JPS63182216A - Method for separation and recovery of rare earth element - Google Patents

Method for separation and recovery of rare earth element

Info

Publication number
JPS63182216A
JPS63182216A JP62008889A JP888987A JPS63182216A JP S63182216 A JPS63182216 A JP S63182216A JP 62008889 A JP62008889 A JP 62008889A JP 888987 A JP888987 A JP 888987A JP S63182216 A JPS63182216 A JP S63182216A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
alloy
acid
earth elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62008889A
Other languages
Japanese (ja)
Inventor
Michihiko Fujine
藤根 道彦
Bunkichi Mogi
茂木 文吉
Mitsuaki Asano
浅野 光章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62008889A priority Critical patent/JPS63182216A/en
Publication of JPS63182216A publication Critical patent/JPS63182216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain rare earth element with high purity at high yield and in the industrial scale by adding oxalic acid to a soln., which is obtained by adding an inorganic acid to an alloy contg. rare earth element, and adjusting pH. CONSTITUTION:The soln. dissolved alloy is obtained by allowing the alloy for magnet to dissolve into HCl, HNO3 or aqua regia of the mixture of these acids and removing the undissolved matter. The precipitate of the oxalate of the rare earth element is formed by adding the oxalic acid of 1.5-2.5 times molar mat. of the rare earth element amt. to the above-mentioned soln. and adjusting to pH 0.5-2.0 with adding a pH adjusting agent such as NH4OH. Next, the rare earth element (e.g. Sm2O3) is recovered by heat-decomposing the oxalate which is obtained by filtering, separating and crystallizing the obtained precipitate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば希土類磁石用合金屑からの希土類元素
の分離回収方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for separating and recovering rare earth elements from, for example, alloy scrap for rare earth magnets.

(従来の技術) 最近、希土類元素合金が磁性材料として注目されてきて
おり、中でもSmCo5 、SmCoq 、5lltC
Q+tなどのSta −Co系、並びにNdzF Q 
+ JなどのNd−Fe−B系などの希土類磁石用合金
が知られている。
(Prior art) Rare earth element alloys have recently attracted attention as magnetic materials, and among them, SmCo5, SmCoq, 5lltC
Sta-Co series such as Q+t, as well as NdzF Q
Rare earth magnet alloys such as Nd-Fe-B series such as +J are known.

ところで、かかる合金を使用して磁性部材を製造した後
、当然のことながら、合金屑が生じる。
By the way, after manufacturing a magnetic member using such an alloy, alloy waste is naturally generated.

周知のように、希土類元素は高価なものが多いので、こ
れらの合金屑から希土類元素を分離回収して再利用する
ことが望まれている。
As is well known, many rare earth elements are expensive, so it is desired to separate and recover rare earth elements from these alloy scraps and reuse them.

従来、このような希土類合金から希土類元素を分離回収
する方法としては、該合金から溶媒抽出法により希土類
元素を分離したのち、しゅう酸を添加してしゅう酸塩と
して回収する方法が知られている。
Conventionally, a known method for separating and recovering rare earth elements from such rare earth alloys is to separate rare earth elements from the alloy by a solvent extraction method, and then add oxalic acid to recover them as oxalates. .

(発明が解決しようとする問題点) しかしながら、かかる方法は連続処理法であるため、大
量の希土類元素の処理には有効であるものの、処理量が
比較的少量である場合の工業的な利用は未だ充分とは言
い難い。
(Problems to be Solved by the Invention) However, since this method is a continuous processing method, although it is effective for processing large amounts of rare earth elements, it cannot be used industrially when the processing amount is relatively small. It is still far from sufficient.

本発明は上記従来の問題点に鑑みてなされたもので、例
えば希土類磁石用合金屑から希土類元素を分離回収する
に際し、回収率が高く、しかも回収された希土類元素が
高純度である希土類元素の分離回収方法を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned conventional problems. The purpose is to provide a separation and recovery method.

