JP3560121B2 - Method for producing rare earth-based abrasive raw materials from waste abrasive - Google Patents

Method for producing rare earth-based abrasive raw materials from waste abrasive Download PDF

Info

Publication number
JP3560121B2
JP3560121B2 JP32389897A JP32389897A JP3560121B2 JP 3560121 B2 JP3560121 B2 JP 3560121B2 JP 32389897 A JP32389897 A JP 32389897A JP 32389897 A JP32389897 A JP 32389897A JP 3560121 B2 JP3560121 B2 JP 3560121B2
Authority
JP
Japan
Prior art keywords
rare earth
abrasive
waste
weight
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32389897A
Other languages
Japanese (ja)
Other versions
JPH11147713A (en
Inventor
和彦 高辻
正和 矢野
博美 瓜生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP32389897A priority Critical patent/JP3560121B2/en
Publication of JPH11147713A publication Critical patent/JPH11147713A/en
Application granted granted Critical
Publication of JP3560121B2 publication Critical patent/JP3560121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガラス表面等の研摩に使用した希土類系廃研摩材から不純物を除去した後、希土類の固形分を回収する希土類系研摩材原料の製造方法に関する。
【0002】
【従来の技術】
現在、ガラス基板や光学レンズ等の研摩に年間4000トンの希土類系研摩材が使用されている。希土類系研摩材は80重量%以上の希土類酸化物を含み、そのうち40〜90重量%が酸化セリウムである。
【0003】
希土類系研摩材は例えばアメリカで産出されるバストネサイト等の希土類鉱物の鉱石から選鉱工程で異種鉱物を除去した後、得られたバストネサイト精鉱を原料として、粉砕、化学処理、濾過、乾燥、ばい焼、粉砕、分級、添加剤混合の各工程を経て製造されている(シーエムシー発行「レア・アースの最新応用技術」1985年)。
【0004】
このようにして製造された希土類系研摩材はその優れた研摩特性のため、また研摩対象である液晶ディスプレイ装置(LCD)用ガラス基板やコンピュータ用ハードディスク記憶装置に使われるガラス基板の増産のために年々需要が増加している。
【0005】
【発明が解決しようとする課題】
しかし、現在これらの希土類系研摩材は使用後は産業廃棄物としてほぼ全量が廃棄されている。増加する産業廃棄物が深刻な社会問題となっている情勢の下、使用済みの希土類系研摩材のリサイクル使用に対する要望が高まりつつある。また、これらの希土類系廃研摩材には乾量基準で40重量%以上の希土類元素が含まれておりこれらの資源の有効利用という観点から、また輸入に依存している希土類資源の安定確保という面からも希土類系廃研摩材の原料回収が必要である。
【0006】
特許第2606156号には、使用済みの研磨剤を精密濾過することにより粗大不純物を濃縮液側に濃縮して除去し、その透過液を限外濾過により濃縮して、その濃縮液を回収することを特徴とする研磨剤粒子の回収方法が提案されている。しかしながら上記方法が対象とする研磨剤は粒径が数10〜500nmと微細であり、本発明の対象である希土類系研摩材の粒径は0.4〜3.0μmであるため、上記方法は適用することができない。
【0007】
また特開平8−3543には、使用済みの研磨材と研磨によって発生した不純物とが混在する研磨廃棄物を原材料とし、前記研磨廃棄物から可溶性の不純物を除去する化学処理工程と、前記研磨廃棄物を粉砕処理して少なくとも規定値外の微粒子を除去する物理的処理工程とからなる研磨材の製造方法が提案されている。しかしながら上記方法が対象とする研磨材粒径は5〜20μmであり、本発明が対象とする希土類系研摩材の粒径は0.4〜3.0μmであるため、上記方法は不適切である。
【0008】
