JP6478113B2 - Recovery method of rare earth elements - Google Patents

Recovery method of rare earth elements Download PDF

Info

Publication number
JP6478113B2
JP6478113B2 JP2015186174A JP2015186174A JP6478113B2 JP 6478113 B2 JP6478113 B2 JP 6478113B2 JP 2015186174 A JP2015186174 A JP 2015186174A JP 2015186174 A JP2015186174 A JP 2015186174A JP 6478113 B2 JP6478113 B2 JP 6478113B2
Authority
JP
Japan
Prior art keywords
rare earth
earth element
alkali
silica
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015186174A
Other languages
Japanese (ja)
Other versions
JP2017061710A (en
Inventor
仲家 新太郎
新太郎 仲家
始 川崎
始 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015186174A priority Critical patent/JP6478113B2/en
Publication of JP2017061710A publication Critical patent/JP2017061710A/en
Application granted granted Critical
Publication of JP6478113B2 publication Critical patent/JP6478113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、希土類磁石スクラップなどから効率よく希土類元素を回収する方法に関し、より詳しくは、希土類磁石スクラップの溶融処理によって生じるアルカリシリケートから効率よく希土類元素を回収する方法に関する。   The present invention relates to a method for efficiently recovering rare earth elements from rare earth magnet scraps and the like, and more particularly to a method for efficiently recovering rare earth elements from alkali silicate generated by melting processing of rare earth magnet scraps.

希土類元素は先端技術分野の有用な物質であるが、産出が限られていることから、廃棄物から回収して再利用することが求められている。例えば、永久磁石の一種である希土類磁石には希土類元素が多く含まれており、希土類磁石のスクラップから希土類元素が回収されている。希土類磁石を備えたモータから希土類元素を回収するには、磁石類は主に回転部に取り付けられているので、モータから取り外した回転部を加熱して磁石を消磁した後に磁石を取り外して破砕し、この破砕物から希土類元素を回収している。   Rare earth elements are useful materials in the advanced technology field, but their production is limited, so that they are required to be recovered from waste and reused. For example, rare earth magnets, which are a kind of permanent magnet, contain a large amount of rare earth elements, and rare earth elements are recovered from scraps of rare earth magnets. In order to recover rare earth elements from motors equipped with rare earth magnets, magnets are mainly attached to the rotating part, so the rotating part removed from the motor is heated to demagnetize the magnet, and then the magnet is removed and crushed. The rare earth elements are recovered from the crushed material.

希土類磁石のスクラップから希土類元素を回収する方法として、以下の方法が知られている。
(イ)希土類磁石のスクラップ等を塩酸に溶解して不溶残渣を分離した後に、酸化剤および蓚酸溶液を加え、pHを調整して希土類元素を蓚酸塩として沈殿させて回収する方法(特開平01−183415号公報)
(ロ)希土類元素と鉄族元素を含む処理対象物を酸化性雰囲気中で加熱して含有金属元素を酸化物にした後、塩酸溶液を加えてpH2.0未満にして加熱し、希土類元素を溶出させ、希土類元素と共に溶出した鉄族元素を沈殿させた後、固液分離して希土類元素を含む液分を回収し、この濾液に沈殿剤を加えて希土類元素を沈殿させて回収する方法(特開2012−237053号公報:特許第5741323号公報)。
(ハ)希土類元素含有物質をBの共存下で加熱溶融し、B相と、希土類元素の富化相を形成し、溶融状態の各相を分液して希土類富化相を分離し、希土類富化相から希土類を溶出させ、この希土類溶液のpHを調整して希土類元素塩を析出させて回収する方法(特開2013−199698号公報)。
The following methods are known as methods for recovering rare earth elements from scraps of rare earth magnets.
(A) A method in which scraps of rare earth magnets and the like are dissolved in hydrochloric acid to separate insoluble residues, and then an oxidizing agent and an oxalic acid solution are added to adjust the pH to precipitate and collect the rare earth elements as oxalates (Japanese Patent Laid-Open No. 01). -183415)
(B) A processing object containing a rare earth element and an iron group element is heated in an oxidizing atmosphere to convert the contained metal element into an oxide, and then heated to a pH of less than 2.0 by adding a hydrochloric acid solution. Elution and precipitation of the iron group element eluted together with the rare earth element, followed by solid-liquid separation to recover the liquid containing the rare earth element, and then adding a precipitant to the filtrate to precipitate and collect the rare earth element ( JP 2012-237053 A: Patent No. 5743323).
(C) heating and melting in the presence of a rare earth element-containing substance B 2 O 3, and B 2 O 3 phase was formed enrichment phase of the rare earth elements, rare earth enriched were separated phases in the molten state A method in which phases are separated, rare earth is eluted from the rare earth-enriched phase, and the pH of the rare earth solution is adjusted to precipitate and collect a rare earth element salt (Japanese Patent Laid-Open No. 2013-199698).

しかし、上記(イ)の方法は酸溶解時に水素ガスが発生するので危険であり、さらにスクラップのほぼ全量を溶解するために多量の酸を使用する問題がある。また、上記(ロ)の方法は希土類元素と鉄の分離が面倒であり、加熱処理を繰り返す手間がかかる。さらに、上記(ハ)の方法はホウ酸を含む廃液が大量に生じるため水処理コストが増す問題がある。   However, the method (b) is dangerous because hydrogen gas is generated when the acid is dissolved, and there is a problem that a large amount of acid is used to dissolve almost the entire amount of scrap. In the method (b), separation of rare earth elements and iron is troublesome, and it takes time and effort to repeat the heat treatment. Furthermore, the method (c) has a problem that the cost of water treatment increases because a large amount of waste liquid containing boric acid is generated.