(問題点を解決するための手段および作用)本発明は、
先ず希土類元素を含有する合金を無機酸に溶解し、この
溶液にしゅう酸を添加して希土類元素をしゅう酸塩とし
て析出させるに当たり、前記溶液のpHと希土類元素の
回収率及び純度との間に密接な関係があるという知見に
基づくものである。
(Means and effects for solving the problems) The present invention has the following features:
First, an alloy containing a rare earth element is dissolved in an inorganic acid, and oxalic acid is added to this solution to precipitate the rare earth element as an oxalate. This is based on the knowledge that there is a close relationship.

即ち、本発明は希土類元素を含有する合金から希土元素
を分離回収する方法において、前記合金を無機酸に溶解
して不溶残渣を除去したのち、得られた溶液にしゅう酸
を添加するとともに、pHを0.5〜2.0の範囲に調
整して前記希土類元素をしゅろ酸塩として析出させるこ
ととしたものである。
That is, the present invention provides a method for separating and recovering rare earth elements from an alloy containing rare earth elements, in which the alloy is dissolved in an inorganic acid to remove insoluble residues, and then oxalic acid is added to the resulting solution. The rare earth element is precipitated as palmate by adjusting the pH to a range of 0.5 to 2.0.

本発明の希土類元素の分離回収方法において、出発物質
である希土類合金としては、希土類元素を含むものであ
れば、と(に限定されるものではないが、前述したよう
な、Sm−Co系及びNd−Fe−B系合金を始めとす
る希土類磁石用合金などをあげることができる。
In the rare earth element separation and recovery method of the present invention, the rare earth alloy that is the starting material may include (but is not limited to) those containing rare earth elements, such as Sm-Co and Examples include alloys for rare earth magnets, including Nd-Fe-B alloys.

以下、本発明による分離回収工程を順を追って説明する
Hereinafter, the separation and recovery process according to the present invention will be explained step by step.

先ず、希土類合金を無機酸に溶解する。この無機酸とし
ては希土類合金を溶解するものであればよいが、合金溶
解時に残渣が殆ど残らないものとして、塩酸、硝酸、及
びこれら2種の混酸(体積比で3:1)である王水をあ
げることができる。
First, a rare earth alloy is dissolved in an inorganic acid. This inorganic acid may be any inorganic acid that can dissolve the rare earth alloy, but hydrochloric acid, nitric acid, and aqua regia, which is a mixed acid of these two (3:1 by volume), can be used as an inorganic acid that leaves almost no residue when the alloy is dissolved. can be given.

第1図は上記の各酸によりSm−Co合金を溶解した時
の分解残渣の割合(%ンを示すものであり、特に塩酸及
び王水が好適であることが図からも明らかである。なお
、この無機酸による溶解時に適当な温度に加熱してもよ
い。
Figure 1 shows the proportion (%) of decomposition residue when Sm-Co alloy is dissolved with each of the acids mentioned above, and it is clear from the figure that hydrochloric acid and aqua regia are particularly suitable. , and may be heated to an appropriate temperature during dissolution with this inorganic acid.

次いで、上記により得られた酸溶液をろ過もしくは遠心
分離することにより、不溶残渣を除去したのち、得られ
た溶液にしゅう酸を添加するとともに当該溶液のpH1
)1整を行う、この工程は、しゅろ酸を添加したのちに
溶液のpHを調整することとしても、また逆に、最初に
溶液のp)(をある程度調整しておき、次いで、しゅう
酸を添加することとしてもよく、とにかく最終的な液の
pHが上記した値、即ち、0.5〜2.0となるように
すれば特に限定されるものではない。
Next, the acid solution obtained above is filtered or centrifuged to remove insoluble residues, and then oxalic acid is added to the solution obtained, and the pH of the solution is adjusted to 1.
) This step can be used to adjust the pH of the solution after adding oxalic acid, or conversely, first adjust the p)( of the solution to some extent, then add oxalic acid. may be added, and there is no particular limitation as long as the pH of the final solution is the above-mentioned value, that is, 0.5 to 2.0.

