中に存在する鉄イオン
を水酸化鉄として沈澱させ、沈澱物を濾過、焼成して酸
化鉄を得た。得られた酸化鉄の量と当初の磁石屑中の鉄
量とから、鉄の溶出率を算出したところ1.7%であっ
た。
The amount of rare earth element contained in this rare earth fluoride was analyzed by the chemical analysis method of JIS M8404, and the recovery rate of rare earth metal was calculated from the obtained value and the initial amount of rare earth metal in the magnet scrap. However, the recovery rate was 89%. When the iron as an impurity present in this rare earth fluoride was analyzed, the amount present was 0.15%. On the other hand, in order to measure the elution degree of iron during the treatment by the acid leaching method, 96 ml of 2N sodium hydroxide was added to the filtrate after separating the rare earth fluoride by filtration to remove the iron ions present in the filtrate. It was precipitated as iron hydroxide, and the precipitate was filtered and calcined to obtain iron oxide. The elution ratio of iron was calculated from the obtained amount of iron oxide and the initial amount of iron in the magnet scraps to be 1.7%.

【0027】実施例20〜25 ミッシュメタル28.9重量%及びニッケル65.2重
量%を含有するミッシュメタル−ニッケル系水素吸蔵合
金スラグ300gを、実施例1〜6と同様に水素粉砕し
た。得られた合金粉体の粒度分布を、商品名「MICROTRAC
PARTICLE-SIZEANALYZER」(Leeds & Northrup 社製)で測
定した結果を図2に示す。この合金粉体30gをそれぞ
れ6つの磁製ボートに入れ、実施例1〜6と同様に希土
類酸化物を得た。得られた希土類酸化物の重量及び該酸
化物中に含まれる希土類元素の量を実施例1〜6と同様
に測定し、希土類金属の回収率を算出した。結果を表2
に示す。さらに酸浸出法による処理時のニッケルの溶出
度を測定するために、希土類シュウ酸塩を濾別した後の
濾液に2N水酸化ナトリウム60mlを添加して、濾液
中に存在するニッケルイオンを水酸化ニッケルとして沈
殿させ、沈殿物を濾過、焼成して、酸化ニッケルを得
た。得られた酸化ニッケルの量と当初のスラグ中のニッ
ケル量とからニッケルの溶出率を算出した。結果を表2
に示す。
Examples 20 to 25 300 g of misch metal-nickel based hydrogen storage alloy slag containing 28.9% by weight of misch metal and 65.2% by weight of nickel were pulverized with hydrogen in the same manner as in Examples 1 to 6. The particle size distribution of the obtained alloy powder is referred to as "MICROTRAC
Fig. 2 shows the results measured by "PARTICLE-SIZE ANALYZER" (manufactured by Leeds & Northrup). 30 g of this alloy powder was placed in each of 6 porcelain boats to obtain a rare earth oxide in the same manner as in Examples 1-6. The weight of the obtained rare earth oxide and the amount of the rare earth element contained in the oxide were measured in the same manner as in Examples 1 to 6, and the recovery rate of the rare earth metal was calculated. Table 2 shows the results
Shown in Furthermore, in order to measure the elution degree of nickel during the treatment by the acid leaching method, 60 ml of 2N sodium hydroxide was added to the filtrate after the rare earth oxalate was filtered off to hydrate the nickel ions present in the filtrate. It was precipitated as nickel, and the precipitate was filtered and calcined to obtain nickel oxide. The elution rate of nickel was calculated from the obtained amount of nickel oxide and the initial amount of nickel in the slag. Table 2 shows the results
Shown in

【0028】実施例26〜31 水素粉砕時の加熱温度を300℃とした以外は、実施例
20〜25と同様に希土類酸化物及び酸化ニッケルを回
収し、希土類酸化物の重量、該酸化物中に含まれる希土
類元素の量、並びに得られた酸化ニッケルの量を実施例
20〜25と同様に測定し、希土類金属の回収率及びニ
ッケルの溶出率を算出した。結果を表2に示す。
Examples 26 to 31 Rare earth oxides and nickel oxides were recovered in the same manner as in Examples 20 to 25 except that the heating temperature during hydrogen pulverization was 300 ° C. The amount of rare earth element contained in and the amount of nickel oxide obtained were measured in the same manner as in Examples 20 to 25, and the recovery rate of rare earth metal and the elution rate of nickel were calculated. Table 2 shows the results.