特開平01−183415号公報Japanese Patent Laid-Open No. 01-183415 特開2012−237053号公報(特許第5741323号公報)JP 2012-237053 A (Japanese Patent No. 5714323) 特開2013−199698号公報JP 2013-199698 A

本発明の方法は、従来の希土類回収方法の問題を解消したものであり、希土類元素を安全に回収することができ、酸の使用量が少なく、希土類元素と鉄の分離性が良く、廃液処理の負担が少ない希土類元素回収方法を提供する。   The method of the present invention solves the problems of conventional rare earth recovery methods, can recover rare earth elements safely, uses less acid, has good separability between rare earth elements and iron, and waste liquid treatment To provide a method for recovering rare earth elements.

本発明は上記課題を解決した以下の希土類元素の回収方法に関する。
〔1〕アルカリ金属酸化物とシリカの混合物であって希土類元素を含有するアルカリシリケートをアルカリ浸出してシリカを溶出させ、固液分離したアルカリ浸出滓を酸溶解して希土類元素と残留シリカを溶出させ、この酸溶解液にアルカリを添加してシリカを析出させると共に希土類元素を液分に残し、固液分離した液分から希土類元素を回収することを特徴とする希土類元素の回収方法。
〔2〕希土類元素を含有するアルカリシリケートが、希土類元素含有廃棄物にFe−Si合金とアルカリ金属源およびシリカを加えて不活性ガス性雰囲気下で溶融するFe−Si溶融処理において生じたスラグである上記[1]に記載する希土類元素の回収方法。
〔3〕希土類元素を含有するアルカリシリケートをアルカリ水溶液に加え、水酸基濃度0.5モル/L以上の強アルカリ性下で、150℃以上に加熱して該アルカリシリケートに含まれるシリカを溶出させ、これを固液分離してアルカリ浸出滓を回収する上記[1]または上記[2]に記載する希土類元素の回収方法。
〔4〕アルカリ浸出滓をpH2以下の強酸性下で酸溶解してアルカリ浸出滓に含まれる希土類元素および残留シリカを溶出させる上記[1]〜上記[3]の何れかに記載する希土類元素の回収方法。
〔5〕希土類元素および溶出シリカを含む酸溶解液にアルカリを添加してpH4〜6に調整し、50℃以上に加熱してシリカを析出させ、これを固液分離してシリカ滓を除去し、希土類元素を含む液分を回収する上記[1]〜上記[4]の何れかに記載する希土類元素の回収方法。
〔6〕希土類元素を含む回収液に、酸を添加してpH1〜2に調整した後に、抽出溶媒を添加して希土類元素を抽出し回収する上記[1]〜上記[5]の何れかに記載する希土類元素の回収方法。
The present invention relates to the following rare earth element recovery methods that have solved the above problems.
[1] Alkali silicate containing rare earth elements, which is a mixture of alkali metal oxides and silica, is alkali-leached to elute silica, and the solid-liquid separated alkali leachate is acid-dissolved to elute rare earth elements and residual silica. A method of recovering a rare earth element, wherein an alkali is added to the acid solution to precipitate silica and the rare earth element is left in the liquid, and the rare earth element is recovered from the solid-liquid separated liquid.
[2] The slag generated in the Fe-Si melting process in which an alkali silicate containing a rare earth element is melted in an inert gas atmosphere by adding an Fe-Si alloy, an alkali metal source and silica to the rare earth element-containing waste. A method for recovering a rare earth element according to [1] above.
[3] An alkali silicate containing a rare earth element is added to an alkaline aqueous solution and heated to 150 ° C. or higher under strong alkalinity with a hydroxyl group concentration of 0.5 mol / L or more to elute the silica contained in the alkali silicate, The method for recovering a rare earth element according to the above [1] or [2], wherein the alkali leachate is recovered by solid-liquid separation.
[4] The rare earth element according to any one of the above [1] to [3], wherein the alkaline leaching soot is dissolved in a strong acid having a pH of 2 or less to elute the rare earth element and residual silica contained in the alkaline leaching soot. Collection method.
[5] Add an alkali to an acid solution containing rare earth elements and eluted silica to adjust to pH 4-6, and heat to 50 ° C. or higher to precipitate silica, which is solid-liquid separated to remove silica soot. The method for recovering a rare earth element according to any one of [1] to [4] above, wherein a liquid component containing the rare earth element is recovered.
[6] The solution according to any one of [1] to [5] above, wherein an acid is added to a recovery liquid containing a rare earth element to adjust the pH to 1-2, and then an extraction solvent is added to extract and recover the rare earth element. A method for recovering rare earth elements as described.

〔具体的な説明〕
以下、本発明の希土類元素回収方法を具体的に説明する。本発明に係る回収方法の処理工程図を図1に示す。
本発明の回収方法は、アルカリ金属酸化物とシリカの混合物であって希土類元素を含有するアルカリシリケートをアルカリ浸出してシリカを溶出させ、固液分離したアルカリ浸出滓を酸溶解して希土類元素と残留シリカを溶出させ、この酸溶解液にアルカリを添加してシリカを析出させると共に希土類元素を液分に残し、固液分離した液分から希土類元素を回収することを特徴とする希土類元素の回収方法である。
[Specific description]
Hereinafter, the rare earth element recovery method of the present invention will be described in detail. FIG. 1 shows a process chart of the recovery method according to the present invention.
The recovery method of the present invention is a mixture of an alkali metal oxide and silica, and alkaline silicate containing a rare earth element is alkali leached to elute the silica. A method for recovering a rare earth element, comprising eluting residual silica, precipitating silica by adding an alkali to the acid solution, leaving the rare earth element in the liquid, and recovering the rare earth element from the solid-liquid separated liquid It is.

