JPS6049121B2 - Silicon nitride manufacturing method - Google Patents

Silicon nitride manufacturing method

Info

Publication number
JPS6049121B2
JPS6049121B2 JP4171278A JP4171278A JPS6049121B2 JP S6049121 B2 JPS6049121 B2 JP S6049121B2 JP 4171278 A JP4171278 A JP 4171278A JP 4171278 A JP4171278 A JP 4171278A JP S6049121 B2 JPS6049121 B2 JP S6049121B2
Authority
JP
Japan
Prior art keywords
silicon nitride
reaction
ammonia
halogen
sih
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4171278A
Other languages
Japanese (ja)
Other versions
JPS54134099A (en
Inventor
公彦 佐藤
邦彦 寺瀬
等 雉子牟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4171278A priority Critical patent/JPS6049121B2/en
Publication of JPS54134099A publication Critical patent/JPS54134099A/en
Publication of JPS6049121B2 publication Critical patent/JPS6049121B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は窒化珪素の製造方法、特にハロゲンの含有量が
少ない窒化珪素の製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silicon nitride, particularly a method for producing silicon nitride with a low halogen content.

窒化珪素は、耐熱性及び耐食性に優れ、その焼結体は各
種のタービンブンドーや高温にさらされるノズル等にそ
の用途が拓けつつある。
Silicon nitride has excellent heat resistance and corrosion resistance, and its sintered bodies are finding use in various turbine bundles, nozzles exposed to high temperatures, and the like.

従来、窒化珪素の製造法としては、例えばガス状の四塩
化珪素とアンモニアとを酸素を遮断した雰囲気中におい
て590〜1500’Cの高温下に反応せしめ、次いで
熱処理を行なうことにより製造する方法が知られている
Conventionally, silicon nitride has been produced by reacting gaseous silicon tetrachloride and ammonia at a high temperature of 590 to 1500'C in an oxygen-blocked atmosphere, followed by heat treatment. Are known.

(窯業協会誌皿、28、(1972)参照)この方法に
よると、一部α晶化した粉末状の窒化珪素(Si。
(Refer to Ceramics Association Journal, 28, (1972)) According to this method, powdered silicon nitride (Si), which is partially α-crystallized, is produced.

N0)が得られるが、反応後の熱処理工程では反応副生
物である塩化アンモニウムの除去は出来るが、窒化珪素
中にこれと一部反応した塩素が不純物として取り込まれ
ており、これを用いて例えば鋳込み等の方法により所望
の形状にして焼結せしめる際に、かかる塩素が気化し、
作業環境を悪化させたり、鋳型や周囲の機器を腐食する
虞れがあり、かかる塩素の混入は極力避けることが望ま
しい。又、この場合、脱塩素の目的で本来焼結を行なう
温度以下の温度でさえもあまり長時間高温にさらすと窒
化珪素はα晶からβ晶へ転位して焼結が起り、その後の
使用に耐えなくなる。
Although ammonium chloride, a reaction by-product, can be removed in the post-reaction heat treatment step, chlorine that has partially reacted with this is incorporated into silicon nitride as an impurity, so using this, for example, When sintering into the desired shape using methods such as casting, the chlorine evaporates,
It is desirable to avoid such chlorine contamination as much as possible, as it may worsen the working environment and corrode the mold and surrounding equipment. In addition, in this case, if the silicon nitride is exposed to high temperatures for too long, even below the temperature at which sintering is originally performed for the purpose of dechlorination, sintering will occur due to the dislocation of silicon nitride from α crystal to β crystal, which will cause the silicon nitride to become unsuitable for subsequent use. I can't stand it anymore.

他方、塩素を含まない珪素源を用いることも考えられる
が、かかる原料は一般に高価であり、特;に大量に使用
する場合には工業的でない。
On the other hand, it is also conceivable to use a silicon source that does not contain chlorine, but such raw materials are generally expensive and are not industrially practical, especially when used in large quantities.