【0029】実施例32〜37 水素粉砕時の加熱温度を500℃とした以外は、実施例
20〜25と同様に希土類酸化物及び酸化ニッケルを回
収し、希土類酸化物の重量、該酸化物中に含まれる希土
類元素の量、並びに得られた酸化ニッケルの量を実施例
20〜25と同様に測定し、希土類金属の回収率及びニ
ッケルの溶出率を算出した。結果を表2に示す。
Examples 32 to 37 Rare earth oxides and nickel oxides were recovered in the same manner as in Examples 20 to 25 except that the heating temperature during hydrogen pulverization was 500 ° C. The amount of rare earth element contained in and the amount of nickel oxide obtained were measured in the same manner as in Examples 20 to 25, and the recovery rate of rare earth metal and the elution rate of nickel were calculated. Table 2 shows the results.

【0030】比較例2 実施例20〜25で使用したものと同じミッシュメタル
−ニッケル系水素吸蔵合金スラグ30gを水素粉砕せず
に直接磁製ボートに入れ、開放型ニクロム加熱型電気炉
中、600℃で2時間加熱酸化した。試料を常温まで冷
却した後、乳鉢で100メッシュ未満に粉砕し、実施例
20〜25と同様に希土類酸化物及び酸化ニッケルを得
た。得られた希土類酸化物の重量、該酸化物中に含まれ
る希土類元素の量、並びに得られた酸化ニッケルの量を
実施例20〜25と同様に測定し、希土類金属の回収率
及びニッケルの溶出率を算出した。結果を表2に示す。
Comparative Example 2 30 g of the same misch metal-nickel hydrogen storage alloy slag as that used in Examples 20 to 25 was put directly into a porcelain boat without crushing with hydrogen, and was placed in an open type nichrome heating type electric furnace to obtain 600 It was heated and oxidized at 2 ° C. for 2 hours. After cooling the sample to room temperature, it was ground to less than 100 mesh in a mortar to obtain a rare earth oxide and nickel oxide in the same manner as in Examples 20-25. The weight of the obtained rare earth oxide, the amount of the rare earth element contained in the oxide, and the obtained amount of nickel oxide were measured in the same manner as in Examples 20 to 25 to recover the rare earth metal and elute nickel. The rate was calculated. Table 2 shows the results.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例38 希土類金属約25重量%及び鉄約73重量%を含有する
ネオジム−鉄−ホウ素系磁石屑10kgを真空加熱容器
に装填し、真空引きした後、水素ガスを充填して3気圧
の水素圧雰囲気下とし、300℃の温度で2時間加熱し
て、磁石屑に水素を飽和するまで吸収させることにより
水素粉砕した。得られた合金粉体を常温まで冷却した
後、容器内の水素ガスをアルゴンガスと置換し、常圧に
戻してから合金粉体を取り出した。得られた合金粉体
を、開放型ニクロム加熱型電気炉中で300℃で2時間
加熱空気酸化した。試料を常温まで冷却した後、ディス
クミルで100メッシュに粉砕し、撹拌槽に移し、水3
0リットルを加えてスラリー化した。pHが3未満にな
らないように制御しながらスラリーに3N硝酸17.9
リットルを5時間かけて滴下し、さらに2時間撹拌続行
後、沈殿した酸化鉄分を濾別除去して希土類イオン含有
溶液を得た。得られた溶液に2Nシュウ酸14.3リッ
トルを添加して希土類イオンをシュウ酸塩として沈殿さ
せた後、この沈殿物を濾別分離し、800℃で5時間焼
成し、希土類酸化物2.68kgを得た。次にこの希土
類酸化物を、フッ化リチウム30重量%、フッ化バリウ
ム20重量%、及びフッ化ネオジム50重量%の電解用
溶融塩浴に投入しながら900℃で電解処理し、希土類
鉄母合金2.4kgを得た。この希土類鉄母合金は希土
類金属2.0kgを含有し、当初の磁石屑中の希土類金
属量を基準とした回収率は82%であった。結果を表3
に示す。
Example 38 10 kg of neodymium-iron-boron based magnet scrap containing about 25% by weight of rare earth metal and about 73% by weight of iron was charged in a vacuum heating vessel, evacuated, and filled with hydrogen gas to obtain 3 The mixture was heated under a hydrogen pressure atmosphere of atmospheric pressure at a temperature of 300 ° C. for 2 hours, and hydrogen was pulverized by allowing the magnet scraps to absorb hydrogen until saturated. After cooling the obtained alloy powder to room temperature, the hydrogen gas in the container was replaced with argon gas and the pressure was returned to normal pressure, and then the alloy powder was taken out. The obtained alloy powder was heated and air-oxidized at 300 ° C. for 2 hours in an open nichrome heating type electric furnace. After cooling the sample to room temperature, crush it to 100 mesh with a disk mill, transfer it to a stirring tank, and add water 3
0 liter was added to make a slurry. While controlling the pH so as not to become less than 3, 1N 3N nitric acid was added to the slurry.
1 liter was added dropwise over 5 hours, and stirring was continued for further 2 hours, and then the precipitated iron oxide component was removed by filtration to obtain a rare earth ion-containing solution. After adding 14.3 liters of 2N oxalic acid to the resulting solution to precipitate the rare earth ion as an oxalate salt, this precipitate is separated by filtration and calcined at 800 ° C. for 5 hours to obtain a rare earth oxide 2. 68 kg was obtained. Next, this rare earth oxide is electrolyzed at 900 ° C. while being placed in a molten salt bath for electrolysis containing 30% by weight of lithium fluoride, 20% by weight of barium fluoride and 50% by weight of neodymium fluoride, to obtain a rare earth iron master alloy. 2.4 kg was obtained. This rare earth iron master alloy contained 2.0 kg of rare earth metal, and the recovery rate based on the amount of rare earth metal in the initial magnet scrap was 82%. Table 3 shows the results
Shown in