本発明の回収方法は、アルカリ金属酸化物とシリカの混合物であって希土類元素を含有するアルカリシリケートを処理する。このアルカリシリケートは、希土類元素含有廃棄物にFe−Si合金とアルカリ金属源およびシリカを加えて不活性ガス性雰囲気下で溶融するFe−Si溶融処理において生じたスラグを用いることができる。   The recovery method of the present invention treats an alkali silicate containing a rare earth element, which is a mixture of an alkali metal oxide and silica. As the alkali silicate, slag generated in an Fe-Si melting process in which an Fe-Si alloy, an alkali metal source, and silica are added to a rare earth element-containing waste and melted in an inert gas atmosphere can be used.

〔溶融処理工程〕
希土類磁石のスクラップなどの希土類元素含有廃棄物に、Fe−Si合金、炭酸ナトリウム(NaCO)などのアルカリ金属源、およびシリカを加えて、不活性ガス性雰囲気下で、1250℃〜1550℃に加熱してこれらを熔融すると、希土類磁石スクラップに含まれる鉄は酸化されずにSiと反応してFe−Si溶融合金に取り込まれ、Fe含有量が増加したFe−Si溶融合金が形成される。
[Melting process]
Add an alkali metal source such as Fe-Si alloy, sodium carbonate (Na 2 CO 3 ), and silica to a rare earth element-containing waste such as rare earth magnet scrap, and in an inert gas atmosphere, 1250 ° C. to 1550 ° C. When these are melted by heating to ° C., the iron contained in the rare earth magnet scrap reacts with Si without being oxidized and is taken into the Fe—Si molten alloy to form an Fe—Si molten alloy with an increased Fe content. The

一方、炭酸ナトリウム(NaCO)などのアルカリ金属源は添加したシリカと反応してアルカリシリケート溶融スラグ(NaO−SiOスラグ等)を形成する。また、希土類磁石スクラップに含まれる希土類元素も酸化されて希土類元素酸化物を形成し、上記アルカリシリケート溶融スラグに取り込まれる。 On the other hand, an alkali metal source such as sodium carbonate (Na 2 CO 3 ) reacts with the added silica to form an alkali silicate molten slag (Na 2 O—SiO 2 slag, etc.). In addition, rare earth elements contained in the rare earth magnet scrap are also oxidized to form rare earth element oxides, which are taken into the alkali silicate molten slag.

アルカリ金属酸化物および希土類元素酸化物が形成される酸素分圧は、酸化鉄が形成される酸素分圧より十分に低いので、不活性ガス雰囲気下でも、アルカリ金属および希土類元素が酸化される酸素分圧が保たれていれば、アルカリ金属酸化物および希土類元素酸化物が形成され、これらはアルカリシリケートスラグに取り込まれる。一方、鉄は酸化されずにSiと反応してFe−Si合金に取り込まれる。通常の不活性ガス雰囲気下では、鉄は酸化されずにSiと反応してFe−Si合金を形成し、アルカリ金属および希土類元素は酸化されてアルカリシリケートスラグに取り込まれる。このFe−Si溶融処理によって、希土類磁石スクラップ等に含まれている希土類元素と鉄はおのおのスラグと合金に分離することができる。   Since the oxygen partial pressure at which alkali metal oxides and rare earth element oxides are formed is sufficiently lower than the oxygen partial pressure at which iron oxide is formed, oxygen in which alkali metals and rare earth elements are oxidized even in an inert gas atmosphere If the partial pressure is maintained, alkali metal oxides and rare earth element oxides are formed, and these are taken into the alkali silicate slag. On the other hand, iron reacts with Si without being oxidized and is taken into the Fe—Si alloy. Under a normal inert gas atmosphere, iron is not oxidized but reacts with Si to form an Fe—Si alloy, and the alkali metal and rare earth element are oxidized and taken into the alkali silicate slag. By this Fe-Si melting treatment, the rare earth element and iron contained in the rare earth magnet scrap or the like can be separated into slag and alloy, respectively.

上記Fe−Si溶融処理において生じるFe−Si溶融合金は、アルカリシリケートスラグより重いので、Fe−Si溶融合金とアルカリシリケートスラグの二層に分離し、これらは何れも熔融物であるので、各々を容易に抜き出して分離回収することができる。また、ここで回収したFe−Si合金の一部を再び溶融工程に戻して利用することができる。   Since the Fe-Si molten alloy generated in the Fe-Si melting process is heavier than the alkali silicate slag, it is separated into two layers of an Fe-Si molten alloy and an alkali silicate slag, both of which are melts. It can be easily extracted and separated and recovered. In addition, a part of the Fe—Si alloy recovered here can be returned to the melting step for use.

上記溶融処理工程において用いるFe−Si合金は、鉄粉と粗粉砕したシリコン粉の混合物を、不活性ガス雰囲気下で、加熱溶融することによって得ることができる。例えば、鉄粉75wt%と粗粉砕したシリコン25wt%の混合物を黒鉛ルツボに装入し、アルゴン雰囲気下で、1400℃程度に1時間加熱して溶融させた後に、冷却してFe−Si合金を得ることができる。   The Fe—Si alloy used in the melting treatment step can be obtained by heating and melting a mixture of iron powder and coarsely pulverized silicon powder in an inert gas atmosphere. For example, a mixture of 75 wt% iron powder and 25 wt% coarsely pulverized silicon is placed in a graphite crucible, heated to about 1400 ° C. for 1 hour in an argon atmosphere and melted, and then cooled to obtain an Fe—Si alloy. Can be obtained.

