JPH01183415A - Method for separating and recovering rare earth element - Google Patents

Method for separating and recovering rare earth element

Info

Publication number
JPH01183415A
JPH01183415A JP63005410A JP541088A JPH01183415A JP H01183415 A JPH01183415 A JP H01183415A JP 63005410 A JP63005410 A JP 63005410A JP 541088 A JP541088 A JP 541088A JP H01183415 A JPH01183415 A JP H01183415A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
acid
added
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63005410A
Other languages
Japanese (ja)
Inventor
Michihiko Fujine
藤根 道彦
Mitsuaki Asano
浅野 光章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63005410A priority Critical patent/JPH01183415A/en
Publication of JPH01183415A publication Critical patent/JPH01183415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To recover a rare earth element in high yield and purity at a low cost, by dissolving a material containing the rare earth element in an acid, separating and removing insoluble substances, then adding an oxidizing agent and oxalic acid solution, adjusting pH to a prescribed value and precipitating the rare earth element as an oxalate. CONSTITUTION:A material, such as scrap of rare earth magnet, containing a rare earth element is dissolved in an acid (e.g., hydrochloric acid). Insoluble residues are then separated and removed and an oxidizing agent (e.g., nitric acid) is added simultaneously with, before or after the dissolution in the acid to oxidize contained iron, cobalt, etc. A solution of oxalic acid is subsequently added and aqueous ammonia, etc., is then added to adjust the pH of the solution to about 0.5-2. Thereby, the rare earth element is precipitated as an oxalate. The obtained precipitates are subsequently filtered, taken out, oxidized and roasted to afford the aimed oxide of the rare earth element (e.g., Sm2O3). As a result, since the impurities, such as Fe or Co, are previously oxidized, precipitation thereof as oxalates will not occur.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は1例えば希土類磁石のスクラップ等島土類元
素を含有する材料からの希土類元素の分離回収方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for separating and recovering rare earth elements from materials containing island earth elements, such as scraps of rare earth magnets.

(従来の技術) 希土類磁石、例えばS履−Co系磁石、Nd−Fe−B
系磁石は優れた磁石特性を有することから、焼結磁石と
して或いはポンド磁石等としてエレクトロニクス分野を
中心に広く用いられるようになって来ている。
(Prior art) Rare earth magnets, such as S-Co magnets, Nd-Fe-B
Since magnets have excellent magnetic properties, they have come to be widely used as sintered magnets, pound magnets, etc., mainly in the electronics field.

ところでこの希土類元素は高価であり、そこで希土類磁
石のスクラップ等の材料から希土用元素を分離回収する
ことが試みられている。
By the way, these rare earth elements are expensive, so attempts have been made to separate and recover rare earth elements from materials such as scraps of rare earth magnets.

而してかかる希土類元素を分離回収する方法としては、
希土類を含有する材料を酸溶解した後、リン酸ジアルキ
ルエステル化合物を含む有機溶媒を加えて希土類元素を
錯化合物として有機溶媒側に抽出し、しかる後これをシ
ュウ酸により沈殿させて分離回収する方法が知られてい
る(特開昭60−122718号)。
As a method for separating and recovering such rare earth elements,
A method in which a material containing a rare earth element is dissolved in an acid, an organic solvent containing a phosphoric acid dialkyl ester compound is added to extract the rare earth element as a complex compound into the organic solvent, and then this is precipitated with oxalic acid for separation and recovery. is known (Japanese Unexamined Patent Publication No. 122718/1983).

(発明が解決しようとする課題) しかしながらこの溶媒抽出法による希土類元素の分離回
収方法は連続処理法であるために、材料を大量に処理す
る場合には有効であるものの、比較的少量の材料を処理
する場合には不向きであってコスト高となってしまう。
(Problem to be solved by the invention) However, since this method of separating and recovering rare earth elements using solvent extraction is a continuous processing method, it is effective when processing a large amount of material, but it is effective when processing a relatively small amount of material. It is unsuitable for processing, resulting in high costs.

(課題を解決するための手段) 本発明はこのような課題を解決するためになされたもの
であり、その要旨は、希土類元素を含有する材料を酸に
溶解して不溶残液を分離除去するとともに、該酸溶解と
同時若しくは前後に酸化剤を添加し、その後シュウ酸溶
液を加え且つ溶液pHを所定PHに調整して希土類元素
をシュウ酸塩として沈殿させることにある。
(Means for Solving the Problems) The present invention has been made to solve such problems, and its gist is to dissolve a material containing a rare earth element in an acid and separate and remove the undissolved residual liquid. In addition, an oxidizing agent is added at the same time or before or after the acid dissolution, and then an oxalic acid solution is added and the solution pH is adjusted to a predetermined pH to precipitate the rare earth element as an oxalate.

ここで希土類元素を含有する材料とは、例えば5s−G
o系磁石、 Nd −Fe −B系磁石、Tb−Fe−
Go系合金のスクラップその他の材料であって、その種
類については特に限定されない。
Here, the material containing rare earth elements is, for example, 5s-G
o-based magnet, Nd-Fe-B-based magnet, Tb-Fe-
The material is Go-based alloy scrap or other material, and its type is not particularly limited.

本発明では先ずこのような希土類含有材料を酸に溶解し
て不溶残渣を除去する。ここで酸としては希土類含有材
料を溶解させ得る無機酸であれば何れも使用可能である
が、特にHC:l  、王水を用いた場合に不溶残渣が
少なく、好都合である。
In the present invention, such a rare earth-containing material is first dissolved in an acid and insoluble residues are removed. As the acid here, any inorganic acid that can dissolve the rare earth-containing material can be used, but it is particularly advantageous to use HC:l or aqua regia because it leaves less insoluble residue.

不溶残渣を除去するには濾過その他適宜の手段を用い、
そしてかかる残渣を除いた後に酸化剤を添加して酸化反
応させる。尚、酸化剤の添加は酸による溶解時に行って
も良いし、また酸溶解の前でも良い。
To remove insoluble residues, use filtration or other appropriate means,
After removing such residues, an oxidizing agent is added to cause an oxidation reaction. The oxidizing agent may be added during the acid dissolution or before the acid dissolution.

このように1本発明では希土類含有材料を後のシュウ酸
添加に先立って酸化反応させることを特徴としているが
、これは希土類含有材料中に含まれるFe、Go等がシ
ュウ酸添加によって塩を形成し、希土類元素とともに沈
殿するのを防止するためである。従って本発明では酸化
剤としてかかるFe 、 Go等を酸化し得るもの、例
えばHNO3,H2O2その他のものを用いることがで
きる。このうち)HNO3の場合には酸化力が適当であ
って良好な結果がもたらされる。
As described above, the present invention is characterized in that the rare earth-containing material is subjected to an oxidation reaction prior to the subsequent addition of oxalic acid. This is to prevent it from precipitating together with the rare earth elements. Accordingly, in the present invention, an agent capable of oxidizing such Fe, Go, etc., such as HNO3, H2O2, etc., can be used as an oxidizing agent. Among these, in the case of HNO3, the oxidizing power is appropriate and good results are brought about.

ここで酸化剤の添加量は、その濃度が0.5モル/交以
上、特に1.0〜1.3モル/交となるようにすること
が望ましい、0.5モル/交以下の濃度のときには酸化
剤添加による効果が薄いからである。尚、酸化剤濃度が
1.3モル/lを超えると希土類元素の回収率、純度共
に低下する。その具体的理由については明確に解ってい
ないが、酸化剤濃度が一定以上になると後に添加するシ
ュウ酸を分解してしまうから↑あると考えられる。
Here, the amount of the oxidizing agent added is preferably such that the concentration is 0.5 mol/cross or more, especially 1.0 to 1.3 mol/cross, and the concentration is 0.5 mol/cross or lower. This is because the effect of adding an oxidizing agent is sometimes small. Incidentally, if the oxidizing agent concentration exceeds 1.3 mol/l, both the recovery rate and the purity of rare earth elements decrease. Although the specific reason for this is not clearly understood, it is thought that this is because when the concentration of the oxidizing agent exceeds a certain level, it decomposes the oxalic acid that is added later.

これら酸溶解、酸化剤添加に続いて、次にシュウ酸溶液
を添加するとともにPH調整を行う。
Following acid dissolution and addition of an oxidizing agent, an oxalic acid solution is then added and the pH is adjusted.

シュウ酸の添加量としては、希土類元素に対してモル数
で1.5倍以上とすることが望ましく、特に1.5〜2
.5倍の範囲が好適である。シュウ酸の添加量を1.5
倍以上とした場合において希土類元素の回収率が高くな
り、また2、5倍以下とした場合には回収率とともに純
度も高くなることが確認されている。
The amount of oxalic acid added is desirably 1.5 times or more in moles relative to the rare earth element, especially 1.5 to 2
.. A range of 5 times is preferred. The amount of oxalic acid added is 1.5
It has been confirmed that the recovery rate of rare earth elements increases when the amount is increased by more than 2 times, and that the purity as well as the recovery rate increases when the amount is increased by 2 to 5 times or less.

上記pH調整は沈殿を最も高率で生ぜしめるための操作
であって、適当なpH範囲は0.5〜2.0(F) 範
囲であ6.Cc7)pHi!整はNHiOH。
The above pH adjustment is an operation to produce the highest rate of precipitation, and the appropriate pH range is 0.5 to 2.0 (F).6. Cc7) pHi! The adjustment is NHiOH.

NaOH、Na2GO3等のpH211整剤を添加する
ことにより行い、而してこのpn調整剤の添加はシュウ
酸添加の後に行っても良いし、またシュウ酸添加の前に
行うことも可能である。要するにシュウ酸を添加した後
に、液のpHが予め定めた適当な値となるようすれば良
いのである。尚PH調整剤としては上記NH40)1が
良好である。これはNH4OHがCO等の金属と錯イオ
ンを形成して沈殿し難くするからである。
This is done by adding a pH 211 adjuster such as NaOH, Na2GO3, etc., and the addition of this pn adjuster may be done after or before the addition of oxalic acid. In short, all that is required is to adjust the pH of the solution to a predetermined appropriate value after adding oxalic acid. Note that the above-mentioned NH40)1 is suitable as a pH adjuster. This is because NH4OH forms complex ions with metals such as CO, making it difficult to precipitate.

さて1本法に従ってシュウ酸を添加し且つpH調整する
と、材料中に含有されている希土類元素がシュウ酸と塩
を形成して沈殿して来る。このときFe、Go等が存在
するとこれらもシュウ酸塩を形成して沈殿して来るが1
本法では前の酸化工程でFe、Go等の成分が酸化され
ているため、これらがシュウ酸と塩を形成して沈殿する
のが防止される。即ち本発明は、Fe、Go等が酸化剤
によって酸化され、シュウ酸により沈殿し難くなるのに
対して、希土類元素の場合にはかかる酸化剤によって酸
化反応を受けず、従って後のシュウ酸添加によって希土
類元素のみが選択的に反応して不溶性の塩を形成するこ
とを利用しているのである。
Now, when oxalic acid is added and the pH is adjusted according to this method, the rare earth elements contained in the material form a salt with oxalic acid and precipitate. At this time, if Fe, Go, etc. are present, they also form oxalate and precipitate.
In this method, since components such as Fe and Go are oxidized in the previous oxidation step, these are prevented from forming salts with oxalic acid and precipitating. That is, in the present invention, Fe, Go, etc. are oxidized by an oxidizing agent and become difficult to precipitate by oxalic acid, whereas rare earth elements do not undergo an oxidation reaction by such an oxidizing agent, and therefore, the subsequent addition of oxalic acid This method takes advantage of the fact that only rare earth elements react selectively to form insoluble salts.

さてこのように沈殿が生じたらこれを濾過等の手段にて
分離すれば、希土類元素が塩の形で回収される。而して
これを酸化焙焼すれば希土類元素が酸化物の形で得られ
る。
Now, if a precipitate is formed in this way, if it is separated by means such as filtration, the rare earth element is recovered in the form of a salt. If this is oxidized and roasted, rare earth elements can be obtained in the form of oxides.

(実施例) 次に本発明の特徴をより明確にすべく、以下にその実施
例を詳述する。
(Example) Next, in order to clarify the characteristics of the present invention, examples thereof will be described in detail below.

S■−Go系磁石合金logを28m1のHCIに溶解
して不溶残液を濾過により除去した。その後濾液にHN
O3を種々の濃度で添加した後、シュウ酸をモル比でS
■の1.5倍量加え、続いてNH4OH添加により液の
pHを 1.2に調製して、8層をシュウ酸塩として沈
殿させた。この沈殿を濾過して取り出し、更に酸化焙焼
してS履203を得た。5層203の回収率、純度を調
査したところ第1図、第2図の如くであった。尚、第1
図において横軸はHNO3の濃度、縦軸はSm2O3の
回収率を示し、また第2図において横軸はHNO3の濃
度、縦軸はSm2O3の純度を示している。
The S--Go based magnet alloy log was dissolved in 28 ml of HCI, and the undissolved residual liquid was removed by filtration. Then add HN to the filtrate.
After adding O3 at various concentrations, oxalic acid was added in molar ratio S
1.5 times the amount of (1) was added, and then the pH of the solution was adjusted to 1.2 by adding NH4OH, and 8 layers were precipitated as oxalate. This precipitate was filtered and taken out, and further oxidized and roasted to obtain S-203. When the recovery rate and purity of the 5-layer 203 were investigated, the results were as shown in FIGS. 1 and 2. Furthermore, the first
In the figure, the horizontal axis shows the concentration of HNO3, and the vertical axis shows the recovery rate of Sm2O3, and in FIG. 2, the horizontal axis shows the concentration of HNO3, and the vertical axis shows the purity of Sm2O3.

図示のようにHNO3の濃度を0.5モル/1以上とし
た場合に511203が高率で回収され、またその純度
も高くなる。特に1.0−1.3モル/見とした場合に
回収率、純度が一段と高率、高純度となる。
As shown in the figure, when the concentration of HNO3 is set to 0.5 mol/1 or more, 511203 is recovered at a high rate and its purity also becomes high. In particular, when the ratio is 1.0 to 1.3 mol/view, the recovery rate and purity become even higher.

尚、Nd−Fe−B系合金及びTb −Fe −B系合
金においても上記と同様の結果が得られた。
Note that similar results were obtained for Nd-Fe-B alloys and Tb-Fe-B alloys.

以上本発明を詳述したが1本発明はその趣旨を逸脱しな
い範囲において、様々な変更を加えた態様において実施
することが可ス克である。
Although the present invention has been described in detail above, the present invention can be implemented in various modified forms without departing from the spirit thereof.

(発明の効果) このように1本発明によれば希土類磁石合金のスクラッ
プ等材料から希土類元素を安価に且つ高率、高純度で回
収することができ、稀少資源である希土類元素を有効に
活用できるようになる。
(Effects of the Invention) As described above, according to the present invention, rare earth elements can be recovered from materials such as scraps of rare earth magnet alloys at low cost, at a high rate, and with high purity, and rare earth elements, which are rare resources, can be effectively utilized. become able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において求めたHNO3の濃度
とSl2O3の回収率との関係を示す図であり、第2図
はHN(hの濃度とSm2O3の純度との関係を示す図
である。 第1図 HNO3濃度(モh/fL) 第2図 HNO3濃度 (モル/ 交 )
Figure 1 is a diagram showing the relationship between the concentration of HNO3 and the recovery rate of Sl2O3 determined in the example of the present invention, and Figure 2 is a diagram showing the relationship between the concentration of HN (h) and the purity of Sm2O3. Figure 1 HNO3 concentration (mol/fL) Figure 2 HNO3 concentration (mol/fL)

Claims (1)

【特許請求の範囲】[Claims] 希土類元素を含有する材料を酸に溶解して不溶残渣を分
離除去するとともに、該酸溶解と同時若しくは前後に酸
化剤を添加し、その後シュウ酸溶液を加え且つ溶液pH
を所定pHに調整して希土類元素をシュウ酸塩として沈
殿させることを特徴とする希土類元素の分離回収方法。
A material containing a rare earth element is dissolved in an acid to separate and remove insoluble residue, and an oxidizing agent is added at the same time or before or after the acid dissolution, and then an oxalic acid solution is added and the solution pH is adjusted.
1. A method for separating and recovering rare earth elements, which comprises adjusting the pH to a predetermined value to precipitate the rare earth elements as oxalates.
JP63005410A 1988-01-13 1988-01-13 Method for separating and recovering rare earth element Pending JPH01183415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63005410A JPH01183415A (en) 1988-01-13 1988-01-13 Method for separating and recovering rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63005410A JPH01183415A (en) 1988-01-13 1988-01-13 Method for separating and recovering rare earth element

Publications (1)

Publication Number Publication Date
JPH01183415A true JPH01183415A (en) 1989-07-21

Family

ID=11610376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63005410A Pending JPH01183415A (en) 1988-01-13 1988-01-13 Method for separating and recovering rare earth element

Country Status (1)

Country Link
JP (1) JPH01183415A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049363A (en) * 1989-08-03 1991-09-17 Westinghouse Electric Corp. Recovery of scandium, yttrium and lanthanides from titanium ore
EP0790321A1 (en) * 1996-02-13 1997-08-20 Santoku Metal Industry Co., Ltd. Method for recovering reusable elements from rare earth-iron alloy scrap containing cobalt
US5662874A (en) * 1990-11-13 1997-09-02 Rhone-Poulenc Chimie Preparation of ammonium rare earth double oxalates and rare earth oxides produced therefrom
WO2013060689A1 (en) 2011-10-24 2013-05-02 Prayon Sa Method for treating phosphate rock
JP2014046295A (en) * 2012-09-03 2014-03-17 Shimane Univ Neodymium recovery method
FR2997095A1 (en) * 2012-10-24 2014-04-25 Commissariat Energie Atomique PROCESS FOR ISOLATING RARE EARTHS AND / OR APPARENT METAL ELEMENT (S) CONTAINED IN THE MAGNETIC PHASE OF PERMANENT MAGNETS.
JP2018098430A (en) * 2016-12-16 2018-06-21 日立金属株式会社 Method for producing r-t-b-based sintered magnet
US10351931B2 (en) * 2015-01-15 2019-07-16 Worcester Polytechnic Institute Separation of recycled rare earths

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049363A (en) * 1989-08-03 1991-09-17 Westinghouse Electric Corp. Recovery of scandium, yttrium and lanthanides from titanium ore
US5662874A (en) * 1990-11-13 1997-09-02 Rhone-Poulenc Chimie Preparation of ammonium rare earth double oxalates and rare earth oxides produced therefrom
EP0790321A1 (en) * 1996-02-13 1997-08-20 Santoku Metal Industry Co., Ltd. Method for recovering reusable elements from rare earth-iron alloy scrap containing cobalt
US5961938A (en) * 1996-02-13 1999-10-05 Santoku Metal Industry Co., Ltd Method for recovering reusable elements from rare earth-iron alloy
WO2013060689A1 (en) 2011-10-24 2013-05-02 Prayon Sa Method for treating phosphate rock
JP2014046295A (en) * 2012-09-03 2014-03-17 Shimane Univ Neodymium recovery method
FR2997095A1 (en) * 2012-10-24 2014-04-25 Commissariat Energie Atomique PROCESS FOR ISOLATING RARE EARTHS AND / OR APPARENT METAL ELEMENT (S) CONTAINED IN THE MAGNETIC PHASE OF PERMANENT MAGNETS.
WO2014064597A3 (en) * 2012-10-24 2014-07-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for isolating rare earths and/or adjacent metal element(s) contained in the magnetic phase of permanent magnets
US10167532B2 (en) 2012-10-24 2019-01-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for isolating rare earths and/or adjacent metal element(s) contained in the magnetic phase of permanent magnets
US10351931B2 (en) * 2015-01-15 2019-07-16 Worcester Polytechnic Institute Separation of recycled rare earths
JP2018098430A (en) * 2016-12-16 2018-06-21 日立金属株式会社 Method for producing r-t-b-based sintered magnet

Similar Documents

Publication Publication Date Title
US5433931A (en) Recovery of cerium
Lyman et al. Recycling of rare earths and iron from NdFeB magnet scrap
JP6392650B2 (en) Rare earth element recovery method from precious metal smelting slag
JPS643550B2 (en)
CN109593977B (en) Method for removing iron ions in neodymium, praseodymium, dysprosium and iron-containing solution
EP0692035B1 (en) Recovery of cerium from fluoride-containing ores
JPH01183415A (en) Method for separating and recovering rare earth element
KR100578712B1 (en) Recovery of Neodymium from NdFeB Oxidation-Roasted Scrap by Acetic Acid Leaching
JP4470749B2 (en) Rhodium recovery method and metal rhodium production method
US7357827B2 (en) Integrated ammoniacal solvent extraction and hydrogen reduction of nickel
JP3369855B2 (en) Method for producing high purity nickel aqueous solution
US3634070A (en) Process for recovery of copper and other metals from source materials
JPS5928614B2 (en) Method for separating and purifying platinum and/or palladium
JPS63182216A (en) Method for separation and recovery of rare earth element
JP2765740B2 (en) Separation and recovery of rare earth elements from raw materials containing rare earth elements and iron
JP3309794B2 (en) Method for separating and removing platinum and palladium
US2733990A (en) Method of precipitating metals in metallic form
US20230323509A1 (en) Weak Acid Lixiviants for Recovery of Alkaline Earth Metals
US4452633A (en) Method for producing cobalt metal powder
KR100265432B1 (en) Cerium collecting method
US4964997A (en) Liquid/liquid extraction of rare earth/cobalt values
JPH04198017A (en) Purification of scandium oxide
JP3479677B2 (en) Method for selectively recovering copper ions from alkaline solution
JP2937184B1 (en) How to remove platinum and palladium
JPS6133046B2 (en)