JPH04321505A - Production of aluminum nitride - Google Patents

Production of aluminum nitride

Info

Publication number
JPH04321505A
JPH04321505A JP9079291A JP9079291A JPH04321505A JP H04321505 A JPH04321505 A JP H04321505A JP 9079291 A JP9079291 A JP 9079291A JP 9079291 A JP9079291 A JP 9079291A JP H04321505 A JPH04321505 A JP H04321505A
Authority
JP
Japan
Prior art keywords
aluminum
metal
aluminum nitride
alloy
aluminum metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9079291A
Other languages
Japanese (ja)
Inventor
Yuji Nagai
裕二 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP9079291A priority Critical patent/JPH04321505A/en
Publication of JPH04321505A publication Critical patent/JPH04321505A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To reduce the amount of residual metallic Al and the oxygen content by nitriding an Al alloy containing a transition metal in a nitrogen-containing nonoxidizing atmosphere. CONSTITUTION:An Al alloy containing 0.1-30wt.% transition metal is nitrided at 600-1600 deg.C in a nitrogen-containing nonoxidizing atmosphere for 10-100min.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は窒化アルミニウムの製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing aluminum nitride.

【0002】0002

【従来の技術】窒化アルミニウムは通常、電気炉内でア
ルミニウム金属を窒素を含む非酸化性雰囲気中で窒化し
て製造される。窒化率は、反応温度が高いほど、また反
応時間が長いほど向上するが、アルミニウム金属の融点
等を考慮して、最適な窒化条件は 600〜1600℃
、30〜300 分間である。
BACKGROUND OF THE INVENTION Aluminum nitride is usually produced by nitriding aluminum metal in a non-oxidizing atmosphere containing nitrogen in an electric furnace. The higher the reaction temperature and the longer the reaction time, the higher the nitriding rate, but considering the melting point of aluminum metal, etc., the optimal nitriding condition is 600 to 1600°C.
, 30 to 300 minutes.

【0003】窒化アルミニウムの製造における重大な課
題は、前記した窒化条件を用いたとしても原料のアルミ
ニウム金属が完全に窒化されず、製造された窒化アルミ
ニウム中にアルミニウム金属が残留することである。製
造された窒化アルミニウム中にアルミニウム金属が残留
すると、反応ガス中の酸素と反応して形成された酸化物
が残留して、酸素含量の高い窒化アルミニウムが製造さ
れるという問題が生ずる。酸素含量の高い窒化アルミニ
ウムを焼結させても熱伝導率の低い焼結体しか得られな
いことは周知の通りである。
A serious problem in the production of aluminum nitride is that even if the above-mentioned nitriding conditions are used, the raw aluminum metal is not completely nitrided, and the aluminum metal remains in the produced aluminum nitride. If aluminum metal remains in the produced aluminum nitride, an oxide formed by reacting with oxygen in the reaction gas remains, resulting in a problem that aluminum nitride with a high oxygen content is produced. It is well known that even if aluminum nitride with a high oxygen content is sintered, only a sintered body with low thermal conductivity can be obtained.

【0004】原料のアルミニウム金属が完全に窒化され
ない原因は、アルミニウム金属の窒化反応は主にアルミ
ニウム金属の表面で起るため、金属表面に窒化アルミニ
ウムが生成されるとアルミニウム金属の内部にまで反応
ガスが浸透せず、アルミニウム金属の窒化反応が停止し
てしまうからである。このために、アルミニウム金属と
反応ガスとの接触面積をできるだけ大きくすべく、原料
として、アルミニウム金属を約10〜50μmに粉砕し
て得た粉砕物または予め約10〜50μmのサイズの粒
状に製造したアルミニウム金属粉が用いられている。し
かしながら、原料として上記したアルミニウム金属の粉
砕物またはアルミニウム金属粉を用いても、窒化アルミ
ニウム中に数重量%のアルミニウム金属が残留している
The reason why the raw material aluminum metal is not completely nitrided is that the nitriding reaction of aluminum metal mainly occurs on the surface of the aluminum metal, so when aluminum nitride is formed on the metal surface, the reaction gas reaches the inside of the aluminum metal. This is because the aluminum metal does not penetrate and the nitriding reaction of aluminum metal stops. For this purpose, in order to increase the contact area between the aluminum metal and the reaction gas as much as possible, aluminum metal was used as a raw material by pulverizing it to about 10 to 50 μm, or a pulverized product obtained by grinding it to about 10 to 50 μm, or prepared in advance into granules with a size of about 10 to 50 μm. Aluminum metal powder is used. However, even if the above-mentioned pulverized aluminum metal or aluminum metal powder is used as a raw material, several weight percent of aluminum metal remains in aluminum nitride.

【0005】また、原料としてアルミニウム金属の粉砕
物またはアルミニウム金属粉を用いた場合、粉砕時また
は貯蔵中にアルミニウム金属が酸化を受けて、生じた酸
化物が後の窒化反応を阻害する。また、前記酸化物が製
造された窒化アルミニウム中に残留物として存在し、そ
のため窒化アルミニウム中の酸素含量が高くなる問題も
生ずる。
[0005] Furthermore, when pulverized aluminum metal or aluminum metal powder is used as a raw material, the aluminum metal is oxidized during pulverization or storage, and the resulting oxide inhibits the subsequent nitriding reaction. Furthermore, the problem arises that the oxide is present as a residue in the aluminum nitride produced, resulting in a high oxygen content in the aluminum nitride.

【0006】窒化アルミニウムは、上記したアルミニウ
ム金属を非酸化性雰囲気中で窒化させる方法以外、プラ
ズマジェット法やアーク放電法によっても製造されるが
、いずれの方法においても製造された窒化アルミニウム
中にアルミニウム金属が残留する課題は解決され得ない
Aluminum nitride can be produced by a plasma jet method or an arc discharge method, in addition to the above-mentioned method of nitriding aluminum metal in a non-oxidizing atmosphere. The problem of residual metal cannot be solved.

【0007】[0007]

【発明が解決しようする課題】本発明の目的は、アルミ
ニウム金属の残留量の少なくかつ酸素含量も少ない窒化
アルミニウムを製造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing aluminum nitride with a small amount of residual aluminum metal and a low oxygen content.

【0008】[0008]

【課題を解決するための手段および作用】上記した課題
を解決するために、本発明においては原料として遷移金
属を含むアルミニウム合金を使用することを特徴とする
Means and Effects for Solving the Problems In order to solve the above problems, the present invention is characterized in that an aluminum alloy containing a transition metal is used as a raw material.

【0009】本発明の窒化アルミニウム製造方法は、遷
移金属を含むアルミニウム合金を窒素ガスを含む非酸化
性雰囲気中で窒化することからなる。
The method for producing aluminum nitride of the present invention comprises nitriding an aluminum alloy containing a transition metal in a non-oxidizing atmosphere containing nitrogen gas.

【0010】本発明において原料として遷移金属を含む
アルミニウム合金を使用すると、アルミニウム合金中に
含まれる遷移金属によって反応ガスがアルミニウム金属
の内部にまで浸透し、窒化反応が金属表面で停止するこ
となく順次速やかに進行し、窒化率の高い窒化アルミニ
ウムが得られる。本発明によって製造された窒化アルミ
ニウム中のアルミニウム金属の残留量は数十ppm以下
である。本発明において原料として使用されるアルミニ
ウム合金中の遷移金属としては、ニッケル、イットリウ
ム、タングステン、チタン、バナジウムが好ましく、よ
り好ましくはイットリウムである。遷移金属を2種類以
上添加した合金でも同様に窒化アルミニウム粉末が得ら
れる。本発明において原料として使用されるアルミニウ
ム合金中の遷移金属の量は、好ましくは 0.1〜30
重量%、より好ましくは1〜10重量%である。遷移金
属の量が 0.1重量%未満では所期の添加効果が達成
されず、10重量%を越えると添加元素の酸化物を多量
に含む窒化アルミニウムが製造される。
In the present invention, when an aluminum alloy containing a transition metal is used as a raw material, the transition metal contained in the aluminum alloy allows the reaction gas to penetrate into the interior of the aluminum metal, and the nitriding reaction occurs sequentially without stopping at the metal surface. The process progresses quickly and aluminum nitride with a high nitriding rate can be obtained. The amount of aluminum metal remaining in the aluminum nitride produced by the present invention is several tens of ppm or less. The transition metal in the aluminum alloy used as a raw material in the present invention is preferably nickel, yttrium, tungsten, titanium, or vanadium, and more preferably yttrium. Aluminum nitride powder can be obtained in the same way with an alloy containing two or more types of transition metals. The amount of transition metal in the aluminum alloy used as a raw material in the present invention is preferably 0.1 to 30
% by weight, more preferably 1 to 10% by weight. If the amount of transition metal is less than 0.1% by weight, the desired effect of addition cannot be achieved, and if it exceeds 10% by weight, aluminum nitride containing a large amount of oxide of the added element will be produced.

【0011】本発明において原料として遷移金属を含む
アルミニウム合金を使用した場合、遷移金属は窒化反応
時に原料中の酸素と反応して酸化物を形成すると共に、
反応ガス中に微量の酸素が含まれている場合でもその酸
素と反応して酸化物を形成するが、形成された遷移金属
の酸化物は反応時に系外に排出されるので、窒化アルミ
ニウムの酸素含量が高くなることはない。遷移金属の酸
化物は、その種類によっては(例えば、Y2 O3 、
V2 O5 、N:O)窒化アルミニウム中に残留する
が、この酸化物は窒化アルミニウムの焼結時に焼結助剤
として作用するので、焼結時に別の焼結助剤を全くもし
くは少量しか添加しなくてすむ。酸化物は窒化アルミニ
ウムに均一に分散存在しているので、より均質な焼結体
が得られる。
In the present invention, when an aluminum alloy containing a transition metal is used as a raw material, the transition metal reacts with oxygen in the raw material during a nitriding reaction to form an oxide,
Even if the reaction gas contains a trace amount of oxygen, it will react with that oxygen to form an oxide, but the formed transition metal oxide will be discharged from the system during the reaction, so the oxygen in aluminum nitride will react with the oxygen and form an oxide. The content will not be high. Depending on the type of transition metal oxide (for example, Y2 O3,
V2 O5, N:O) remains in aluminum nitride, but since this oxide acts as a sintering aid during sintering of aluminum nitride, no or only a small amount of another sintering aid is added during sintering. I don't need it. Since the oxide is uniformly dispersed in the aluminum nitride, a more homogeneous sintered body can be obtained.

【0012】本発明においては遷移金属によって窒化反
応が速やかに進行するので、原料としてのアルミニウム
合金は微細な形状を有していなくてもよく、数mm程度
の塊状のアルミニウム合金を原料として使用することも
できる。しかしながら、原料として微細な形状を有する
アルミニウム合金を使用する方が窒化反応がより速かに
進行する。
[0012] In the present invention, since the nitriding reaction proceeds rapidly with the transition metal, the aluminum alloy as a raw material does not need to have a fine shape, and a lumpy aluminum alloy of about several mm in size is used as a raw material. You can also do that. However, the nitriding reaction proceeds more quickly when an aluminum alloy having a fine shape is used as a raw material.

【0013】本発明における窒化反応の条件は従来と同
様である。窒化反応は窒素を含む非酸化性雰囲気中で実
施され、主に窒素ガスが使用されるが、窒素ガスに他の
ガス、例えばアンモニアガス、アルゴンガスを組合せて
もよい。また、非酸化性雰囲気中に0.03%程度の微
量ならば酸素が含まれていてもよい。反応温度は通常、
 600〜1600℃である。反応時間は窒化反応が速
やかに進行するので、10〜100 分位短縮すること
もできる。
The conditions for the nitriding reaction in the present invention are the same as those in the prior art. The nitriding reaction is carried out in a non-oxidizing atmosphere containing nitrogen, and nitrogen gas is mainly used, but nitrogen gas may be combined with other gases such as ammonia gas and argon gas. Further, oxygen may be contained in a trace amount of about 0.03% in the non-oxidizing atmosphere. The reaction temperature is usually
The temperature is 600-1600°C. Since the nitriding reaction proceeds rapidly, the reaction time can be shortened by about 10 to 100 minutes.

【0014】[0014]

【実施例】以下、本発明の非限定的実施例を示す。EXAMPLES Non-limiting examples of the present invention are shown below.

【0015】実施例1 純度99.99 %のアルミニウム金属にニッケル、イ
ットリウム、タングステン、バナジウムの各金属を 3
重量%添加したアルミニウム合金を用いて、直径10m
m、高さ 5mmの円柱状の合金サンプルを作成した。 この合金サンプルを純度99.9%のアルミナ製のボー
トに載置し、カーボン製の電気炉内に配置し、電気炉内
に窒素ガスを流しながら1100℃で4時間反応させて
窒化生成物を得た。また、合金サンプルの代りに純度9
9.99 %のアルミニウム金属を用い、該金属に同一
条件下で反応させて得た窒化生成物を対照とした。
Example 1 Three metals of nickel, yttrium, tungsten, and vanadium were added to aluminum metal with a purity of 99.99%.
Diameter 10m using aluminum alloy with wt% addition
A cylindrical alloy sample with a height of 5 mm and a height of 5 mm was prepared. This alloy sample was placed on a 99.9% pure alumina boat, placed in a carbon electric furnace, and reacted at 1100°C for 4 hours while flowing nitrogen gas into the electric furnace to remove nitrided products. Obtained. Also, instead of the alloy sample, purity 9
A nitrided product obtained by reacting 9.99% aluminum metal under the same conditions was used as a control.

【0016】得られた生成物をX線分析したところ、い
ずれも窒化アルミニウムとして確認された。生成物中の
アルミニウム金属の残留量を化学分析した結果および酸
素含量を機器分析(堀場製作所製EMGA−2800)
した結果を表1に示す。結果はすべて試料3個の平均値
である。
When the obtained products were subjected to X-ray analysis, they were all confirmed to be aluminum nitride. Results of chemical analysis of residual amount of aluminum metal in the product and instrumental analysis of oxygen content (EMGA-2800 manufactured by Horiba, Ltd.)
The results are shown in Table 1. All results are average values of three samples.

【0017】[0017]

【表1】[Table 1]

【0018】実施例2 純度99.99 %のアルミニウム金属にイットリウム
金属を30,20,15, 5, 1,0.1 重量%
添加したアルミニウム合金を用いて、直径10mm、高
さ 5mmの円柱状の合金サンプルを作成した。この合
金サンプルを純度99.9%のアルミナ製のボートに載
置し、カーボン製の電気炉内に配置し、電気炉内に窒素
ガスを流しながら1200℃で3時間反応させて窒化生
成物を得た。また、合金サンプルの代りに純度99.9
9 %のアルミニウム金属を用い、該金属に同一条件下
で反応させて得た窒化生成物を対照とした。
Example 2 30, 20, 15, 5, 1, and 0.1% by weight of yttrium metal in aluminum metal with a purity of 99.99%
A cylindrical alloy sample with a diameter of 10 mm and a height of 5 mm was created using the added aluminum alloy. This alloy sample was placed on a boat made of 99.9% pure alumina, placed in a carbon electric furnace, and reacted at 1200°C for 3 hours while flowing nitrogen gas into the electric furnace to remove nitrided products. Obtained. Also, instead of alloy samples, purity 99.9
The control was a nitrided product obtained by reacting 9% aluminum metal under the same conditions.

【0019】得られた生成物をX線分析したところ、い
ずれも窒化アルミニウムとして確認された。生成物中の
アルミニウム金属の残留量を化学分析した結果および酸
素含量を機器分析(堀場製作所製EMGA−2800)
した結果を表2に示す。結果はすべて試料3個の平均値
である。
When the obtained products were subjected to X-ray analysis, they were all confirmed to be aluminum nitride. Results of chemical analysis of residual amount of aluminum metal in the product and instrumental analysis of oxygen content (EMGA-2800 manufactured by Horiba, Ltd.)
The results are shown in Table 2. All results are average values of three samples.

【0020】[0020]

【表2】[Table 2]

【0021】実施例3 純度99.99 %のアルミニウム金属にニッケル、イ
ットリウム、タングステン、バナジウムの各金属を 3
重量%添加したアルミニウム合金を用いて、粒子サイズ
が 1mm以下の粉末状の合金サンプルを作成した。こ
の合金サンプル10gを純度99.9%のアルミナ製の
ボートに載置し、カーボン製の電気炉内に配置し、電気
炉内に窒素ガスを流しながら1000℃で2時間反応さ
せて窒化生成物を得た。 また、合金サンプルの代りに純度99.99 %のアル
ミニウム金属を用い、該金属に同一条件下で反応させて
得た窒化生成物を対照とした。
Example 3 Three metals of nickel, yttrium, tungsten, and vanadium were added to aluminum metal with a purity of 99.99%.
Powdered alloy samples with a particle size of 1 mm or less were prepared using the aluminum alloy to which % by weight was added. 10 g of this alloy sample was placed on a 99.9% pure alumina boat, placed in a carbon electric furnace, and reacted at 1000°C for 2 hours while flowing nitrogen gas into the electric furnace to form a nitrided product. I got it. In addition, aluminum metal with a purity of 99.99% was used instead of the alloy sample, and a nitrided product obtained by reacting the metal under the same conditions was used as a control.

【0022】得られた生成物をX線分析したところ、い
ずれも窒化アルミニウムとして確認された。生成物中の
アルミニウム金属の残留量を化学分析した結果および酸
素含量を機器分析(堀場製作所製EMGA−2800)
した結果を表3に示す。結果はすべて試料3個の平均値
である。
When the obtained products were subjected to X-ray analysis, they were all confirmed to be aluminum nitride. Results of chemical analysis of residual amount of aluminum metal in the product and instrumental analysis of oxygen content (EMGA-2800 manufactured by Horiba, Ltd.)
The results are shown in Table 3. All results are average values of three samples.

【0023】[0023]

【表3】[Table 3]

【0024】実施例4 純度 99.99%のアルミニウム金属にニッケル、イ
ットリウム、タングステン、バナジウムの各金属を 2
重量%添加したアルミニウム合金を用いて、直径10m
m、高さ 5mmの円柱状の合金サンプルを作成した。 この合金サンプルを純度99.9%のアルミナ製のボー
トに載置し、カーボン製の電気炉内に配置し、電気炉内
に窒素ガスを流しながら 900℃で 0.5、 1、
 2.5、 5、10時間反応させて窒化生成物を得た
。また、合金サンプルの代りに純度99.99 %のア
ルミニウム金属を用い、該金属に同一条件下で反応させ
て得た窒化生成物を対照とした。
Example 4 Each metal of nickel, yttrium, tungsten, and vanadium was added to aluminum metal with a purity of 99.99%.
Diameter 10m using aluminum alloy with wt% addition
A cylindrical alloy sample with a height of 5 mm and a height of 5 mm was prepared. This alloy sample was placed on a boat made of alumina with a purity of 99.9%, placed in a carbon electric furnace, and heated at 900°C while flowing nitrogen gas into the electric furnace.
The reaction was carried out for 2.5, 5 and 10 hours to obtain nitrided products. In addition, aluminum metal with a purity of 99.99% was used instead of the alloy sample, and a nitrided product obtained by reacting the metal under the same conditions was used as a control.

【0025】得られた生成物をX線分析したところ、い
ずれも窒化アルミニウムとして確認された。生成物中の
アルミニウム金属の残留量を化学分析した結果を表4、
酸素含量を機器分析(堀場製作所製EMGA−2800
)した結果を表5に示す。結果はすべて試料3個の平均
値である。
When the obtained products were subjected to X-ray analysis, they were all confirmed to be aluminum nitride. Table 4 shows the results of chemical analysis of the residual amount of aluminum metal in the product.
Instrumental analysis of oxygen content (EMGA-2800 manufactured by Horiba)
) The results are shown in Table 5. All results are average values of three samples.

【0026】[0026]

【表4】[Table 4]

【0027】[0027]

【表5】[Table 5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  遷移金属を含むアルミニウム合金を窒
素を含む非酸化性雰囲気中で窒化することを特徴とする
窒化アルミニウムの製造方法。
1. A method for producing aluminum nitride, which comprises nitriding an aluminum alloy containing a transition metal in a non-oxidizing atmosphere containing nitrogen.
JP9079291A 1991-04-22 1991-04-22 Production of aluminum nitride Pending JPH04321505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9079291A JPH04321505A (en) 1991-04-22 1991-04-22 Production of aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9079291A JPH04321505A (en) 1991-04-22 1991-04-22 Production of aluminum nitride

Publications (1)

Publication Number Publication Date
JPH04321505A true JPH04321505A (en) 1992-11-11

Family

ID=14008438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9079291A Pending JPH04321505A (en) 1991-04-22 1991-04-22 Production of aluminum nitride

Country Status (1)

Country Link
JP (1) JPH04321505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159439A (en) * 1996-12-26 2000-12-12 Toyota Jidosha Kabushiki Kaisha Process for producing aluminum nitride
CN102295276A (en) * 2011-06-14 2011-12-28 西安理工大学 Method for preparing porous aluminium nitride particle or porous gallium nitride particle by two-step nitridation method
WO2015182477A1 (en) * 2014-05-30 2015-12-03 国立大学法人名古屋大学 Aln crystal preparation method, aln crystals, and organic compound including aln crystals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159439A (en) * 1996-12-26 2000-12-12 Toyota Jidosha Kabushiki Kaisha Process for producing aluminum nitride
CN102295276A (en) * 2011-06-14 2011-12-28 西安理工大学 Method for preparing porous aluminium nitride particle or porous gallium nitride particle by two-step nitridation method
WO2015182477A1 (en) * 2014-05-30 2015-12-03 国立大学法人名古屋大学 Aln crystal preparation method, aln crystals, and organic compound including aln crystals
JPWO2015182477A1 (en) * 2014-05-30 2017-04-20 国立大学法人名古屋大学 Method for producing AlN crystal, AlN crystal, and organic compound containing AlN crystal

Similar Documents

Publication Publication Date Title
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
US3531245A (en) Magnesium-aluminum nitrides
US4664899A (en) Method of producing monotungsten carbide powder
CA2037413C (en) Method for producing a fine grained powder consisting of nitrides and carbonitrides of titanium
KR100524338B1 (en) Method for Producing Wolfram Carbides by Gas-Phase Carburetion
CN109136709A (en) The production method of vanadium carbide nitride magnesium-titanium solid solution and its hard alloy
EP0482808B1 (en) Method for producing high-purity metallic chromium
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
RU2699620C2 (en) New method and product
JPH04321505A (en) Production of aluminum nitride
JPH0280318A (en) Synthesis of refractory metal boride having predetermined particle dimension
US3914113A (en) Titanium carbide preparation
JP4647374B2 (en) High-purity tungsten carbide powder for hard materials, high-purity titanium carbide and titanium carbonitride powder and methods for producing them
JPH0912308A (en) Method for nitriding aluminum
US3786133A (en) Titanium carbide preparation
JPH021761B2 (en)
JPS58171506A (en) Manufacture of fine metallic nickel powder
Welham Ambient temperature formation of (Ta, Nb) C and (Ta, Nb) N
JPH021762B2 (en)
US3545922A (en) Process for the preparation of finely divided,non-pyrophoric nitrides of zirconium,hafnium,niobium and tantalum
JPS6183608A (en) Production of aluminum nitride
JP2593112B2 (en) Method for producing composite carbonitride
JPH0829923B2 (en) Silicon nitride powder
JPH07233406A (en) Production of superfine powdery composite starting material for cemented carbide
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property