上記溶融工程において用いる炭酸ナトリウム(NaCO)などのアルカリ金属源とシリカは、NaO−SiOスラグの状態で用いることができる。このNaO−SiOスラグは、NaCO粉とSiO粉を混合して大気中で1100℃程度に加熱溶融して得ることができる。NaCOとSiOをNaO−SiOスラグの状態で用いることによって、希土類元素の吸収が容易になり、かつFe−Si溶融合金と分離しやすくなる。 The alkali metal source such as sodium carbonate (Na 2 CO 3 ) and silica used in the melting step can be used in the state of Na 2 O—SiO 2 slag. This Na 2 O—SiO 2 slag can be obtained by mixing Na 2 CO 3 powder and SiO 2 powder and heating and melting to about 1100 ° C. in the atmosphere. By using Na 2 CO 3 and SiO 2 in the state of Na 2 O—SiO 2 slag, it becomes easy to absorb rare earth elements and easily separate from the Fe—Si molten alloy.

〔アルカリ浸出工程〕
希土類元素を含有するアルカリシリケートをアルカリ浸出してシリカを溶出させる。例えば、希土類元素を含有するアルカリシリケートをアルカリ水溶液に加え、水酸基濃度0.5モル/L以上の強アルカリ性に調整し、オートクレーブ内で150℃以上に加熱し、数時間撹拌し混合すると、上記アルカリシリケートに含まれるシリカが溶出する。アルカリシリケートに含まれるシリカの概ね7割程度が溶出するので、これを固液分離して溶出したSiを含む液分(Si浸出液)を系外に除去して浸出残渣を回収する。
[Alkaline leaching process]
Silica is eluted by alkali leaching of an alkali silicate containing a rare earth element. For example, an alkali silicate containing a rare earth element is added to an alkaline aqueous solution, adjusted to a strong alkalinity with a hydroxyl group concentration of 0.5 mol / L or higher, heated to 150 ° C. or higher in an autoclave, stirred for several hours, and mixed. Silica contained in the silicate is eluted. Since about 70% of the silica contained in the alkali silicate is eluted, this is solid-liquid separated to remove the Si-containing solution (Si leaching solution) out of the system and recover the leaching residue.

アルカリシリケートに含まれる希土類元素はアルカリ浸出せずに大部分が浸出残渣に含まれる。また、熔融工程で分離回収したスラグは非晶質であるが、このアルカリ浸出によってスラグに含まれる希土類元素は結晶性の水酸化物や、ナトリウムやシリカとの複合酸化物に変化する。   Most of the rare earth elements contained in the alkali silicate are contained in the leaching residue without alkali leaching. The slag separated and recovered in the melting step is amorphous, but the rare earth element contained in the slag is changed into a crystalline hydroxide or a composite oxide with sodium or silica by this alkali leaching.

アルカリシリケートをアルカリ浸出せずに酸と混合しても、液分に溶解する希土類元素はアルカリシリケートに含まれる量の約3割程度である。溶融処理工程と酸溶解工程との間にアルカリ浸出工程を加えることによって、酸溶解工程において希土類元素の約9割以上を浸出させることができる。希土類元素がアルカリ浸出工程において結晶性の水酸化物や、ナトリウムやシリカとの複合酸化物に変化するためと考えられる。   Even if the alkali silicate is mixed with an acid without leaching with alkali, the rare earth element dissolved in the liquid is about 30% of the amount contained in the alkali silicate. By adding an alkali leaching step between the melt treatment step and the acid dissolution step, about 90% or more of the rare earth element can be leached in the acid dissolution step. This is probably because the rare earth element is changed to a crystalline hydroxide or a composite oxide with sodium or silica in the alkali leaching process.

〔酸溶解工程〕
上記アルカリ浸出滓を酸溶解して、アルカリ浸出滓に含まれている希土類元素および残留シリカを溶出させる。例えば、アルカリ浸出滓を水に混合し、これに塩酸を添加してpH2以下の強酸性下にすると、アルカリ浸出滓に含まれる希土類元素および残留シリカが溶出する。
[Acid dissolution step]
The alkali leached soot is acid-dissolved to elute rare earth elements and residual silica contained in the alkali leached soot. For example, when alkaline leaching soot is mixed with water and hydrochloric acid is added thereto to bring it to a strong acidity of pH 2 or lower, rare earth elements and residual silica contained in the alkaline leaching soot are eluted.

〔シリカ析出工程〕
希土類元素および溶出シリカを含む酸溶解液にアルカリを添加し、pH4〜6に調整してシリカを析出させる。例えば、上記酸溶解液に水酸化ナトリウム溶液を添加してpH4〜5に調整し、液温50℃以上に加温しながら数時間撹拌し混合すると、シリカが析出する。これを固液分離してシリカ滓を除去し、希土類元素を含む液分を回収する。回収した液分には、希土類磁石スクラップに含まれていた希土類元素の約90%前後が含まれている。
[Silica precipitation step]
An alkali is added to an acid solution containing a rare earth element and eluted silica, and the pH is adjusted to 4 to 6 to precipitate silica. For example, when a sodium hydroxide solution is added to the acid solution to adjust to pH 4 to 5, and the mixture is stirred for several hours while being heated to a liquid temperature of 50 ° C. or higher, silica is precipitated. This is subjected to solid-liquid separation to remove silica soot, and a liquid component containing rare earth elements is recovered. The recovered liquid contains about 90% of the rare earth elements contained in the rare earth magnet scrap.