第2図は希土類元素としてSmを使用した場合のしゅう
酸の添加量とSmの回収率との関係を示し、横軸はしゅ
う酸(Hz Ct Oa)/ S mモル比を、縦軸は
Sm回収率(%)を夫々表す、この図からも明らかなよ
うに、しゅう酸の添加量はモル比で希土類元素の1.5
倍以上であることが好ましく、特に、1.5〜2.5倍
が好適である。
Figure 2 shows the relationship between the amount of oxalic acid added and the recovery rate of Sm when Sm is used as the rare earth element, with the horizontal axis representing the oxalic acid (Hz Ct Oa)/S m molar ratio and the vertical axis representing the Sm As is clear from this figure, which shows the recovery rate (%), the amount of oxalic acid added is 1.5 molar ratio of the rare earth elements.
It is preferably at least twice as large, and particularly preferably from 1.5 to 2.5 times.

上述したように、溶液の最終的なp)lの値は0.5〜
2.0の範囲になるようにすることが必要である。
As mentioned above, the final p)l value of the solution is between 0.5 and
It is necessary to keep it within the range of 2.0.

これは、次のような理由による。即ち、3m−C。This is due to the following reasons. That is, 3m-C.

合金を塩酸に溶解させた溶液から、しゅう酸を添加した
のちに、pHを調整してSmをSm、03として回収す
る場合を例にとると、Sm回収率とp)(との関係、及
び、回収されたS10.の純度とpHとの関係は夫々第
3図及び第4図に示したようになる。なお、第3図及び
第4図において、○、Δ及び・印は夫々酸として、塩酸
、硝酸及び王水を用いた場合を示す、第3図からpHの
値が高い程Smの回収率が向上することがわかる。一方
、第4図によると、回収Sm、o、の純度はDHが低く
なる程高くなる。従って、高回収率と高純度の双方を満
足するpHの値の範囲は0.5〜2.0、好ましくは0
.8〜1.5である。
Taking as an example the case where oxalic acid is added to a solution of an alloy dissolved in hydrochloric acid, the pH is adjusted and Sm is recovered as Sm,03, the relationship between the Sm recovery rate and p) (and The relationship between the purity and pH of recovered S10. From Figure 3, which shows the case of using hydrochloric acid, nitric acid, and aqua regia, it can be seen that the higher the pH value, the better the recovery rate of Sm is.On the other hand, according to Figure 4, the purity of recovered Sm,o, The lower the DH, the higher the pH value. Therefore, the pH value range that satisfies both high recovery rate and high purity is 0.5 to 2.0, preferably 0.
.. It is 8 to 1.5.

なお、このpHm整工程において使用するpH調整剤と
しては、アンモニア水(N)1..0)I) 、水酸化
ナトリウム(NaOH)、炭酸ナトリウム(NazCO
i)などがあげられるが、特にNH,OHはCo等の金
属と錯イオンを形成し易く、沈殿を生じにくいため好ま
しい。
In addition, as a pH adjuster used in this pH adjustment process, ammonia water (N) 1. .. 0)I), sodium hydroxide (NaOH), sodium carbonate (NazCO
i), etc., but NH and OH are particularly preferred because they easily form complex ions with metals such as Co and are less likely to cause precipitation.

また、上記においては、しゅう酸を添加したのちにpH
m整を行う場合について述べたが、pHを予め調整した
のちにしゅう酸を添加して最終的なpHを0.5〜2.
0となるような工程によっても上記と同様な結果が得ら
れることが確認されている。第4図には、かかる工程に
より希土類元素を回収した場合のpHと純度との関係を
×印で示した。この図からも上記と同様な関係があるこ
とがわかる。
In addition, in the above, after adding oxalic acid, the pH
As described above, the pH is adjusted in advance and then oxalic acid is added to adjust the final pH to 0.5 to 2.
It has been confirmed that the same results as above can be obtained by a process in which the value is 0. In FIG. 4, the relationship between pH and purity when rare earth elements are recovered through such a process is indicated by an x mark. This figure also shows the same relationship as above.

