JPS6132244B2 - - Google Patents

Info

Publication number
JPS6132244B2
JPS6132244B2 JP17986482A JP17986482A JPS6132244B2 JP S6132244 B2 JPS6132244 B2 JP S6132244B2 JP 17986482 A JP17986482 A JP 17986482A JP 17986482 A JP17986482 A JP 17986482A JP S6132244 B2 JPS6132244 B2 JP S6132244B2
Authority
JP
Japan
Prior art keywords
ammonia
silicon nitride
gas
temperature
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17986482A
Other languages
Japanese (ja)
Other versions
JPS5973412A (en
Inventor
Masashi Hasegawa
Shigeo Hyama
Tadasuke Shigi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17986482A priority Critical patent/JPS5973412A/en
Publication of JPS5973412A publication Critical patent/JPS5973412A/en
Publication of JPS6132244B2 publication Critical patent/JPS6132244B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は窒化けい素粉体の製造方法に関し、
特にハロゲンおよび酸素の含有量を有利に少くす
ることに関する開発成果を提案しようとするもの
である。 窒化けい素は優れた耐熱性、耐食性などに関し
て有用であり、種々の用途に用いられている。近
年特に注目されているのはガス・タービンなどの
高温材料の使途への適合であり、その原料として
の窒化けい素粉体も、高純度でかつ微細な粉末の
要請は、殊のほか強くのぞまれるに至つた。 従来、窒化けい素粉体の製造方法としては (1) 金属シリコン粉末を直接窒化する方法 (2) シリカ粉末を黒鉛粉末で還元し窒化する方法
および (3) ハロゲン化けい素とアンモニアとを反応させ
る方法 などがあり、特に最後に掲げた方法は、金属不純
物の少ない窒化けい素粉体を製造する方法として
優れている。そしてこの方法はさらに(イ)室温付近
あるいは低温で反応させる方法と、(ロ)高温で反応
させる方法とに大別される。 低温法(イ)による反応生成物は、シリコンイミド
Si(NH)2およびこれのアンモニア付加物で示さ
れる含窒素シラン化合物であり、窒素あるいはア
ンモニア雰囲気中での熱処理によつて容易にハロ
ゲン含有量の少ない窒化けい素粉体を得ることが
できる点で有利な反面、反応時の副生成として多
量のハロゲン化アンモニアが生成し、これを熱処
理して除去する必要があるため、炉の容積効率が
大きく低下し、また炉低温部にハロゲン化アンモ
ニウムが再析出して炉の閉塞をもたらす欠点があ
る。 一方、高温法(ロ)では副生成としてガス状の塩化
水素が生成し、ハロゲン化アンモニウムにより弊
害は生じないか少くとも著しく軽減させることが
でき、しかもかかる反応生成物は(イ)の場合と同様
に熱処理して窒化けい素粉体とすることができ
る。この際熱処理の雰囲気としては窒素および/
またはアンモニア中で行なうことは公知であるが
低温法(イ)で得られる含窒素シラン化合物と異な
り、反応生成物中に直接結合したハロゲンが存在
する。 そのため窒素中の熱処理ではこのハロゲンは除
去できず焼結性に悪影響を及ぼし、またこのほか
結晶化させて、α−窒化けい素粉体とすることが
困難であり、さらにハロゲンを除こうとしてより
高温および/または長時間にわたる熱処理を行な
うと窒化けい素粉体はβ晶化してしまう、焼結体
原料として適さなくなる。 さればといつてアンモニア中で熱処理を行なう
と、ハロゲンは除去できるにしても、アンモニア
によりアルミナやムライト質などの炉材が侵食さ
れて、炉材寿命を低下させ、また炉材からの不純
物汚染を受ける原因になり易く、さらに窒化けい
素粉体中の酸素含有量も多くなつて、焼結体の高
温特性の低下をもたらす欠点に加えてここに得ら
れる窒化けい素粉体は針状物が多く、焼結性が低
下する欠点も看過され難い。 発明者らはかかる従来法における未解決の問題
点を克服しようとして種々検討を行ない実験を重
ねた結果、ハロゲン化けい素または水素化ハロゲ
ン化けい素とアンモニアとを600〜1500℃の気相
で反応させて得られる反応生成物を、アンモニア
含有ガス中で熱処理する際に、炉材の侵食が生じ
ない比較的低い温度であつても反応生成物中のハ
ロゲンを除き得ることを究明し、とくにかかる脱
ハロゲンを行なつた反応生成物を更に不活性ガス
中で熱処理することにより、一貫した不活性ガス
中の熱処理のみではα晶化しにくいような比較的
低い温度で容易にα晶化させることができ、ここ
に、アンモニア雰囲気中での熱処理を継続する場
合のような炉材の侵食が生じることがなく、その
上窒化けい素中の酸素含量も有利に低減でき、更
にはアンモニア雰囲気中の熱処理のみでは、酸素
が関与した気相成長により生成すると考えられる
針状物の生成も大きく抑制できることなどが逐次
に判明した。 この発明はこれらの知見にもとずいて完成した
ものであつて、ハロゲン化けい素または水素化ハ
ロゲンけい素とこれに対してモル比0.1〜1.85の
アンモニアとを、600〜1500℃の気相で反応させ
て得られた反応生成物を、アンモニアを少なくと
も20容量%を含むガス中にて温度100〜1400℃で
加熱すること、次いで、アルゴンを少なくとも50
容量%を含む不活性ガス中にて温度1000〜1650℃
で加熱することの結合により、高純度で、ハロゲ
ンおよび酸素の含有量が少ない無定形またはα晶
形の窒化けい素でる点で焼結原料として格段に優
れた窒化けい素粉体の提供を、現実に可能とした
のである。 以下、この発明を詳細に説明する。 この発明の方法の出発物質として使用するハロ
ゲン化けい素または水素化ハロゲン化けい素とし
ては、SiCl4、SiBr4、Sil4やSiHCl3、SiHBr3
SiHI3もしくはSiH2Cl2、SiH2Br2、SiH2I2ないし
SiH3Cl、SiH3Br、SiH3IさらにはSiCl2Br2
SiCl2I2などであり、これらとアンモニアとの反
応は温度600〜1500℃の気相にて行なわれる。 ここに四塩化けい素など室温で液状や、また固
体状を呈するものは適当に加温して蒸気とし、必
要であれば窒素やアルゴンなどの不活性ガスをキ
ヤリヤーとして、アンモニアと反応させるのが好
ましい。 反応温度は600℃よりも低すぎると、反応時多
量に生成するハロゲン化アンモニウムが反応炉低
温部に堆積し炉の閉塞をひき起し、また1500℃を
こえるとアンモニアの熱分解速度が早すぎて反応
効率の低下を来たす。反応時間は特に限定しない
が、比較的速やかに反応を生じるので、長時間行
なう必要はない。 こうして得られた反応生成物はまずアンモニア
含有ガス中で加熱し、次いでアルゴンを少なくと
も50容量を%含む不活性ガス中で加熱を行ないこ
の二段処理がこの発明の目的に照らして重要であ
る。その具体的な方法としては、 アンモニア含有ガス中で加熱した後、雰囲気
ガスを不活性ガスに切換えて加熱を継続する。 アンモニア含有ガス中で加熱し、脱ハロゲン
を行なつた反応生成物を移送し、不活性ガス雰
囲気に保つた炉中にて加熱を行なう。 などがあげられるがこれらに限定されるものでは
ないが、生産性と移送時における酸化防止の点か
らによる方法が望ましい。 ここでアンモニア含有ガスとは、アンモニアガ
スのみの場合とアンモニアガスを他のガスにて希
釈した場合とを包含し、希釈ガスのアンモニア含
有量は少くとも20容積%で、残りは窒素および/
またはアルゴンガスであるものが好ましい。ここ
にアンモニアの含有量が20容積%未満であると、
ハロゲンの除去に対する効果が認められない。 次にアンモニア含有ガス中の加熱は100〜1400
℃が好ましくは500〜1400℃さらに好ましくは900
〜1400℃で50時間〜10分間行なうのが好ましい。
100℃未満ではハロゲンの除去効果が認められ
ず、また1400℃を超るとハロゲンの除去効果の向
上は期待できずしてしかも炉材の侵食が多くな
り、さらに窒化けい素中の酸素含量も多くなるだ