〔溶媒抽出工程〕
シリカ滓を除去した液分から溶媒抽出によって希土類元素を回収することができる。例えば、シリカ滓を除去した液分に塩酸を加えてpH1〜2に調整した後に、抽出溶媒(商品名PC−88A等)を添加して希土類元素を抽出することができる。
[Solvent extraction step]
Rare earth elements can be recovered from the liquid from which the silica soot has been removed by solvent extraction. For example, after adding hydrochloric acid to the liquid from which the silica soot has been removed to adjust the pH to 1-2, an extraction solvent (trade name PC-88A or the like) can be added to extract the rare earth element.

本発明の回収方法によれば、希土類磁石スクラップなどの希土類含有廃棄物から、純度99.9%以上の希土類元素を、90%以上の収率で回収することができる。
本発明の回収方法は、希土類磁石スクラップなどを酸溶解する方法ではないため、酸の使用量が少なく、またBの共存下で加熱溶融する方法ではないのでホウ酸が発生せず、廃液処理の負担が少ない。
本発明の回収方法は、希土類磁石スクラップなどに含まれる鉄はFe−Si合金に取り込ませ、希土類元素はアルカリシリケートスラグに取り込ませるので、希土類元素と鉄の分離性が良く、鉄などの不純物が少ない高純度の希土類元素を収率良く回収することができる。
According to the recovery method of the present invention, a rare earth element having a purity of 99.9% or more can be recovered from a rare earth-containing waste such as a rare earth magnet scrap in a yield of 90% or more.
Since the recovery method of the present invention is not a method of dissolving rare earth magnet scraps or the like with acid, boric acid is not generated because the amount of acid used is small, and it is not a method of heating and melting in the presence of B 2 O 3 , Less burden of waste liquid treatment.
In the recovery method of the present invention, the iron contained in the rare earth magnet scrap or the like is incorporated into the Fe-Si alloy, and the rare earth element is incorporated into the alkali silicate slag, so that the separation of the rare earth element and iron is good, and impurities such as iron are present. A small amount of high-purity rare earth elements can be recovered with good yield.

本発明の処理工程の概略を示す工程図。Process drawing which shows the outline of the process of this invention. アルカリシリケートスラグのXRD分析チャート。XRD analysis chart of alkali silicate slag. アルカリ浸出滓のXRD分析チャート。XRD analysis chart of alkali leaching soot.