このようにして、析出したしゅう酸塩の沈殿をろ過した
のち、沈殿を結晶化して希土類元素のしゅう酸塩を得る
。なお、更に、このしゆう酸塩を熱分解して希土類の酸
化物として回収することもできる。
After the oxalate precipitate thus precipitated is filtered, the precipitate is crystallized to obtain rare earth element oxalate. Furthermore, this oxalate salt can also be thermally decomposed and recovered as a rare earth oxide.

また、Nd−Fe−B系合金についても、上記したSm
−Co系合金と同様、溶解に使用する無機酸、しゅう酸
添加量、pHと回収率及び純度とは、第1図乃至第4図
に示したような関係があることが確認されている。
Also, regarding Nd-Fe-B alloys, the above-mentioned Sm
Similar to -Co alloys, it has been confirmed that there is a relationship between the inorganic acid used for dissolution, the amount of oxalic acid added, the pH, the recovery rate, and the purity as shown in FIGS. 1 to 4.

(実施例) 実施例1〜7、比較例1.2 第1表に示した組成を有するSm−Co系合金を出発物
質として、第2表に示した酸で熔解して不溶残渣をろ過
し、しゅう酸を添加したのち、アンモニア水で表示のp
 Hに調整してSmのしゆう酸塩の分離回収を行い、さ
らに、このしゅう酸塩を熱分解して得られたSm、O,
の回収率、純度及び残留不純物量を第2表中に示した。
(Example) Examples 1 to 7, Comparative Example 1.2 Using an Sm-Co alloy having the composition shown in Table 1 as a starting material, it was melted with the acid shown in Table 2, and the insoluble residue was filtered. , After adding oxalic acid, add ammonia water to the indicated p.
The oxalate of Sm was separated and recovered by adjusting the temperature to
The recovery rate, purity and amount of residual impurities are shown in Table 2.

但し、実施例7のみはpHを調整後にしゅう酸を添加し
てしゅう酸塩を析出回収した。なお、回収率はSmに換
算した値を示した。
However, only in Example 7, oxalic acid was added after adjusting the pH to precipitate and collect oxalate. Note that the recovery rate is a value converted to Sm.

実施例8〜1)、比較例3.4 第3表に示した組成を有するNd−Fe−B系合金を出
発物質として、第4表に示した酸で溶解して不溶残渣を
ろ過し、しゅう酸を添加したのち、アンモニア水で表示
のpHに調整してNdのしゆう酸塩の分離回収を行い、
更に熱分解して得られたN d 、O,の回収率、純度
及び残留不純物量を第4表中に示した。但し、実施例1
)のみはpHを調整後にしゅう酸を添加してしゅう酸塩
を析出回収した。なお、回収率はNdに換算した値を示
した。
Examples 8 to 1), Comparative Example 3.4 Using an Nd-Fe-B alloy having the composition shown in Table 3 as a starting material, it was dissolved with the acid shown in Table 4, and the insoluble residue was filtered, After adding oxalic acid, the pH was adjusted to the indicated value with aqueous ammonia, and the oxalate of Nd was separated and recovered.
Furthermore, the recovery rate, purity, and amount of residual impurities of N d and O obtained by thermal decomposition are shown in Table 4. However, Example 1
), oxalic acid was added after adjusting the pH to precipitate and collect oxalate. Note that the recovery rate is a value converted to Nd.

(以下余白) 上記の第2表及び第4表からも明らかなように、本発明
の分離回収方法によるものは、回収率、純度共に極めて
良好であることが確認された。
(The following is a blank space) As is clear from Tables 2 and 4 above, it was confirmed that the separation and recovery method of the present invention had extremely good recovery rates and purity.