本発明は上記に鑑みてなされたものであり、使用済みの希土類系研摩材から、簡単な設備を用い経済的な工程で、希土類鉱石からの研摩材原料と同等品質の希土類研摩材原料を製造する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明は、使用済みの希土類系廃研摩材からフッ化水素酸を用いて可溶性の不純物を溶解除去する溶解工程、及び溶解後固液分離を行う固液分離工程とからなることを特徴とする、廃研摩材からの希土類系研摩材原料の製造方法を提供する。
【0010】
また前記希土類系研摩材原料の製造方法において、前記固液分離工程により得られた固形分に酸化希土又は炭酸希土を混合する成分調整工程を付加することを特徴とする。
【0011】
さらに、前記使用済みの希土類系廃研摩材は、乾量基準で希土類酸化物を40重量%以上含むことが望ましい。40重量%よりも低い場合は経済的に採算性が悪いからである。
【0012】
【発明の実施の形態】
本発明において、処理対象とする「使用済みの希土類系廃研摩材」は希土類酸化物特に酸化セリウムを主成分とする希土類系研摩材を、ガラス基板表面研摩等に使用したものである。現在使われているガラス研摩用の希土類系研摩材は希土類酸化物を80〜98重量%含んでいるが、その内酸化セリウムが最も多く希土類酸化物の40〜90重量%を占めている。さらにフッ素Fを5〜9重量%含んでいる。フッ素は元々バストネサイト鉱石[(Ce,La)(CO3)F]に含まれているが、ガラス研磨において物理研磨とともに重要な、化学研磨の作用を持つため含有量を5〜9重量%に調整している。希土類系研摩材の平均粒径としては0.4〜3.0μmが好ましく使用されている。
【0013】
希土類系研摩材は、液晶ディスプレイ装置やコンピュータのハードディスク記憶装置に使われるガラス基板、レンズ等の光学ガラス、半導体IC用フォトマスクのガラス基板、陰極線管(CRT)用ガラス等の研摩に使用されている。
【0014】
希土類系廃研摩材スラリーを乾燥したもの、あるいは希土類系廃研摩材スラリーを有機系または無機系凝集剤で凝集させフィルタープレス等の脱水濾過装置で固液分離した後の固形分(ケーキ)を乾燥したものの組成を調べると、研摩対象、研摩方法によっても差は生じるが、ガラス成分、特にシリカ(SiO2)が2〜20重量%含まれている。使用前の研摩材のシリカは2重量%以下であるのでかなり増加している。
【0015】
また、廃研摩材スラリーを凝集する際にポリ塩化アルミニウム(PAC)を使用した場合はアルミナ(Al2O3)も3〜20重量%含まれている。
【0016】
本発明においては、希土類系廃研摩材のスラリーまたは該スラリーを脱水濾過したケーキを、フッ化水素酸を10〜55重量%含む水溶液の入った反応槽中に入れ、0.5〜8時間室温で攪拌する。フッ化水素酸の量はシリカ含有量に対するフッ化水素酸重量の割合が必要量となるように決定する。すなわち、Si/Fの比を1/3〜1/8、好ましくは1/4〜1/6となるようにする。廃研摩材中にアルミナ成分が混入している場合はさらにAl/Fの比を1/2〜1/4としてフッ化水素酸を増加する必要がある。
【0017】
希土類系廃研摩材のスラリー濃度は100〜300g/lが望ましい。スラリー濃度を300g/l以上とすると粘度が上昇し作業性が低下する。スラリー濃度が100g/l以下では処理能力が小さくなる。
【0018】
前記溶解工程の後、反応槽中の懸濁液をフィルタープレス等の脱水濾過装置で固液分離を行う。上記の方法により廃研摩材中のシリカは大部分溶出し、残留固形分(ケーキ)中のシリカ濃度は乾量基準で2重量%以下とすることができる。
Si/Fの比が1/3よりも大きい(フッ化水素酸が少ない)場合はシリカ除去が十分でなく、1/8より小さい場合は固液分離後のケーキ中のフッ素が過剰となり好ましくない。希土類系廃研摩材に乾量基準で3〜20重量%のアルミナ成分を含む場合も上記工程によりアルミナ成分が2重量%以下となる。
【0019】
前記溶解工程で不純物を除去する溶解液として、フッ化アンモニウムと硫酸の混合水溶液、又はフッ化アンモニウムと硝酸の混合水溶液があるが、これらを使用した場合は工場廃水中の窒素成分の規制強化のため廃水中の窒素成分除去が必要となる。そのために高価な設備を必要とし、経済的でない。そこで、本発明は廃水処理が容易なフッ化水素酸水溶液を使用することとした。
【0020】
前記固液分離工程により得られたケーキには乾量基準で75重量%以上の希土類酸化物が含まれている。しかし研摩材原料としては乾量基準として80重量%以上の希土類酸化物が必要である。また前記ケーキに含まれるフッ素の量が規定範囲からはずれている場合があるため、酸化希土または炭酸希土を添加して成分調整を行う成分調整工程が必要な場合がある。酸化希土及び炭酸希土は鉱石から製造される中間原料である。酸化希土は各種希土類元素の混合酸化物であり、酸化セリウムを50〜99.9重量%含むものである。また炭酸希土は各種希土類元素の混合炭酸塩である。いずれも市販されている。
【0021】