〔実施例1〕
下記(イ)〜(ト)の工程に従って希土類元素を回収した。処理工程を図1に示す。結果を表1に示す。
(イ)Fe-Si合金調製
鉄粉と粗粉砕したシリコンを、Fe75wt%、Si25wt%の割合に混合した後、黒鉛ルツボに装入し、電気炉内、アルゴン雰囲気下で、1400℃にて1時間保持した。その後、試料を急冷しFe−Si合金を回収した。
(ロ)Na O−SiO スラグ調製
NaCOとSiOの混合物(NaO:28wt%、SiO:59wt%)を白金るつぼに装入し、電気炉を用い、大気中で1100℃にて加熱溶融してNaO−SiOスラグを調製した。1時間後に試料を取り出し、ルツボ内の溶融スラグを鉄板上に注ぎ回収した。
(ハ)希土類磁石の溶融処理
希土類磁石[A]5gを粉砕し、上記(イ)で調製したFe−Si合金12gと、上記(ロ)で調製したNaO−SiOスラグ7.5gと、上記希土類磁石粉砕物とを混合して黒鉛ルツボに装入し、これを電気炉に入れ、アルゴンガスを300mL/minの流量で炉内導入しながら1300℃で5時間保持した。処理後、ルツボを電気炉から取り出して水急冷し、スラグ[B]10gとFe−Si合金[C]15.5gを回収した。上記希土類磁石破砕物の鉄および希土類元素の含有量を表1に示す。回収したスラグ[B]およびFe−Si合金[C]のシリコンおよび希土類元素(Nd、Dy)の含有量、移行率を表1に示す。上記スラグのXRD分析チャートを図2に示す。
(ニ)スラグのアルカリ浸出
上記溶融処理で回収したスラグ10gを粉砕して水酸化ナトリウム水溶液50mL(NaOH濃度110g/L)と混合し、オートクレーブに入れて加熱し、150℃で6時間混合した。処理後に放冷し濾過して、43mLのSi浸出液[D]と7.5gのアルカリ浸出滓[E]を回収した。該アルカリ浸出滓[E]のシリコンおよび希土類元素(Nd、Dy)の含有量、移行率を表1に示す。表1に示すように、スラグ[B]に含まれていた希土類元素の99wt%以上はアルカリ浸出滓[E]に回収された。該アルカリ浸出滓[E]のXRD分析チャートを図3に示す。上記スラグ[B]とアルカリ浸出滓[E]のXRD分析チャートを比較すると、非晶質であったスラグは、アルカリ浸出によって希土類元素が結晶性のよい水酸化物に変質していることが分かる。例えば、ネオジムを含む非晶質のアルカリシリケートが結晶性の水酸化ネオジム〔Nd(OH)〕や〔NaNd(SiO)O〕に変質している。
(ホ)希土類元素の酸溶解
アルカリ浸出滓[E]7.5gを100mLの水に混合し、塩酸を添加してpH2に調整し、2時間混合してアルカリ浸出滓[E]に含まれるシリカおよび希土類元素を溶出させた。
(ヘ)シリカ析出
上記(ホ)の酸溶解液に水酸化ナトリウム液を添加しpH5に調整し、液温を60℃に加熱しながら3時間混合してシリカを析出させた。放冷後に固液分離してシリカ滓[F]2gと濾液[G]94mLを回収した。該シリカ[F]滓に含まれるシリコンおよび希土類元素(Nd、Dy)の含有量、移行率を表1に示す。回収した濾液[G]に含まれるシリコンおよび希土類元素の含有量、移行率を表1に示す。
(ト)溶媒抽出
上記(ヘ)の濾液に塩酸を加えてpH2に調整し、溶媒(商品名PC-88A)を添加して希土類元素を溶媒に抽出した。純度99.9%のNdおよびDyを回収した。
[Example 1]
Rare earth elements were recovered according to the following steps (a) to (g). The processing steps are shown in FIG. The results are shown in Table 1.
(A) Preparation of Fe-Si alloy Iron powder and coarsely pulverized silicon were mixed at a ratio of Fe 75 wt% and Si 25 wt%, and then charged into a graphite crucible, and 1400 in an electric furnace under an argon atmosphere. Hold at 1 ° C. for 1 hour. Thereafter, the sample was rapidly cooled to recover the Fe—Si alloy.
(B) Preparation of Na 2 O—SiO 2 slag
Na 2 CO 3 and mixtures of SiO 2 (Na 2 O: 28wt %, SiO 2: 59wt%) was charged into a platinum crucible, using an electric furnace, and heated and melted at 1100 ° C. in air Na 2 O It was prepared -SiO 2 slag. One hour later, the sample was taken out, and the molten slag in the crucible was poured onto an iron plate and recovered.
(C) the melt processing <br/> rare earth magnet [A] 5 g of the rare-earth magnet was crushed, the a Fe-Si alloy 12g prepared in (b), the (b) Na 2 O-SiO 2 slag prepared in 7.5 g and the pulverized rare earth magnet were mixed and charged into a graphite crucible. The graphite crucible was charged into an electric furnace and maintained at 1300 ° C. for 5 hours while introducing argon gas into the furnace at a flow rate of 300 mL / min. . After the treatment, the crucible was taken out of the electric furnace and rapidly cooled with water to recover 10 g of slag [B] and 15.5 g of Fe—Si alloy [C]. Table 1 shows the contents of iron and rare earth elements in the crushed rare earth magnet. Table 1 shows the contents of silicon and rare earth elements (Nd, Dy) and the migration rate in the recovered slag [B] and Fe—Si alloy [C]. An XRD analysis chart of the slag is shown in FIG.
(D) Alkali leaching of slag 10 g of slag recovered by the above melting treatment is pulverized and mixed with 50 mL of an aqueous sodium hydroxide solution (NaOH concentration 110 g / L), heated in an autoclave and heated at 150 ° C for 6 hours. Mixed for hours. After the treatment, it was allowed to cool and filtered to recover 43 mL of Si leachate [D] and 7.5 g of alkaline leachate [E]. Table 1 shows the contents of silicon and rare earth elements (Nd, Dy) and the migration rate of the alkaline leachate [E]. As shown in Table 1, 99 wt% or more of the rare earth element contained in the slag [B] was recovered in the alkali leach [E]. FIG. 3 shows an XRD analysis chart of the alkali leached soot [E]. Comparing the XRD analysis charts of the slag [B] and the alkali leached soot [E], it can be seen that the amorphous slag has been transformed into a hydroxide with good crystallinity due to alkali leaching. . For example, amorphous alkali silicate containing neodymium has been altered to crystalline neodymium hydroxide [Nd (OH) 3 ] or [NaNd 9 (SiO 4 ) 6 O 2 ].
(E) Acid dissolution of rare earth element 7.5 g of alkaline leachate [E] is mixed with 100 mL of water, adjusted to pH 2 by adding hydrochloric acid, mixed for 2 hours and mixed with alkaline leachate [E]. The silica and rare earth elements contained in were eluted.
(F) Silica precipitation A sodium hydroxide solution was added to the acid solution of (e) above to adjust the pH to 5, and the mixture was mixed for 3 hours while heating the solution temperature to 60C to precipitate silica. After cooling, solid-liquid separation was performed to recover 2 g of silica gel [F] and 94 mL of filtrate [G]. Table 1 shows the contents and migration rates of silicon and rare earth elements (Nd, Dy) contained in the silica [F] soot. Table 1 shows the contents and migration rates of silicon and rare earth elements contained in the collected filtrate [G].
(G) Solvent extraction Hydrochloric acid was added to the filtrate of (f) above to adjust the pH to 2, and a solvent (trade name PC-88A) was added to extract rare earth elements in the solvent. Nd and Dy with a purity of 99.9% were recovered.