本発明者は、これらの点に鑑み、比較的安価に入手し得
る四塩化珪素を用いながらも、得られる焼結体原料とし
ての粉体中に実質的に塩素を含有しない窒化珪素を得る
事を目的として種々研究、o検討した結果、従来法の如
くただ慢然と四塩化珪素とアンモニアとの反応により窒
化珪素を製造する場合には、生成窒化珪素中に塩素が取
り込まれ、かかる塩素の除去はかなりの困難性を伴なう
が、かかる反応を特定条件下に実施する場合に!5は、
塩素を実質的に含まない窒化珪素が容易に得られる事を
見出した。更に、本発明方法を採用する場合には、原料
として四塩化珪素の他にSlHCl3、SlBr4、S
iI4等の他のハロゲンを含む無機珪素化合物を用いて
も同様な結果が得られることも見出された。
In view of these points, the present inventor has attempted to obtain silicon nitride that does not substantially contain chlorine in the powder as a raw material for the sintered body, while using silicon tetrachloride, which is available at a relatively low cost. As a result of various studies and examinations for the purpose of Removal is accompanied by considerable difficulty, but when such reactions are carried out under specific conditions! 5 is
It has been found that silicon nitride substantially free of chlorine can be easily obtained. Furthermore, when employing the method of the present invention, in addition to silicon tetrachloride, SlHCl3, SlBr4, S
It has also been found that similar results can be obtained using other halogen-containing inorganic silicon compounds such as iI4.

かくして本発明は、ハロゲンを含む無機珪素化合物に対
するアンモニアのモル比を0.1〜1.85にしてハロ
ゲンを含む無機珪素化合物とアンモニアとを常圧下に4
00〜1600゜C1反応時間30−0.1秒で反応せ
しめ、次いで窒素及び/又はアンモニア気流中において
600〜1700℃に8〜0.2110.間保持せしめ
ることにより、ハロゲンを実質的に含有しない窒化珪素
を製造する方法を提供するにある。
Thus, in the present invention, an inorganic silicon compound containing a halogen and ammonia are mixed under normal pressure with a molar ratio of ammonia to the inorganic silicon compound containing a halogen of 0.1 to 1.85.
00-1600° C1 reaction time 30-0.1 seconds, and then heated to 600-1700°C in a nitrogen and/or ammonia stream at 8-0.2110°C. An object of the present invention is to provide a method for producing silicon nitride substantially free of halogen by holding the nitride for a period of time.

本発明において原料として用いられるハロゲンを含む無
機珪素化合物としては、SiCl4、SiHCl3、S
iH2Cl2、SiH3Cl.,SiBr4、SiHB
3、SiH2Br2、SiH3BrNSll4、SiH
I3、SiH2l2、SjH3l..SiCl。Br2
、SiCl2l2であり、これらには常温でガス状のも
のもあるが、液状や固体状のものもあり、これらは均一
な反応を速やかに実施する為に例えば適当な間接加熱等
の手段によソー旦ガ2ス化せしめてアンモニアとの反応
に供するのが適当である。最初の反応に用いられるアン
モニアの量は、原料として用いられるハロゲンを含む無
機珪素化合物に対し、モル比で0.1〜1.85を採用
する必要が2.ある。
Inorganic silicon compounds containing halogen used as raw materials in the present invention include SiCl4, SiHCl3, S
iH2Cl2, SiH3Cl. , SiBr4, SiHB
3, SiH2Br2, SiH3BrNSll4, SiH
I3, SiH2l2, SjH3l. .. SiCl. Br2
, SiCl2l2, and some of these are gaseous at room temperature, while others are liquid or solid, and in order to quickly carry out a uniform reaction, they can be solubilized by means such as suitable indirect heating. It is appropriate to first gasify it and then subject it to the reaction with ammonia. 2. The amount of ammonia used in the first reaction must be in a molar ratio of 0.1 to 1.85 with respect to the halogen-containing inorganic silicon compound used as a raw material. be.

用いるアンモニアの量が前記範囲に満たない場合には、
窒化珪素の生成割合が低く、工業的でなく、逆に前記範
囲を超える場合には、後述する高温処理をいかに行なお
うともハロゲンを実質的に3(含まない焼結体原料とし
ての窒化珪素が得られないので何れも不適当である。
If the amount of ammonia used is less than the above range,
If the production rate of silicon nitride is low and not suitable for industrial use, and conversely exceeds the above range, silicon nitride as a raw material for a sintered body that does not contain halogens will substantially Both of these methods are inappropriate because they cannot be obtained.

そして前記範囲のうち、前記モル比で0.5〜1.8を
採用する場合には、ハロゲンを実質的に含まない窒化珪
素を工業的有利に製造し得るので特に好3!ましい。
Among the above ranges, when the molar ratio is from 0.5 to 1.8, silicon nitride that does not substantially contain halogen can be industrially advantageously produced, so it is particularly preferable! Delicious.

又、反応温度は400〜1600℃である事が必要てあ
る。
Further, the reaction temperature is required to be 400 to 1600°C.

反応温度が400℃より低い場合には副生するハロゲン
化アンモニアが固体として析出し、反応操4(作上困難
を伴ない、逆に1600゜Cを超える場合には最終的な
生成物である窒化珪素中にハロゲンが取り込まれ、実質
的に除去が困難となるので何れも不適当である。
If the reaction temperature is lower than 400°C, the by-product halogenated ammonia will precipitate as a solid, causing difficulties in reaction step 4 (processing); on the other hand, if the reaction temperature exceeds 1600°C, the final product will be Either method is unsuitable because halogen is incorporated into silicon nitride, making removal substantially difficult.

又、反応時間は30〜0.1秒を採用する必要がある
Further, it is necessary to adopt a reaction time of 30 to 0.1 seconds.

反応時間が308を超える場合には、生成した窒化珪
素中からハロゲンを実質的に除去し得なくなると共に、
反応装置が不必要に大型化し、逆に0.1秒に満たない
場合には、実質的に反応が進行しないので何れも不適当
である。
If the reaction time exceeds 30 8, it becomes impossible to substantially remove halogen from the produced silicon nitride, and
If the reactor is unnecessarily large and the reaction time is less than 0.1 seconds, the reaction will not substantially proceed, which is inappropriate.

そして、これら反応温度と時間のうち、反応温度50
0〜1550℃、反応時間10〜0.5秒を採用する場
ノ合には、実質的にハロゲンを含まない窒化珪素を工業
的有利に製造し得るので特に好ましい。
Of these reaction temperatures and times, the reaction temperature 50
It is particularly preferable to use a reaction time of 0 to 1550° C. and a reaction time of 10 to 0.5 seconds, since silicon nitride substantially free of halogen can be produced industrially advantageously.

又、この反応を行なう際、反応系内に酸素が存在する
と不純物としてシリカが混入する虞れがあるので好まし
くない。 尚、反応温度とその時間の関係は、前記夫々
の範囲内において、反応温度が高くなるにつれて反応時
間は短い方へ移行する。
Further, when carrying out this reaction, the presence of oxygen in the reaction system is not preferable since there is a risk that silica will be mixed in as an impurity. Regarding the relationship between reaction temperature and time, within each of the above ranges, as the reaction temperature becomes higher, the reaction time becomes shorter.

かくして得られた反応生成物(一般に固体粉末)は、
これを次いで窒素及び/又はアンモニア気流中において
600〜1700℃に8〜0.濁間保持される。
The reaction product thus obtained (generally a solid powder) is
This is then heated to 600-1700°C in a nitrogen and/or ammonia stream for 8-0. It is kept in a cloudy state.

保持温度が600′Cより低く、0.2時間に満たない
場合には、窒化珪素中のハロゲンを実質的に除去し得ず
、逆に1700℃より高く、又8時間を超える場合には
β晶である窒化珪素の焼結体が生成してくるのて何れも
不適当である。
If the holding temperature is lower than 600'C and for less than 0.2 hours, the halogen in silicon nitride cannot be substantially removed, whereas if the holding temperature is higher than 1700'C and for more than 8 hours, β Either way, a sintered body of silicon nitride, which is a crystal, is formed, which is inappropriate.

そして、これら保持温度と時間の範囲中、温度〕00
〜1600℃、時間0.5〜3時間を採用する場合にま
、β晶の生成を実質的に抑制しつつ、窒化珪素トのハロ
ゲンを実質的完全に除去し得るので特に子ましい。
During these holding temperature and time ranges, temperature〕00
It is particularly preferable to use the temperature of 1600 DEG C. for 0.5 to 3 hours because the halogen in silicon nitride can be substantially completely removed while the formation of beta crystals is substantially suppressed.