使用済みの希土類系廃研摩材をフッ化水素酸による不純物溶解処理を行った後、固液分離を行い回収した希土類系研摩材原料の組成(希土類酸化物及びフッ素の含有量)が前記規定範囲に含まれている場合には前記成分調整工程を経ずに、鉱石を原料とした研摩材製造工程に投入する。前記固液分離により回収した希土類系研摩材原料の組成が前記規定範囲に含まれていない場合には、前記酸化希土または炭酸希土を加えて混合し、成分調整を行う。混合する酸化希土または炭酸希土の比率は回収した希土類系研摩材原料の組成や、目的とする製品の用途、仕様等に応じて決定する。
【0022】
希土類系廃研摩材中に粒径が3μm以上の粗大粒子が含まれていない場合は成分調整工程は、鉱石を原料とした研摩材製造工程の最初の工程である粉砕工程の後に入れる。
【0023】
希土類系廃研摩材中に粒径3μm以上の粗大粒子が含まれている場合は、前記フッ化水素酸処理の前に粉砕または篩い分けを行うか、あるいは鉱石を原料とした研摩材製造工程の最初の工程である粉砕工程の前に入れ、粉砕工程を通過させても良い。
【0024】
前記成分調整工程において、異なる研摩対象や異なる研摩条件で用いられ組成や粒径の異なる使用済み希土類系廃研摩材を2種以上混合しても良い。
【0025】
尚、上記処理に供する廃研摩材は希土類酸化物を乾量基準で40重量%以上含むことが採算性の観点より好ましい。
【0026】
【実施例】
本発明を実施例により、さらに具体的に説明する。
実施例1
液晶ディスプレイ装置用ガラス基板を研磨した後の希土類系廃研摩材スラリーを固液分離して得たケーキを用いた。組成は乾量基準で希土類酸化物68.0重量%、シリカ14.0重量%、フッ素5.1重量%であった。80%フッ化水素酸を136kg、水を3.44m3を入れた反応槽に上記廃研摩材を乾量基準で0.8t入れて合計4m3とした。スラリー濃度は200g/lとなった。
上記反応槽を攪拌機で1時間攪拌した後上記懸濁液をフィルタープレスにポンプで送り、固液分離を行った。さらに0.8m3の水でケーキ洗浄を行った。
ここで得られたケーキ1.13tを乾燥し、0.79tとなったものを分析したところ、乾量基準で希土類酸化物は79.0重量%、シリカ1.4重量%、フッ素11.5重量%であった。希土類酸化物のうち、酸化セリウムは50.3重量%であった。
【0027】
分析方法は次の通りである。希土類酸化物(TREO、TotalRareEarthOxides)の分析は、JISM8404−1976に基づき行った。シリカはアルカリ溶融処理の後ICPで定量分析し、フッ素はアルカリ溶融の後イオンメータで定量分析した。酸化セリウムの分析は蛍光X線分析装置で行った。
【0028】
前記固液分離工程の後、得られた希土類系研摩材原料に酸化希土を7:3の割合に加えて混合し、成分調整を行った後希土類研摩材製造工程に投入した。すなわち、粉砕、化学処理、濾過、乾燥、ばい焼、粉砕、分級、添加剤混合の各工程で定法により処理し、製品を前記の方法で分析した。その結果乾量基準で希土類酸化物は86.1重量%、シリカ1.0重量%、フッ素は8.1重量%であった。希土類酸化物のうち酸化セリウムは51.4%であった。
【0029】
前記製造方法により得られた希土類系回収研摩材の粒径を空気透過法(ブレーン法)により測定した。その結果平均粒径は1.4μmとなり、鉱石を原料として製造した希土類系研摩材の粒径と同等であった。
【0030】
前記製造方法により得られた希土類系回収研摩材をオスカー式研摩機を用いて次の条件で「研摩力」を評価した。研磨力とは、所定の条件で青板ガラス板を10分間研摩した後の削り取られたガラス厚み分と、鉱石を原料として製造された、標準の研摩材製造工程により得られた研摩材により削り取られたガラス厚み分の比を100倍した数値である。評価条件として、圧力200g/cm2、回転数120rpm、スラリー供給量2l/min、スラリー濃度100g/lとした。その結果得られた研摩力は97であった。鉱石を原料として製造した希土類系研摩材とほぼ同様の研磨力となり、同等の品質が得られた。
【0031】
【本発明の効果】
以上のように、本発明によれば従来産業廃棄物として廃棄されていた希土類系廃研摩材から不純物を除去し、希土類系研摩材原料として繰り返し使用することが可能となり、希土類資源の安定確保に貢献する。しかも既存の簡単な設備を使用し経済的な工程で希土類鉱石からの研摩材原料と同等品質の研摩材原料を製造できる。また使用薬品による公害を発生させることもなく、廃棄物量を大幅に減少できるという効果がある。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a rare-earth-based abrasive raw material for removing a rare-earth-based solid content after removing impurities from a rare-earth-based waste abrasive used for polishing a glass surface or the like.
[0002]
[Prior art]