Figure 0006478113
Figure 0006478113

〔実施例2〕
実施例1で回収したFe−Si合金(Fe:81wt%、Si:19wt%)11gとシリコン塊0.8gを用い、実施例1で用いた希土類磁石粉砕物[A2]5gと、実施例1のNaO−SiOスラグ7.5gとの混合物を電気炉で1300℃に加熱して溶融させ、電気炉から取り出して水急冷し、スラグ[B2]10gとFe−Si合金[C2]15.5gを回収した。このスラグ[B2]10gを粉砕して水酸化ナトリウム水溶液50mL(NaOH濃度110g/L)と混合し、オートクレーブに入れて加熱し、150℃で6時間混合した。処理後に放冷し濾過して、44mLのSi浸出液[D2]と7.3gのアルカリ浸出滓[E2]を回収した。このアルカリ浸出滓[E2]7.3gを100mLの水に混合し、塩酸を添加してpH2に調整し、2時間混合してアルカリ浸出滓[E2]に含まれるシリカおよび希土類元素を溶出させた。この酸溶解液に水酸化ナトリウム液を添加しpH5に調整し、液温を60℃に加熱しながら3時間混合してシリカを析出させた。放冷後に固液分離してシリカ滓[F2]2.0gと濾液[G2]98mLを回収した。この濾液に塩酸を加えてpH2に調整し、溶媒(商品名PC-88A)を添加して希土類元素を溶媒に抽出し、純度99.9%のNdおよびDyを回収した。この結果を表2に示した。
[Example 2]
Using 11 g of the Fe—Si alloy (Fe: 81 wt%, Si: 19 wt%) and 0.8 g of silicon lump recovered in Example 1, 5 g of the pulverized rare earth magnet [A2] used in Example 1, and Example 1 A mixture of 7.5 g of Na 2 O—SiO 2 slag was heated to 1300 ° C. in an electric furnace to be melted, taken out of the electric furnace and quenched with water, 10 g of slag [B2] and Fe—Si alloy [C2] 15 .5g was recovered. 10 g of this slag [B2] was pulverized, mixed with 50 mL of an aqueous sodium hydroxide solution (NaOH concentration 110 g / L), heated in an autoclave, and mixed at 150 ° C. for 6 hours. After the treatment, it was allowed to cool and filtered to recover 44 mL of Si leachate [D2] and 7.3 g of alkaline leachate [E2]. 7.3 g of this alkaline leachate [E2] was mixed with 100 mL of water, hydrochloric acid was added to adjust the pH to 2, and the mixture was mixed for 2 hours to elute the silica and rare earth elements contained in the alkaline leachate [E2]. . Sodium hydroxide solution was added to this acid solution to adjust to pH 5, and the mixture was mixed for 3 hours while heating the solution temperature to 60 ° C. to precipitate silica. After cooling, solid-liquid separation was performed to recover 2.0 g of silica gel [F2] and 98 mL of filtrate [G2]. Hydrochloric acid was added to the filtrate to adjust the pH to 2, and a solvent (trade name PC-88A) was added to extract rare earth elements into the solvent to recover Nd and Dy having a purity of 99.9%. The results are shown in Table 2.

Figure 0006478113
Figure 0006478113

Claims (6)

アルカリ金属酸化物とシリカの混合物であって希土類元素を含有するアルカリシリケートをアルカリ浸出してシリカを溶出させ、固液分離したアルカリ浸出滓を酸溶解して希土類元素と残留シリカを溶出させ、この酸溶解液にアルカリを添加してシリカを析出させると共に希土類元素を液分に残し、固液分離した液分から希土類元素を回収することを特徴とする希土類元素の回収方法。   Alkali silicate containing rare earth elements, which is a mixture of alkali metal oxides and silica, is alkali leached to elute silica, and the alkali leached soot separated by solid and liquid is acid-dissolved to elute rare earth elements and residual silica. A method for recovering a rare earth element, comprising adding an alkali to an acid-dissolved solution to precipitate silica, leaving the rare earth element in the liquid, and recovering the rare earth element from the solid-liquid separated liquid. 希土類元素を含有するアルカリシリケートが、希土類元素含有廃棄物にFe−Si合金とアルカリ金属源およびシリカを加えて不活性ガス性雰囲気下で溶融するFe−Si溶融処理において生じたスラグである請求項1に記載する希土類元素の回収方法。   The alkali silicate containing a rare earth element is slag generated in an Fe-Si melting process in which an Fe-Si alloy, an alkali metal source and silica are added to a rare earth element-containing waste and melted in an inert gas atmosphere. The method for recovering rare earth elements according to 1. 希土類元素を含有するアルカリシリケートをアルカリ水溶液に加え、水酸基濃度0.5モル/L以上の強アルカリ性下で、150℃以上に加熱して該アルカリシリケートに含まれるシリカを溶出させ、これを固液分離してアルカリ浸出滓を回収する請求項1または請求項2に記載する希土類元素の回収方法。   An alkali silicate containing a rare earth element is added to an alkaline aqueous solution and heated to 150 ° C. or higher under strong alkalinity with a hydroxyl group concentration of 0.5 mol / L or more to elute the silica contained in the alkali silicate, The method for recovering a rare earth element according to claim 1 or 2, wherein the alkali leachate is recovered by separation. アルカリ浸出滓をpH2以下の強酸性下で酸溶解してアルカリ浸出滓に含まれる希土類元素および残留シリカを溶出させる請求項1〜請求項3の何れかに記載する希土類元素の回収方法。   The method for recovering a rare earth element according to any one of claims 1 to 3, wherein the alkali leached soot is acid-dissolved under strong acidity at pH 2 or less to elute the rare earth element and residual silica contained in the alkali leached soot. 希土類元素および溶出シリカを含む酸溶解液にアルカリを添加してpH4〜6に調整し、50℃以上に加熱してシリカを析出させ、これを固液分離してシリカ滓を除去し、希土類元素を含む液分を回収する請求項1〜請求項4の何れかに記載する希土類元素の回収方法。   An alkali is added to an acid solution containing a rare earth element and eluted silica to adjust the pH to 4 to 6, heated to 50 ° C. or higher to precipitate silica, and this is solid-liquid separated to remove silica soot, and the rare earth element The method for recovering a rare earth element according to any one of claims 1 to 4, wherein a liquid component containing the element is recovered. 希土類元素を含む回収液に、酸を添加してpH1〜2に調整した後に、抽出溶媒を添加して希土類元素を抽出し回収する請求項1〜請求項5の何れかに記載する希土類元素の回収方法。

The rare earth element according to any one of claims 1 to 5, wherein an acid is added to the recovery liquid containing the rare earth element to adjust to pH 1-2, and then an extraction solvent is added to extract and collect the rare earth element. Collection method.

JP2015186174A 2015-09-23 2015-09-23 Recovery method of rare earth elements Expired - Fee Related JP6478113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186174A JP6478113B2 (en) 2015-09-23 2015-09-23 Recovery method of rare earth elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186174A JP6478113B2 (en) 2015-09-23 2015-09-23 Recovery method of rare earth elements

Publications (2)

Publication Number Publication Date
JP2017061710A JP2017061710A (en) 2017-03-30
JP6478113B2 true JP6478113B2 (en) 2019-03-06

Family

ID=58429948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186174A Expired - Fee Related JP6478113B2 (en) 2015-09-23 2015-09-23 Recovery method of rare earth elements

Country Status (1)

Country Link
JP (1) JP6478113B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306059B (en) * 2019-07-30 2020-12-25 江西省科学院应用化学研究所 Method for recycling rare earth in cerium-doped lutetium yttrium silicate waste
KR20220103416A (en) * 2021-01-15 2022-07-22 광주과학기술원 Method for recovering calcium and rare earth metal from slag
CN112981123B (en) * 2021-02-09 2022-05-27 昆明理工大学 Method for recovering rare earth elements by using low-purity silicon and rare earth oxide-containing material
CN115181854B (en) * 2022-07-18 2023-08-18 乐山盛和稀土有限公司 Double acid leaching method for fluorine-containing rare earth ore

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560121B2 (en) * 1997-11-11 2004-09-02 三井金属鉱業株式会社 Method for producing rare earth-based abrasive raw materials from waste abrasive
JPH11319755A (en) * 1998-05-13 1999-11-24 Mitsui Mining & Smelting Co Ltd Recovery of rare earth metal oxide abrasive
JP5146658B2 (en) * 2008-04-04 2013-02-20 信越化学工業株式会社 Recovery method of rare earth elements
FR2970709A1 (en) * 2011-01-25 2012-07-27 Rhodia Operations PROCESS FOR RECOVERING RARE EARTHS FROM SOLID MIXTURE CONTAINING HALOPHOSPHATE AND RARE EARTH COMPOUND AND SOLID MIXTURE ADAPTED THEREFOR
BR112013023907A2 (en) * 2011-03-18 2019-09-24 Orbite Aluminae Inc process of recovering at least one rare earth element from an aluminum-containing material
JP5880131B2 (en) * 2012-02-27 2016-03-08 三菱マテリアルテクノ株式会社 Metal recovery method
WO2013145455A1 (en) * 2012-03-30 2013-10-03 日本軽金属株式会社 Method for recovering rare-earth element

Also Published As

Publication number Publication date
JP2017061710A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5146658B2 (en) Recovery method of rare earth elements
JP6478113B2 (en) Recovery method of rare earth elements
JP6406675B2 (en) Zinc recovery method from electric furnace steelmaking dust and zinc recovery device from electric furnace steelmaking dust
US10167532B2 (en) Method for isolating rare earths and/or adjacent metal element(s) contained in the magnetic phase of permanent magnets
JP6044001B2 (en) Method for separating heavy metals from glass
EP3404121B1 (en) Method for separating rare-earth elements from iron, and rare-earth element-containing slag
JP2004068082A (en) Method for recovering rare-earth metal
Yagmurlu et al. Combined saf smelting and hydrometallurgical treatment of bauxite residue for enhanced valuable metal recovery
JP5596590B2 (en) Method for separating and recovering metal elements from rare earth magnet alloy materials
JP6766074B2 (en) Separation method of metal components
JP6229846B2 (en) Separation and recovery method of rare earth elements and iron
JP2015086436A (en) Method for recovering valuable material
JP4243230B2 (en) How to collect rare earth
JPS63182216A (en) Method for separation and recovery of rare earth element
JP6425018B2 (en) Separation and recovery method of rare earth elements
JP2019026871A (en) Manufacturing method of rare earth fluoride
JP2000144275A (en) Method for recovering rare earth element
EP3701053B1 (en) Process for the recovery of metals from cobalt-bearing materials
CN102534258A (en) Method for preparing indium and bismuth from coarse bismuth-containing indium
JP2000144276A (en) Recovering method for rare earth element and cobalt
JP4243231B2 (en) How to collect rare earth
KR101414967B1 (en) Nd Extraction Metod From Rare Earth element
CN115044786B (en) Method for recovering rare earth elements from neodymium iron boron waste, molten salt system and application of molten salt system as manganese zinc ferrite raw material
CN114990365B (en) Method for recovering rare earth and main element iron from neodymium iron boron waste, molten salt system and application of molten salt system as soft magnetic ferrite raw material
CN115404360B (en) Method for selectively recovering vanadium and cesium from waste vanadium sulfate catalyst and high-quality vanadium aqueous solution and cesium alum prepared by same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190123

R150 Certificate of patent or registration of utility model

Ref document number: 6478113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees