JP6229846B2 - Separation and recovery method of rare earth elements and iron - Google Patents

Separation and recovery method of rare earth elements and iron Download PDF

Info

Publication number
JP6229846B2
JP6229846B2 JP2014067735A JP2014067735A JP6229846B2 JP 6229846 B2 JP6229846 B2 JP 6229846B2 JP 2014067735 A JP2014067735 A JP 2014067735A JP 2014067735 A JP2014067735 A JP 2014067735A JP 6229846 B2 JP6229846 B2 JP 6229846B2
Authority
JP
Japan
Prior art keywords
rare earth
slag
iron
alloy
earth elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014067735A
Other languages
Japanese (ja)
Other versions
JP2015190003A (en
Inventor
チョンプーヌット ウィラセラニー
チョンプーヌット ウィラセラニー
リナート ミルヴァリエフ
リナート ミルヴァリエフ
山口 健一
健一 山口
石渡 正治
正治 石渡
岡田 智
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014067735A priority Critical patent/JP6229846B2/en
Publication of JP2015190003A publication Critical patent/JP2015190003A/en
Application granted granted Critical
Publication of JP6229846B2 publication Critical patent/JP6229846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、希土類磁石のように希土類元素と鉄を含む原料から希土類元素と鉄を効率よく分離回収する方法に関する。 The present invention relates to a method for efficiently separating and recovering rare earth elements and iron from a raw material containing rare earth elements and iron such as rare earth magnets.

希土類元素は生産量が少ないので希土類元素を含有するスクラップなどから希土類元素を回収して再利用することが求められている。例えば、希土類磁石には希土類元素が多く含まれている。一方、希土類磁石には希土類と共に鉄が含まれており、このような希土類元素と鉄の合金から希土類元素を選択的に回収するには、共存する鉄を効率よく分離する必要がある。 Since rare earth elements are produced in small quantities, it is required to collect and reuse rare earth elements from scraps containing rare earth elements. For example, rare earth magnets contain a large amount of rare earth elements. On the other hand, rare earth magnets contain iron together with rare earths. To selectively recover rare earth elements from such rare earth element-iron alloys, it is necessary to efficiently separate the coexisting iron.

このような希土類磁石スクラップなどから希土類元素を回収する方法として、従来、以下のような方法が知られている。
(イ)希土類元素とFeを含む遷移金属とを含有する混合物原料を黒鉛坩堝内で不活性雰囲気下、1350℃〜1700℃に加熱して溶融し、希土類元素を主成分とする酸化物相(Nd-Dy-Pr酸化物等)と遷移金属を含む金属相(Fe-Co合金等)とに分離させてこれらを回収する方法(特許文献1)。
(ロ)希土類元素と鉄を含む処理対象物を酸化し、さらに窒化ホウ素の存在下、1200℃以上に加熱して希土類元素酸化物相(Nd-Dy-Pr酸化物等)と鉄系溶融相(Fe-M-O相、MはB、Cu、Ni)に分離する回収方法(特許文献2)。
(ハ)希土類元素と鉄族元素を含む処理対象物を、酸化処理した後に、または酸化処理せずに、炭素存在下で1150℃以上(例えば1450℃)に加熱して、希土類元素酸化物相(Nd-Dy-Pr酸化物等)と鉄合金相(Fe-C合金等)に分離する回収方法(特許文献3)
(ホ)希土類元素含有物質を酸化ホウ素フラックスの共存下で加熱溶融し、酸化ホウ素相と、その下方の希土類元素富化相とを形成し、1150〜1600℃で10〜360分保持した後に冷却してこれらを分離する希土類元素濃縮方法(特許文献4)。
(ヘ)鉄、銅と希土類元素を含有する物質を融点降下剤および酸化ホウ素の共存下で加熱溶融し、酸化ホウ素相(B2O3相)と、その下方の希土類元素富化相(Nd2O3- B2O3相)と、その下方の鉄富化相(Fe-C合金相)と、その下方の銅富化相(Cu合金相)とを形成し、1150〜1600℃で10〜360分保持した後に冷却してこれらを分離する希土類元素濃縮方法(特許文献5)。
(ニ)希土類−鉄−ボロン系磁石スクラップを酸化処理した後に該スクラップをアルミニウムまたはアルミニウム合金と混合し、該混合物に着火してテルミット反応によってフェロボロンを生成させ、スラグと分離して回収する方法(特許文献6)。
(ト)ネオジム磁石(Nd2Fe14B)スクラップをCaO−SiO2−Al2O3又はCaO−CaF2系スラグと混合し、不活性ガス雰囲気下で1500℃に加熱して、磁石含有希土類元素(Nd、Pr、Tb)を上記スラグに移行させ、Fe富化合金から分離回収する方法(非特許文献1)。
Conventionally, the following methods are known as methods for recovering rare earth elements from such rare earth magnet scraps.
(A) A mixture raw material containing a rare earth element and a transition metal containing Fe is melted by heating at 1350 ° C. to 1700 ° C. in an inert atmosphere in a graphite crucible ( Nd-Dy-Pr oxide) and a metal phase containing a transition metal (Fe-Co alloy, etc.) and recovering them (Patent Document 1).
(B) Oxidize the object to be treated containing rare earth elements and iron, and further heat to 1200 ° C or higher in the presence of boron nitride, and rare earth element oxide phase (Nd-Dy-Pr oxide etc.) and iron-based molten phase (Fe-MO phase, M is B, Cu, Ni) A recovery method for separation (Patent Document 2).
(C) The object to be treated containing rare earth elements and iron group elements is heated to 1150 ° C. or higher (for example, 1450 ° C.) in the presence of carbon after oxidation treatment or without oxidation treatment, and the rare earth element oxide phase Recovery method for separation into (Nd-Dy-Pr oxide, etc.) and iron alloy phase (Fe-C alloy, etc.) (Patent Document 3)
(E) A rare earth element-containing substance is heated and melted in the presence of a boron oxide flux to form a boron oxide phase and a rare earth element-enriched phase below it, and cooled after being held at 1150 to 1600 ° C. for 10 to 360 minutes. Then, a rare earth element concentration method for separating them (Patent Document 4).
(F) A material containing iron, copper and a rare earth element is heated and melted in the presence of a melting point depressant and boron oxide, and a boron oxide phase (B 2 O 3 phase) and a rare earth element enriched phase (Nd) 2 O 3 -B 2 O 3 phase), a lower iron-enriched phase (Fe-C alloy phase), and a lower copper-enriched phase (Cu alloy phase) at 1150 to 1600 ° C. A rare earth element enrichment method (Patent Document 5) in which after cooling for 10 to 360 minutes, it is cooled and separated.
(D) A method in which rare earth-iron-boron magnet scrap is oxidized and then mixed with aluminum or an aluminum alloy, the mixture is ignited to produce ferroboron by a thermite reaction, and separated from slag and recovered ( Patent Document 6).
(G) Neodymium magnet (Nd 2 Fe 14 B) scrap is mixed with CaO-SiO 2 -Al 2 O 3 or CaO-CaF 2 slag, heated to 1500 ° C in an inert gas atmosphere, and magnet-containing rare earth A method in which elements (Nd, Pr, Tb) are transferred to the slag and separated and recovered from the Fe-enriched alloy (Non-Patent Document 1).

特許第5273241号公報Japanese Patent No. 5273241 特開2013−204095号公報JP 2013-204095 A 特許第5327409号公報Japanese Patent No. 5327409 特開2013−199698号公報JP 2013-199698 A 特開2013−227639号公報JP 2013-227639 A 特許第5149164号公報Japanese Patent No. 5149164

Y. Yang, S. Abrahami, and Y. Xiao: Proceedings of the 3rd International Slag Valorisation Symposium, Leuven (2013), 249-252.Y. Yang, S. Abrahami, and Y. Xiao: Proceedings of the 3rd International Slag Valorisation Symposium, Leuven (2013), 249-252.

特許文献1、2の回収方法はフラックスを使用しないので、希土類元素の混合酸化物は固体であるため希土類元素と鉄との分離は不完全であり、鉄系合金と希土類元素の混合酸化物の分離作業に手間取る。特許文献2、3の回収方法は鉄と希土類元素を分離する前に、希土類元素を含む原料を酸化焙焼することが必要であるので、工程は複雑になる。また、特許文献4、5の希土類元素濃縮方法では酸化ホウ素系フラックスが蒸発する。さらに、希土類元素を含む原料を加熱溶融する温度は、特許文献1の実施例では1550℃(1823K)、特許文献2および特許文献3の実施例では1450℃(1723K)、非特許文献1の方法では1500℃であり、何れも1450℃以上の高温であるので、エネルギーコストが大きい。 Since the collection methods of Patent Documents 1 and 2 do not use flux, the rare earth element mixed oxide is solid, so the separation of the rare earth element and iron is incomplete. It takes time for separation work. Since the recovery methods of Patent Documents 2 and 3 require oxidizing and roasting a raw material containing rare earth elements before separating iron and rare earth elements, the process becomes complicated. Further, in the rare earth element concentration methods of Patent Documents 4 and 5, the boron oxide-based flux evaporates. Furthermore, the temperature at which the raw material containing the rare earth element is heated and melted is 1550 ° C. (1823 K) in the example of Patent Document 1, 1450 ° C. (1723 K) in the examples of Patent Document 2 and Patent Document 3, and the method of Non-Patent Document 1 In this case, the temperature is 1500 ° C., and since both are high temperatures of 1450 ° C. or higher, the energy cost is high.

本発明の方法は、従来方法の上記問題を克服した回収方法であり、従来方法よりも溶融温度が低く、エネルギーコストを低減することができ、希土類元素を含むスラグ相と鉄を含む合金相が容易に分離し、効率よく希土類元素と鉄を分離して回収できる方法を提供する。 The method of the present invention is a recovery method that overcomes the above-mentioned problems of the conventional method. The melting temperature is lower than that of the conventional method, the energy cost can be reduced, and the slag phase containing rare earth elements and the alloy phase containing iron are present. Provided is a method for easily separating and efficiently separating and recovering rare earth elements and iron.

本発明は以下の構成を有する希土類元素と鉄の分離回収方法に関する。
〔1〕希土類元素と鉄を含む原料を、FeリッチのFe−Si合金とアルカリ金属酸化物−シリカ系スラグの混合物に加え、不活性雰囲気下ないし還元雰囲気下で、1250℃〜1550℃に加熱溶融して希土類元素を上記スラグに移行させる一方、鉄をFeリッチのFe−Si溶融合金に移行させることによって希土類元素と鉄を分離する方法であって、上記Fe−Si合金としてFeを65〜90wt%含むFe−Si合金を用い、上記アルカリ金属酸化物−シリカ系スラグとしてNa Oを35〜50wt%含むNa O−SiO 系スラグ、またはCaO5wt%およびNa O33wt%およびSiO 62wt%を含むCaO−Na O−SiO 系スラグを用いることを特徴とする希土類元素と鉄の分離回収方法。
〔2〕原料に含まれる鉄が移行したFe−Si合金を回収し、このFeリッチのFe−Si合金にシリコンを添加してFe−Si比を調整し、これを原料溶融用のFe−Si合金として再利用する上記[1]に記載する希土類元素と鉄の分離回収方法。
〔3〕希土類元素を含むアルカリ金属酸化物−シリカ系スラグを回収し、該スラグを水や酸に溶解して希土類元素を浸出させ、残渣のシリカを回収し、該シリカにアルカリ金属酸化物を添加してアルカリ金属酸化物−シリカ比を調整し、これを原料溶融用のアルカリ金属酸化物−シリカ系スラグとして再利用する上記[1]または上記[2]の何れかに記載する希土類元素と鉄の分離回収方法。
〔4〕希土類元素と鉄を含む原料として希土類磁石のスクラップを用いる上記[1]〜上記[3]の何れかに記載する希土類元素と鉄の分離回収方法。
The present invention relates to a method for separating and recovering rare earth elements and iron having the following configuration.
[1] A raw material containing rare earth element and iron is added to a mixture of Fe-rich Fe-Si alloy and alkali metal oxide-silica slag, and heated to 1250 ° C to 1550 ° C in an inert atmosphere or a reducing atmosphere. while shifting the melted and rare earth elements in the slag, a method of separating rare earth elements and iron by shifting the iron Fe-Si molten alloy of Fe-rich, 65 and Fe as the Fe-Si alloy using Fe-Si alloy containing 90 wt%, the alkali metal oxides - Na 2 O-SiO 2 slag containing 35-50 wt% of Na 2 O as the silica-based slag or CaO5wt%, and Na 2 O33wt% and SiO 2 62 wt % Separation method of rare earth elements and iron, using CaO—Na 2 O—SiO 2 slag containing 1% .
[2] The Fe—Si alloy in which the iron contained in the raw material has been transferred is recovered, and silicon is added to the Fe-rich Fe—Si alloy to adjust the Fe—Si ratio. The method for separating and recovering rare earth elements and iron as described in [1] above, which is reused as an alloy.
[3] Collect alkali metal oxide-silica slag containing rare earth elements, dissolve the slag in water or acid to leach rare earth elements, collect residual silica, and add alkali metal oxide to the silica. The alkali metal oxide-silica ratio is added to adjust the rare earth element according to either [1] or [2] above, which is reused as an alkali metal oxide-silica-based slag for melting raw materials. Iron separation and recovery method.
[4] The method for separating and recovering rare earth elements and iron according to any one of [1] to [3] above , wherein rare earth magnet scrap is used as a raw material containing rare earth elements and iron.

〔具体的な説明〕
本発明の回収方法は、希土類元素と鉄を含む原料を、FeリッチのFe−Si合金とアルカリ金属酸化物−シリカ系スラグの混合物に加え、不活性雰囲気下ないし還元雰囲気下で、1250℃〜1550℃に加熱溶融して希土類元素を上記スラグに移行させる一方、鉄をFeリッチのFe−Si溶融合金に移行させることによって希土類元素と鉄を分離する方法であって、上記Fe−Si合金としてFeを65〜90wt%含むFe−Si合金を用い、上記アルカリ金属酸化物−シリカ系スラグとしてNa Oを35〜50wt%含むNa O−SiO 系スラグ、またはCaO5wt%およびNa O33wt%およびSiO 62wt%を含むCaO−Na O−SiO 系スラグを用いることを特徴とする希土類元素と鉄の分離回収方法である。
本発明に係る分離回収方法の概略を図1に示す。
[Specific description]
In the recovery method of the present invention, a raw material containing a rare earth element and iron is added to a mixture of an Fe-rich Fe—Si alloy and an alkali metal oxide-silica slag, and the reaction is performed at 1250 ° C. to under an inert atmosphere or a reducing atmosphere. while allowing the heat fused to the rare earth element to 1550 ° C. migrated to the slag, a method of separating rare earth elements and iron by shifting the iron Fe-Si molten alloy of Fe-rich, as the Fe-Si alloy Fe—Si alloy containing 65 to 90 wt% Fe is used, and Na 2 O—SiO 2 slag containing 35 to 50 wt% Na 2 O as the alkali metal oxide-silica slag, or CaO 5 wt% and Na 2 O 33 wt% and separating and recovering method der rare earth elements and iron, which comprises using a CaO-Na 2 O-SiO 2 slag containing SiO 2 62 wt% The
An outline of the separation and recovery method according to the present invention is shown in FIG.

本発明の回収方法において、希土類元素と鉄を含む原料としては希土類磁石のスクラップを用いることができる。また、希土類元素は水素吸蔵合金、固体レーザー、各種の電子機器部品、燃料電池等にも含まれているので、これらのスクラップなども用いることができる。 In the recovery method of the present invention, a rare earth magnet scrap can be used as the raw material containing the rare earth element and iron. In addition, since rare earth elements are also contained in hydrogen storage alloys, solid lasers, various electronic device parts, fuel cells, etc., these scraps can also be used.

本発明の回収方法は、1250℃〜1550℃で溶融するFeリッチのFe−Si合金を用いる。なお、SiリッチのFe−Si合金も上記温度下で溶融するが、合金中に取り込まれた希土類元素が合金中に残留して鉄とうまく分離できないので好ましくない。 The recovery method of the present invention uses an Fe-rich Fe—Si alloy that melts at 1250 ° C. to 1550 ° C. Si-rich Fe-Si alloys also melt at the above temperature, but this is not preferable because rare earth elements incorporated in the alloy remain in the alloy and cannot be separated well from iron.

図2のFe−Si系状態図に示すように、1250℃〜1550℃で溶融するFeリッチのFe−Si合金の組成は、例えば、Fe65〜90wt%の範囲である。原料に含まれる鉄をできるだけ多く受け入れるためには、Fe量が65wt%に近いものが好ましく、Fe量が90wt%に近づくと鉄を受け入れるキャパシティーが乏しくなる。 As shown in the Fe—Si system phase diagram of FIG. 2, the composition of the Fe-rich Fe—Si alloy that melts at 1250 ° C. to 1550 ° C. is, for example, in the range of Fe 65 to 90 wt%. In order to receive as much iron as possible in the raw material, it is preferable that the amount of Fe is close to 65 wt%. When the amount of Fe approaches 90 wt%, the capacity for receiving iron becomes poor.

溶融状態になるFe−Si合金のFe/Si比は加熱温度によって異なり、例えば、1300℃では、Fe(75wt%)-Si(25wt%)合金は溶融状態を保ち、加熱温度が高くなるとこれよりFe量が多くても溶融状態を維持する。一方、Fe量が90wt%以上のFe−Si合金は概ね1550℃において鉄を受け入れるキャパシティーが殆どないので、本発明のFeリッチFe−Si合金としては、Fe65〜90wt%のFe−Si合金が好ましい。 The Fe / Si ratio of the Fe-Si alloy in a molten state varies depending on the heating temperature. For example, at 1300 ° C., the Fe (75 wt%)-Si (25 wt%) alloy remains in a molten state, and the heating temperature increases. Even when the amount of Fe is large, the molten state is maintained. On the other hand, an Fe-Si alloy having an Fe amount of 90 wt% or more has almost no capacity for accepting iron at 1550 ° C. Therefore, the Fe-rich Fe-Si alloy of the present invention is Fe65-90 wt% Fe-Si alloy. preferable.

Fe(75wt%)-Si(25wt%)合金は処理温度1300℃において溶融状態であり、原料の希土類磁石中のFeがこのFe−Si合金へ溶け込んでFe量が増しても、加熱温度を高めると溶融状態を保つので、鉄に対する合金のキャパシティーが充分大きく、原料の鉄を取込んで希土類元素と鉄の分離を促進することができる。 The Fe (75 wt%)-Si (25 wt%) alloy is in a molten state at a processing temperature of 1300 ° C. Even if Fe in the raw rare earth magnet melts into the Fe—Si alloy and the amount of Fe increases, the heating temperature is increased. Since the molten state is maintained, the capacity of the alloy with respect to iron is sufficiently large, and the separation of rare earth elements and iron can be promoted by incorporating the raw material iron.

このFe−Si合金は、粗粉砕した鉄とシリコンを黒鉛ルツボに入れ、不活性雰囲気下(例えば、アルゴン雰囲気)で1300℃以上に加熱溶融して得ることができる。 This Fe—Si alloy can be obtained by putting coarsely pulverized iron and silicon into a graphite crucible and heating and melting them to 1300 ° C. or higher in an inert atmosphere (for example, argon atmosphere).

本発明の回収方法において、原料溶融用のアルカリ金属酸化物−シリカ系スラグは、例えば、Na2O−SiO2系スラグ(Na2O:35〜50wt%)が好ましい。このスラグは、例えば、アルカリ金属源(炭酸ナトリウム等)とシリカの混合物を白金ルツボに入れ、大気下で1100℃以上に加熱溶融することによって得ることができる。Na2O−SiO2系スラグは融点と粘性が低く、本発明の回収方法における加熱温度で安定であり、数時間程度の加熱でもスラグ成分の蒸発がわずかである。 In the recovery method of the present invention, the alkali metal oxide-silica slag for melting the raw material is preferably, for example, Na 2 O—SiO 2 slag (Na 2 O: 35 to 50 wt%). This slag can be obtained, for example, by placing a mixture of an alkali metal source (sodium carbonate or the like) and silica in a platinum crucible and heating and melting to 1100 ° C. or higher in the atmosphere. Na 2 O—SiO 2 -based slag has a low melting point and viscosity, is stable at the heating temperature in the recovery method of the present invention, and the slag components are slightly evaporated even when heated for several hours.

NaO−SiO系スラグとしては、具体的には、NaO・2SiOスラグを用いることができる。また、カルシウムを含む三元系スラグ、例えば、CaO−NaO−SiO (CaO:5wt%、Na O:33wt%、SiO :62wt%)を用いることができる。CaO−NaO−SiOスラグは、その粘性がNaO・2SiOスラグに比べてさらに低く、熔融状態でFe合金との分離がさらに良くなる。
Specifically, Na 2 O · 2SiO 2 slag can be used as the Na 2 O—SiO 2 slag. Further, a ternary slag containing calcium, for example, CaO—Na 2 O—SiO 2 (CaO: 5 wt%, Na 2 O: 33 wt %, SiO 2 : 62 wt%) can be used. The viscosity of CaO—Na 2 O—SiO 2 slag is lower than that of Na 2 O.2SiO 2 slag, and separation from the Fe alloy is further improved in a molten state.

本発明の回収方法は、希土類元素と鉄を含む原料を、FeリッチのFe−Si合金とアルカリ金属酸化物−シリカ系スラグの混合物と共にルツボに入れ、この原料混合物を不活性雰囲気下ないし還元雰囲気下で、1250℃〜1550℃、好ましくは1250℃〜1450℃に加熱して溶融する。ルツボは黒鉛ルツボやセラミックス系ルツボ(アルミナ、マグネシア、ジルコニアなど)を使用することができる。原料混合物が溶融するまで加熱する。概ね5〜15時間、好ましくは5時間程度でよい。 In the recovery method of the present invention, a raw material containing a rare earth element and iron is put in a crucible together with a mixture of an Fe-rich Fe-Si alloy and an alkali metal oxide-silica slag, and the raw material mixture is placed in an inert atmosphere or a reducing atmosphere. Below, it heats and melts at 1250 ° C to 1550 ° C, preferably 1250 ° C to 1450 ° C. As the crucible, a graphite crucible or a ceramic crucible (alumina, magnesia, zirconia, etc.) can be used. Heat until the raw material mixture melts. It may be about 5 to 15 hours, preferably about 5 hours.

加熱温度が1250℃未満になると、Fe−Si合金の鉄のキャパシティーが小さくなり、原料に含まれる鉄がFe−Si合金相へ溶け込めなくなる。一方、加熱温度が1550℃を超えると、Fe−Si合金を使用して加熱温度を下げる利点が失われる。低融点のFe−Si合金を使用することによって溶融温度を下げ、好ましくは鉄の融点(約1538℃)よりも低い1450℃以下の加熱温度で原料混合物を溶融させることによって、低コストで希土類元素と鉄を分離することができる。 When the heating temperature is less than 1250 ° C., the iron capacity of the Fe—Si alloy decreases, and the iron contained in the raw material cannot be dissolved into the Fe—Si alloy phase. On the other hand, when the heating temperature exceeds 1550 ° C., the advantage of using the Fe—Si alloy to lower the heating temperature is lost. By using a low melting point Fe-Si alloy, the melting temperature is lowered, and preferably the rare earth element is melted at a low cost by melting the raw material mixture at a heating temperature of 1450 ° C. or lower, which is lower than the melting point of iron (about 1538 ° C.). And iron can be separated.

原料混合物が不活性雰囲気下ないし還元雰囲気下で上記温度に加熱されて溶融すると、Fe−Si溶融合金中のシリコンとアルカリ金属酸化物−シリカ系溶融スラグ中のSiO2の反応で所定の酸素ポテンシャルが維持され、その酸素ポテンシャルで希土類元素が酸化され、希土類元素酸化物がスラグ相に移行し、原料に含まれる鉄はFe−Si合金に移行する。Fe−Si溶融合金とNa2O−SiO2系スラグは比重差が大きいので、スラグ相と合金相は自然に分離する。 When the raw material mixture is heated and melted at the above temperature in an inert atmosphere or a reducing atmosphere, a predetermined oxygen potential is obtained by a reaction between silicon in the Fe-Si molten alloy and SiO 2 in the alkali metal oxide-silica-based molten slag. Is maintained, the rare earth element is oxidized by the oxygen potential, the rare earth element oxide is transferred to the slag phase, and the iron contained in the raw material is transferred to the Fe—Si alloy. Since the Fe—Si molten alloy and the Na 2 O—SiO 2 slag have a large specific gravity difference, the slag phase and the alloy phase are naturally separated.

分離したFeリッチのFe−Si合金を回収し、このFeリッチのFe−Si合金にシリコンを添加してFe−Si比を上記範囲(例えば、Fe75wt%−Si25wt%)に調整し、これを原料溶融用のFe−Si合金として再利用することができる。また、回収した鉄リッチのFe−Si合金はフェロシリコン製造などの原料として用いることができる。 The separated Fe-rich Fe-Si alloy is recovered, and silicon is added to the Fe-rich Fe-Si alloy to adjust the Fe-Si ratio to the above range (for example, Fe75wt% -Si25wt%). It can be reused as an Fe-Si alloy for melting. The recovered iron-rich Fe—Si alloy can be used as a raw material for ferrosilicon production.

分離した希土類元素を含むスラグを回収する。このスラグを水や酸に溶解して希土類元素を浸出させ、固液分離して希土類元素を含む溶液を得ることができる。 The separated slag containing rare earth elements is recovered. This slag can be dissolved in water or acid to leach rare earth elements, and solid-liquid separation can be performed to obtain a solution containing rare earth elements.

固液分離した残渣にはシリカが含まれているので、このシリカを回収してアルカリ金属酸化物を添加し、アルカリ金属酸化物−シリカ比を調整し、これを原料溶融用のアルカリ金属酸化物−シリカ系スラグとして再利用することができる。例えば、回収したシリカにNa2Oを添加してNa2O:35〜50wt%のNa2O−SiO2系スラグを調製し、これを原料溶融用スラグとして再利用する。 Since silica is contained in the solid-liquid separated residue, this silica is recovered, an alkali metal oxide is added, and the alkali metal oxide-silica ratio is adjusted. -It can be reused as silica-based slag. For example, Na 2 O is added to the recovered silica to prepare Na 2 O: 35-50 wt% Na 2 O—SiO 2 slag, which is reused as raw material melting slag.

本発明の分離回収方法は、従来方法よりも低い温度で原料混合物を溶融させることができるのでエネルギーコストを低減することができる。また、溶融温度下でスラグが安定であり、スラグ成分が蒸発せずに希土類元素の溶解度が高い。さらに、希土類元素はスラグ相に移行し、鉄は合金相に移行し、この希土類元素を含むスラグ相と鉄を含む合金相の比重差が大きいので、スラグ相と合金相が自然に分離し、効率よく希土類元素と鉄を分離して回収することができる。具体的には、スラグ相に混入する鉄は1%未満なので希土類元素を選択的に回収することができる。 In the separation and recovery method of the present invention, the raw material mixture can be melted at a temperature lower than that of the conventional method, so that the energy cost can be reduced. Further, the slag is stable at the melting temperature, and the solubility of the rare earth element is high without evaporation of the slag component. Furthermore, the rare earth element moves to the slag phase, the iron moves to the alloy phase, and since the specific gravity difference between the slag phase containing the rare earth element and the alloy phase containing iron is large, the slag phase and the alloy phase naturally separate, Rare earth elements and iron can be separated and recovered efficiently. Specifically, since the iron mixed in the slag phase is less than 1%, the rare earth element can be selectively recovered.

本発明に係る分離回収方法の概略を示す工程図。Process drawing which shows the outline of the isolation | separation collection method concerning this invention. Fe−Si系状態図Fe-Si phase diagram

本発明の実施例を以下に示す。Fe−Si合金の組成は、EPMA(Electron Probe Micro Analyzer)とXRF法(X-ray Fluorescence Spectrometry)によって定性と定量分析を行った。スラグ組成は、XRF法で定性し、化学分析とICP−AES法(Inductively Coupled Plasma−Atomic Emission Spectrometry)によって定量分析を行った。 Examples of the present invention are shown below. The composition of the Fe—Si alloy was qualitatively and quantitatively analyzed by EPMA (Electron Probe Micro Analyzer) and XRF method (X-ray Fluorescence Spectrometry). The slag composition was qualitatively determined by the XRF method, and quantitative analysis was performed by chemical analysis and ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).

〔実施例1〕
(1)Fe−Si合金調製
鉄粉と粗粉砕したシリコンを、Fe75wt%、Si25wt%になるように混合した後、黒鉛ルツボに装入し、電気炉内、アルゴン雰囲気下で、1400℃にて1時間保持した。その後、試料を急冷しFe−Si合金を回収した。
(2)Na 2 O−SiO 2 スラグ調製
Na2CO3とSiO2の混合物(Na2O:35wt%、SiO2:65wt%)を白金るつぼに装入し、電気炉を用い、大気中で1100℃にて加熱溶融してNa2O−SiO2スラグを調製した。1時間後に試料を取り出し、ルツボ内の溶融スラグを鉄板上に注ぎ回収した。
(3)希土類磁石の溶融処理
表1に示す希土類磁石(約6g)を粉砕し、上記(1)で調製したFe−Si合金(約24g)と、上記(2)で調製したNa2O−SiO2スラグ(約15g)と、上記希土類磁石粉砕物とを混合して黒鉛ルツボに装入し、アルゴンガスを300mL/minで炉内導入しながら1300℃で5時間保持した。処理後、坩堝を電気炉から取り出し、水急冷し、スラグ相(約18g)と合金相(約28g)を回収した。
(4)結果
処理前と処理後の合金相とスラグ相の組成をおのおの表2、表3に示す。表2、表3に示すように、原料の希土類磁石に含まれている希土類元素の約90%はスラグへ移行した。このスラグの鉄品位は1%以下であり、鉄と希土類元素とが良好に分離された。
[Example 1]
(1) Preparation of Fe-Si alloy Iron powder and coarsely pulverized silicon were mixed so as to be Fe 75 wt% and Si 25 wt%, and then charged into a graphite crucible, in an electric furnace under an argon atmosphere, Hold at 1400 ° C. for 1 hour. Thereafter, the sample was rapidly cooled to recover the Fe—Si alloy.
(2) Na 2 O—SiO 2 slag preparation A mixture of Na 2 CO 3 and SiO 2 (Na 2 O: 35 wt%, SiO 2 : 65 wt%) was charged into a platinum crucible and used in an atmosphere using an electric furnace. Na 2 O—SiO 2 slag was prepared by heating and melting at 1100 ° C. One hour later, the sample was taken out, and the molten slag in the crucible was poured onto an iron plate and recovered.
(3) Rare earth magnet melting treatment The rare earth magnet shown in Table 1 (about 6 g) was pulverized, and the Fe—Si alloy (about 24 g) prepared in (1) above and the above (2) prepared. Na 2 O—SiO 2 slag (about 15 g) and the pulverized rare earth magnet were mixed and charged into a graphite crucible, and kept at 1300 ° C. for 5 hours while introducing argon gas into the furnace at 300 mL / min. After the treatment, the crucible was taken out of the electric furnace and quenched with water to recover a slag phase (about 18 g) and an alloy phase (about 28 g).
(4) Results Tables 2 and 3 show the compositions of the alloy phase and the slag phase before and after the treatment, respectively. As shown in Tables 2 and 3, about 90% of the rare earth elements contained in the raw rare earth magnets were transferred to slag. The iron grade of this slag was 1% or less, and iron and rare earth elements were well separated.

Figure 0006229846
Figure 0006229846

Figure 0006229846
Figure 0006229846

Figure 0006229846
Figure 0006229846

〔実施例2〕
Na2OとSiO2が同量のNa2O−SiO2スラグ(Na2O:50wt%、SiO2:50wt%)を用い、それ以外は実施例1と同様の条件で希土類磁石粉末(約2.4g)とFe−Si合金(約9.6g)およびNa2O−SiO2スラグ(約6g)の混合物を加熱溶融し、スラグ相と合金相を回収した。原料の希土類磁石粉末を表4に示す。処理前と処理後の合金相とスラグ相の組成をおのおの表5、表6に示す。原料の希土類磁石に含まれている希土類元素の約100%がスラグに移行し、このスラグに含まれる鉄の含有率は1%以下であった。
[Example 2]
Na 2 O and SiO 2 is the same amount of Na 2 O-SiO 2 slag (Na 2 O: 50wt%, SiO 2: 50wt%) using a rare earth magnet powder (approximately under the same conditions, otherwise as in Example 1 2.4 g), a Fe—Si alloy (about 9.6 g) and a Na 2 O—SiO 2 slag (about 6 g) were heated and melted to recover a slag phase and an alloy phase. Table 4 shows the raw rare earth magnet powder. Tables 5 and 6 show the compositions of the alloy phase and the slag phase before and after the treatment, respectively. About 100% of the rare earth element contained in the raw rare earth magnet was transferred to slag, and the content of iron contained in this slag was 1% or less.

Figure 0006229846
Figure 0006229846

Figure 0006229846
Figure 0006229846

Figure 0006229846
Figure 0006229846

〔実施例3〕
鉄粉とシリコン塊の混合物(Fe:75wt%、Si:25wt%、約15g)を粉砕し、黒鉛ルツボに装入して不活性雰囲気下で1300℃にて60分保持し、Fe−Si溶融合金を形成した。次いで、Na2O−SiO2スラグ(Na2O:35wt%、SiO2:65wt%、約30g)をFe−Si溶融合金上に装入して大気下で1300℃にて30分保持して溶解させた。その後、粗粉砕した希土類磁石粉末(約15g)をFe−Si合金・スラグ上に装入し、不活性雰囲気下で1300℃にて5時間保持して溶融した後に、スラグ相と合金相を回収した。
原料の希土類磁石粉末を表7に示す。処理前と処理後の合金相とスラグ相の組成をおのおの表8、表9に示す。原料の希土類磁石に含まれている希土類元素の約100%がスラグに移行し、このスラグ中の鉄は検出されなかった。
Example 3
A mixture of iron powder and silicon lump (Fe: 75wt%, Si: 25wt%, about 15g) was pulverized, charged into a graphite crucible and held at 1300 ° C for 60 minutes under an inert atmosphere, and Fe-Si melted An alloy was formed. Next, Na 2 O—SiO 2 slag (Na 2 O: 35 wt%, SiO 2 : 65 wt%, about 30 g) was charged onto the Fe—Si molten alloy and held at 1300 ° C. for 30 minutes in the atmosphere. Dissolved. After that, the coarsely pulverized rare earth magnet powder (about 15 g) was charged on the Fe-Si alloy / slag and kept at 1300 ° C. for 5 hours in an inert atmosphere to melt, and then the slag phase and alloy phase were recovered. did.
Table 7 shows the raw rare earth magnet powder. Tables 8 and 9 show the compositions of the alloy phase and the slag phase before and after the treatment, respectively. About 100% of the rare earth element contained in the raw rare earth magnet was transferred to slag, and iron in this slag was not detected.