Currently, 4000 tons of rare earth-based abrasives are used annually for polishing glass substrates and optical lenses. The rare earth-based abrasive contains at least 80% by weight of a rare earth oxide, of which 40 to 90% by weight is cerium oxide.
[0003]
Rare earth-based abrasives, for example, after removing foreign minerals from the ore of rare earth minerals such as bastnaesite produced in the United States in a beneficiation process, using the obtained bastnaesite concentrate as a raw material, pulverization, chemical treatment, filtration, It is manufactured through the steps of drying, roasting, crushing, classification, and mixing of additives (the latest applied technology of rare earth published by CMC, 1985).
[0004]
The rare earth-based abrasives manufactured in this manner are used for their excellent polishing properties and for increasing the production of glass substrates for liquid crystal display devices (LCDs) to be polished and hard disk storage devices for computers. The demand is increasing year by year.
[0005]
[Problems to be solved by the invention]
However, at present, almost all of these rare earth-based abrasives are discarded as industrial waste after use. Under the situation where increasing industrial wastes are becoming a serious social problem, there is an increasing demand for recycling of used rare earth-based abrasives. In addition, these rare earth waste abrasives contain 40% by weight or more of rare earth elements on a dry basis, and from the viewpoint of effective use of these resources, it is necessary to ensure the stability of rare earth resources that depend on imports. From the viewpoint of this, it is necessary to recover the raw materials of rare earth waste abrasives.
[0006]
Japanese Patent No. 2606156 discloses that a used abrasive is finely filtered to concentrate and remove coarse impurities to a concentrate side, and the permeate is concentrated by ultrafiltration to recover the concentrate. There has been proposed a method for collecting abrasive particles characterized by the following. However, the abrasive used in the above method has a fine particle size of several tens to 500 nm, and the rare earth-based abrasive targeted in the present invention has a particle size of 0.4 to 3.0 μm. Cannot be applied.