【0033】比較例3 実施例38で使用したものと同じ磁石屑10kgをジョ
ークラッシャー及びジェットミルで粉砕しようとした
が、ジョークラッシャーに投入した時点で発火し、粉砕
不可能であった。よってこの磁石屑を直接磁製容器に入
れ、開放型ニクロム加熱型電気炉中、600℃で2時間
加熱空気酸化した。酸化された磁石屑を実施例38と同
様に処理して、希土類酸化物1.49kgを得た。次に
得られた希土類酸化物を実施例38と同様に処理して希
土類鉄母合金1.34kgを得た。この希土類鉄母合金
は希土類金属1.14kgを含有し、当初の磁石屑中の
希土類金属量を基準とした回収率は45.7%であっ
た。結果を表3に示す。
Comparative Example 3 10 kg of the same magnet waste as used in Example 38 was tried to be crushed with a jaw crusher and a jet mill, but when it was put into the jaw crusher, it ignited and could not be crushed. Therefore, this magnet waste was put directly into a porcelain container and heated and air-oxidized at 600 ° C. for 2 hours in an open type nichrome heating type electric furnace. The oxidized magnet waste was treated in the same manner as in Example 38 to obtain 1.49 kg of a rare earth oxide. Then, the obtained rare earth oxide was treated in the same manner as in Example 38 to obtain 1.34 kg of a rare earth iron master alloy. The rare earth iron master alloy contained 1.14 kg of the rare earth metal, and the recovery rate based on the amount of the rare earth metal in the magnet scrap was 45.7%. Table 3 shows the results.

【0034】[0034]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜6、実施例7〜12、及び実施例1
3〜18においてネオジム−鉄−ホウ素系磁石屑をそれ
ぞれ100℃、300℃、500℃の各温度で水素粉砕
した際の合金粉体の粒度分布を、同磁石屑を機械粉砕し
た際の粒度分布と比較して示すグラフである。
FIG. 1 is a first example to a sixth example, a seventh example to a twelve example, and a first example.
In Nos. 3 to 18, the particle size distribution of the alloy powder when the neodymium-iron-boron-based magnet scraps were pulverized with hydrogen at temperatures of 100 ° C, 300 ° C, and 500 ° C, respectively. It is a graph shown in comparison with.

【図2】実施例20〜25、実施例26〜31、及び実
施例32〜37においてミッシュメタル−ニッケル系水
素吸蔵合金スラグをそれぞれ100℃、300℃、50
0℃の各温度で水素粉砕した際の合金粉体の粒度分布を
示すグラフである。
FIG. 2 shows Misch metal-nickel based hydrogen storage alloy slags of Examples 20 to 25, Examples 26 to 31, and Examples 32 to 37 of 100 ° C., 300 ° C., and 50 ° C., respectively.
It is a graph which shows a particle size distribution of alloy powder at the time of pulverizing with hydrogen at each temperature of 0 ° C.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (a)希土類金属含有合金スクラップを少
なくとも水素化処理することによって、該合金スクラッ
プを粉砕する工程、(b)粉砕した合金スクラップを加熱
して酸化物を得る工程、(c)該酸化物を酸溶液に接触さ
せて希土類元素をイオンとして浸出させ、該希土類イオ
ンを含む溶液を濾別して濾液を得る工程、および(d)該
濾液から希土類元素を含む沈澱物を生成させる工程を含
む再利用可能な希土類含有化合物の回収方法。
1. A step of crushing an alloy scrap containing a rare earth metal at least by hydrotreating the scrap, (b) a step of heating the crushed alloy scrap to obtain an oxide, and (c). A step of leaching the rare earth element as an ion by contacting the oxide with an acid solution, filtering a solution containing the rare earth ion to obtain a filtrate, and (d) forming a precipitate containing the rare earth element from the filtrate. A method for recovering a reusable rare earth-containing compound containing.
【請求項2】 前記(d)工程において、希土類元素を含
む沈澱物の生成を、濾液に、シュウ酸、重炭酸アンモニ
ウム、炭酸ソーダ又はこれらの混合物からなる沈澱剤を
添加して行った後に、(e)前記(d)工程で生成した沈澱物
を焼成し、希土類酸化物を生成させる工程を行う請求項
1に記載の回収方法。
2. In the step (d), a precipitate containing a rare earth element is formed by adding to the filtrate a precipitant consisting of oxalic acid, ammonium bicarbonate, sodium carbonate, or a mixture thereof, The recovery method according to claim 1, wherein (e) the step of producing the rare earth oxide by firing the precipitate produced in the step (d) is performed.
【請求項3】 (f)前記(e)工程で生成した希土類酸化物
を精錬し、希土類金属を生成させる工程を行う請求項2
に記載の回収方法。
3. The step of (f) refining the rare earth oxide produced in the step (e) to produce a rare earth metal.
The collection method described in.
【請求項4】前記(d)工程において、希土類元素を含む
沈澱物の生成を、濾液に、フッ酸、フッ化アンモニウム
又はこれらの混合物からなるフッ化物沈澱剤を添加し、
希土類フッ化物を生成させる請求項1に記載の回収方
法。
4. In the step (d), a precipitate containing a rare earth element is produced by adding a fluoride precipitant consisting of hydrofluoric acid, ammonium fluoride or a mixture thereof to the filtrate,
The recovery method according to claim 1, wherein a rare earth fluoride is generated.
JP23885596A 1995-09-27 1996-09-10 Method for recovering reusable rare earth-containing compounds Expired - Lifetime JP3777226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23885596A JP3777226B2 (en) 1995-09-27 1996-09-10 Method for recovering reusable rare earth-containing compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24914195 1995-09-27
JP7-249141 1995-09-27
JP23885596A JP3777226B2 (en) 1995-09-27 1996-09-10 Method for recovering reusable rare earth-containing compounds

Publications (2)

Publication Number Publication Date
JPH09157769A true JPH09157769A (en) 1997-06-17
JP3777226B2 JP3777226B2 (en) 2006-05-24

Family

ID=26533940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23885596A Expired - Lifetime JP3777226B2 (en) 1995-09-27 1996-09-10 Method for recovering reusable rare earth-containing compounds

Country Status (1)

Country Link
JP (1) JP3777226B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077603C (en) * 1998-05-12 2002-01-09 住友金属矿山株式会社 Recovering method of valuable composition from rare earth element-containing material and alloy powder obtained therefrom
JP2002343616A (en) * 2001-05-15 2002-11-29 Tdk Corp Method for manufacturing oxide containing rare earth element
JP2009096902A (en) * 2007-10-18 2009-05-07 National Institute Of Advanced Industrial & Technology Method for recovery of rare earth element from fluorescent material
JP2009249674A (en) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd Method for recovering rare-earth element
JP2010163657A (en) * 2009-01-15 2010-07-29 Chuo Denki Kogyo Co Ltd Process for recovering rare earth element
JP2014046295A (en) * 2012-09-03 2014-03-17 Shimane Univ Neodymium recovery method
WO2014203895A1 (en) * 2013-06-21 2014-12-24 鳥取県 Method of recovering metal from waste electronic substrates
JP2015187291A (en) * 2014-03-26 2015-10-29 三菱マテリアル株式会社 Method for collecting rare earth element
JP2017115175A (en) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 Method to collect rare earth elements from rare earth magnet
CN106995884A (en) * 2016-01-25 2017-08-01 安徽工业大学 A kind of method of the Extraction of rare earth element from waste phosphor powder
US10309022B2 (en) 2011-08-10 2019-06-04 Sumitomo Electric Industries, Ltd. Element recovery method and element recovery apparatus
KR20190109082A (en) 2018-03-16 2019-09-25 한국화학연구원 Recovery method rare earth elements from waste RE:YAG crystal
KR20230023974A (en) * 2021-08-11 2023-02-20 성림희토금속 주식회사 Recovery of rare earth metal using phase decomposition with hydrogen and acid leaching
KR20230059534A (en) * 2021-10-26 2023-05-03 성림희토금속 주식회사 Recovery of rare earth metal using phase decomposition with hydrogen environment, oxidizing roasting, and acid leaching

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077603C (en) * 1998-05-12 2002-01-09 住友金属矿山株式会社 Recovering method of valuable composition from rare earth element-containing material and alloy powder obtained therefrom
JP2002343616A (en) * 2001-05-15 2002-11-29 Tdk Corp Method for manufacturing oxide containing rare earth element
JP2009096902A (en) * 2007-10-18 2009-05-07 National Institute Of Advanced Industrial & Technology Method for recovery of rare earth element from fluorescent material
JP2009249674A (en) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd Method for recovering rare-earth element
JP2010163657A (en) * 2009-01-15 2010-07-29 Chuo Denki Kogyo Co Ltd Process for recovering rare earth element
US10309022B2 (en) 2011-08-10 2019-06-04 Sumitomo Electric Industries, Ltd. Element recovery method and element recovery apparatus
JP2014046295A (en) * 2012-09-03 2014-03-17 Shimane Univ Neodymium recovery method
WO2014203895A1 (en) * 2013-06-21 2014-12-24 鳥取県 Method of recovering metal from waste electronic substrates
JP2015025194A (en) * 2013-06-21 2015-02-05 鳥取県 Recovery method of metal from electronic substrate to be disposed
JP2015187291A (en) * 2014-03-26 2015-10-29 三菱マテリアル株式会社 Method for collecting rare earth element
JP2017115175A (en) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 Method to collect rare earth elements from rare earth magnet
CN106995884A (en) * 2016-01-25 2017-08-01 安徽工业大学 A kind of method of the Extraction of rare earth element from waste phosphor powder
KR20190109082A (en) 2018-03-16 2019-09-25 한국화학연구원 Recovery method rare earth elements from waste RE:YAG crystal
KR20230023974A (en) * 2021-08-11 2023-02-20 성림희토금속 주식회사 Recovery of rare earth metal using phase decomposition with hydrogen and acid leaching
KR20230059534A (en) * 2021-10-26 2023-05-03 성림희토금속 주식회사 Recovery of rare earth metal using phase decomposition with hydrogen environment, oxidizing roasting, and acid leaching

Also Published As

Publication number Publication date
JP3777226B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US5728355A (en) Method for recovering reusable rare earth compounds
CN111655875B (en) Method for recycling lithium batteries
KR101623930B1 (en) Method for recovering valuable metals from cathodic active material of used lithium battery
JP4144820B2 (en) Method for regenerating positive electrode active material from lithium ion secondary battery
CN110085939B (en) Separation and recovery method of waste lithium iron phosphate battery positive plate
JP6314814B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
JP3777226B2 (en) Method for recovering reusable rare earth-containing compounds
JP2017115179A (en) Recovery method of valuable substance
CN110148801B (en) Vacuum separation method for positive plate of waste lithium iron phosphate battery
JPH09217133A (en) Method for recovering useful element from rear earth-nickel alloy
KR20220038416A (en) How to recycle lithium batteries
CN115433826A (en) Method for dissolving lithium compound, method for producing lithium carbonate, and method for recovering lithium from lithium ion secondary battery scrap
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
JP7271833B2 (en) Lithium recovery method
WO2022085222A1 (en) Method for recovering lithium and method for producing lithium carbonate
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
JPH1046266A (en) Method for recovering cobalt from spent secondary battery
JPS5967326A (en) Recovery method of valuable metal from alloy containing rare earth elements
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery
KR100325681B1 (en) Transition metal recovering method from positive active materials of lithium ion cell
JP2022547698A (en) How to dispose of waste batteries
JP7453727B1 (en) How to extract aluminum
JP7378058B2 (en) Separation method for manganese and nickel
JP3504813B2 (en) Method for recovering valuable metals from nickel-metal hydride secondary batteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term