Figure 0006229846
Figure 0006229846

Figure 0006229846
Figure 0006229846

Figure 0006229846
Figure 0006229846

〔実施例4〕
CaO−Na2O−SiO2スラグ(CaO:5wt%、Na2O:33wt%、SiO2:62wt%、約6g)を用いた以外は実施例1と同様の条件で希土類磁石粉末(約2.4g)とFe−Si合金(約9.6g)の混合物を加熱溶融し、スラグ相と合金相を回収した。処理後の合金相の組成を表10に示す。処理前と処理後のスラグ相の組成を表11に示す。なお、希土類磁石粉末の組成は表4と同じ、処理前のFe−Si合金相の組成は表5と同じである。原料の希土類磁石に含まれている希土類元素の約55%がスラグに移行し、残り約45%は酸化物(Nd2O3-Dy2O3)を形成して合金相中に分散していた。処理後のスラグに含まれる鉄の含有率は1%以下であった。
Example 4
Rare earth magnet powder (about 2) under the same conditions as in Example 1 except that CaO—Na 2 O—SiO 2 slag (CaO: 5 wt%, Na 2 O: 33 wt%, SiO 2 : 62 wt%, about 6 g) was used. .4 g) and a Fe-Si alloy (about 9.6 g) were heated and melted to recover a slag phase and an alloy phase. Table 10 shows the composition of the alloy phase after the treatment. Table 11 shows the composition of the slag phase before and after the treatment. The composition of the rare earth magnet powder is the same as in Table 4, and the composition of the Fe—Si alloy phase before the treatment is the same as in Table 5. About 55% of the rare earth elements contained in the rare earth magnet of the raw material are transferred to slag, and the remaining about 45% form oxides (Nd 2 O 3 -Dy 2 O 3 ) and are dispersed in the alloy phase. It was. The content of iron contained in the slag after the treatment was 1% or less.

Figure 0006229846
Figure 0006229846

Figure 0006229846
Figure 0006229846

〔比較例1〕
鉄粉とシリコン塊の混合物(Fe:34wt%、Si:66wt%、約24g)を粉砕し、黒鉛ルツボに装入して不活性雰囲気下で1300℃にて60分保持した後、試料を急冷しFe−Si合金を回収した。このFe−Si合金を用いた以外は実施例1と同様の条件で希土類磁石粉末(約6g)とNa2O−SiO2スラグ(約15g)の混合物を加熱溶融し、スラグ相と合金相を回収した。処理前と処理後のスラグ相を表12に示す。処理後の合金相の組成を表13に示す。なお、希土類磁石粉末の組成は表4と同じ、処理前のスラグ相の組成は表5と同じである。原料の稀土類磁石に含まれている希土類元素の一部は金属として、他の一部は酸化物(Nd23とDy23)の状態で合金中に残留し、スラグで回収できなかった。
[Comparative Example 1]
A mixture of iron powder and silicon lump (Fe: 34wt%, Si: 66wt%, about 24g) was pulverized, charged in a graphite crucible and held at 1300 ° C for 60 minutes under an inert atmosphere, and then the sample was rapidly cooled The Fe—Si alloy was recovered. A mixture of rare earth magnet powder (about 6 g) and Na 2 O—SiO 2 slag (about 15 g) was heated and melted under the same conditions as in Example 1 except that this Fe—Si alloy was used, and the slag phase and the alloy phase were separated. It was collected. Table 12 shows the slag phase before and after the treatment. Table 13 shows the composition of the alloy phase after the treatment. The composition of the rare earth magnet powder is the same as in Table 4, and the composition of the slag phase before the treatment is the same as in Table 5. Part of rare earth elements contained in rare earth magnets as raw materials is metal, and the other part remains in the state of oxides (Nd 2 O 3 and Dy 2 O 3 ) and can be recovered by slag. There wasn't.

Figure 0006229846
Figure 0006229846

Figure 0006229846
Figure 0006229846

希土類元素が濃縮されるスラグは、希土類元素を精製する原料として利用できる。処理後のFe−Si(フェロシリコン)合金は商品価値が高く再利用できる可能性は大きい。 Slag in which rare earth elements are concentrated can be used as a raw material for refining rare earth elements. The processed Fe—Si (ferrosilicon) alloy has a high commercial value and is highly likely to be reused.

Claims (4)

希土類元素と鉄を含む原料を、FeリッチのFe−Si合金とアルカリ金属酸化物−シリカ系スラグの混合物に加え、不活性雰囲気下ないし還元雰囲気下で、1250℃〜1550℃に加熱溶融して希土類元素を上記スラグに移行させる一方、鉄をFeリッチのFe−Si溶融合金に移行させることによって希土類元素と鉄を分離する方法であって、上記Fe−Si合金としてFeを65〜90wt%含むFe−Si合金を用い、上記アルカリ金属酸化物−シリカ系スラグとしてNa Oを35〜50wt%含むNa O−SiO 系スラグ、またはCaO5wt%およびNa O33wt%およびSiO 62wt%を含むCaO−Na O−SiO 系スラグを用いることを特徴とする希土類元素と鉄の分離回収方法。 A raw material containing a rare earth element and iron, Fe-rich Fe-Si alloy and an alkali metal oxide - added to a mixture of silica-based slag, under or under a reducing atmosphere an inert atmosphere, and heated and melted to 1250 ° C. to 1550 ° C. while shifting the rare earth element in the slag, iron to a process for separating rare earth elements and iron by transferring to a Fe-Si molten alloy of Fe-rich, containing 65~90Wt% of Fe as the Fe-Si alloy using Fe-Si alloy, the alkali metal oxide - containing Na 2 O-SiO 2 slag containing 35-50 wt% of Na 2 O as the silica-based slag or CaO5wt%, and Na 2 O33wt% and SiO 2 62 wt% A method for separating and recovering rare earth elements and iron, using CaO—Na 2 O—SiO 2 slag . 原料に含まれる鉄が移行したFe−Si合金を回収し、このFeリッチのFe−Si合金にシリコンを添加してFe−Si比を調整し、これを原料溶融用のFe−Si合金として再利用する請求項1に記載する希土類元素と鉄の分離回収方法。 The Fe-Si alloy from which the iron contained in the raw material has been transferred is recovered, and silicon is added to the Fe-rich Fe-Si alloy to adjust the Fe-Si ratio. The method for separating and recovering rare earth elements and iron according to claim 1 to be used. 希土類元素を含むアルカリ金属酸化物−シリカ系スラグを回収し、該スラグを水や酸に溶解して希土類元素を浸出させ、残渣のシリカを回収し、該シリカにアルカリ金属酸化物を添加してアルカリ金属酸化物−シリカ比を調整し、これを原料溶融用のアルカリ金属酸化物−シリカ系スラグとして再利用する請求項1または請求項2の何れかに記載する希土類元素と鉄の分離回収方法。 Collect alkali metal oxide-silica-based slag containing rare earth elements, dissolve the slag in water or acid to leach rare earth elements, collect residual silica, and add alkali metal oxide to the silica. The method for separating and recovering rare earth elements and iron according to claim 1 or 2 , wherein the ratio of alkali metal oxide-silica is adjusted and reused as an alkali metal oxide-silica slag for melting raw materials. . 希土類元素と鉄を含む原料として希土類磁石のスクラップを用いる請求項1〜請求項3の何れかに記載する希土類元素と鉄の分離回収方法。
The method for separating and recovering rare earth elements and iron according to any one of claims 1 to 3 , wherein rare earth magnet scrap is used as a raw material containing rare earth elements and iron.
JP2014067735A 2014-03-28 2014-03-28 Separation and recovery method of rare earth elements and iron Active JP6229846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067735A JP6229846B2 (en) 2014-03-28 2014-03-28 Separation and recovery method of rare earth elements and iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067735A JP6229846B2 (en) 2014-03-28 2014-03-28 Separation and recovery method of rare earth elements and iron