けでなく針状物の生成が多くなる。加熱時間は10
分間に満たないとハロゲンの除去効果が実質的に
認められずまた50時間をこえて長時間にわたらせ
てもハロゲン除去効果の向上は望めず、不経済で
ある。 次に、後段加熱でのアルゴンを少なくとも50容
量%を含む不活性ガスというのは、アルゴンのみ
の場合とアルゴンを少なくとも50容量%を含む不
活性ガスの場合とを意味し、後者のアルゴンと混
用される他のガスとしては、窒素、ヘリウムなど
をあげることができる。この不活性ガスは、例え
ば窒素ガスのみの場合に比べて、加熱時間を短か
くして酸素含有量を少なくできるという傾向があ
る。 アルゴンを少なくとも50容量%を含む不活性ガ
ス中での加熱は1000〜1650℃で30時間〜10分間行
なうことが好ましい。1000℃未満ではこの加熱処
理による酸素低減の効果が少なく、また1650℃を
こえると窒化けい素がβ晶化してしまい焼結原料
として適さなくなる。更に好ましくは1400〜1650
℃の温度域で加熱することにより単に一貫して不
活性雰囲気中での熱処理をしただけでは全くのぞ
み得ないα晶化が進み、かつ針状物が少ない窒化
けい素粉体が得られる。加熱時間は10分間に満た
ないと酸素除去の効果がなく30時間をこえると酸
素除去の効果の向上は望めず不経済となる。 以上説明した如く、この発明によれば、ハロゲ
ンおよび酸素の含有量の少ない高純度の窒化けい
素粉体が得なれ、またアルミナやムライトなどの
炉材の侵食をも防止することができるのみならず
α−窒化けい素を主体としてとくに針状物が少な
い窒化けい素粉体が有利に得られる。 この発明の方法に従うとき、ハロゲン含有量は
0.5重量%以下、酸素含有量3重量%以下であ
り、無定形またはα晶形のSi3N4であつて、しか
も針状物の生成量が20%以下であるような、著し
い高品質化が達せられる。ここにα−Si3N4はX
線回折法による固定、また針状物は電子顕微鏡観
察による粒子形状の判定によることとした。 以下次表に掲げた実施例についてのべる。
This invention relates to a method for producing silicon nitride powder,
In particular, it is intended to propose developments relating to an advantageous reduction in the content of halogens and oxygen. Silicon nitride is useful for its excellent heat resistance and corrosion resistance, and is used for various purposes. In recent years, the application of high-temperature materials such as gas turbines has received particular attention, and the demand for high-purity and fine silicon nitride powder as a raw material is especially strong. It has come to be. Conventionally, methods for producing silicon nitride powder include (1) directly nitriding metal silicon powder, (2) reducing silica powder with graphite powder and nitriding it, and (3) reacting silicon halide with ammonia. There are several methods for producing silicon nitride powder, and the last method is particularly excellent as a method for producing silicon nitride powder with less metal impurities. This method is further divided into (a) a method in which the reaction is carried out near room temperature or at a low temperature, and (b) a method in which the reaction is carried out at a high temperature. The reaction product obtained by the low temperature method (a) is silicon imide.
It is a nitrogen-containing silane compound represented by Si(NH) 2 and its ammonia adduct, and silicon nitride powder with low halogen content can be easily obtained by heat treatment in a nitrogen or ammonia atmosphere. On the other hand, a large amount of halogenated ammonium is produced as a by-product during the reaction, which must be removed by heat treatment, which greatly reduces the volumetric efficiency of the furnace, and also prevents ammonium halides from forming in the low-temperature section of the furnace. It has the disadvantage of redepositing and clogging the furnace. On the other hand, in the high-temperature method (b), gaseous hydrogen chloride is produced as a by-product, and the ammonium halide does not cause any adverse effects or can at least significantly reduce the harmful effects, and such reaction products are not the same as in the case of (a). Silicon nitride powder can be obtained by heat treatment in the same manner. At this time, the atmosphere for heat treatment is nitrogen and/or
Alternatively, it is known that the reaction is carried out in ammonia, but unlike the nitrogen-containing silane compound obtained by the low-temperature method (a), there is a halogen directly bonded in the reaction product. Therefore, this halogen cannot be removed by heat treatment in nitrogen, which has a negative effect on sintering properties.In addition, it is difficult to crystallize to form α-silicon nitride powder, and furthermore, when trying to remove the halogen, it is difficult to remove the halogen. If heat treatment is performed at a high temperature and/or for a long time, the silicon nitride powder will become β crystallized, making it unsuitable as a raw material for a sintered body. However, if heat treatment is performed in ammonia, even if halogens can be removed, the ammonia will corrode furnace materials such as alumina and mullite, reducing the lifespan of the furnace materials and increasing the risk of impurity contamination from the furnace materials. In addition, the silicon nitride powder obtained here has the disadvantage that the silicon nitride powder is easily susceptible to acicular particles, and the oxygen content in the silicon nitride powder increases, resulting in a decrease in the high-temperature properties of the sintered body. However, the drawback of reduced sinterability is also difficult to overlook. The inventors conducted various studies and repeated experiments in an attempt to overcome the unresolved problems in the conventional methods, and as a result, they discovered that silicon halides or hydrogenated silicon halides and ammonia were mixed in a gas phase at 600 to 1500°C. It was discovered that when the reaction product obtained by the reaction is heat-treated in an ammonia-containing gas, the halogen in the reaction product can be removed even at a relatively low temperature that does not cause corrosion of the furnace material. By further heat-treating the dehalogenated reaction product in an inert gas, it is possible to easily alpha-crystallize it at a relatively low temperature that would be difficult to alpha-crystallize with consistent heat treatment in an inert gas alone. In this case, corrosion of the furnace material does not occur when heat treatment is continued in an ammonia atmosphere, and the oxygen content in silicon nitride can also be advantageously reduced. It has been successively discovered that heat treatment alone can greatly suppress the formation of needle-like objects, which are thought to be generated by vapor phase growth involving oxygen. This invention was completed based on these findings, and consists of silicon halide or silicon hydride and ammonia in a molar ratio of 0.1 to 1.85 to the silicon halide in a gas phase at 600 to 1500°C. heating the reaction product obtained by the reaction at a temperature of 100 to 1400 °C in a gas containing at least 20% by volume of ammonia, and then at a temperature of 100 to 1400 °C with at least 50% argon.
Temperature 1000~1650℃ in inert gas containing % by volume
By combining heating at This made it possible. This invention will be explained in detail below. The silicon halides or hydrogenated silicon halides used as starting materials for the method of this invention include SiCl 4 , SiBr 4 , Sil 4 and SiHCl 3 , SiHBr 3 ,
SiHI 3 or SiH 2 Cl 2 , SiH 2 Br 2 , SiH 2 I 2 or
SiH 3 Cl, SiH 3 Br, SiH 3 I as well as SiCl 2 Br 2 ,
SiCl 2 I 2 and the like, and the reaction between these and ammonia is carried out in the gas phase at a temperature of 600 to 1500°C. Here, silicon tetrachloride, which is liquid or solid at room temperature, is heated appropriately to form a vapor, and if necessary, reacts with ammonia using an inert gas such as nitrogen or argon as a carrier. preferable. If the reaction temperature is too low than 600℃, a large amount of ammonium halide produced during the reaction will accumulate in the low temperature part of the reactor, causing clogging of the reactor, and if it exceeds 1500℃, the rate of thermal decomposition of ammonia will be too fast. This results in a decrease in reaction efficiency. The reaction time is not particularly limited, but since the reaction occurs relatively quickly, it is not necessary to carry out the reaction for a long time. The reaction product thus obtained is heated first in an ammonia-containing gas and then in an inert gas containing at least 50% by volume of argon, and this two-stage treatment is important in view of the purpose of the invention. A specific method is to heat it in an ammonia-containing gas, then switch the atmospheric gas to an inert gas and continue heating. The reaction product, which has been heated in an ammonia-containing gas and dehalogenated, is transferred and heated in a furnace maintained in an inert gas atmosphere. These methods include, but are not limited to, preferred methods from the viewpoint of productivity and prevention of oxidation during transportation. Here, the ammonia-containing gas includes ammonia gas alone and ammonia gas diluted with another gas, and the ammonia content of the diluted gas is at least 20% by volume, with the remainder being nitrogen and/or
Alternatively, argon gas is preferred. If the ammonia content is less than 20% by volume,
No effect on halogen removal was observed. Next, heating in ammonia-containing gas is 100 to 1400
℃ is preferably 500 to 1400℃, more preferably 900℃
Preferably, the reaction is carried out at ~1400°C for 50 hours to 10 minutes.
At temperatures below 100°C, no halogen removal effect is observed, and at temperatures above 1400°C, no improvement in the halogen removal effect can be expected, and moreover, corrosion of the furnace material increases, and the oxygen content in silicon nitride decreases. Not only will the amount increase, but also the generation of needle-like objects will increase. Heating time is 10
If the time is less than 50 hours, the halogen removal effect will not be substantially observed, and even if it exceeds 50 hours, no improvement in the halogen removal effect can be expected, which is uneconomical. Next, the inert gas containing at least 50% by volume of argon in post-heating refers to the case of argon alone and the case of an inert gas containing at least 50% by volume of argon, and in the latter case, the inert gas containing at least 50% by volume of argon is used. Other gases that may be used include nitrogen, helium, and the like. This inert gas tends to shorten the heating time and reduce the oxygen content, compared to, for example, only nitrogen gas. Heating in an inert gas containing at least 50% by volume of argon is preferably carried out at 1000-1650°C for 30 hours to 10 minutes. At temperatures below 1,000°C, the effect of oxygen reduction by this heat treatment is small, and at temperatures above 1,650°C, silicon nitride becomes β crystallized, making it unsuitable as a sintering raw material. More preferably 1400-1650
By heating in the temperature range of .degree. C., a silicon nitride powder with less needle-shaped particles can be obtained, which progresses alpha crystallization, which cannot be achieved by simply consistently performing heat treatment in an inert atmosphere. If the heating time is less than 10 minutes, there will be no oxygen removal effect, and if it exceeds 30 hours, no improvement in the oxygen removal effect can be expected and it will become uneconomical. As explained above, according to the present invention, high purity silicon nitride powder with low halogen and oxygen contents can be obtained, and it is also possible to prevent corrosion of furnace materials such as alumina and mullite. A silicon nitride powder containing α-silicon nitride as a main component and having particularly few needles can be advantageously obtained. When following the method of this invention, the halogen content is
0.5% by weight or less, oxygen content of 3% by weight or less, amorphous or α-crystalline Si 3 N 4 , and the production of needles is 20% or less. can be achieved. Here α−Si 3 N 4 is
Fixation was performed using a line diffraction method, and needle-like particles were determined by particle shape observation using an electron microscope. The examples listed in the following table will be described below.

【表】 実験No.1〜7は、窒素ガスをキヤリヤーとし
て、四塩化けい素の蒸気を73g/hrでアンモニア
ガスを10g/hrの割合で反応管にそれぞれ導入し
て反応させた。反応管は内径40mm、長さ1000mmの
アルミナ管であり、縦型管状炉により表に掲げた
各温度に保持した。 得られた反応生成物は反応管下部に取り付けた
容器にて捕集した。 このとき、反応させた後のガスをガスクロマト
グラフイーで分析した結果、塩化水素の生成が認
められ一方反応生成物はIR分析の結果、シリコ
ンイミドとは異なる粉末であることが確認され
た。 この反応生成物は次のアンモニア含有ガス処理
に供した。すなわち反応生成物をアルミナ製炉心
管中に挿入し、電気炉にて表に記した所定温度、
所定時間にわたる加熱を、窒素ガスによる希釈で
所定のアンモニア含有量に調整し、または希釈を
しないアンモニアガス流中で行なつた。次いでア
ンモニア含有ガスを止めてその代わりに表に示す
種々の不活性ガスを流して置換を行なつた上で不
活性ガス処理を、同表の所定温度、所定時間にわ
たる加熱下に行なつた。 上記の2段階加熱処理して得られた窒化けい素
粉末について、酸素含量は残素分析計(レコ社
RO−18)にて、塩素含量はけい光X線法にて、
また結晶形はX線回折法にてそれぞれ分析を行な
つた。結果を表に示す。なお表の製品の分析結果
の欄においてα/βが90%以上のものをα晶形と
した。 また、窒化けい素粉末の電顕写真を撮り、粒子
形状を観察した。その結果、いずれも針状物の含
有量は少ないものであつた。電顕写真の1例とし
て、実験No.8のものについて第1図に示した。
また長径/短径比が5以上の針状物と5以下の粒
状物の面積割合を測定した結果、いずれの場合も
針状物の含有は20%以下でそれぞれ表に併記した
とおりであつた。 実験No.8〜9は、上記の四塩化へい素の代わ
りにSiHCl3およびSiBr4をそれぞれ実験No.1〜7
と同様に実施した結果は、各段階加熱処理件とと
もに表に併記したとおりである。 なお実験No.10〜12は実験No.1〜7と同様の方
法で得た反応生成物を、アンモニア中もしくはア
ンモニア含有ガス中および窒素中のみで表に示し
た条件で加熱した比較例の結果を示す。 また実験No.10、11の粒子形状を観察した結果
の1例として、実験No.10のものについて第2図
に示し、実験No.1〜7についてのべた判定の基
準でいずれも針状物の含有は90%をこえていた。 以下のべたようにしてこの発明によれば、ハロ
ゲンおよび酸素含有量が著しく少く、α−Si3N4
を主体として、しかも針状物の少い微細粉末状の
窒化けい素粉体を有利に得ることができる。
[Table] In experiments Nos. 1 to 7, silicon tetrachloride vapor was introduced into the reaction tube at a rate of 73 g/hr and ammonia gas was introduced at a rate of 10 g/hr into the reaction tube, using nitrogen gas as a carrier. The reaction tube was an alumina tube with an inner diameter of 40 mm and a length of 1000 mm, and was maintained at each temperature listed in the table using a vertical tube furnace. The obtained reaction product was collected in a container attached to the bottom of the reaction tube. At this time, gas chromatography analysis of the gas after the reaction revealed the production of hydrogen chloride, while IR analysis confirmed that the reaction product was a powder different from silicon imide. This reaction product was subjected to the next ammonia-containing gas treatment. That is, the reaction product is inserted into an alumina furnace tube, and heated to the specified temperature shown in the table in an electric furnace.
Heating for a given period of time was carried out in a stream of ammonia gas, adjusted to a given ammonia content by dilution with nitrogen gas, or without dilution. Next, the ammonia-containing gas was stopped and replaced with various inert gases shown in the table for replacement, and then an inert gas treatment was carried out under heating at a predetermined temperature and for a predetermined period of time as shown in the table. The oxygen content of the silicon nitride powder obtained by the above two-step heat treatment was measured using a residual analyzer (Reco Co., Ltd.).
RO-18), the chlorine content was determined using the fluorescent X-ray method,
Further, the crystal forms of each were analyzed by X-ray diffraction method. The results are shown in the table. In addition, in the column of product analysis results in the table, those with α/β of 90% or more were classified as α crystal form. In addition, electron micrographs of the silicon nitride powder were taken to observe the particle shape. As a result, the content of needle-like substances was low in all cases. As an example of an electron micrograph, Experiment No. 8 is shown in Figure 1.
In addition, as a result of measuring the area ratio of needles with a length/breadth ratio of 5 or more and granules with a ratio of 5 or less, the content of needles was 20% or less in both cases, as shown in the table. . Experiments Nos. 8 to 9 used SiHCl 3 and SiBr 4 instead of hexachloride described above, respectively.
The results of the same procedure as above are listed in the table together with the heat treatment at each stage. Experiments Nos. 10 to 12 are the results of comparative examples in which reaction products obtained in the same manner as Experiments Nos. 1 to 7 were heated under the conditions shown in the table only in ammonia or ammonia-containing gas and nitrogen. shows. In addition, as an example of the results of observing the particle shapes of Experiments No. 10 and 11, Experiment No. 10 is shown in Figure 2. The content exceeded 90%. As described below, according to the present invention, the halogen and oxygen contents are significantly reduced, and α-Si 3 N 4
It is possible to advantageously obtain a finely powdered silicon nitride powder mainly composed of silicon nitride and having fewer needles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、実験No.8と実験No.10とに
よつて得られた窒化けい素粉体の粒状形状を示す
6000倍の電子顕微鏡写真である。
Figures 1 and 2 show the granular shapes of silicon nitride powders obtained in Experiment No. 8 and Experiment No. 10.
This is an electron micrograph at 6000x magnification.

Claims (1)

【特許請求の範囲】 1 ハロゲン化けい素または水素化ハロゲン化け
い素とアンモニアとを、600〜1500℃の温度の気
相で反応させて得られる反応生成物につき、 アンモニアを少なくとも20容量%を含むガス中
にて温度100〜1400℃で加熱すること、次いで、
アルゴンを少なくとも50容量%を含む不活性ガス
中にて温度1000〜1650℃で加熱すること、を結合
して、ハロゲン含有量0.5重量%以下でかつ酸素
含有量3重量%以下であつて、X線回折法による
同定で無定形またはα晶形のSi3N4でありしか
も、電子顕微鏡観察による粒子形状の判定で針状
物の含有が20%以下の微細粉状生成物を得ること
を特徴とする窒化けい素粉体の製造方法。
[Claims] 1. At least 20% by volume of ammonia is contained in the reaction product obtained by reacting silicon halide or hydrogenated silicon halide with ammonia in the gas phase at a temperature of 600 to 1500°C. Heating at a temperature of 100 to 1400°C in a gas containing
X It is characterized by obtaining a fine powder product that is identified as amorphous or α-crystalline Si 3 N 4 by line diffraction, and whose particle shape is determined by electron microscopy and contains 20% or less of needles. A method for producing silicon nitride powder.
JP17986482A 1982-10-15 1982-10-15 Preparation of powder of silicone nitride Granted JPS5973412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17986482A JPS5973412A (en) 1982-10-15 1982-10-15 Preparation of powder of silicone nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17986482A JPS5973412A (en) 1982-10-15 1982-10-15 Preparation of powder of silicone nitride

Publications (2)

Publication Number Publication Date
JPS5973412A JPS5973412A (en) 1984-04-25
JPS6132244B2 true JPS6132244B2 (en) 1986-07-25

Family

ID=16073240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17986482A Granted JPS5973412A (en) 1982-10-15 1982-10-15 Preparation of powder of silicone nitride

Country Status (1)

Country Link
JP (1) JPS5973412A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3536933A1 (en) * 1985-10-17 1987-04-23 Bayer Ag IMPROVED SILICON NITRIDE AND METHOD FOR THE PRODUCTION THEREOF
US4788049A (en) * 1986-03-21 1988-11-29 Gte Products Corporation Method for controlling the crystal morphology of silicon nitride
JP2561396Y2 (en) * 1990-02-20 1998-01-28 三菱農機株式会社 Transmission device in work vehicle
GB9306802D0 (en) * 1993-04-01 1993-05-26 Tioxide Specialties Ltd Process for the production of silicon nitride

Also Published As

Publication number Publication date
JPS5973412A (en) 1984-04-25

Similar Documents

Publication Publication Date Title
JP4778504B2 (en) Method for producing silicon
US20110033707A1 (en) Spherical boron nitride nanoparticles and synthetic method thereof
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
US4346068A (en) Process for preparing high-purity α-type silicon nitride
EP0365295A1 (en) Process for producing crystalline silicon nitride powder
JPS6132244B2 (en)
JPS6111886B2 (en)
US20180087186A1 (en) Method of producing carbide raw material
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
EP0131894A2 (en) A method for producing alpha-form silicon nitride fine powders
JPS6111885B2 (en)
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
KR102475700B1 (en) Preparation method of silicon powder, and preparation method of silicon nitride using the same
JPS58199707A (en) Manufacture of crystalline silicon nitride powder
JP3385059B2 (en) Method for producing high-purity aluminum nitride powder
JP2000044223A (en) Production of silicon carbide
JP3325344B2 (en) Method for producing aluminum nitride powder
JPS621564B2 (en)
JP2784060B2 (en) Manufacturing method of high purity silicon nitride powder
JPS6117764B2 (en)
JPS6049121B2 (en) Silicon nitride manufacturing method
JPS6335566B2 (en)
JPH0465002B2 (en)
JPS60195008A (en) Production of silicon nitride powder
JPS60200813A (en) Production of composite fine powder consisting of silicon nitride and silicon carbide