又、この反応において用いられる窒素及び/又よアンモ
ニアの量は、前後の反応で用いられるアノモニアの量が
窒化珪素を形成させるに必要な理?量に満たない場合に
は、それを補充せねばなら2、又理論量以上の場合であ
つても窒化珪素中に冫まれるハロゲンが除去された後を
窒素に置換す,ことが必要なので、これらの理由から一
般に原1であるハロゲン化された無機珪素化合物から窒
] t珪素(Si3N4)を形成させるに必要な理論量
の2倍以上を用いるのが適当である。
Also, the amount of nitrogen and/or ammonia used in this reaction is determined by the reason that the amount of ammonia used in the previous and subsequent reactions is necessary to form silicon nitride. If the amount is less than the stoichiometric amount, it must be replenished2, and even if it is more than the stoichiometric amount, it is necessary to replace the halogen contained in silicon nitride with nitrogen after it has been removed. For these reasons, it is generally appropriate to use at least twice the theoretical amount required to form silicon nitride (Si3N4) from the halogenated inorganic silicon compound serving as source 1.

実際、本発明方法を実施する好ましい具体的手の一例と
しては、原料であるガス状のハロゲン された無機珪素
化合物及びアンモニアガスと、稀釈用窒素ガスとを外部
加熱方式の流通型空塔反応管へ導入し、反応管内で混合
して反応せしめ、生成した窒化珪素粉末を含有するガス
を酸素を遮断した状態で集塵機等のガスー固体分離機へ
導入し、生成粉末を分離捕集する。
In fact, as a preferred specific example of carrying out the method of the present invention, gaseous halogenated inorganic silicon compounds and ammonia gas, which are raw materials, and nitrogen gas for dilution are transferred to an externally heated flow-through type sky column reaction tube. The resulting gas containing silicon nitride powder is introduced into a gas-solid separator such as a dust collector with oxygen cut off, and the resulting powder is separated and collected.

次いで酸素を遮断した状態て窒素及び/又はアンモニア
気流を流通し得る外部加熱型のロータリーキルンや揺動
炉を用い、600〜1700℃で8〜0.満間保持せし
める。かかる操作において、稀釈用窒素は必ずしも用い
なくてもよい。次に本発明を実施例により具体的に説明
する。
Next, using an externally heated rotary kiln or rocking furnace in which a nitrogen and/or ammonia gas stream can be passed while cutting off oxygen, the temperature is 8-0. Hold it for a full time. In such operations, diluting nitrogen may not necessarily be used. Next, the present invention will be specifically explained using examples.

実施例内径36期、長さ900TmInの石英製反応管
を内筒とし、内径50W0fL..長さ100−のアル
ミナ製の外筒からなる外熱式流通型反応器と、反応管下
部に取り付けた反応生成物捕集器とからなる装置を用い
、所定温度に保持した反応管上部からハロゲン化珪素(
キヤリアガスニN2)及びアンモニアガスを別々の導入
管から吹き込み、反応させた。
Example The inner cylinder was a quartz reaction tube with an inner diameter of 36mm and a length of 900TmIn, and an inner diameter of 50W0fL. .. Using an apparatus consisting of an externally heated flow-through reactor consisting of an alumina outer cylinder with a length of 100 mm and a reaction product collector attached to the bottom of the reaction tube, halogen is removed from the top of the reaction tube maintained at a predetermined temperature. Silicone (
Carrier gas (N2) and ammonia gas were blown into the reactor from separate introduction pipes to cause a reaction.

捕集器(100℃)に捕集された粉末状生成物を窒素雰
囲気下で窒化珪素製ルツボに移し、窒素一アンモニア混
合ガス気流中、電気炉で熱処理を行なつた。
The powdered product collected in the collector (100° C.) was transferred to a silicon nitride crucible under a nitrogen atmosphere, and heat-treated in an electric furnace in a nitrogen-ammonia mixed gas flow.

ノ 反応条件及び熱処理条件と得られた窒化珪素の分析
結果は次表の如くであつた。
The reaction conditions, heat treatment conditions, and analysis results of the obtained silicon nitride are as shown in the following table.

尚、窒化珪素中に含まれるハロゲン分析は、蛍光X線分
析法で行なつた。
The halogen contained in silicon nitride was analyzed by fluorescent X-ray analysis.

Claims (1)

【特許請求の範囲】[Claims] 1 SiCl_4、SiHCl_3、SiH_2Cl_
2、SiH_3Cl、SiBr_4、SiHBr_3、
SiH_2Br_2、SiH_3Br、SiI_4、S
iHI_3、SiH_2I_2、SiH_3I、SiC
l_2Br_2、SiCl_2I_2から選ばれたハロ
ゲンを含む無機珪素化合物に対するアンモニアのモル比
を0.1〜1.85にしてハロゲンを含む無機珪素化合
物とアンモニアとを常圧下に400〜1600℃、反応
時間30〜0.1秒で反応せしめ、次いで窒素及び/又
はアンモニア気流中において600〜1700℃に8〜
0.2時間保持せしめる事を特徴とする窒化珪素の製造
方法。
1 SiCl_4, SiHCl_3, SiH_2Cl_
2, SiH_3Cl, SiBr_4, SiHBr_3,
SiH_2Br_2, SiH_3Br, SiI_4, S
iHI_3, SiH_2I_2, SiH_3I, SiC
The molar ratio of ammonia to the halogen-containing inorganic silicon compound selected from l_2Br_2 and SiCl_2I_2 was set to 0.1 to 1.85, and the halogen-containing inorganic silicon compound and ammonia were mixed under normal pressure at 400 to 1600°C for a reaction time of 30 to 1.85. React for 0.1 seconds, then heat to 600-1700°C in a nitrogen and/or ammonia stream for 8-80 minutes.
A method for producing silicon nitride, characterized by holding the silicon nitride for 0.2 hours.
JP4171278A 1978-04-11 1978-04-11 Silicon nitride manufacturing method Expired JPS6049121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4171278A JPS6049121B2 (en) 1978-04-11 1978-04-11 Silicon nitride manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4171278A JPS6049121B2 (en) 1978-04-11 1978-04-11 Silicon nitride manufacturing method

Publications (2)

Publication Number Publication Date
JPS54134099A JPS54134099A (en) 1979-10-18
JPS6049121B2 true JPS6049121B2 (en) 1985-10-31

Family

ID=12616027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4171278A Expired JPS6049121B2 (en) 1978-04-11 1978-04-11 Silicon nitride manufacturing method

Country Status (1)

Country Link
JP (1) JPS6049121B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011473B2 (en) 2018-12-17 2021-05-18 Samsung Electronics Co., Ltd. Semiconductor package

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913442B2 (en) * 1980-01-11 1984-03-29 東ソー株式会社 Manufacturing method of high purity type silicon nitride
DE3536933A1 (en) * 1985-10-17 1987-04-23 Bayer Ag IMPROVED SILICON NITRIDE AND METHOD FOR THE PRODUCTION THEREOF

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011473B2 (en) 2018-12-17 2021-05-18 Samsung Electronics Co., Ltd. Semiconductor package

Also Published As

Publication number Publication date
JPS54134099A (en) 1979-10-18

Similar Documents

Publication Publication Date Title
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
EP0063272B1 (en) Synthesis of silicon nitride
JPS6049121B2 (en) Silicon nitride manufacturing method
US5211801A (en) Method for manufacturing single-crystal silicon carbide
JPS5855316A (en) Manufacture of silicon nitride powder
JPS62241812A (en) Manufacture of silicon nitride
JPH0216270B2 (en)
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JPH07115880B2 (en) Synthetic quartz glass member with excellent heat resistance
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPS6111885B2 (en)
JPS6132244B2 (en)
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS62148309A (en) Preparation of silicon nitride having high content of alpha type silicon nitride
JPS5860609A (en) Preparation of high purity sic
JPS6251888B2 (en)
JPH0454610B2 (en)
JP2784060B2 (en) Manufacturing method of high purity silicon nitride powder
JPS608967B2 (en) How to make silicon nitride
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JPS58176109A (en) Production of alpha-type silicon nitride
JP2645724B2 (en) β-Si lower 3 N lower 4 whisker manufacturing method
JPS5891025A (en) Manufacture of silicon carbide
JPS63170207A (en) Production of high-purity silicon carbide powder
JPH0465002B2 (en)