[0007]
Japanese Patent Application Laid-Open No. 8-3543 discloses a chemical treatment step of removing a soluble impurity from a polishing waste by using a polishing waste in which a used abrasive and an impurity generated by polishing are mixed as a raw material; There has been proposed a method for producing an abrasive, which comprises a physical treatment step of pulverizing an object to remove at least fine particles outside a specified value. However, the above method is inappropriate because the particle size of the abrasive targeted by the above method is 5 to 20 μm, and the particle size of the rare earth-based abrasive targeted by the present invention is 0.4 to 3.0 μm. .
[0008]
The present invention has been made in view of the above, and produces a rare earth abrasive material of the same quality as a raw material of an abrasive material from a rare earth ore from a used rare earth abrasive material by an economical process using simple equipment. It is intended to provide a method for doing so.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a dissolving step of dissolving and removing soluble impurities from used rare earth waste abrasive using hydrofluoric acid, and a solid-liquid separation step of performing solid-liquid separation after dissolution. The present invention provides a method for producing a rare earth-based abrasive raw material from waste abrasive, characterized by comprising:
[0010]
Further, in the method for producing a rare earth-based abrasive raw material, a component adjusting step of mixing a rare earth oxide or a rare earth carbonate with the solid obtained in the solid-liquid separation step is added.
[0011]
Further, it is desirable that the used rare earth waste abrasive contains 40% by weight or more of a rare earth oxide on a dry basis. If the amount is lower than 40% by weight, economical profitability is poor.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the "used rare earth waste abrasive" to be treated is a rare earth abrasive mainly composed of a rare earth oxide, particularly cerium oxide, used for polishing a glass substrate surface or the like. Currently used rare earth-based abrasives for glass polishing contain 80 to 98% by weight of rare earth oxides, of which cerium oxide accounts for 40 to 90% by weight of the rare earth oxides. Further, it contains 5 to 9% by weight of fluorine F. Fluorine is originally contained in bastnaesite ore [(Ce, La) (CO3) F], but has a chemical polishing effect, which is important together with physical polishing in glass polishing. I am adjusting. The average particle size of the rare earth-based abrasive is preferably 0.4 to 3.0 μm.
[0013]
Rare earth abrasives are used for polishing glass substrates used for liquid crystal display devices and hard disk storage devices of computers, optical glasses such as lenses, glass substrates for photomasks for semiconductor ICs, and glass for cathode ray tubes (CRT). I have.
[0014]
Drying of rare earth waste abrasive slurry, or solid content (cake) after solidifying the rare earth waste abrasive slurry with an organic or inorganic coagulant and solid-liquid separation with a dehydration filter such as a filter press Examining the composition of the polished material shows a difference depending on the object to be polished and the polishing method, but the glass component, particularly silica (SiO2), is contained in an amount of 2 to 20% by weight. The silica in the abrasive before use is significantly increased since it is less than 2% by weight.
[0015]
In addition, when polyaluminum chloride (PAC) is used for coagulating the waste abrasive slurry, alumina (Al2O3) is also contained in an amount of 3 to 20% by weight.
[0016]
In the present invention, the slurry of the rare-earth waste abrasive or the cake obtained by dewatering and filtering the slurry is placed in a reaction tank containing an aqueous solution containing 10 to 55% by weight of hydrofluoric acid, and the mixture is kept at room temperature for 0.5 to 8 hours. And stir. The amount of hydrofluoric acid is determined so that the ratio of the weight of hydrofluoric acid to the content of silica is the required amount. That is, the ratio of Si / F is set to be 1/3 to 1/8, preferably 1/4 to 1/6. When the alumina component is mixed in the waste abrasive, it is necessary to further increase the hydrofluoric acid by setting the Al / F ratio to 1/2 to 1/4.