Publications (2)

Publication Number Publication Date
JP2015190003A JP2015190003A (en) 2015-11-02
JP6229846B2 true JP6229846B2 (en) 2017-11-15

Family

ID=54424774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067735A Active JP6229846B2 (en) 2014-03-28 2014-03-28 Separation and recovery method of rare earth elements and iron

Country Status (1)

Country Link
JP (1) JP6229846B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6641593B2 (en) * 2016-01-12 2020-02-05 三菱マテリアル株式会社 Rare earth element and iron separation method
JP7378900B2 (en) * 2020-03-12 2023-11-14 株式会社神戸製鋼所 How to recover valuable metals
CN115418507B (en) * 2022-09-30 2023-07-21 内蒙古科技大学 Method for separating rare earth from rare earth slag by natural gravity sedimentation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466826A (en) * 1983-01-27 1984-08-21 Ov-Eng Oy Process for recovering metal values from alloy scraps
JP3894061B2 (en) * 2001-07-10 2007-03-14 信越化学工業株式会社 Rare earth magnet scrap and / or sludge remelting method, magnet alloy and rare earth sintered magnet
KR100853089B1 (en) * 2001-07-10 2008-08-19 신에쓰 가가꾸 고교 가부시끼가이샤 Remelting Process of Rare Earth Magnet Scrap and/or Sludge, and Magnet-Forming Alloy and Sintered Rare Earth Magnet
JP4243461B2 (en) * 2002-08-06 2009-03-25 学校法人千葉工業大学 Rare earth metal recovery method
JP4354259B2 (en) * 2003-11-27 2009-10-28 新日鉄マテリアルズ株式会社 Slag separation method in silicon refining
JP2006077264A (en) * 2004-09-07 2006-03-23 Kenichi Machida METHOD FOR RECYCLING RARE-EARTH SINTERED MAGNET AND TRANSITION-METAL BASED SCRAP, AND METHOD FOR MANUFACTURING MAGNETIC-MATERIAL POWDER FOR GHz BAND WAVE ABSORBER AND METHOD FOR MANUFACTURING WAVE ABSORBER
JP4997600B2 (en) * 2007-10-18 2012-08-08 独立行政法人産業技術総合研究所 Method for recovering rare earth elements from phosphors

Also Published As

Publication number Publication date
JP2015190003A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP5273241B2 (en) Method for recovering rare earth elements from RE-TM mixture
Bian et al. Extraction of rare earth elements from permanent magnet scraps by FeO–B 2 O 3 flux treatment
US11279987B2 (en) Separation method of rare earth element and iron and rare earth element-containing slag
WO2015016086A1 (en) Method for recovering zinc from electric-furnace steelmaking dust and device for recovering zinc from electric-furnace steelmaking dust
Takeda et al. Recycling of rare earth magnet waste by removing rare earth oxide with molten fluoride
CN108359798A (en) A method of rapidly and efficiently recycling neodymium iron boron waste material
JP6229846B2 (en) Separation and recovery method of rare earth elements and iron
JP5767993B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JP6478113B2 (en) Recovery method of rare earth elements
Yamaguchi et al. Oxidative removal of Cu from carbon-saturated iron via Ag phase into B2O3 flux
JP5977385B2 (en) Method for enriching rare earth elements from rare earth-containing materials
KR20150042018A (en) Refining method of rare-earth metals by vacuum molten process and apparatus for the manufacturing
JP6425018B2 (en) Separation and recovery method of rare earth elements
JP5905782B2 (en) Method for enriching rare earth elements from rare earth-containing materials
Tang et al. Recycling the rare earth elements from waste NiMH batteries and magnet scraps by pyrometallurgical processes
JP2021175818A (en) Method of recovering rare earth oxide from rare earth element-containing substance
Jakobsson et al. Recovery of rare earth elements from the ferrous fraction of electronic waste
WO1995006141A1 (en) Methods for assaying and recovering precious metals
RU2521035C2 (en) Method of recovery of secondary platinum with radioactive plutonium contamination
JP2014177666A (en) Method of recovering renewable resource, regenerated rare earth oxide, regenerated ferroboron and regenerated resource
KR101522707B1 (en) Deoxidation method of the neodymium metal by metal calcium vapour and apparatus for the same
JP5678470B2 (en) Treatment method of copper removal slag
JP2016186121A (en) Method for recovering rare earth element from rare earth element-containing product
Liu et al. Niobium and phosphorus behavior during melting-separation process of pre-reduced niobium ore concentrate
JP2016033246A (en) Method for separating rare earth element and iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6229846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150