(発明の効果) 以上説明したように本発明によれば、希土類元素を含存
する合金から希土元素を分離回収する方法において、前
記合金を無機酸に溶解して不溶残渣を除去したのち、得
られた溶液にしゅう酸を添加するとともに、pHを0.
5〜2.0の範囲に調整して前記希土類元素をしゅう酸
塩として析出させることとしたので、回収率及び分離し
た希土類元素の純度が共に高く、工業的な規模で十分利
用することが可能である。従って、特に希土類磁石用合
金屑からの希土類元素の回収などに適用して極めて有用
である。
(Effects of the Invention) As explained above, according to the present invention, in a method for separating and recovering rare earth elements from an alloy containing rare earth elements, after dissolving the alloy in an inorganic acid and removing insoluble residue, the obtained Add oxalic acid to the solution and adjust the pH to 0.
Since the rare earth elements are precipitated as oxalates by adjusting the concentration to a range of 5 to 2.0, both the recovery rate and the purity of the separated rare earth elements are high, and they can be fully utilized on an industrial scale. It is. Therefore, it is extremely useful especially when applied to the recovery of rare earth elements from alloy scraps for rare earth magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSm −Co合金を各種酸で溶解したときの分
解残渣の割合を示す図、第2図はしゅう酸の添加量とS
m回収率との関係を示す図、第3図はしゅう酸添加時の
])HとSm回収率との関係を示す図、第4図はしゅう
酸添加時のpHとSm、O,の純度との関係を示す図で
ある。
Figure 1 shows the proportion of decomposition residue when Sm-Co alloy is dissolved with various acids, and Figure 2 shows the amount of oxalic acid added and S
Figure 3 shows the relationship between H and Sm recovery rate when oxalic acid is added. Figure 4 shows the relationship between pH and Sm, O, purity when oxalic acid is added. FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)希土類元素を含有する合金から希土元素を分離回
収する方法において、前記合金を無機酸に溶解して不溶
残渣を除去したのち、得られた溶液にしゅう酸を添加す
るとともに、pHを0.5〜2.0の範囲に調整して前
記希土類元素をしゅう酸塩として析出させることを特徴
とする希土類元素の分離回収方法。
(1) In a method for separating and recovering rare earth elements from an alloy containing rare earth elements, the alloy is dissolved in an inorganic acid to remove insoluble residues, and then oxalic acid is added to the resulting solution, and the pH is adjusted. A method for separating and recovering rare earth elements, characterized in that the rare earth elements are adjusted to a range of 0.5 to 2.0 and precipitated as oxalate.
(2)前記無機酸が、塩酸、硝酸もしくはこれらの混酸
であることを特徴とする特許請求の範囲第1項記載の希
土類元素の分離回収方法。
(2) The method for separating and recovering rare earth elements according to claim 1, wherein the inorganic acid is hydrochloric acid, nitric acid, or a mixed acid thereof.
(3)前記pHを調整する工程に、アンモニア水を用い
ることを特徴とする特許請求の範囲第1項記載の希土類
元素の分離回収方法。
(3) The method for separating and recovering rare earth elements according to claim 1, wherein aqueous ammonia is used in the step of adjusting the pH.
JP62008889A 1987-01-20 1987-01-20 Method for separation and recovery of rare earth element Pending JPS63182216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008889A JPS63182216A (en) 1987-01-20 1987-01-20 Method for separation and recovery of rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008889A JPS63182216A (en) 1987-01-20 1987-01-20 Method for separation and recovery of rare earth element

Publications (1)

Publication Number Publication Date
JPS63182216A true JPS63182216A (en) 1988-07-27

Family

ID=11705241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008889A Pending JPS63182216A (en) 1987-01-20 1987-01-20 Method for separation and recovery of rare earth element

Country Status (1)

Country Link
JP (1) JPS63182216A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164810A (en) * 1990-10-26 1992-06-10 Shin Etsu Chem Co Ltd Production of rare earth element oxide
US5595714A (en) * 1995-05-16 1997-01-21 Dibra S.P.A. Recovery of gadolinium and its complexing agents from aqueous solutions containing their complexes
US5961938A (en) * 1996-02-13 1999-10-05 Santoku Metal Industry Co., Ltd Method for recovering reusable elements from rare earth-iron alloy
US5980841A (en) * 1996-02-13 1999-11-09 Santoku Metal Industry Co., Ltd. Method for recovering reusable elements from rare earth-nickel alloy
WO2003104149A1 (en) * 2002-06-07 2003-12-18 Showa Denko K.K. Process for recovering rare earth oxide from waste liquid containing rare earth element, and process for producing rare earth oxide using same
WO2007105714A1 (en) * 2006-03-13 2007-09-20 Showa Denko K.K. Method of recovering rare earth element from composition containing rare earth fluoride
CN100402431C (en) * 2002-06-07 2008-07-16 昭和电工株式会社 Process for recovering rare earth oxide from waste liquid containing rare earth element, and process for producing rare earth oxide using same
WO2014144463A1 (en) * 2013-03-15 2014-09-18 The University Of Houston System Methods and systems for recovering rare earth elements
CN108557864A (en) * 2018-06-05 2018-09-21 常州市卓群纳米新材料有限公司 A kind of D50:The preparation method and application of the samarium oxide of 7-10um

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164810A (en) * 1990-10-26 1992-06-10 Shin Etsu Chem Co Ltd Production of rare earth element oxide
US5595714A (en) * 1995-05-16 1997-01-21 Dibra S.P.A. Recovery of gadolinium and its complexing agents from aqueous solutions containing their complexes
US5961938A (en) * 1996-02-13 1999-10-05 Santoku Metal Industry Co., Ltd Method for recovering reusable elements from rare earth-iron alloy
US5980841A (en) * 1996-02-13 1999-11-09 Santoku Metal Industry Co., Ltd. Method for recovering reusable elements from rare earth-nickel alloy
WO2003104149A1 (en) * 2002-06-07 2003-12-18 Showa Denko K.K. Process for recovering rare earth oxide from waste liquid containing rare earth element, and process for producing rare earth oxide using same
CN100402431C (en) * 2002-06-07 2008-07-16 昭和电工株式会社 Process for recovering rare earth oxide from waste liquid containing rare earth element, and process for producing rare earth oxide using same
WO2007105714A1 (en) * 2006-03-13 2007-09-20 Showa Denko K.K. Method of recovering rare earth element from composition containing rare earth fluoride
WO2014144463A1 (en) * 2013-03-15 2014-09-18 The University Of Houston System Methods and systems for recovering rare earth elements
US9376735B2 (en) 2013-03-15 2016-06-28 University Of Houston System Methods and systems for recovering rare earth elements
CN108557864A (en) * 2018-06-05 2018-09-21 常州市卓群纳米新材料有限公司 A kind of D50:The preparation method and application of the samarium oxide of 7-10um

Similar Documents

Publication Publication Date Title
US5129945A (en) Scrap treatment method for rare earth transition metal alloys
JPS59146920A (en) Manufacture of pure metal silicon
JPH0772312B2 (en) Rare earth element recovery method
JPS63182216A (en) Method for separation and recovery of rare earth element
KR100578712B1 (en) Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching
JP3369855B2 (en) Method for producing high purity nickel aqueous solution
JP6478113B2 (en) Recovery method of rare earth elements
JP5596590B2 (en) Method for separating and recovering metal elements from rare earth magnet alloy materials
JPS634028A (en) Treatment for scrap containing rare earth element and iron
JP2007231379A (en) Method for collecting rare earth
JP2765740B2 (en) Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron
JP3307204B2 (en) Concentration separation and recovery method of rare earth metal
JPH01183415A (en) Method for separating and recovering rare earth element
JP4243230B2 (en) How to collect rare earth
US4908462A (en) Cobalt recovery method
US4599222A (en) Recovery of tungsten and rhenium
JP2890830B2 (en) Purification method of scandium oxide
JP2000144275A (en) Method for recovering rare earth element
JP2982829B2 (en) Recovery method for rare earth elements
JPS63496A (en) Method for purifying gallium electrolytic solution
US7214362B2 (en) Purification method for producing high purity niobium compound and/or tantalum compound
US20050123459A1 (en) Method of purifying niobium compound and/or tantalum compound
JP4243231B2 (en) How to collect rare earth
JP2004099975A (en) Process for recovering ruthenium and/or iridium
JP2014109039A (en) Method of recovering rare-earth element from alloy containing rare-earth element and iron