[0017]
The slurry concentration of the rare earth waste abrasive is desirably 100 to 300 g / l. When the slurry concentration is 300 g / l or more, the viscosity increases and the workability decreases. When the slurry concentration is 100 g / l or less, the processing capacity is reduced.
[0018]
After the dissolution step, the suspension in the reaction tank is subjected to solid-liquid separation by a dehydration filtration device such as a filter press. Most of the silica in the waste abrasive is eluted by the above method, and the silica concentration in the residual solid (cake) can be 2% by weight or less on a dry basis.
When the ratio of Si / F is larger than 1/3 (the amount of hydrofluoric acid is small), the removal of silica is insufficient, and when the ratio is smaller than 1/8, fluorine in the cake after solid-liquid separation becomes excessive, which is not preferable. . When the rare earth waste abrasive contains 3 to 20% by weight of the alumina component on a dry basis, the alumina component is reduced to 2% by weight or less by the above process.
[0019]
As a dissolving solution for removing impurities in the dissolving step, there is a mixed aqueous solution of ammonium fluoride and sulfuric acid, or a mixed aqueous solution of ammonium fluoride and nitric acid, but when these are used, the regulation of nitrogen components in factory wastewater is strengthened. Therefore, it is necessary to remove nitrogen components from wastewater. This requires expensive equipment and is not economical. Therefore, the present invention uses an aqueous solution of hydrofluoric acid that can easily treat wastewater.
[0020]
The cake obtained by the solid-liquid separation step contains 75% by weight or more of a rare earth oxide on a dry basis. However, as a raw material for abrasives, a rare earth oxide of 80% by weight or more on a dry basis is required. Further, since the amount of fluorine contained in the cake may be out of the specified range, a component adjusting step of adding rare earth oxide or rare earth carbonate to adjust the component may be necessary. Rare earth oxides and rare earth carbonates are intermediate raw materials produced from ores. The rare earth oxide is a mixed oxide of various rare earth elements, and contains 50 to 99.9% by weight of cerium oxide. Rare earth carbonate is a mixed carbonate of various rare earth elements. All are commercially available.
[0021]
After the used rare-earth waste abrasive is subjected to an impurity dissolving treatment with hydrofluoric acid, the composition of the rare-earth-based abrasive raw material recovered by solid-liquid separation (the content of rare earth oxides and fluorine) is within the above specified range. If it is contained in the material, it is put into an abrasive production process using ore as a raw material without going through the above-mentioned component adjustment process. When the composition of the rare earth-based abrasive raw material recovered by the solid-liquid separation is not included in the specified range, the rare earth oxide or the rare earth carbonate is added and mixed to adjust the components. The ratio of the rare earth oxide or rare earth carbonate to be mixed is determined according to the composition of the recovered rare earth-based abrasive raw material, the intended use and specifications of the product, and the like.
[0022]
When the rare earth waste abrasive does not contain coarse particles having a particle size of 3 μm or more, the component adjustment step is performed after the pulverization step, which is the first step of the abrasive material production step using ore as a raw material.
[0023]
When the rare earth waste abrasive contains coarse particles having a particle diameter of 3 μm or more, the abrasive is subjected to pulverization or sieving before the hydrofluoric acid treatment, or to an abrasive production process using ore as a raw material. It may be inserted before the pulverizing step which is the first step, and may pass through the pulverizing step.
[0024]
In the component adjusting step, two or more kinds of used rare earth waste abrasives having different compositions and particle sizes used under different polishing targets and different polishing conditions may be mixed.
[0025]
In addition, it is preferable from the viewpoint of profitability that the waste abrasive used in the above treatment contains rare earth oxides in an amount of 40% by weight or more on a dry basis.
[0026]
【Example】
The present invention will be described more specifically with reference to examples.
Example 1
A cake obtained by solid-liquid separation of a rare earth waste abrasive slurry after polishing a glass substrate for a liquid crystal display device was used. The composition was 68.0% by weight of rare earth oxide, 14.0% by weight of silica and 5.1% by weight of fluorine on a dry basis. 0.8 t of the waste abrasive was put into a reaction tank containing 136 kg of 80% hydrofluoric acid and 3.44 m3 of water on a dry basis to make a total of 4 m3. The slurry concentration became 200 g / l.
After stirring the reaction tank with a stirrer for 1 hour, the suspension was pumped to a filter press to perform solid-liquid separation. Further, the cake was washed with 0.8 m3 of water.
When 1.13 t of the cake obtained here was dried and analyzed for 0.79 t, 79.0% by weight of rare earth oxide, 1.4% by weight of silica, and 11.5% of fluorine were determined on a dry basis. % By weight. Cerium oxide was 50.3% by weight of the rare earth oxide.
[0027]
The analysis method is as follows. The analysis of rare earth oxides (TREO, TotalRare EarthOxides) was performed based on JISM8404-1976. Silica was quantitatively analyzed by ICP after alkali melting treatment, and fluorine was quantitatively analyzed by ion meter after alkali melting. The analysis of cerium oxide was performed with a fluorescent X-ray analyzer.
[0028]
After the solid-liquid separation step, the obtained rare earth-based abrasive raw material was mixed with a rare earth oxide in a ratio of 7: 3, and the components were adjusted. That is, in each of the steps of pulverization, chemical treatment, filtration, drying, roasting, pulverization, classification, and mixing of additives, the product was processed by a standard method, and the product was analyzed by the above method. As a result, on a dry basis, the rare earth oxide was 86.1% by weight, silica was 1.0% by weight, and fluorine was 8.1% by weight. Cerium oxide was 51.4% of the rare earth oxides.
[0029]
The particle size of the rare earth-based recovered abrasive obtained by the above-mentioned production method was measured by an air permeation method (Brain method). As a result, the average particle size was 1.4 μm, which was equivalent to the particle size of the rare earth-based abrasive produced using ore as a raw material.
[0030]
The "abrasive power" of the rare earth-based recovered abrasive obtained by the above-described production method was evaluated using an Oscar type sander under the following conditions. Abrasive power is defined as the thickness of the glass that has been polished after polishing a soda lime glass plate under predetermined conditions for 10 minutes, and the abrasive obtained by a standard abrasive production process manufactured using ore as a raw material. It is a numerical value obtained by multiplying the ratio of the glass thickness by 100 times. Evaluation conditions were a pressure of 200 g / cm 2, a rotation speed of 120 rpm, a slurry supply amount of 2 l / min, and a slurry concentration of 100 g / l. The resulting polishing force was 97. The polishing power was almost the same as that of a rare-earth abrasive produced from ore, and the same quality was obtained.
[0031]
[Effects of the present invention]
As described above, according to the present invention, it is possible to remove impurities from a rare earth waste abrasive which has been conventionally discarded as industrial waste, and to repeatedly use the rare earth abrasive as a raw material, thereby stably securing rare earth resources. To contribute. In addition, it is possible to produce an abrasive raw material of the same quality as an abrasive raw material from a rare earth ore in an economical process using existing simple equipment. In addition, there is an effect that the amount of waste can be significantly reduced without causing pollution due to chemicals used.

Claims (3)

使用済みの希土類系廃研摩材からフッ化水素酸を用いて可溶性の不純物を溶解除去する溶解工程、及び溶解後固液分離を行う固液分離工程からなることを特徴とする、廃研摩材からの希土類系研摩材原料の製造方法。The waste abrasive is characterized by comprising a dissolving step of dissolving and removing soluble impurities from used rare earth waste abrasive using hydrofluoric acid, and a solid-liquid separation step of performing solid-liquid separation after dissolution. For producing rare earth-based abrasive raw materials. 前記固液分離工程により得られた固形分に酸化希土又は炭酸希土を混合する成分調整工程を付加したことを特徴とする請求項1記載の希土類系研摩材原料の製造方法。2. The method for producing a rare earth-based abrasive raw material according to claim 1, wherein a component adjusting step of mixing a rare earth oxide or a rare earth carbonate with the solid obtained in the solid-liquid separation step is added. 前記使用済み希土類系廃研摩材は、乾量基準で希土類酸化物を40重量%以上含むことを特徴とする請求項1記載の希土類系研摩材原料の製造方法。The method for producing a rare earth-based abrasive raw material according to claim 1, wherein the spent rare-earth-based waste abrasive contains at least 40% by weight of a rare-earth oxide on a dry basis.
JP32389897A 1997-11-11 1997-11-11 Method for producing rare earth-based abrasive raw materials from waste abrasive Expired - Fee Related JP3560121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32389897A JP3560121B2 (en) 1997-11-11 1997-11-11 Method for producing rare earth-based abrasive raw materials from waste abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32389897A JP3560121B2 (en) 1997-11-11 1997-11-11 Method for producing rare earth-based abrasive raw materials from waste abrasive

Publications (2)

Publication Number Publication Date
JPH11147713A JPH11147713A (en) 1999-06-02
JP3560121B2 true JP3560121B2 (en) 2004-09-02

Family

ID=18159851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32389897A Expired - Fee Related JP3560121B2 (en) 1997-11-11 1997-11-11 Method for producing rare earth-based abrasive raw materials from waste abrasive

Country Status (1)

Country Link
JP (1) JP3560121B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096611A1 (en) * 2001-05-29 2002-12-05 Memc Electronic Materials, S.P.A. Method for treating an exhausted glycol-based slurry
JP4654577B2 (en) * 2003-12-22 2011-03-23 パナソニック電工株式会社 Ceramic substrate for mounting photoelectric conversion elements
KR101055454B1 (en) * 2006-03-13 2011-08-08 쇼와 덴코 가부시키가이샤 Method for recovering rare earth elements from a composition containing rare earth fluorides
JP5588114B2 (en) * 2009-03-25 2014-09-10 三井金属鉱業株式会社 Manufacturing method and processing method of cerium-based abrasive
CN104619806A (en) * 2012-09-17 2015-05-13 株式会社Lg化学 Method for recycling waste abrasive material containing ceria
JP6478113B2 (en) * 2015-09-23 2019-03-06 三菱マテリアル株式会社 Recovery method of rare earth elements

Also Published As

Publication number Publication date
JPH11147713A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US9796894B2 (en) Abrasive material regeneration method and regenerated abrasive material
KR101055454B1 (en) Method for recovering rare earth elements from a composition containing rare earth fluorides
TWI558665B (en) Method for recovery of cerium oxide
JP4730903B2 (en) Method for recovering raw materials for cerium-based abrasives
JP4248937B2 (en) Method for recovering rare earth oxide from waste liquid containing rare earth element
EP2815846B1 (en) Abrasive regeneration method
WO2003104149A1 (en) Process for recovering rare earth oxide from waste liquid containing rare earth element, and process for producing rare earth oxide using same
US9701878B2 (en) Abrasive regeneration method
US20150210890A1 (en) Polishing-Material Reclamation Method
JP3560121B2 (en) Method for producing rare earth-based abrasive raw materials from waste abrasive
US20150247062A1 (en) Polishing-Material Reclamation Method
EP2799185B1 (en) Method for separating polishing material and regenerated polishing material
WO2005026051A1 (en) Cerium salt, process for producing the same, cerium oxide, and cerium-based abrasive material
JP2000087154A (en) Method for recovering rare earth element from used rare earth element type abrasive material
JPWO2013069720A1 (en) Abrasive recycling method
JP2002371267A (en) Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP5598580B2 (en) Abrasive ingredients containing cerium oxide
JP3607592B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP4394848B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
KR20150007487A (en) Method of manufacturing recycling waste sludge of nonorganic abrasive for grinding glass panel
CN116622293A (en) Method for recycling and regenerating waste rare earth polishing powder slurry
JP2002129146A (en) Glass's low-fluorine cerium oxide abrasive material and method of manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees